
Title ネットワークコーディングを用いたゴシップスタイル
ブロードキャスト

Author(s) 徳山, 瞬; 土屋, 達弘; 菊野, 亨

Citation 平成23年度 情報処理学会関西支部 支部大会 講演論
文集. 2011, 2011

Version Type VoR

URL https://hdl.handle.net/11094/50235

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

E-02 平成 23年度情報処理学会関西支部　支部大会

ネットワークコーディングを用いた
ゴシップスタイルブロードキャスト

Gossip-Style Broadcast Using Network Coding

徳山 瞬∗ 土屋 達弘∗ 菊野 亨∗

Shun Tokuyama Tatsuhiro Tsuchiya Tohru Kikuno

1 まえがき
近年,大規模な分散システム中で効率的に情報をブロー

ドキャストする手法として, ゴシッププロトコルが注目
を集めている [1, 2, 3]. ゴシッププロトコルではメッセー
ジを送信する際に, 隣接ノード全てにメッセージを送信
するのではなく, ランダムに選んだいくつかのノードに
のみメッセージを送信する. これを繰り返すことでメッ
セージはシステム全体に広まっていく. ゴシッププロト
コルは余剰なメッセージを削減しかつ高いスケーラビリ
ティと信頼性を持ったブロードキャストを行うことが出
来る. そのため複製データベース [4, 5], 故障検知 [6, 7],
分散情報管理 [8, 9], ライブストリーミング [10] 等のア
プリケーションで利用されている.
ゴシッププロトコルは,メッセージが全てのノードに

正しく伝わることを保証するものではないので, その性
能評価はノードがメッセージを受け取る確率で行われる.
メッセージを受信する確率とトラフィックはトレードオ
フの関係にあり, 一つのノードがメッセージを送信する
隣接ノードの数を増やすことで, システム中のノードが
メッセージを受信する確率は上がるが, トラフィックも
同時に増加してしまう.
本論文ではネットワークコーディング [11]を利用した

新たなゴシッププロトコルを提案する. 提案手法は,従来
のゴシッププロトコルと比較して, 少ないトラフィックで
高いメッセージ到達率 (信頼性)を実現する. ネットワー
クコーディングとは,送信ノードや受信ノードだけでな
く,中継ノードでもメッセージの符号化,復号化を行うよ
うな通信手法を意味する. 提案手法ではブロードキャス
トメッセージはそのまま転送されるのではなく, 幾つか
の固まりに分割され,そのランダム結合がメッセージと
して送信される. 各ノードは複数のメッセージを受信し,

∗大阪大学, Osaka University

それらを復号することでオリジナルのメッセージを得る
ことができる.
ネットワークコーディングを利用したゴシッププロト

コルの研究は既になされているが, 本研究とは異なる環
境を想定している. 例えば, [12]では各々のノードが別
のもう一つのノードと同期式のラウンドを使い通信を行
う. 一方,提案手法では,実際の多くのアプリケーション
で見られるように, 一つのノードが幾つかのノードとユ
ニキャストを使って通信する. また [12]では情報の伝達
速度について着目しており, 信頼性の問題は考慮されて
いない. 対して本研究では,シミュレーションを行い故
障ノードが存在する時のコミュニケーションコストと信
頼性について評価している. 文献 [13]では [12]と同様
の環境を仮定しており,故障ノードに関しても考慮され
ていない.
本論文の構成は以下の通りである. 2 節では従来の

ゴシッププロトコルについて説明する. 3節ではネット
ワークコーディングを利用したゴシッププロトコルの説
明を行う. 4節では最適化と,それを用いた新たなアル
ゴリズムを説明する. 5節ではシミュレーションの結果
を示す. 6節では本論文の結論を述べる.

2 従来手法
本節では従来のゴシッププロトコルについて説明する.

