
Title 欠陥検出を目的とした類似コード検索法

Author(s) 吉田, 則裕; 石尾, 隆; 松下, 誠 他

Citation ウィンターワークショップ2008・イン・道後 論文集.
2008, p. 221-222

Version Type VoR

URL https://hdl.handle.net/11094/50232

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

ウインターワークショップ 2008 ・イン・道後 論文集 （平成 20 年 1 月）

欠陥検出を目的とした類似コード検索法

吉 田 則 裕†1 石 尾 隆†1

松 下 誠†1 井 上 克 郎†1

ソースコード中に欠陥が見つかると，その欠陥を含むコードの類似コードを探し，検査する必要が

ある．本稿では，このような場合に用いることのできる方法について考察し，それを踏まえて識別子

の類似性に基づく類似コード検索法の構想を述べる．

Towards Retrieving Similar Code for Defect Detection

Norihiro Yoshida,†1 Takashi Ishio,†1 Makoto Matsushita†1

and Katsuro Inoue†1

In this paper, we discuss available methods for detecting defects caused by the same mis-
take. First we explain choices of methods that can be used in such situations and then propose
a code retrieval framework based on similarity of identifiers in source code.

1. は じ め に

ソフトウェア保守を困難にする要因の 1つとして類

似コード（コードクローン）が指摘されている1)–4).

類似コードは，既に開発されたコード片（ソースコー

ドの一部）のコピーとペーストによる再利用や定型処

理の実装などが理由で作成される5)．ソフトウェアの

保守を行っている際にソースコード中に欠陥が見つか

ると，その欠陥を含むコード片の類似コードを探し，

検査する必要がある6)7)．しかし，ソフトウェア中の

類似コードを人手で探すためには大きなコストが必要

となる．また，同一の処理を実装したコード片であっ

ても表現上の差異があることが多いため，全ての類似

コードを人手で探すことは困難である．特に，大規模

ソフトウェアが対象の場合，全ての類似コードを人手

で探すことはより困難となる．

本稿では，まず欠陥を含むコード片の類似コードの

自動検索に用いることができる方法として，grepを用

いた検索やコードクローン検出法1)–4)を挙げ，それら

方法について考察する．次に，それを踏まえて識別子

に類似性に基づく類似コード検索法を提案する．手法

の提案では，まず基盤部分を説明し，続いて拡張方法

を述べる．現在，提案する検索法の実装を行っている．

†1 大阪大学 大学院情報科学研究科
Graduate School of Information Science and Technol-

ogy, Osaka University

2. 既存の類似コード検索法

2.1 grepを用いた方法

grepを用いて欠陥を含むコード片の類似コードを検

索する手順を以下に示す．

(1) 開発者は，欠陥と関連すると思われるキーワー

ド（識別子，式など）を抽出する．

(2) そのキーワードを引数として grepを実行する．

(3) 開発者は，grepの出力結果を基に，キーワード

を含むコード片を特定する．

この手順にしたがう開発者は，欠陥を含むコード片

と検査すべきコード片の間で，識別子や式などのキー

ワードが共通しているという前提を置いている．しか

し，識別子の同義語をはじめ，キーワードには様々な

変化形が存在するため，検査すべきコード片を漏れな

く検索結果に含めることは難しい．

2.2 コードクローン検出法を用いた方法

既に提案されている種々のコードクローン検出

法1)–4)を用いて，欠陥を含むコード片のコードクロー

ンを検出することができる．この方法は，コード片を

クエリとして与えられるため，開発者がキーワードや

パターンを考えなくて良いという利点がある．しかし，

既存のコードクローン検出法の多くは，類似したトー

クン列や構文木を検出する手法1)–3)であり，例えばロ

グ出力文や例外処理が追加されてしまったコード片は

検索結果に含まれない．その他のコードクローン検出

221

222 平成 20 年 1 月

It[0] It[1] It[2] It[n]It[n-1]

入力識別子列
Li

Ii[0] Ii[1] Ii[2]

対象識別子列
Lt ウィンドウ長 ウィンドウの進行方向

It[3]It[0] It[1] It[2] It[n]It[n-1]

入力識別子列
Li

Ii[0] Ii[1] Ii[2]

対象識別子列
Lt ウィンドウ長 ウィンドウの進行方向

It[3]

