
Title プログラム実行履歴を用いたコードクローン検出手法

Author(s) 井岡, 正和; 吉田, 則裕; 井上, 克郎

Citation 情報処理学会研究報告. ソフトウェア工学研究会報
告. 2012, 2012-SE-178(13), p. 1-7

Version Type VoR

URL https://hdl.handle.net/11094/50233

rights © 2012 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

情報処理学会研究報告
IPSJ SIG Technical Report

プログラム実行履歴を用いたコードクローン検出手法

井岡 正和1,a) 吉田 則裕2,b) 井上 克郎1,c)

概要：コードクローンとは，ソースコード中に存在する互いに一致または類似したコード片のことである．
コードクローンを検出する手法が，既存研究で数多く提案されている．しかし，既存手法では，プログラ
ムのソースコードやバイナリファイルといった静的な情報のみを使用してコードクローンを検出している．
そのため，ソースコードをコピーした後に難読化等の変更が施されると，剽窃が隠蔽されてしまうことが
ある．そこで，本研究では，プログラムの動的な情報である実行履歴を複数のフェイズに分割し，各フェ
イズのメソッド呼び出し列を比較することで，コードクローンを検出する手法の提案を行う．提案手法を
実際のアプリケーションに適用した結果，難読化前後で同一のコンポーネントを識別できることと，再利
用されている箇所を特定できることを確認できた．

キーワード：コードクローン検出，動的解析，難読化

Code Clone Detection Technique Using Program Execution Traces

Masakazu Ioka1,a) Norihiro Yoshida2,b) Katsuro Inoue1,c)

Abstract: Code clone is a code fragment that has identical or similar fragments to it in the source code.
Many code clone detection techniques and tools have been proposed. However, source code derived by
copy-and-paste may be disguised by obfuscation because these techniques detect code clone using only static
information such as source code or binary. Therefore, we propose a new clone detection technique, which
divides execution trace into a set of phases, and then performs the comparison of those phases based on
involved method calls. The experimental result shows that the proposed clone detection technique identified
obfuscated and original classes, and an evidence of reusing source code.

