
Title ソースコードに出現するドメイン固有な動詞-目的語
関係を収録した辞書作成手法

Author(s) 鹿島, 悠; 早瀬, 康裕; 眞鍋, 雄貴 他

Citation 情報処理学会論文誌. 2013, 54(2), p. 857-869

Version Type VoR

URL https://hdl.handle.net/11094/50243

rights © 2013 Information Processing Society of Japan

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

ソースコードに出現するドメイン固有な
動詞–目的語関係を収録した辞書作成手法

鹿島 悠1,a) 早瀬 康裕2,b) 眞鍋 雄貴1,c) 井上 克郎1,d)

受付日 2012年5月14日,採録日 2012年11月2日

概要：プログラム理解において，識別子はプログラム要素をドメインの知識と対応させる重要な役割を果
たしている．そのため，識別子に不適切な名前が付けられた場合，開発者はプログラムを理解するために
多くの余計な時間を費やしてしまう．そこで，本研究ではオブジェクト指向プログラミング言語で記述さ
れたソースコードから，良い命名の例として動詞–目的語関係を抽出し，メソッドの命名支援を目的とした
辞書を作成する手法を提案する．実験では，いくつかのアプリケーションドメインを対象に動詞–目的語関
係を収録した辞書を作成し，開発者が辞書を評価した．その結果，辞書に収録された関係が多くの場合適
切であったことを確認した．

キーワード：プログラム理解，識別子，動詞–目的語関係，辞書，静的解析

Building Domain Specific Dictionaries of
Verb-object Relation from Source Code

Yu Kashima1,a) Yasuhiro Hayase2,b) Yuki Manabe1,c) Katsuro Inoue1,d)

Received: May 14, 2012, Accepted: November 2, 2012

Abstract: An identifier is an important key in mapping program elements onto domain knowledge for the
purpose of program comprehension. Therefore, if identifiers in a program have inappropriate names, devel-
opers can waste a lot of time trying to understand the program. This paper proposes a method for building
a dictionary for supporting naming a method by extracting and gathering verb-object (V-O) relations, as
good examples of naming, from source code written in an object-oriented programming language. For each
of several application domains, dictionaries containing the V-O relations are built and evaluated by software
developers. The evaluation results confirm that the relations in the dictionaries are adequate in many cases.

Keywords: program comprehension, identifier, verb-object relation, lexicon, static analysis

1. はじめに

ソフトウェア保守作業にかかる時間の半分以上を占める

といわれているプログラム理解 [1], [2]において，ソース

1 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technology,
Osaka University, Suita, Osaka 565–0871, Japan

2 筑波大学システム情報系
Faculty of Engineering, Information and Systems, University
of Tsukuba, Tsukuba, Ibaraki 305–8573, Japan

a) y-kashima@ist.osaka-u.ac.jp
b) hayase@cs.tsukuba.ac.jp
c) y-manabe@ist.osaka-u.ac.jp
d) inoue@ist.osaka-u.ac.jp