図 1 は従来のゴシッププロトコルのアルゴリズムを示
している. ノードがメッセージの送信を開始する際には,
ランダムに f 個の隣接ノードを選び送信する. メッセー
ジを受け取った際,それが初めてであれば開始時と同様
にランダムに f 個の隣接ノードを選びそのメッセージを
転送する. ここで, f はファンアウトと呼ばれる.
この手法ではランダムにメッセージを送信するノード

を選ぶため,多くのノードが同じメッセージを受け取る一

Initiation of broadcast of M :
Send M to f randomly chosen nodes;

When a node receives a message M :
If (M is received for the first time)

Send M to f uniformly randomly chosen nodes;

図 1: 従来のゴシッププロトコル

表 1: 正常なノードが同じメッセージを受け取った回数
(n = 1000, 故障率 : 10%)

0 1 2 3 4 ≥ 5

f = 4 2.9% 10.9% 18.5% 21.6 % 18.8 % 27.3%

f = 5 1.2% 5.0% 11.7% 17.0% 19.2% 45.6%

f = 6 0.6% 2.5% 6.6% 11.8% 16.2% 62.3%

f = 7 0.3% 1.1% 3.6% 7.6% 12.1% 75.1%

方, メッセージが一度も届かないノードも存在する. 表 1
はノード数 n = 1000,故障率 10%の環境下での単純なシ
ミュレーションの結果である. この表は f の値を変化さ
せた時に一つのノードが何度同じメッセージを受け取っ
たかを示している. 各々の値はシミュレーションを 100
回行った平均値である.
この表から f = 4 で到達率が 97% の時に 30% 近い

ノードが 5回以上同じメッセージを受け取っていること
が分かる. また f = 7で到達率が 99.7%の時には 75%
ものノードが 5回以上同じメッセージを受け取っている.

3 基本提案手法
本節ではネットワークコーディングを利用したゴシッ

ププロトコルについて説明する. これによって, 同じブ
ロードキャストメッセージを何度も受け取ることを減ら
すことが出来る. 図 2 にアルゴリズムを示す.

3.1 ブロードキャスト開始時
ブロードキャストを開始するノードは,ブロードキャ

ストメッセージを k 個のブロックに分割する. ここで
F1, F2, · · · , Fk が分割されたブロックであるとする. 元
のメッセージを l ビットであるとし, b = dl/keとする.
分割されたブロックは全て, 大きさ qのガロア体GF (q)
上の db/ log2(q)e次のベクトルである.

Initiation of broadcast of M :
Divide M into k fragments F1, · · · , Fk;
Choose a set RN of finit random nodes;
For p ∈ RN

Create a message msg from F1, · · · , Fk

with random linear encoding;
Send msg to node p;

When a node receives a message m:
{ Step 1 }
If (msg is informative)

Add msg to Received; { Received is initially empty. }
{ Step 2 }
Choose a set RN of f random nodes;
For p ∈ RN

Create a message msg from the messages in Received
with random linear encoding;

Send msg to node p;
{ Step 3 }

If (|Received| = k)
Decode the broadcast message from Received;

図 2: ネットワークコーディングを利用したゴシッププ
ロトコル

次に,開始ノードはそれらのブロックからランダム線
形コーディングを使って送信するメッセージを作り出す.
各々のブロックに対し, GF (q)上からランダムにある数
を選んで係数とし,それらの線形結合を作る. それぞれ
のブロックの係数の集合とこの線形結合を併せて,送信
メッセージとする. ここで係数は 0を含まないものとす
る. なお,全てのブロックはGF (q)上のベクトルであり,
加算や乗算は GF (q)上の演算とする.
メッセージを作成する度,開始ノードはそれを finit個

の隣接ノードに対して送信する. 初期ファンアウト finit

は通常のファンアウト f よりも大きな値とすべきである.
これは開始ノードとその他のノードの負荷を等しくする
ためである. その他のノードは多くて k ∗ f のメッセー
ジを送信するので, finit を k ∗ f に設定する.
また,それぞれのメッセージはヘッダに IDを持ってい

るとする. IDは元のブロードキャストメッセージ毎に定
められる値で, これによりノードが複数のメッセージの
ブロードキャストを処理することができるようにする.
以降ではアルゴリズムがどのように動作するかを単一の
ブロードキャストメッセージに対して説明していく.

3.2 メッセージの送信
従来の手法と違い,本手法では受信ノードは受け取っ

たメッセージそのまま送信するのでなく, 既に受信して
いるメッセージに符号化を施し新たなメッセージを作り
出してそれを送信する.
ノードはバッファを持っており,受信したメッセージ

をそこに格納することができるものとする. 図 2 では
Receivedがバッファを示している. ノードがメッセージ
mを受信したとき,以下の 3つの段階の処理がなされる.