Keywords: Code Clone Detection, Dynamic Analysis, Obfuscation

1. はじめに

ソフトウェア工学における研究対象として，コードク

ローンが注目されている．コードクローンとは，ソース

コード中に存在する互いに一致または類似したコード片の

ことをいい，主にコピーアンドペーストによって生成され

る．一般的に，コードクローンは，ソフトウェアの保守性

を悪化させる要因の 1つであると考えられている．また，

1 大阪大学
Osaka University

2 奈良先端科学技術大学院大学
Nara Institute of Science and Technology

a) m-ioka@ist.osaka-u.ac.jp
b) yoshida@is.naist.jp
c) inoue@ist.osaka-u.ac.jp

ライセンスを無視したソフトウェアのコピーやソースコー

ドの再利用が年々増加している．このため，コードクロー

ンを自動的に検出する手法が数多く提案されている [3]．

一方で，プログラムの解析を困難にする難読化技術が

次々と提案されている [11]．この技術によって，プログラ

ム中に含まれる特定の情報を隠蔽することができる．その

ため，ライセンスを無視したソフトウェアのコピーといっ

た剽窃が隠蔽される恐れがある．プログラムに難読化が施

されると，多くの既存手法が使用しているプログラムの

ソースコードやバイナリファイルといった静的な情報のみ

では，コードクローンを検出することが難しい．

そこで，本研究では，プログラムの動的な情報である実

行履歴からコードクローンを検出する手法を提案する．提

c⃝ 2012 Information Processing Society of Japan 1

Vol.2012-SE-178 No.13
2012/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

案する手法は，2つのプログラムの実行履歴を与えると，実

行履歴を機能的なまとまりであるフェイズに分割し，フェ

イズ間の類似度を計算して類似度の高いものをコードク

ローンとして出力する．

適用例では，実際のアプリケーションに提案手法を適用

し，難読化前後で同一のコンポーネントを識別できること

と，再利用されている箇所を特定できることを確認した．

以降，2章では本研究に関連する用語の説明を行う．3

章では提案手法であるプログラム実行履歴からコードク

ローンを検出する手法について述べ，4章では実際のアプ

リケーションに提案手法を適用した結果を述べる．5章で

は関連する手法を提案している研究について議論し，最後

に 6章でまとめと今後の課題について述べる．

2. 背景

2.1 コードクローンとその検出

2.1.1 コードクローン

コードクローンとは，ソースコード内の同一または類似

するコード片のことをいう [1]．コードクローンは，主に

既存コードのコピーアンドペーストや，定型処理の記述に

よって生成される [6]．一般的に，コードクローンは，ソフ

トウェアの保守性を悪化させる要因の 1つであると考えら

れている．

2.1.2 コードクローン検出手法

コードクローンを検出する手法が，既存研究で数多く提

案されている [4], [5], [7], [9], [10], [14]．コードクローン検

出手法は，プログラムの品質管理やプログラムの剽窃検出

に利用されている．また，これらのコードクローン検出手

法は，コードクローンの検出単位によって，大まかに以下

の 5つに分類することができる．

• 行単位の検出
• 字句単位の検出
• 抽象構文木を用いた検出
• プログラム依存グラフを用いた検出
• メトリクスやフィンガープリント等，その他の技術を
用いた検出