コードに出現する識別子の果たす役割は大きい．これは，

ソフトウェア開発者がプログラムを読み進める際に，識別

子の意味からプログラム要素の役割を推測するためであ

る [3], [4]．

そのため，ソフトウェア開発者はソースコード中の識別

子に対しプログラム要素の役割を表す正確な名前を付ける

のが望ましいとされている [5], [6]．もし，識別子にプログ

ラム要素としての役割を表さない不適切な名前が付けられ

た場合，開発者がアプリケーションドメインの知識とプロ

グラム要素を対応づけるのが困難になることが知られてい

る．このことについて，Lawrieら [7]は，識別子が頭文字

c© 2013 Information Processing Society of Japan 857



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

だけの略語であったり意味のない連番である場合，識別子

に略称を使わず正式な名前が使われている場合に比べて，

開発者がプログラム理解に多くの時間を必要とすることを

明らかにした．

しかし，識別子の役割を正確に表す名前を付けるには多

くの知識や経験が必要であるため，すべての開発者が適切

な名前を識別子に付けることはできない．このため，開発

者は，プログラミング言語，開発組織，アプリケーション

ドメインといった異なるドメインにおける様々な単語やそ

の組み合わせ方のルールを学ぶ必要がある．これらのルー

ルは多くの場合明文化されていないため，実際の開発経験

からルールを学ぶしかない．

そこで，我々の研究グループは識別子の命名支援を目的

として，識別子の命名事例を収録したグラフ構造を持つ辞

書の構築を行っている．以前の研究では，識別子に使われ

る名詞の上位下位関係（抽象–具体関係）を収録した辞書

の構築手法を提案した [8]．この辞書は，クラス名や変数名

といった，名詞で構成される識別子の命名に役立つと考え

られる．

しかし，ソースコードに出現するのは名詞と名詞の上位

下位関係だけではない．特に，メソッド名には，名詞だけ

ではなく動詞も出現し，メソッドの振舞いを表現している．

さらに，動詞の後ろに目的語句が続く場合があり，このと

き，目的語句は振舞いの対象を表現している．上で述べた

名詞の上位下位関係の辞書には，動詞は収録されておらず，

また，動詞と目的語の関係についても収録されていない．

そのため，メソッド名の命名にはあまり有効ではないと考

えられる．

そこで本研究では，ソースコードから動詞–目的語関係

を抽出し，抽出した関係を収録した辞書を構築する手法を

提案する．本手法は，アプリケーションドメインごとに分

類したソースファイル集合を入力とし，既存の自然言語処

理技術と我々が開発したパターンマッチングシステムを用

いて，動詞–目的語関係を抽出する．動詞–目的語関係はメ

ソッドに関連する識別子から抽出し，具体的には，動詞を

メソッド名から抽出し，目的語をメソッド名，仮引数名，

メソッドが定義されているクラスの名前から抽出する．そ

して，抽出した動詞–目的語関係のうち，共通したドメイ

ンで頻出した関係をそれぞれのドメインの辞書に収録し，

出力とする．提案手法により作成された辞書の活用法とし

ては，プログラミング初心者や，開発しようとしているド

メインに関する知識がない開発者に，辞書に収録された関

係を提示することにより，メソッドの命名の支援を行うこ

とを考えている [9]．

評価実験では，4つの異なるドメインを扱う Javaのソー

スファイル集合に対して提案手法を適用して辞書を生成

し，その辞書を，Javaプログラムの開発経験と辞書が対象

とするドメインに関する知識を持つ被験者が評価した．そ

の結果，辞書に含まれる関係のほとんどは，ドメイン固有

の関係か，Javaソースコードで一般的な関係であることを

確認した．

以降，2 章で一般的なオブジェクト指向プログラムにお

ける命名規約とメソッド名に含まれる動詞–目的語関係に

ついて説明する．3 章では動詞–目的語関係をソースコー

ドから抽出するアルゴリズムについて述べる．4 章では評

価実験とその結果を示し，5 章では，関連研究について議

論し，6 章ではまとめと今後の課題を述べる．

2. オブジェクト指向プログラムにおける動
詞–目的語関係

本章では，オブジェクト指向プログラムのメソッドにお

ける動詞–目的語関係について述べる．まず，オブジェク

ト指向プログラム，特に Javaの識別子の命名規約を示す．

そして，メソッドの宣言と関連する識別子内の単語間に現

れる動詞–目的語関係について説明する．

2.1 識別子の命名規約

識別子にはその役割を示す明白な名前を付けるのが望ま

しいとされている [5], [6]．しかし，複雑な概念を扱うプロ

グラムでは，識別子の役割もまた複雑になり，1つの単語

では識別子の役割が表せない場合がある．そのような場

合，識別子名に複数の単語を用いることで複雑な役割を表

現する．

多くのプログラミング言語で識別子に空白文字を含める

ことは許されていないため，識別子名は，空白文字の代わ

りにキャメルケースやスネークケースと呼ばれる方法を用

いて，複数の単語をつなぎ合わせて表現される．キャメル

ケースでは，各単語の先頭文字を大文字にした後，すべて

の単語を空白文字なしで結合する（例：CamelCase）．ス

ネークケースでは，単語を空白文字の代わりにアンダース

コアで連結する（例：snake case）．Javaソースコード中

では，キャメルケースが推奨されている [10]．

また，オブジェクト指向プログラムのメソッドでは，メ

ソッド名を動詞または動詞句から始めることが推奨されて

いる [10], [11]．実際，メソッド名の先頭は動詞で後ろに名

詞または形容詞が続くことが多いことが，Høstら [12]の

研究により明らかになっている．

一方で，メソッド名の先頭が名詞，形容詞，名詞

句，または形容詞句であり，後ろに過去形の動詞が続

くという場合もある．この例としては，JavaAPI [13]

中の java.awt.event.ActionListener というクラスの，

actionPerformed(ActionEvent) というメソッドがあげら

れる．

一方で，少数ではあるが，メソッド名が動詞を含まない

場合も存在する．たとえば，java.lang.Objectのメソッド

toString()や，java.lang.Classのメソッド newInstance()と

c© 2013 Information Processing Society of Japan 858



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

いったメソッド名には動詞が含まれていない．このような

メソッド名は，2通りに解釈することができる．1つ目の

解釈は，動詞が省略されているという考え方であり，例の

場合，convertや createといった動詞が省略されていると

考えられる．2つ目の解釈は，一部の単語が実質的に動詞

の役割を果たしているという考え方である．例の場合，メ

ソッド名中の toや newが動詞と見なすことができる．

2.2 メソッド中の動詞と目的語

オブジェクト指向プログラムでは，メソッドがオブジェ

クトに対して何らかの操作を行うという処理が頻出するが，

操作と操作の対象であるオブジェクトの関係は，自然言語

に出現する動詞と目的語の関係に類似している．このとき

目的語に相当する名前が，メソッド名中の動詞の後や，メ

ソッドを所有するクラスの名前，引数に出現するという特

徴がある．この特徴に着目し，Fryら [14]は，動詞と直接

目的語の組をメソッドのシグネチャから抽出する手法を提

案している．

上で述べたソースコードに現れる動詞と目的語の組に

は，自然言語で記述された文章には現れない組が含まれ

ている場合がある．たとえば，java.net.Socketクラスには

bind(SocketAddress)というメソッドがあり，このメソッ

ドは，「bind SocketAddress to Socket（ソケットアドレス

をソケットに束縛する）」という意味を表している．しか

し，プログラムのドキュメント以外の自然言語の文章では，

socketという語が bindという動詞の目的語となることは

ほとんどない．

また，ソースコード中に出現する動詞–目的語関係には

ドメイン固有の関係が多く含まれている．これは，プログ

図 1 提案手法の概観

Fig. 1 Overview of our technique.