• Step 1: mが意味のあるメッセージであるならば
バッファに格納し, Step 2に移動する. そうでなけ
ればmを破棄する.

• Step 2: バッファから f 個の新たなメッセージを作
り出し,ランダムに選んだノードに送信する. Step

3に移動.

• Step 3: もしバッファ内のメッセージ数が kに達し
たら,オリジナルのブロードキャストメッセージを
復号する.

Step1 :メッセージmを受信したときバッファに既に
m1, · · · ,ms−1 が格納されているとする. m1, · · · ,ms−1

とmは全て 2つの部分から成る. 一つはF1, · · · , Fkの線
形結合から成るペイロード, もう一つは係数ベクトルで
ある. m1, · · · ,ms−1 の係数ベクトルは線形独立である.
メッセージ m の係数ベクトルが m1, · · · ,ms−1 の全

ての係数ベクトルと線形独立である時, mを意味のある
メッセージという. Step 3で述べるように,オリジナル
のメッセージは互いに線形独立な係数ベクトルを持つ k

個の任意なメッセージからのみ復号できるからである.
Step 2 :どのように新たなメッセージが作られるかを

示す. メッセージは前述の通り二つの部分から成る. ぺ
イロード部分は,バッファに蓄えられているm1, · · · ,ms

の線形結合から成る. ここでmsは Step 1で受信した新
規メッセージである. 具体的には以下の式で計算される.

s∑
i=1

aimi

ここで ai は GF (q) 上からランダムに選ばれた係数で
ある.
係数ベクトルの部分は,以下の式で計算される.

s∑
i=1

aiei

ここで ei はmi の係数ベクトルを示す.

Step 3 :バッファ内に格納されているメッセージの数
が kに達したら,オリジナルのブロードキャストメッセー
ジの復号が可能になる. この時 k個のメッセージの係数
ベクトルは全て線形独立となる. 復号は k元連立方程式
を解くことによって行われる.

3.3 例

表 2: GF (8)上の加算表,乗算表

+ 0 1 2 3 4 5 6 7

0 0 1 2 3 4 5 6 7
1 1 0 3 2 5 4 7 6
2 2 3 0 1 6 7 4 5
3 3 2 1 0 7 6 5 4
4 4 5 6 7 0 1 2 3
5 5 4 7 6 1 0 3 2
6 6 7 4 5 2 3 0 1
7 7 6 5 4 3 2 1 0

· 0 1 2 3 4 5 6 7

0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 2 4 6 3 1 7 5
3 0 3 6 5 7 4 1 2
4 0 4 3 7 6 2 5 1
5 0 5 1 4 2 7 3 6
6 0 6 7 1 5 3 2 4
7 0 7 5 2 1 6 4 3

本手法の簡単な例を示す. GF (8)上で演算を行い, k =
3であるとする. 表 2は GF (8)上での加算,乗算を示す
表である. オリジナルのブロードキャストメッセージは
36ビットであり, 8進表示では 12桁の 111113612532で
あるとする. この場合, k 個に分割されたメッセージは
F1 = (1 1 1 1), F2 = (1 3 6 1), F3 = (2 5 3 2)となる.
あるノードがAとBの係数ベクトルが線形独立なメッ

セージを受信した時を考える. それぞれの係数ベクトル
は (1 2 3)と (2 5 3)であるとする. それぞれのペイロー
ドは以下の通りである.

A = F1 + 2F2 + 3F3 = (5 3 3 5)

B = 2F1 + 5F2 + 3F3 = (1 2 4 1)

このノードが,係数ベクトルが (3 7 0)でペイロードが
(4 1 7 4)である新たなメッセージを受け取ったとする.
その場合,このメッセージの係数ベクトルはAと Bの係
数ベクトルと線形従属であるためバッファには保存され
ない. ((1 2 3) + (2 5 3) = (3 7 0))
一方, 係数ベクトルが (1 5 2) でペイロードが C =

(0 4 4 0)であるメッセージを受け取ったとする. この
メッセージの係数ベクトルは Aと Bの係数ベクトルと
線形独立であるため, バッファに保存される.
ここで,受信したメッセージの数が k = 3と等しくなっ

たため,このノードはオリジナルのブロードキャストメッ
セージを得ることが出来る. 具体的には以下の連立方程
式式を解くことで F1, F2, F3 を得る.