この分類において，上に記述したものほど高速にコード

クローンを検出でき，下に記述したものほど差分を含んだ

コードクローン等の多様なコードクローンを検出すること

ができる．

ここでは，コードクローン検出手法の例として，字句単位

の検出にあたる CCFinder[5]について述べる．CCFinder

は，プログラムのソースコード中に存在する極大クローン

を検出し，その位置を出力する．この手順は，以下の 4つ

のステップからなる．

STEP1(字句解析) ソースコードを字句解析し，トーク

ン列に変換する．

STEP2(変換処理) 実用上意味を持たないコードクロー

ンを取り除くことや，些細な表現上の違いを吸収する

ためにトークン列を変換する．例えば，変数名は同一

のトークンに置換されるので，変数名が違うコード片

もコードクローンとして判定することができる．

STEP3(検出処理) トークン列の中から，指定された長

さ以上一致している部分をコードクローンとしてすべ

て検出する．

STEP4(出力整形処理) 検出したコードクローンのソー

スコード上の位置情報を出力する．

2.2 実行履歴の抽出

プログラムの実行履歴は，実行時のオブジェクトの振る

舞いを記録したもので，実行されたイベントが時系列順

に並んでいる．イベントは，実行されたオブジェクト間の

メッセージ通信イベントであり，実行時刻やメッセージを

送信したオブジェクトと受信したオブジェクト，メッセー

ジの内容等の情報を保持している [13]．

プログラムの実行履歴を抽出する方法の 1 つとして

Amida[12]がある．Amidaのプロファイラ機能は，Javaプ

ログラムを動的解析し，実行時のイベントを実行履歴とし

て記録するものである．イベントとしては，メソッドの呼

び出し，復帰やフィールドの参照，定義等を検出すること

ができる．

2.3 フェイズ分割手法

渡邊らは，1つの実行履歴を複数のフェイズに分割する

手法を提案している [13]．フェイズとは，実行履歴上から

切り出された連続するイベント列のうち，“入出力処理”や

“データベースアクセス”等といった，開発者にとって意味

のある処理に対応するものを指す．

オブジェクト指向プログラムは，1つの機能を実行する

際に多数の中間データ用のオブジェクトを生成し，その

機能の実行が終了した時点でそれらのオブジェクトの大

半を破棄するという性質を持っている [8]．そのため，メ

ソッド呼び出しイベントに関わったオブジェクトを Least

Recently Used (LRU) キャッシュに登録していくことで，

キャッシュの更新頻度からあるフェイズが終了し次のフェ

イズが開始したことを検知することができる．

また，このアルゴリズムは入力する実行履歴のサイズに

ほぼ比例した時間コストで計算可能である．

2.4 難読化技術

難読化とは，あるプログラムを理解が困難な等価なプ

ログラムに変換することである [11]．難読化を施すことに

よって，プログラムを不正な解析から保護することができ

る．一方で，不正にコピーしたプログラムに難読化を施す

ことによって，剽窃が隠蔽される恐れがある．

難読化には様々な技術が存在するが，ここでは，名前変

c⃝ 2012 Information Processing Society of Japan 2

Vol.2012-SE-178 No.13
2012/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

!"#$$%&#'(")%*+
%%(,-.#/)%.0-1%(,-2/3&/,-24%'$45%*+
%%%%66%78+
%%9+
%%(:;"-!%.0-1%$0')/<-2435%*+
%%%%(,-2/3=>)""0?5@+
%%9+
9+
+
!"#$$%AB%*+
9+

!"#$$%C%*+
%%(,-.#/)%.0-1%#3&/,-24%#5%*+
%%%%66%78+
%%9+
%%(:;"-!%.0-1%;35%*+
%%%%#3=>)""0?5@+
%%9+
9+
+
!"#$$%D%*+
9+

!"#$$%&#'(")%*+
%%(:;"-!%.0-1%$0')/<-2435%*+
%%%%ABE(,-2/3/<-$F%=>)""0?5@+
%%9+
9+
+
!"#$$%AB%*+
%%(:;"-!%$/#/-!%.0-1%(,-2/3&#'(")%
#F%&/,-24%'$45%*+
%%%%66%78+
%%9+
9+

!"#!

!$#!

!"#$$%&#'(")%*+
%%(,-.#/)%.0-1%(,-2/3&/,-24%'$45%*+
%%%%66%78+
%%9+
%%(:;"-!%.0-1%$0')/<-2435%*+
%%%%66%78+
%%9+
9+
+
!"#$$%AB%*+
9+

!%#!