ラムが扱うドメインによって，ソースコード中で使われる

単語が異なっていたり，同じ単語でもドメインによって異

なる意味を表したりする場合があるからである．ドメイン

固有の関係の例としては，データベースの分野に頻出する

「fetch from cursor」という動詞–目的語関係があげられる．

この関係は，データベースからカーソルが指す一組のデー

タを取得することを意味している．ドメインごとに異なる

意味を表す例としては，cursorという名詞があげられる．

この名詞は，データベースの分野ではデータに 1つずつア

クセスするためのポインタを表している．一方で，GUIア

プリケーションの分野ではテキストエリアの編集中の箇所

を表すことが多い．

3. 動詞–目的語関係辞書構築手法の提案

本章では，オブジェクト指向プログラムのソースコード

から動詞–目的語関係を抽出し，抽出した関係を収録した

辞書を作成する手法について述べる．提案手法の入力はオ

ブジェクト指向プログラミング言語で記述された，ある共

通したドメインを扱う複数のソフトウェアのソースファイ

ル集合であり，出力は動詞（V），直接目的語（DO），間接

目的語（IO）の 3つ組を収録した辞書である．ただし，IO

については空の場合もある．提案手法では 3つ組をソース

ファイル集合から抽出し，フィルタリングを行い，入力さ

れたソースファイル集合で共通して出現する 3つ組を取り

出し辞書に収録する．

提案手法の概観を図 1 に示す．提案手法は図中の 3つ

のステップで構成される．

ステップ 1：メソッドプロパティの取得 入力されたソー

スファイル集合にあるすべてのメソッド宣言を取り出

c© 2013 Information Processing Society of Japan 859



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

し，それぞれのメソッド宣言に関連する識別子（戻り

値の型名，メソッド名，仮引数の名前と型名，メソッ

ドが所属するクラス名）を取得する．そして，各メ

ソッドに関連する識別子から単語を取り出し，それぞ

れの単語に品詞の情報を付与したもの（メソッドプロ

パティ）を出力する．

ステップ 2：パターンマッチングによる動詞–目的語関係の

抽出 ステップ 1の出力として得られたメソッドプロ

パティと事前に定義しておいた抽出パターンを用いて

パターンマッチングを行い，<V，DO，IO>の 3つ組

を抽出する．

ステップ 3：動詞–目的語関係のフィルタリング ステップ

2の出力のうち，一定数以上のソフトウェアで出現す

る 3つ組を抽出して辞書に収録する．

以降の節で各ステップについて詳しく述べる．

3.1 ステップ 1：メソッドプロパティの取得

本ステップでは，入力されたソースファイル中のすべて

のメソッド宣言から関連する識別子を取得し，取得した識

別子を解析して，メソッドプロパティを作成する．

メソッドプロパティとは，戻り値，引数，メソッド名，メ

ソッドの定義されたクラスに対応する 4要素の組である．

また，各要素は単語列と品詞列の組である．品詞列は単語

列中の対応する単語の品詞を示しており，品詞列中の n番

目の品詞は，単語列中の n番目の単語の品詞を表す．図 1

中のメソッドプロパティは，表の 2列目以降の列がそれぞ

れメソッドプロパティの 4要素に対応しており，2行目と 3

行目が各要素の単語列と品詞列に対応している．たとえば，

メソッド名に対応する要素の単語列と品詞列はそれぞれ，

(create，Ticket，For，RetailShop)と (動詞，名詞，前置詞，

名詞)であり，create，Ticket，For，RetailShopの品詞は

それぞれ，動詞，名詞，前置詞，名詞である．なお，メソッ

ドが 1つ以上の引数を持つ場合には，メソッド 1つに対し

2つのメソッドプロパティが作成される．1つは引数に対

応する単語列に，引数の型名が入れられたメソッドプロパ

ティが作成される．もう 1つは，引数に対応する単語列に，

仮引数名が入れられたメソッドプロパティが作成される．

型が総称型で型パラメータが含まれている場合には，型パ

ラメータの部分を無視する．たとえば，「List<Integer>」

型の場合は，「List」のみを型名として扱う．図 2 は 1つ

のメソッドから 2つのメソッドプロパティを作成している

例である．具体的なメソッドプロパティの取得手順は後述

するが，図中の引数の型名が Userで仮引数名が customer

であるメソッドから，型名を用いたメソッドプロパティと，

仮引数名を用いたメソッドプロパティを取得している．2

つのメソッドプロパティは，3番目の引数に対応する要素

のみが異なっており，型名を用いたメソッドプロパティで

は単語列が Userであり，仮引数名を用いたメソッドプロ

図 2 メソッドプロパティの取得例

Fig. 2 An example of creating method properties.