A = F1 + 2F2 + 3F3

B = 2F1 + 5F2 + 3F3

C = F1 + 5F2 + 2F3

4 最適化
本節では前節の手法の改良を提案する. これは,予備実

験により,提案手法の性能を調べた結果得られるパフォー
マンスの向上がわずかであることが判明したためである.
この原因として, 2つの問題が基本提案手法にあること
が分かった. これらを解決するため,最適化を施した新
たなアルゴリズムを図 3 に示す.

4.1 無意味なメッセージの拡散防止
問題の一つは,極初期の段階ではメッセージの拡散が

非効率的になる,ということである. あるノードが受信し
たメッセージが 1つだけである時,新たな送信メッセージ
を作成しようとするのなら, 全てのメッセージが線形従
属となってしまう. このため無意味なメッセージが多く
なり, オリジナルのメッセージを復号するためにより多
くのメッセージを受け取らなくてはならないことになる.
これを防ぐため以下の対策をとる.

1. 初めてメッセージを送るノードに対しては 2 つの
メッセージを送信する.

2. 2つ以上メッセージを受信している場合のみ,新た
なメッセージを作り,別のノードに送信する.

1の対策は,メッセージを交換したことのあるノード
を記憶しておくことで実現できる. Contactsというバッ

ファがこのために使われる. これは最初は空であり,ノー
ド pからメッセージを受信したり (Step 1), ノード pに
メッセージを送信することによって (Step 2), 対象ノー
ド名が格納されていく. もしノード pが Contactsの中
にあれば,そのノードは既にメッセージを複数個受け取っ
ていることが保証される. なければ pにメッセージを送
信する際には 2つのメッセージを作り出して送信する.

2の対策は,受信したメッセージ数が 1の時には送信
を行わないようにすることで容易に実現できる.

4.2 動的ファンアウト
もう一つの問題は,メッセージが十分に広まった段階

では新たなメッセージの送信が無駄になることが多いこ
とである. ノードが k番目のメッセージを受け取った時,
多くの他のノードは kやそれに近い個数のメッセージを
受け取っている. これは,メッセージの伝搬が全てのノー
ドでほぼ等しく広まっていくためである. このような場
合,新たなメッセージを送信することは無駄なトラフィッ
クを増やす要因となる.
これを解決するため,動的ファンアウトを導入する. こ

れは,メッセージを受信した数に伴いファンアウトを動
的に減らすというものである. ファンアウトの値は関数
f(|Received|)で与えられるものとする. ここでReceived

は受信した意味あるメッセージを格納しているバッファ
を示しており, |Received|はそのメッセージ数である.
ネットワークの構造や kの値等の要素によって効率的

な関数 f(|Received|)は決定される. 本研究の現段階で
は事前にシミュレーションを行い f(|Received|)を決定
している.

5 シミュレーション結果
本節では,シミュレーションの結果を示す. 各々のノー

ドはシステム中から,等しくランダムにノードを選択で
きるものとする. これは peer sampling service [14] を使
うことで実現できる. ノード数は 500とする.

表 3: ファンアウト f(|Received|)
|Received| 1 2 3 4 5 6 7

k = 4 – fd 0 – – – –
k = 6 – fd 2 0 0 – –
k = 8 – fd fd 1 0 0 0

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600

no
de

s
th

at
 a

re
 n

ot
 r

ea
ch

ed
 (

pe
rc

en
t)

communication cost

basic
k = 4
k = 6
k = 8

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200

no
de

s
th

at
 a

re
 n

ot
 r

ea
ch

ed
 (

pe
rc

en
t)

communication cost

basic
k = 4
k = 6
k = 8

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

no
de

s
th

at
 a

re
 n

ot
 r

ea
ch

ed
 (

pe
rc

en
t)

communication cost

basic
k = 4
k = 6
k = 8

(c)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1000 1200 1400 1600 1800 2000 2200 2400 2600

no
de

s
th

at
 a

re
 n

ot
 r

ea
ch

ed
 (

pe
rc

en
t)

communication cost

basic
k = 4
k = 6
k = 8

(d)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 800 1000 1200 1400 1600 1800 2000 2200

no
de

s
th

at
 a

re
 n

ot
 r

ea
ch

ed
 (

pe
rc

en
t)

communication cost

basic
k = 4
k = 6
k = 8

(e)