図 1 入力識別子列と対象識別子列の照合

法は計算時間が膨大であるため，大規模ソフトウェア

に適用することは現実的ではない4)．

3. 識別子の類似性に基づく類似コード検索法

本研究では，まず提案手法の基盤部分を実現した後，

様々な拡張を行う予定である．そして，適用実験を通

して各拡張の有効性を比較したいと考えている．

3.1 提案手法の基盤部分

入力コード片（クエリ）の類似コードを対象ソース

コードから検索し，提示する手順を以下に示す．

手順 1（識別子の抽出） 入力コード片および対象

ソースコードに含まれる全ての識別子を列挙し，

それぞれ入力識別子列および対象識別子列とする．

手順 2（識別子列の照合） 入力識別子列と対象識別

子列を照合し，入力識別子列と同じ識別子数でか

つ類似する部分列を対象識別子列から抽出する．

抽出された部分列を類似部分列と呼ぶ．

手順 3（類似部分列の順位付け） 類似部分列を入力

識別子列との類似度によって順位付けする．

手順 4（コード片の提示） 順位付けにしたがって，類

似部分列に対応するコード片を提示する．

手順 2 の詳細を述べる．図 1 は，入力識別子

列 Li =
[
Ii[0], Ii[1], Ii[2]

]
と対象識別子列 Lt =[

It[0], It[1], It[2]
]
の照合処理を表している．対象識

別子列 Lt中で照合の対象となる範囲をウィンドウと

呼び，このウィンドウを 1識別子単位で対象識別子の

終端方向（図 1の右方向）にスライドさせることで照

合処理を行う．照合するか否かの判定基準は，入力識

別子列とウィンドウ内の部分列の類似度を算出し，類

似度が 0より大きいか否かである．もし 0より大きい

ならば，ウィンドウ内の部分列を類似部分列として抽

出する．類似度は，入力識別子列 Liからなる集合を

Si，ウィンドウ内の部分列 Lwからなる集合を Swと

したときに，式 1で表される．

Similarity(Si, Sw) =
2 ∗ |Si ∩ Sw|
|Si| + |Sw| (1)

手順 3では，式 1に基づいて，抽出された類似部分

列に対して順位付けを行う．これにより，入力コード

片と多くの識別子を共有するコード片が上位に順位付

けされる．また，類似度が 0より大きいコード片を抽

出しているため，識別子を１つ以上共有するコード片

であれば，検索結果に含まれる．

3.2 拡 張 方 法

(1)識別子照合法の拡張 例えば，同義語をはじめと

する識別子の変化形に対応した照合法に拡張する

ことが考えられる．変化形を考慮した類似度の定

義に式 1を変更することで，変化形が存在する場

合でも，検索精度の低下を防ぐことができると考

えられる．変化形を特定するためには，単語の共

起性に基づいて同義語の判定を行う自然言語処理

の手法8) を応用できると考えられる．

(2)順位付け法の拡張 例えば，検索結果に含まれた

コード片にデータフロー解析など他のソースコー

ド解析法を適用し，解析結果（データフロー等）

の類似性を考慮した順位付けを行うことで，順位

付けの有効性を高めることが考えられる．検索結

果に含まれたコード片とその周辺のみを解析する

ため，計算にかかるコストは小さいと考えられる．

参 考 文 献

1) Baker, B.S.: Finding Clones with Dup: Analy-

sis of an Experiment, IEEE Trans. Softw. Eng.,

Vol.33, No.9, pp.608–621 (2007).

2) Baxter, I. D., Yahin, A., Moura, L., Anna,

M.S. and Bier, L.: Clone Detection Using Ab-

stract Syntax Trees, Proc. of ICSM ’98, pp.

368–377 (1998).

3) Kamiya, T., Kusumoto, S. and Inoue, K.:

CCFinder: A multi-linguistic token-based code

clone detection system for large scale source

code, IEEE Trans. Softw. Eng., Vol.28, No.7,

pp.654–670 (2002).

4) Komondoor, R. and Horwitz, S.: Using Slicing

to Identify Duplication in Source Code, Proc.

of SAS 2001, pp.40–56 (2001).

5) Kim, M., Bergman, L., Lau, T. and Notkin,

D.: An Ethnographic Study of Copy and Paste

Programming Practices in OOPL, Proc. of IS-

ESE 2004, pp.83–92 (2004).

6) Zeller, A.: Why Programs Fail, chapter15 Fix-

ing the Defect, Morgan Kaufmann Pub. (2005).

7) Li, Z., Lu, S., Myagmar, S. and Zhou, Y.: CP-

Miner: Finding Copy-Paste and Related Bugs

in Large-Scale Software Code, IEEE Trans.

Softw. Eng., Vol.32, No.3, pp.176–192 (2006).

8) Dagan, I., Lee, L. and Pereira, F. C. N.:

Similarity-Based Models of Word Cooccur-

rence Probabilities, Machine Learning, Vol.34,

No.1-3, pp.43–69 (1999).