パティでは単語列が customerとなっている．

メソッドプロパティ取得の具体的な手順を述べる．まず，

ソースファイルを解析し，すべてのメソッド宣言を抽出す

る．そしてそれぞれのメソッド宣言から，戻り値の型，メ

ソッド名，仮引数の名前と型，メソッドが定義されている

クラスの名前を抽出し，メソッドプロパティの各要素を作

成する．

メソッドプロパティの 1番目の要素である戻り値に対応

した要素は，以下のように作成する．まず，単語列につい

ては，メソッドの戻り値の型名を 1単語と見なし，この 1

単語のみを要素として持つ列を作成する．そして，品詞列

については次のように作成する．戻り値が void以外の場

合には，戻り値の型名を名詞と見なして，1個の「名詞」と

いう要素を持つ列とする．戻り値が voidの場合には，1個

の「VOID」特殊な品詞を要素として持つ列とする．

メソッドプロパティの 4番目の要素であるメソッドが定

義されたクラスに対応する要素は以下のように作成する．

単語列は，クラス名を 1単語として扱い，この 1単語のみ

を要素として持つ列とする．ただし，ジェネリッククラス

において宣言されている総称型の型パラメータについては，

型パラメータの記述を無視する．品詞列は，1個の「名詞」

という要素を持つ列とする．

メソッドプロパティの 3番目の要素である引数に対応す

る要素は，以下のように作成する．引数が 0個の場合は，単

語列，品詞列ともに要素が空の列となる．引数が 1個以上

の場合は，仮引数名と型名を用いる場合で以下のように作

成する．仮引数名を用いる場合，単語列は n番目の仮引数

の名前を要素として持つ列とする．型名を用いる場合，単

語列は n番目の引数の型名を要素として持つ列とする．た

だし，型名に総称型の型パラメータが含まれる場合は，型名

から型パラメータを削除する．品詞列についてはどちらを

用いた場合も，n個の「名詞」という要素を持つ列とする．

メソッドプロパティの 2番目の要素であるメソッド名に

対応する要素は以下の手順で作成する．初めに，メソッド

名を単語列と見なし，キャメルケースとスネークケースに

c© 2013 Information Processing Society of Japan 860



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

図 3 メソッドプロパティ，抽出パターン，パターンマッチ

Fig. 3 Method property, extraction pattern and pattern

match.

従い，大文字の直前とアンダースコアで単語に区切って分

割する．そして，各単語の品詞を自然言語処理を行うツー

ルであるOpenNLP *1 を用いて特定する．ただし，メソッ

ド名の先頭に toや newが出現する場合は，toや newを動

詞と見なす．このように見なす理由は，2.1 節で述べた 2

通りの解釈のうち，動詞が省略されているという解釈を用

いると，ソースコード中に出現しない動詞が辞書に含まれ

ることになり，辞書を命名支援に利用する際，開発者に混

乱を招くと考えたからである．最後に，動詞と前置詞以外

の，連続して出現する単語を連結して名詞の 1語とする．

たとえば，図 2 のメソッド名の末尾の RetailShopという

文字列は，キャメルケースに従って分割した後は Retailと

Shopという 2単語となっているが，この 2単語を連結し

て RetailShopという名詞の 1語とする．

3.2 ステップ 2：パターンマッチングによる動詞–目的語

関係の抽出

本ステップでは，ステップ 1で得られたメソッドプロパ

ティと事前に人手で定義した抽出パターンを用いてパター

ンマッチングを行い，<V，DO，IO>の 3つ組を取得する

（図 3 参照）．

抽出パターンは，構造ルールと抽出ルールで構成される．

構造ルールは 4要素の組で表現され，各要素は，ワイルド

カード，または，品詞と単語番号で構成される組の列のい

ずれかとなる．構造ルールの 4要素はメソッドプロパティ

と同様に，戻り値の型，メソッド名，引数，クラス名にそ

れぞれ対応する．抽出ルールは単語番号の 3つ組で，V，

DO，IOにそれぞれ対応する．ただし，IOに対応する要素

は空の場合がある．なお，以降表中の構造ルールのワイル

ドカードについては「*」と略記する．

パターンマッチングは以下の手順で行われる．まず，構

造ルールとメソッドプロパティを照合し，次に示す 2つの

条件をすべて満たすか確認する．

*1 http://opennlp.sourceforge.net

• 構造ルールとメソッドプロパティの各 n番目の要素に

ついて，構造ルールの要素がワイルドカードである，

または，双方の要素の品詞の列が順序を含め完全に同

一である．なお，メソッドが無名クラスに所属する場

合には，メソッドプロパティのクラス名部は空になる

ため，構造ルールのクラス名部がワイルドカードのと

きのみマッチングに成功する．

• 構造ルールに同じ単語番号が複数箇所に出現している
場合，メソッドプロパティ中の対応する単語が同じ単

語である．

そして，条件が満たされている場合のみ，抽出ルールと

メソッドプロパティを照合し，抽出ルールで V，DO，IO

と指定された単語番号と対応しているメソッドプロパティ

中の単語を抽出し，<V，DO，IO>の 3つ組として出力す

る．ただし，抽出ルールの IOに対応する要素が空の場合

は，IOは空になる．

パターンマッチングを行った結果，1つのメソッドプロ

パティに対し，複数の抽出パターンの構造ルールが条件を

満たすことがある．その場合は，それぞれの抽出パターン

の抽出ルールを用いて，1つのメソッドプロパティから複

数の 3つ組を抽出する．

最後に，3つ組の抽出後，JWNL *2とWordNet [15]を用

いて動詞の原型を検索し，3つ組中の Vに対応する単語を

原型に変換する．

3.3 ステップ 3: 動詞–目的語関係のフィルタリング

本ステップはステップ 2で得られた<V，DO，IO>の 3

つ組をフィルタリングし，ソースコードで頻出する動詞–目

的語関係を収録した辞書を構築する．具体的には，入力の

ソースコード集合で事前に定めておいた閾値以上のソフト

ウェアで出現した 3つ組のみを辞書に収録する．

4. 評価実験

提案手法によりドメイン固有の辞書が作成可能か確認す

るため評価実験を行った．評価実験では，まず，実験準備と

して抽出パターンを人手で作成しておき，作成したパター

ンを利用して 4つのドメインの辞書を作成した．そして，

被験者が辞書に収録された動詞–目的語関係を評価した．

評価は，その関係がドメインで見られる組か，動詞と目的

語に適切な語が選ばれているか，その関係をソフトウェア

開発者に良い命名の例として見せてもよいか，という 3つ

の観点に基づいて行った．以降，実験準備，評価対象の辞

書，評価方法と実験結果，結果に対する議論を述べる．

4.1 実験準備

まず，辞書を作成するために表 1 に示す 29個の抽出パ

*2 http://sourceforge.net/projects/jwordnet/

c© 2013 Information Processing Society of Japan 861



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

表 1 作成した抽出パターン

Table 1 List of the extraction patterns.