図 4: ノード数 500の時のコミュニケーションコストとメッセージ未着のノード割合
(a) 0%, (b) 10%, (c) 20%, (d) 30%, (d) 40% の故障ノード

Initiation of broadcast of M :
Divide M into k fragments F1, · · · , Fk;
Choose a set RN of finit random nodes;
For p ∈ RN

Create two messages msg, msg′ from F1, · · · , Fk

with random linear encoding;
Send msg, msg′ to node p;

When a node receives a message m:
{ Step 1 }
If (msg is informative)

Add msg to Received; { Received is initially empty. }
Add p to Contacts; { Contacts is initially empty. }
{ Step 2 }
If (|Received| ≥ 2)

Choose a set RN of f(|Received|) random nodes;
For p ∈ RN

Create a message msg and send it to p;
If (p 6∈ Contacts)

Create another message msg′ and send it to p;
Add p to Contacts;

{ Step 3 }
If (|Received| = k)

Decode the broadcast message from Received;

図 3: 最適化された提案手法アルゴリズム

演算はGF (28)上で行うものとする.分割数 kは 4,6,8
と変化させる. 動的ファンアウトは表 3の通りとする.
fd はデフォルトのファンアウトの値とする.この値は 4
から 7とする. ブロードキャスト開始ノードのファンア
ウト finit は k ∗ fd と定める.
故障ノードの割合は 0%から 40%まで 10%ずつ変化さ

せる. 故障ノードに送られたメッセージはすぐに破棄さ
れるとする. ノードから送られるメッセージは指数分布
に従う遅延時間後に受信ノードに到達する. ノードでの
符号化によるオーバーヘッドは無視する. その代わり,
メッセージの遅延時間に含まれるものと仮定する. また,
メッセージの係数ベクトルはそのペイロードと比べて無
視できる程度に小さいものとする. これは,ブロードキャ
ストメッセージを十分に大きくすることで実際の環境で
も成り立つ.
シミュレーションの結果を図 4に示す. これらの図は

信頼性と通信コストの関係を示している. 横軸は通信コ
ストを, 縦軸はブロードキャストメッセージを復号でき
なかった正常なノードの割合を表している. 通信コスト
は, ブロードキャストメッセージをそのまま送信すると
きはメッセージ数, 符号化したメッセージを送信すると
きはメッセージ数の 1/k倍とする.

図中の各点は fd を 4, · · · , 7まで一つずつ変化させた
場合を示している. それぞれの点の値は,1000回シミュ
レーションを行った平均値である. 4つの線は,従来のゴ
シッププロトコルと提案手法の k = 4, k = 6, k = 8に対
応している.
図から,提案手法の方がより少ない通信コストで高い

信頼性を達成していることが分かる. 例えば故障ノード
割合 10%の図 4(b)では, k = 8, fd = 4の時に 0.3%の
未到着のノードが存在するが, 通信コストは 1500以下で
ある. 従来のゴシッププロトコルではこの信頼性を達成
するにはその 2倍の通信コストが必要である.
他に分かることとして k の値が大きくなるほどにブ

ロードキャストメッセージが届かないノードの割合が少
なくなっていくことがある. これは実験を行った全ての
場合で見られる. その理由として以下の 2つが挙げられ
る. 一つは kを大きくするほど係数ベクトルの長さが大
きくなり, 線形独立な係数ベクトルを作り出す可能性が
減るからである. もう一つの理由は, メッセージが小さ
いほど伝搬するメッセージ量をコントロールしやすいた
めである. 例えば kが大きいほど, より効率的な動的ファ
ンアウトの変化が可能となる.

6 まとめ
本論文ではネットワークコーディングを利用した新た

なゴシッププロトコルを提案した. 提案手法では元のブ
ロードキャストメッセージに符号化を施し, サイズの小
さなメッセージを作り出してそれを転送する. 各ノード
は元のメッセージの分割数 kに等しい,線形独立な係数ベ
クトルを持つメッセージを受信することで復号が可能と
なる. これにより従来のゴシッププロトコルとは違い,意
味のあるメッセージを何回も受け取ることが可能になる.
シミュレーションにより,提案手法が信頼性と通信コ

ストのトレードオフを改善できることを示した. また, k

の値が大きくなるほどより効果的となることが分かった.
しかし,提案手法があらゆる環境で優れた結果を出す

ことができると断言することはできない. これは,シミュ
レーションで理想的な設定を仮定しているためである.
例えば,符号化や復号化にかかるオーバーヘッドは今回
考慮していない. 将来的にはより現実に即した設定で実
験を行う予定である. また,動的ファンアウトにおける関
数 f(|Received|)の定め方も問題として残っている. 本
論文では予備実験で効果的であった値を使用したが, よ
り具体的な定め方が課題として挙げられる.