図 1 難読化の例

Fig. 1 An example of obfuscations

換，メソッド分散，インライン展開について述べる．

名前変換 対象クラスに含まれるシンボル名 (クラス名，

フィールド名，メソッド名等)の定義を変更し，意味

のない名前にする技術である．定義を変更するため，

システムが提供する APIに含まれる名前を変更する

ことはできない．例を図 1 (a)に示す．例ではシンボ

ル名を a，b等に変換している．

メソッド分散 対象クラスの集合からランダムに選択した

メソッドを別のクラスに移動する技術である．例を図

1 (b)に示す．呼び出されるメソッドの修飾子を public

staticにし，呼び出す側はこのメソッドを静的に呼び

出すように変更している．また，移動したメソッドか

ら移動元クラスのフィールドを参照できるように，引

数に移動元のオブジェクトを渡すように変更している．

インライン展開 対象クラスの集合からランダムに選択し

たメソッド呼び出しにそのメソッドのコードを展開す

る技術である．例を図 1 (c) に示す．例では，some-

thingメソッド内の printメソッドの呼び出しに，print

メソッドのコードを展開している．

3. 提案手法

本稿では，2つのプログラム実行履歴を与えると，その 2

つの実行履歴からコードクローンを検出する手法を提案す

る．この手法では，プログラムの実行履歴を対象としてい

るため，プログラムを難読化された場合でもコードクロー

ンを検出することができる．なお，プログラムの実行履歴

は，イベントとして “メソッドの呼び出し”と “New演算

(コンストラクタの呼び出し)”を取得したものを与えるも

のとする．

提案手法の概要を図 2に示す．提案手法は，以下の手順

からなる．

(1) フェイズ分割 与えられたプログラムの実行履歴を

フェイズに分割．

(2) 正規化 各フェイズのメソッド呼び出しを正規化．

(3) フェイズ比較 動的計画法を用いて各フェイズを比較．

以降，各手順について詳述する．

3.1 フェイズ分割

与えられたプログラムの実行履歴を，渡邊らのフェイズ

分割手法 [13]を用いて複数のフェイズに分割する．このと

き，フェイズの長さが短いものは異なる処理のフェイズで

あってもメソッド呼び出し列が重複しやすいので，フェイ

ズの長さが閾値未満のものを検出対象から除外する．

3.2 正規化

各フェイズについて 2種類の正規化を行う．

1つ目は，メソッド呼び出し列の正規化である．メソッ

ド呼び出しの繰り返し回数に意味を持たないことが多いの

で，2回以上のメソッド呼び出しは 2回のメソッド呼び出

しとする．

2つ目は，メソッド呼び出しシグネチャの正規化である．

難読化等によってメソッドのシグネチャが意味を持たな

いことが多いので，メソッド呼び出し内の出現位置情報を

使ってインデックスを振る．メソッド呼び出しの正規化は

以下の 2つの方法で行う．

正規化 1 (1つの呼び出し内だけで正規化) 1つのメソッ

ド呼び出し内だけでインデックスを振る．例を図 3に

示す．「メソッド A(型 X, 型 Y); メソッド B(型 Z, 型

Z); メソッド C(型W, 型 Z);」のそれぞれの呼び出し

でインデックスを振るので，「0(1, 2); 0(1, 1); 0(1, 2)」

となる．

正規化 2 (直前の呼び出しと現在の呼び出しで正規化)

あるメソッド呼び出しを正規化する際，直前のメソッ

ド呼び出しを含めてインデックスを振る．例を図 4に

示す．メソッド Aの呼び出しについては，直前にメ

ソッド呼び出しがないので，メソッド Aの呼び出し内

だけでインデックスを振り「0(1, 2);」となる．メソッ

ド Bの呼び出しについては，直前のメソッド呼び出し

であるメソッド Aを含めてインデックスを振るので，

メソッド Bの呼び出しは「3(4, 4);」となる．メソッ

ド Cの呼び出しについても同様で「2(3, 1);」となる．

正規化 1 では，不要なメソッド呼び出しの追加等のメ

ソッド呼び出しの改変の影響をあまり受けないが，誤検出

が多くなる恐れがある．正規化 2では，メソッド呼び出し

の改変の影響を少し受けるが，正規化 1よりも誤検出が少

ない．

c⃝ 2012 Information Processing Society of Japan 3

Vol.2012-SE-178 No.13
2012/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

!"!"#$%&'()*+,

#$, #%,
&'"-./012,

3"!"()*+4$56789,

#$, #%,

$'"-./0:;,

-./0$,

-./0%,

-./0(,

!
!
!

,

-./0$,

-./0%,

-./0),

!
!
!

,

<=8>*+?,-.<=8>/+-.@@@,

%'"ABC,

#$, #%,

-./0$,

-./0%,

-./0(,

!
!
!

,

-./0$,

-./0%,

-./0),

!
!
!

,

0+$-.0.@@@,

図 2 提案手法の概要

Fig. 2 An overview of the proposed approach

!"#$!"%#$%%&'&

() *

!"#$+"%,$%,&'&

())

!"#$-"%.$%,&'&

() *

図 3 1 つのメソッド呼び出し内だけで正規化の例

Fig. 3 An example of normalization within one method call

!"#$!"%#$%%&'&

() *

() *

!"#$!"%#$%%&'&!"#$+"%,$%,&'&

- . .