構造ルール 抽出ルール

ID 戻り値 メソッド名 引数 クラス名 V DO IO

1 * 動詞 1 名詞 2 前置詞 3 名詞 4 * * 動詞 1 名詞 2 名詞 4

2 * 動詞 1 前置詞 2 名詞 3 * 名詞 4 動詞 1 名詞 4 名詞 3

3 * 動詞 1 名詞 2 * 名詞 3 動詞 1 名詞 2 名詞 3

4 * 動詞 1 前置詞 2 名詞 3 名詞 4 * 動詞 1 名詞 4 名詞 3

5 * 動詞 1 名詞 2 前置詞 3 名詞 4 * 動詞 1 名詞 2 名詞 4

6 void 動詞 1 (空) 名詞 2 動詞 1 名詞 2 (空)

7 void 動詞 1 前置詞 2 名詞 3 (空) 名詞 4 動詞 1 名詞 4 名詞 3

8 void 動詞 1 名詞 2 名詞 2 名詞 3 動詞 1 名詞 2 名詞 3

9 void 動詞 1 名詞 2 前置詞 3 名詞 4 * 名詞 5 動詞 1 名詞 2 名詞 5

10 void 動詞 1 名詞 2 名詞 3 動詞 1 名詞 2 名詞 3

11 void 動詞 1 名詞 2 名詞 3 名詞 4 動詞 1 名詞 3 名詞 4

12 void 動詞 1 名詞 2 名詞 3 名詞 2 動詞 1 名詞 2 名詞 3

13 void 動詞 1 名詞 2 (空) 名詞 2 動詞 1 名詞 2 (空)

14 void 名詞 1 動詞 2 名詞 3 名詞 4 動詞 2 名詞 1 名詞 3

15 void 名詞 1 動詞 2 名詞 1 名詞 3 動詞 2 名詞 1 名詞 3

16 名詞 1 動詞 2 名詞 1 名詞 3 名詞 1 動詞 2 名詞 1 名詞 3

17 名詞 1 動詞 2 名詞 1 前置詞 3 名詞 4 名詞 4 名詞 5 動詞 2 名詞 1 名詞 4

18 名詞 1 動詞 2 名詞 3 前置詞 4 名詞 5 (空) 名詞 6 動詞 2 名詞 3 名詞 5

19 名詞 1 動詞 2 前置詞 3 名詞 4 名詞 5 名詞 6 動詞 2 名詞 6 名詞 4

20 名詞 1 動詞 2 名詞 1 (空) 名詞 3 動詞 2 名詞 1 名詞 3

21 名詞 1 動詞 2 名詞 3 名詞 4 動詞 2 名詞 4 名詞 3

22 名詞 1 動詞 2 前置詞 3 名詞 4 名詞 5 動詞 2 名詞 5 名詞 4

23 名詞 1 動詞 2 前置詞 3 名詞 4 * * 動詞 2 名詞 1 名詞 4

24 名詞 1 動詞 2 前置詞 3 名詞 4 (空) 名詞 1 動詞 2 名詞 1 名詞 4

25 名詞 1 動詞 2 前置詞 3 名詞 4 名詞 4 動詞 2 名詞 4 名詞 4

26 名詞 1 動詞 2 名詞 3 (空) 名詞 1 動詞 2 名詞 3 名詞 1

27 名詞 1 動詞 2 (空) 名詞 3 動詞 2 名詞 3 (空)

28 名詞 1 動詞 2 名詞 3 (空) 名詞 3 動詞 2 名詞 3 名詞 1

29 名詞 1 動詞 2 名詞 1 (空) 名詞 1 動詞 2 名詞 1 (空)

ターンを我々が作成した．表中の 1列目は論文中の各抽出

パターンを識別するための IDである．抽出パターンの作

成手順は以下のとおりである．まず，我々の経験から<V，

DO，IO>の 3つ組が明白なメソッドシグネチャを想定し，

getterを想定した抽出パターン 20や setterを想定した抽

出パターン 8など基本となる抽出パターンをいくつか定義

した．そして，あるソフトウェア集合に対して定義済みの

抽出パターンでは，3つ組の抽出が行えないメソッドを列

挙し，それらのメソッドから 3つ組を抽出できるような抽

出パターンを定義するということを繰り返した．

抽出パターンの作成後，表 2に示す 38個のオープンソー

スソフトウェアを入力として，辞書を作成した．これらの

ソフトウェアは，ウェブアプリケーション（Web），XML

処理（XML），データベース（DB），GUIの 4つのドメイ

ンに我々が事前に分類した．そして，それぞれのドメイン

に属するソフトウェアを入力として，ソースコードを解析

し入力と対応するドメインの辞書を作成した．

4.2 評価対象の辞書

表 3 に提案手法のステップ 3で行うフィルタリング前

の解析結果を示す．なお，1つのメソッドが複数の抽出パ

ターンとマッチして，複数の 3つ組を生成することもある

ため，3つ組の数は抽出パターンにマッチしたメソッドの

数よりも多くなっている．

そして，表 4 に，実験対象とした各ドメインにおける，

3つ組の出現頻度の分布を示す．この表より，2つ以上の

ソフトウェアで出現する 3つ組の数は，1つのソフトウェ

アでしか出現しない 3つ組の数に比べ，大きく減少してい

ることが分かる．

本実験ではフィルタリングの閾値を 3以上にすると辞書

に収録される 3つ組の数が無作為抽出を行うのに不十分と

なると考え，フィルタリングの閾値を 2と定めた．つまり，

2つ以上のソフトウェアで出現した 3つ組を収録した辞書

を作成した．

また，表 5 に各抽出パターンにより 3つ組の抽出に成功

したメソッドの数を示す．表中の括弧内の数値は各ソフト

c© 2013 Information Processing Society of Japan 862



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

表 2 抽出対象のソフトウェア

Table 2 Targets of extraction.