参考文献
[1] K. Birman, M. Hayden, O. Ozkasap, Z. Xiao,

M. Budiu, and Y. Minsky, “Bimodal multicast,”
ACM Transactions on Computer Systems, vol. 17,
no. 2, pp. 41–88, May 1999.

[2] P. T. Eugster, R. Guerraoui, S. Handurukande, A.-
M. Kermarrec, and P. Kouznetsov, “Lightweight
probabilistic broadcast,” in Proceedings of the
2001 International Conference on Dependable Sys-
tems and Networks (DSN ’01), Jul. 2001, pp. 443–
452.

[3] Q. Sun and D. Sturman, “A gossip-based reliable
multicast for large-scale high-throughput applica-
tions,” in Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN
2000), June 2000, pp. 347–358.

[4] D. Agrawal, A. El Abbadi, and R. Steinke, “Epi-
demic algorithms in replicated databases,” in Pro-
ceedings of the Sixteenth ACM Symposium on
Principles of Database Systems, 1997, pp. 161–
172.

[5] A. Demers, D. Greene, C. Hauser, W. Irish,
J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry, “Epidemic algorithms for replicated
database maintenance,” in Proceedings of the Sixth
Ann. ACM Symp. Principles of Distributed Com-
puting (PODC), Aug. 1987, pp. 1–12.

[6] R. van Renesse, Y. Minsky, and M. Hayden, “A
gossip-style failure detection service,” in Proceed-
ings of the IFIP International Conference on Dis-
tributed Systems Platforms and Open Distributed
Processing (Middleware ’98), Sept. 1998, pp. 55–
70.

[7] A. Lakshman and P. Malik, “Cassandra - a decen-
tralized structured storage system,” in 3rd ACM
SIGOPS International Workshop on Large Scale
Distributed Systems and Middleware (LADIS 09),
Oct. 2009.

[8] A. Montresor, M. Jelasity, and O. Babaoglu, “Ro-
bust aggregation protocols for large-scale over-
lay networks,” in Proceedings of the 2004 Inter-
national Conference on Dependable Systems and
Networks. IEEE Computer Society, 2004, pp. 19–
28.

[9] R. van Renesse, K. P. Birman, and W. Vogels,
“Astrolabe: A robust and scalable technology for
distributed system monitoring, management, and
data mining,” ACM Transactions on Computer
Systems (TOCS), vol. 21, no. 2, pp. 164–206, 2003.

[10] T. Bonald, L. Massoulié, F. Mathieu, D. Perino,
and A. Twigg, “Epidemic live streaming: optimal
performance trade-offs,” in Proceedings of the 2008
ACM SIGMETRICS international conference on
Measurement and modeling of computer systems,
ser. SIGMETRICS ’08. New York, NY, USA:
ACM, 2008, pp. 325–336. [Online]. Available:
http://doi.acm.org/10.1145/1375457.1375494

[11] S.-Y. R. Li, R. W. Yeung, and N. Cai, “Linear net-
work coding,” IEEE Transactions on Information
Theory, vol. 49, no. 2, pp. 371–381, Feb. 2003.

[12] S. Deb, M. Médard, and C. Choute, “Algebraic
gossip: A network coding approach to optimal
multiple rumor mongering,” IEEE Transactions
on Information Theory, vol. 52, no. 6, pp. 2486–
2507, Jun. 2006.

[13] D. Mosk-Aoyama and D. Shah, “Information dis-
semination via network coding,” in Proc. ISIT,
Jul. 2006, pp. 1748–1752.

[14] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.
Kermarrec, and M. van Steen, “Gossip-based
peer sampling,” ACM Transactions on Computer
Systems, vol. 25, August 2007. [Online]. Available:
http://doi.acm.org/10.1145/1275517.1275520