())

!"#$+"%,$%,&'&!"#$/"%0$%,&'&

* -)

図 4 直前の呼び出しと現在の呼び出しで正規化の例

Fig. 4 An example of normalization according to current and

previous method calls

3.3 フェイズ比較

動的計画法を用いた類似文字列マッチングアルゴリズ

ム [15]を使用してフェイズの比較を行う．入力として 2つ

の文字列を与え，一方の文字列に，1文字削除，1文字挿

入，1文字置換という 3つの操作を最低何回行ってもう一

方と同一の文字列へと変化させられるかを調べることで，

2つの文字列の類似度を求めることができる．

本手法で使用するために，1メソッド呼び出しを 1文字

に対応付けてこのアルゴリズムを適用する．このアルゴリ

ズムを用いた場合，フェイズ間のメソッド呼び出しの対応

関係を得ることができる．

フェイズの比較を行った後，フェイズ間の類似度が高い

ものからグリーディに対応付けていき，クローンとして出

力する．

4. 適用例

提案手法の有効性を確認するために，提案手法を実装し

実際のアプリケーションに対して適用した．なお，フェイ

ズの長さの閾値は 50とし，メソッド呼び出しの正規化は

正規化 2を適用した．適用対象は ICCA*1の Geminiコン

ポーネントと Virgoコンポーネントとし，以下の 2点を調

査の目的とした．

• 難読化前後で同一のコンポーネントを識別できるか．
• 再利用されている箇所を特定できるか．
なお，難読化には，ProGuard*2を標準設定で使用した．

また，各コンポーネントについて，起動からクローンデー

タの解析完了までの実行履歴を取得した．

4.1 クラス・メソッド単位のクローン

3.3節で述べたフェイズの比較によって，フェイズ間でメ

ソッド呼び出しが対応付いている．この対応付いたメソッ

ド呼び出しから，クラス Aとクラス Bの類似度を以下の

式により定義する．

similarity(A,B) =

2× (Aと Bが対応付いているメソッド呼出数)

A内のメソッド呼出数+B内のメソッド呼出数

また，この式のクラス A，クラス Bをメソッド A，メ

ソッド Bに置き換えた式をメソッド間の類似度として定義

する．

Geminiコンポーネント，Virgoコンポーネントをそれぞ

れ ProGuardを用いて難読化し，オリジナルとのクラス間

の類似度，メソッド間の類似度を計算した．結果を図 5，6

に示す．このグラフは，類似度に応じたクラス数，メソッ

ド数の累積率を表している．また，Geminiコンポーネント

の難読化前後のクラス間類似度に関するヒートマップを図

7に示す．この結果より，Geminiコンポーネント，Virgo

コンポーネント共に，難読化を施してもクラス，メソッド

をオリジナルと対応付けることができていることが分かる．

Virgoコンポーネントについて，対応付けが正しいかど

うかを確認したところ，すべての対応付けが正しいことが

分かった．また，クラス間やメソッド間の類似度があまり

*1 ICCA: http://sel.ist.osaka-u.ac.jp/icca/
*2 ProGuard: http://proguard.sourceforge.net/

c⃝ 2012 Information Processing Society of Japan 4

Vol.2012-SE-178 No.13
2012/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!" !#(" !#$" !#)" !#%" !#*" !#&" !#+" !#'" !#," ("

!
"
#$

!"#$

-./010"

20345"

図 5 難読化前後のクラス間類似度

Fig. 5 Similarity between obfuscated and original classes

!"

!#$"

!#%"

!#&"

!#'"

("

(#$"

!" !#(" !#$" !#)" !#%" !#*" !#&" !#+" !#'" !#," ("

!
"
#$

!"#$

-./010"

20345"