Web Applications

BBS-CS 8.0.3 JForum 2.1.8

JGossip 1.1.0.005 mvnForum 1.2.1

Yazd Discussion Forum Software 3.0 Order Portal 1.2.4

Arianne RPG 0.80 JBoss Wiki Beta2

JSP Wiki 2.8.3 SnipSnap 1.0b3

XML

Castor 1.3 DOM4J 1.6.1

JDOM 1.1.1 Piccolo 1.04

Saxon-HE 9.2.0.5 Xalan-J 2.7.1

Xbeans 2.0.0 Xerces-J 2.9.0

XOM 1.2.4 XPP3 1.1.4

xstream-1.3.1

Databases

Axion 1.0 Milestone 2 Apache Derby 10.5.3

H2 1.2.128 HSQLDB 1.8.1.1

Berkeley DB Java Edition 4.0.92 Mckoi 1.0.3

MyOODB 4.0.0 NeoDatis 1.9.22.674

OZONE 1.1 tinySQL 2.26

GUIs

ArgoUML 0.28.1 BlueJ 2.5.3

Eclipse Classic 3.5.1 jEdit 4.3.1

NetBeans 6.8 vuze 4.3.1.2

LimeWire 5.4

表 3 メソッド数と抽出した 3 つ組の数

Table 3 Number of methods and extracted tuples.

メソッド数

1 つ以上の
パターンと
マッチした
メソッドの数

マッチした
メソッドの
割合 3 つ組の数

Web 74,707 67,276 90% 67,429

XML 55,812 46,885 84% 49,926

DB 74,127 60,326 81% 63,087

GUI 298,696 247,918 83% 273,202

表 4 3 つ組の出現頻度の分布

Table 4 Frequently distribution of tuples.

3 つ組が出現したソフトウェアの数

1 2 3 4 5 6

Web 67,147 258 18 4 2 0

XML 49,379 465 63 13 5 1

DB 62,415 609 28 1 32 2

GUI 272,795 339 38 23 5 2

ウェア集合の全メソッド数に対して抽出に成功したメソッ

ドの数の比を表している．表より抽出パターン 3が半分以

上のメソッドから 3つ組を抽出していることが分かる．ま

た，抽出パターン 11も抽出パターン 3に次いで多くのメ

ソッドから 3つ組を抽出している．

4.3 評価方法

評価対象の辞書をソフトウェア工学の研究室の学生 6名

が 3つの観点に基づいて評価した．被験者は全員 Javaで

のソフトウェア開発の経験を有している．加えて，それぞ

れの被験者が評価した辞書は，被験者が知識を持つドメイ

ンのものとした．

各ドメインの辞書について，収録されている <V，DO，

IO>の 3つ組を以下の観点で評価した．

初めに，収録された 3つ組が属するドメインを確認する

観点を用意した．作成した辞書は，対象ドメイン固有の 3

つ組を含むだけではなく，より広いドメイン（対象ドメイ

ンを包含する上位ドメイン）に所属する 3つ組が含まれる

可能性がある．そこで，評価対象の 3つ組が，対象ドメイ

ンに所属するものなのかどうかを確認するだけではなく，

より広いドメインとして抽出対象のソフトウェアすべてに

含まれる Javaプログラム全体に所属するものであるかど

うかを評価することにした．

観点 1 3つ組の動詞–目的語関係は実際にそのドメインで

使われる関係であるか．あるいは Javaプログラムで

共通して使われる関係であるか．

次に，収録された 3つ組が不適切な単語や不適切な組合

せである可能性を考慮し，以下の観点を用意した．

観点 2 動詞，直接目的語，間接目的語は適切か．

最後に，辞書の活用例として考えている命名支援に，収

録された 3つ組が役立つかどうかを確かめるために以下の

観点を用意した．

観点 3 3つ組が識別子の適切な命名に役立つか．

以上の 3つの観点を基に被験者への質問を用意した．ま

ず，観点 1に対応する質問として以下の 3つを設定した．

Q1 この <V，DO，IO>の 3つ組は，辞書が対象として

いるドメインでよく見られるか？

Q2 この<V，DO，IO>の 3つ組は，Javaプログラム一

般でよく見られるか？

Q3 この <V，DO，IO>の 3つ組は，他のドメインでよ

く見られるか？ そうならば，ドメイン名を答えよ．

次に，観点 2に対応する以下の質問を設定した．

Q4 V，DO，IO はそれぞれ正しく抽出されているか？

そう思わないならば，不正確だと思う語を明示せよ．

最後に，観点 3に対応する質問として以下の 3つを設定

した．

Q5 この <V，DO，IO>の 3つ組を，辞書が対象とする

ドメインを扱うプログラムの開発者に，良い命名の例

として見せてもよいと思うか？

Q6 この <V，DO，IO>の 3つ組を，一般的な Javaプ

ログラムの開発者に，良い命名の例として見せてもよ

いと思うか？

Q7 この<V，DO，IO>の 3つ組を，他のドメインを扱う

プログラムの開発者に，良い命名の例として見せても

c© 2013 Information Processing Society of Japan 863



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

表 5 各抽出パターンにより 3 つ組が抽出されたメソッドの数

Table 5 The number of methods extracted tuples by extraction pattern.