図 6 難読化前後のメソッド間類似度

Fig. 6 Similarity between obfuscated and original methods

!"#$%$!"#$%"&'()*&

!
"
#
$%
$

!
"
#$

$
"
%
&
'
(
)
*
+
,
-
.+

'(+)''(+*'(+

図 7 難読化前後のクラス間類似度に関するヒートマップ

Fig. 7 Heat map of similarity between obfuscated and original

classes

高くないものが存在するのは，難読化によってメソッドが

インライン展開され，メソッド呼び出しの構造が変化した

ことが原因であると分かった．

このことより，難読化前後で同一のコンポーネントを識

別できることを確認できた．

4.2 類似したフェイズの調査

Geminiコンポーネントと Virgoコンポーネントに対し

て，類似したフェイズがどのような特徴を持っているか

調査した．調査した組み合わせは，Geminiコンポーネン

トと Virgoコンポーネント (ケース 1)，Geminiコンポー

ネントと Virgoコンポーネントを難読化したもの (ケース

2)，Geminiコンポーネントを難読化したものと Virgoコ

ンポーネント (ケース 3)，の 3つのケースである．

各ケースの類似フェイズの検出結果を表 1に示す．検出

数は，ケース 3のみ少なくなっている．これは，ProGuard

による難読化では各フェイズの長さがオリジナルよりも短

くなるという特徴があり，規模の大きな Geminiコンポー

ネントは影響を受けやすかったためであると考えられる．

最大類似度については，すべてのケースで 1.00となってい

る．Geminiコンポーネントと Virgoコンポーネントでは，

共通のライブラリである iccalibを使用している．このラ

イブラリ内のメソッドで始まるフェイズが完全に一致して

いたため，類似度が 1.00となっていた．一方，最小類似度

については，ケース 3が非常に小さい値となっている．こ

れは，Geminiコンポーネントには多くのメソッドが存在

し，ProGuardによる難読化によって，メソッド呼び出し

の構造の変化が大きかったためであると考えられる．最後

に，平均類似度については，ケース 3の値が少し高くなっ

ているがほぼ同じ値となった．

また，iccalib 内のメソッド以外で始まるフェイズにつ

いて，どのようなフェイズが類似しているかを確認した．

ケース 2における類似フェイズで，Geminiコンポーネン

ト内のフェイズではファイルからクローン情報を取得して

解析しており，また，Virgoコンポーネント内のフェイズ

ではクローンセットからクローン情報を取得して解析して

いた．Virgoコンポーネントは，Geminiコンポーネントよ

り後に開発されているので，Geminiコンポーネントのプ

ログラムを再利用して Virgoコンポーネントを作成したと

考えられる．この類似フェイズは付録に添付している．

以上のことより，再利用されている箇所を特定できるこ

とを確認できた．

5. 関連研究

Sæbjørnsenらは，バイナリファイルからコードクロー

ンを検出する手法を提案している [10]．この手法は，バイ

ナリをディスアセンブルし，そのアセンブラの特徴を比較

表 1 類似フェイズの検出結果

Table 1 Detection result of similar phases

検出数 最大類似度 最小類似度 平均類似度

ケース 1 75 1.00 0.227 0.612

ケース 2 75 1.00 0.192 0.612

ケース 3 61 1.00 0.048 0.632

c⃝ 2012 Information Processing Society of Japan 5

Vol.2012-SE-178 No.13
2012/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

してコードクローンを検出する．そのため，ソースコード

に対して行うコードクローン検出では検出できないコード

クローンを検出することができる．しかし，逆に見つける

ことができないコードクローンも存在する．

Limらは，制御フローグラフを用いた静的な Javaプロ

グラムの盗用検出手法を提案している [9]．この手法では，

Javaバイトコードから制御フローグラフを作成し，プログ

ラムが実行しうるパスを比較してコードクローンを検出し

ている．そのため，単純なソースコードの比較やバイナリ

の比較では検出できなかったコーロクローンを検出するこ

とができる．また，静的な情報のみを使用しているので，

プログラム全体をカバーすることが容易である．

これらの既存手法と比較すると，提案手法は，より実際

の振る舞いを考慮したコーロクローン検出ができるという

利点がある．しかし，提案手法では，プログラムの実行履

歴を使用するため，実行環境の構築 (プログラムへの入力

等)が必要となり，プログラム全体を対象にしたコードク

ローン検出が困難である．

また，提案手法と同じプログラムの実行履歴を比較して

類似した箇所を可視化する手法を，Cornelissenらが提案し

ている [2]．この手法は，プログラムの実行履歴の新しい見