ID DB GUI WEB XML

1 2,782 (3.75%) 7,535 (2.52%) 4,188 (5.61%) 1,714 (3.07%)

2 1,612 (2.17%) 4,300 (1.44%) 1,165 (1.56%) 757 (1.36%)

3 49,951 (67.39%) 201,859 (67.58%) 59,015 (79.00%) 39,540 (70.84%)

4 492 (0.66%) 1,826 (0.61%) 482 (0.65%) 327 (0.59%)

5 114 (0.15%) 875 (0.29%) 126 (0.17%) 124 (0.22%)

6 2,048 (2.76%) 9,217 (3.09%) 798 (1.07%) 1,091 (1.95%)

7 309 (0.42%) 561 (0.19%) 346 (0.46%) 92 (0.16%)

8 2,072 (2.80%) 11,752 (3.93%) 4,994 (6.68%) 3,679 (6.59%)

9 1,423 (1.92%) 2,882 (0.96%) 2,891 (3.87%) 962 (1.72%)

10 1,218 (1.64%) 6,372 (2.13%) 607 (0.81%) 1,089 (1.95%)

11 5,865 (7.91%) 34,064 (11.40%) 4,803 (6.43%) 5,384 (9.65%)

12 18 (0.02%) 47 (0.02%) 8 (0.01%) 11 (0.02%)

13 34 (0.05%) 38 (0.01%) 9 (0.01%) 8 (0.01%)

14 474 (0.64%) 10,826 (3.62%) 347 (0.46%) 230 (0.41%)

15 17 (0.02%) 1,092 (0.37%) 10 (0.01%) 3 (0.01%)

16 16 (0.02%) 35 (0.01%) 7 (0.01%) 28 (0.05%)

17 27 (0.04%) 101 (0.03%) 98 (0.13%) 15 (0.03%)

18 587 (0.79%) 1,651 (0.55%) 363 (0.49%) 166 (0.30%)

19 152 (0.21%) 719 (0.24%) 158 (0.21%) 225 (0.40%)

20 2,829 (3.82%) 7,310 (2.45%) 1,278 (1.71%) 2,461 (4.41%)

21 1,239 (1.67%) 6,358 (2.13%) 523 (0.70%) 1,363 (2.44%)

22 85 (0.11%) 408 (0.14%) 17 (0.02%) 92 (0.16%)

23 604 (0.81%) 2,233 (0.75%) 549 (0.73%) 493 (0.88%)

24 2 (0.00%) 7 (0.00%) 0 (0.00%) 1 (0.00%)

25 23 (0.03%) 43 (0.01%) 4 (0.01%) 14 (0.03%)

26 139 (0.19%) 849 (0.28%) 67 (0.09%) 211 (0.38%)

27 774 (1.04%) 1,886 (0.63%) 367 (0.49%) 814 (1.46%)

28 22 (0.03%) 81 (0.03%) 14 (0.02%) 28 (0.05%)

29 7 (0.01%) 22 (0.01%) 0 (0.00%) 10 (0.02%)

よいと思うか？ そうならば，そのドメインを答えよ．

回答の方法であるが，Q1，Q2，Q5，Q6について，被験

者は，(A)強く同意する，(B)同意する，(C)同意しない，

(D)強く同意しない，の 4段階評価あるいは，(Z)分から

ない，で回答した．

各辞書は 2名の被験者により評価され，各被験者は 2つ

の辞書を評価した．被験者は 1つの辞書に対し 30個の 3

つ組を評価する．そのうち 15個は 3つ以上のソフトウェ

アで出現した 3つ組で，もう 15個は 2つのソフトウェア

で出現した 3つ組である．各 3つ組は辞書から条件に合致

するものを無作為かつ排他的に抽出した．よって，1つの

3つ組を複数の被験者が評価することはないようにした．

しかし，Web Applicationの辞書については，3つ以上の

ソフトウェアで出現した 3つ組は 24個しかなかったため，

無作為に選んだ 6個の 3つ組を 2名の被験者が回答した．

4.4 実験結果

まず，観点 1に対応する質問の回答結果について述べる．

表 6 に Q1の結果を，表 7 に Q2の結果を示す．Q1の

表 6 Q1 への回答

Table 6 Response to Q1.

(A) (B) (C) (D) (Z)

Web 21 35 7 3 24

XML 44 18 5 7 16

DB 32 36 4 9 9

GUI 42 26 9 6 7

表 7 Q2 への回答

Table 7 Response to Q2.

(A) (B) (C) (D) (Z)

Web 16 29 10 30 5

XML 15 11 17 42 5

DB 22 13 32 17 6

GUI 32 37 9 6 6

回答における (A)強く同意すると (B)同意するの合計は

62%から 75%であり，またQ2については 38%から 76%で

ある．以上の結果は，辞書に含まれる関係の多くがドメイ

ン固有の関係であることを示している．しかし，ドメイン

c© 2013 Information Processing Society of Japan 864



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

表 8 Q3 の回答（括弧内の数字は同じ回答の数を表す）

Table 8 Response to Q3 (Numbers in parentheses mean the

number of the same ansewers).

Web データベース (16)，入出力 (6)，

Java プログラム一般 (2)

XML データ解析 (2)，GUI (1)，

パーサー (1)，リソース管理 (1)，

木構造 (1)，グラフ処理 (1)

DB GUI (5)，Web アプリケーション (1)，

文字列処理 (1)

GUI データベース (1)，ネットワーク (1)，

プログラムテストケース (1)，アーカイブ (1)，

Java プログラム一般 (4)

表 9 Q3 においてその他のドメインで見られると回答された組

Table 9 Tuples being popular in other domains at responses

of Q3.

動詞 直接目的語 間接目的語

見られると
答えられた
ドメイン

Web Set Password User データベース処理

XML Perform Action ActionEvent GUI

DB Release Mouse MouseEvent GUI

GUI Open Connection Handler

データベース，
ネットワーク関係

表 10 Q4 への回答

Table 10 Response to Q4.