識を得てプログラム理解を容易にすることを目的としてお

り，2つの実行履歴を比較して，呼び出し元，呼び出し先，

シグネチャ，ランタイムパラメータのすべてが同じものを

一致とみなし，その結果をスキャッタープロットで可視化

している．一方，提案手法では，2つの実行履歴を機能的

なまとまりであるフェイズに分割，正規化した後，各フェ

イズを動的計画法を用いて比較し，クラスのクローン，メ

ソッドのクローンをヒートマップで可視化している．

6. まとめと今後の課題

本稿では，プログラムの実行履歴をフェイズに分割し，

各フェイズのメソッド呼び出し列を比較することで，コー

ドクローンを検出する手法を提案した．そして，実際のア

プリケーションに提案手法を適用して，その有効性を確認

した．

今後の課題として，まず，メソッド呼び出しの正規化を

改善することが挙げられる．メソッド呼び出しの正規化を

改善することによって，複数メソッドにまたがるクローン

の検出や，難読化によるインライン展開等のメソッド呼び

出し構造の変化に対応することが可能となる．また，提案

手法を定量的に評価することも今後の課題である．

謝辞 本研究は，日本学術振興会科学研究費補助金基盤

研究 (A) (課題番号: 21240002)，基盤研究 (C) (課題番号:

22500026)の助成を得た．

参考文献

[1] I. D. Baxter, A. Yahin, L. Moura, M. S. Anna, and
L. Bier. Clone Detection Using Abstract Syntax Trees.
In Proc. of ICSM 1998, pp. 368–377, 1998.

[2] B. Cornelissen and L. Moonen. Visualizing similarities
in execution traces. In Proc. of PCODA 2007, pp. 6–10,
2007.

[3] 肥後芳樹, 楠本真二, 井上克郎. コードクローン検出とそ
の関連技術. 電子情報通信学会論文誌, Vol. J91-D, No. 6,
pp. 1465–1481, 2008.

[4] L. Jiang, G. Misherghi, Z. Su, and S. Glondu.
DECKARD: Scalable and accurate tree-based detection
of code clones. In Proc. of ICSE 2007, pp. 96–105, 2007.

[5] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A
multilinguistic token-based code clone detection system
for large scale source code. IEEE Trans. Softw. Eng.,
Vol. 28, No. 7, pp. 654–670, 2002.

[6] M. Kim, L. Bergman, T. Lau, and D. Notkin. An Ethno-
graphic Study of Copy and Paste Programming Practices
in OOPL. In Proc. of ISESE 2004, pp. 83–92, 2004.

[7] J. Krinke. Identifying similar code with program depen-
dence graphs. In Proc. of WCRE 2001, pp. 301–309,
2001.

[8] H. Lieberman and C. Hewitt. A real-time garbage collec-
tor based on the lifetimes of objects. Communications
of the ACM, Vol. 26, No. 6, pp. 419–429, 1983.

[9] H. Lim, H. Park, S. Choi, and T. Han. A method for
detecting the theft of Java programs through analysis of
the control flow information. Information and Software
Technology, Vol. 51, No. 9, pp. 1338–1350, 2009.

[10] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su. Detecting code clones in binary executables. In
Proc. of ISSTA 2009, pp. 117–128, 2009.

[11] 玉田春昭, 中村匡秀, 門田暁人, 松本健一. Javaクラスファ
イル難読化ツール DonQuixote. 日本ソフトウェア科学会
FOSE 2006, pp. 113–118, 2006.

[12] 谷口考治, 石尾隆, 神谷年洋, 楠本真二, 井上克郎. プログ
ラム実行履歴からの簡潔なシーケンス図の生成手法. コン
ピュータソフトウェア, Vol. 24, No. 3, pp. 153–169, 2007.

[13] 渡邊結, 石尾隆, 井上克郎. 協調動作するオブジェクト群
の変化に基づく実行履歴の自動分割. 情報処理学会論文
誌, Vol. 51, No. 12, pp. 2273–2286, 2010.

[14] R. Wettel and R. Marinescu. Archeology of code dupli-
cation: recovering duplication chanins from small dupli-
cation fragments. In Proc. of SYNASC 2005, pp. 63–70,
2005.

[15] R. B. Yates and B. R. Neto. Modern Information Re-
trieval. Addison Wesley, 1999.

付 録

A.1 類似フェイズ

4.2節で述べた，再利用されているフェイズを図 A·1に
示す．

c⃝ 2012 Information Processing Society of Japan 6

Vol.2012-SE-178 No.13
2012/11/2

情報処理学会研究報告
IPSJ SIG Technical Report

!"#$%$&'()*'+ ,$-./&'()*'+0123

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":
@@@@@@@@@@@@@@@@@@A."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":4B-96!-/8=>"=9-9</-7C

5$-./4949A$;;9:$D4B9<94E$:"4F$:"G%E/4."<HIJC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":
@@@@@@@@@@@@@@@@@@A."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":4."<>;9:"K9<$/C

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A."#$%$4B9<94E$:"4GLG%B"MN9=4."<F$:"C@ $;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-4."<HIJC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A."#$%$4B9<94E$:"4GLG%B"MN9=4."<F$:"C@ $;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-A$;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-4."<J/B"F-9.#"%<7C@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A."#$%$4B9<94E$:"4F$:"IEE7"<L9<94."<C@ $;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-A$;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-4."<J/B"F-9.#"%<7C@

$;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"G%E/4."<?9<OC@ $;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"G%E/4."<?9<OC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A."#$%$4B9<94E$:"4F$:"IEE7"<L9<94."<C@ $;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-A$;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-4;-"9<"J/B"F-9.#"%<7C@

$;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"G%E/4."<?9<OC@ $;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-A$;;9:$D4B9<94E$:"4F$:"G%E/4."<!-/8=GLC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A$;;9:$D4B9<94E$:"4F$:"G%E/4."<PIJC@ $;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-A$;;9:$D4B9<94E$:"4F$:"G%E/4."<F$:"GLC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":
@@@@@@@@@@@@@@@@@@A."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":4."<Q/6"-Q"%.<OC

$;;9:$D4B9<94E$:"4F$:"N"<-$;7N9%9."-A$;;9:$D4B9<94;:/%"4J:/%"N9%9."-4."<F$:"J/B"F-9.#"%<7C@

RRR RRR

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A."#$%$4B9<94E$:"4F$:"IEE7"<L9<94."<C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"G%E/4."<?9<OC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A$;;9:$D4B9<94E$:"4F$:"N9%9."-4."<Q97<F$:"C@

RRR

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-A$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-A$;;9:$D4B9<94E$:"4F$:"N9%9."-4."<F$:"C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-A$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

."#$%$45$"645$789:47;9<<"-=:/<4>;9<<"-?:/<?9%":A$;;9:$D4B9<94E$:"4F$:"G%E/4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

RRR

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4;/#=9-"P/C@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4;/#=9-"P/C@

RRR RRR

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<!-/8=GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<!-/8=GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"UA$;;9:$D4B9<94E$:"4F$:"N9%9."-SF$:"T"U4."<F$:"GLC@ $;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/A$;;9:$D4B9<94;:/%"4J/B"F-9.#"%<G%E/4."<F$:"GLC@

$;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"G%E/4."<?9<OC@ $;;9:$D4B9<94E$:"4F$:"G%E/A$;;9:$D4B9<94E$:"4F$:"G%E/4."<?9<OC@

図 A·1 検出類似フェイズの例

Fig. A·1 An example of detected pair of similar phases

c⃝ 2012 Information Processing Society of Japan 7

Vol.2012-SE-178 No.13
2012/11/2