動詞 直接目的語 間接目的語 2 つ以上

Web 3 1 3 6

XML 5 7 1 12

DB 1 6 5 11

GUI 8 1 0 9

とは無関係な関係も含まれていたことも示している．

表 8 に Q3の回答を示している．すべての辞書がその他

のドメインに属する動詞–目的語関係を含んでいた．その

ため，辞書に含まれるその他のドメインを分離することで，

辞書を改善できると考えられる．Q3の回答の具体例につ

いては，表 9 に示す．表 9 のとおり，DBの辞書に対して

<Release，Mouse，MouseEvent>のようなGUIのドメイ

ンに属する組が混入するなどの例が見られた．

次に，観点 2に対応する質問の回答結果を示す．表 10

にQ4の回答を示す．不正確なV，DO，IOの割合は 6%か

ら 13%であった．このことは，作成した 29個の抽出パター

ンには改善の余地があることを示している．Q4で不適切

と判断された組の具体例について，表 11 に示す．表 11

より，DBや XMLの例のように Dtdや Evtのような省略

語を用いた組が不適切と判断されていることが分かる．ま

た，GUIの例のようにメソッド先頭の Toを動詞として判

定した我々の判断は被験者に不適切と判断された場合も

表 11 Q4 において不適切だと回答された組

Table 11 Tuples being incorrect at responses of Q4.

動詞 直接目的語 間接目的語
不適切だと
判断された箇所

Web Page Exists WikiEngine 動詞，間接目的語

XML Start Dtd XmlWriter 直接目的語

DB Perform Action Evt 間接目的語

GUI To String Mode 動詞

表 12 Q5 への回答

Table 12 Response to Q5.

(A) (B) (C) (D) (Z)

Web 19 32 11 4 24

XML 33 15 10 16 16

DB 35 29 10 10 6

GUI 28 30 13 11 8

表 13 Q6 への回答

Table 13 Response to Q6.

(A) (B) (C) (D) (Z)

Web 13 19 23 30 5

XML 14 13 12 46 5

DB 31 13 24 16 6

GUI 29 26 15 13 7

表 14 Q7 の回答（括弧内の数字は同じ回答の数を示す）

Table 14 Response to Q7 (Numbers in the parenthese mean

the number of the same answers).

XML データ解析 (1)，GUI (1)，パーサー (1)，

リソース管理 (1)，木構造 (1)，グラフ処理 (1)

DB GUI (5)，ウェブアプリケーション (1)

表 15 対象ドメインにおいて有用であると判定された組

Table 15 Tuples evaluated useful at the target domain.

動詞 直接目的語 間接目的語

Web Destroy Session HttpSessionEvent

XML Declare Prefix NamespaceSupport

DB Add Constraint Table

GUI Click Mouse MouseEvent

あった．

さらに，観点 3に対応する質問の回答結果を示す．表 12

に Q5の結果を，表 13 に Q6の結果を示す．また Q1と

Q5において，対象ドメインにおいて有用だと判定された

組については，具体例を表 15 に示す．Q5の回答における

(A)強く同意すると (B)同意するの合計は 53%から 71%で

あり，またQ6については 30%から 61%である．Q5とQ6

の結果は，辞書を改善するには，辞書の精度を上げるだけ

でなく，開発者に役立つ関係を選択し収録する必要がある

ことを示している．一方，Q6の結果は，辞書には Javaプ

ログラム一般で見られ，命名の役に立つ良い例が多く収録

c© 2013 Information Processing Society of Japan 865



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

表 16 抽出パターンと抽出された 3つ組に対する評価（セル内の数値は Q1/Q2/Q5/Q6での

評価に対応）

Table 16 Extraction patterns and responses of tuples (numbers in each cell correspond

to the responses of Q1/Q2/Q5/Q6).

ID A B C D Z

1 7/3/9/4 17/3/13/3 1/15/5/12 2/10/3/12 7/3/4/3

2 1/0/1/0 0/2/0/1 1/0/1/1 0/0/0/0 1/1/1/1

3 78/49/65/52 66/45/58/35 11/36/20/36 15/62/27/69 34/12/34/12

4 5/3/3/3 0/1/1/1 0/0/1/0 0/1/0/1 0/0/0/0

5 2/1/1/1 2/3/1/2 0/0/2/1 1/3/1/3 2/0/2/0

6 8/4/7/6 5/6/6/4 2/4/2/4 0/2/0/2 1/0/1/0

7 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

8 14/10/12/10 12/9/11/7 2/6/5/8 2/7/2/7 3/1/3/1

9 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

10 1/0/0/0 1/0/2/0 0/1/0/0 0/3/0/4 4/2/4/2

11 9/8/9/7 7/4/6/4 3/2/3/3 1/8/2/8 2/0/2/0

12 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

13 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

14 30/13/22/12 16/25/20/18 3/9/4/16 3/7/5/7 4/2/5/3

15 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

16 0/1/0/1 1/0/1/0 0/0/0/0 0/0/0/0 0/0/0/0

17 1/0/1/1 1/0/1/0 0/2/0/0 0/0/0/1 0/0/0/0

18 4/3/5/3 10/0/9/0 1/11/4/10 2/6/2/7 5/2/2/2

19 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

20 7/10/6/8 9/7/3/3 2/1/4/1 3/5/8/11 2/0/2/0

21 3/3/3/3 1/3/1/3 2/0/2/0 0/0/0/0 2/2/2/2

22 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

23 1/3/1/2 3/2/1/3 1/1/3/1 3/3/3/3 2/1/2/1

24 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

25 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

26 0/0/0/0 1/0/1/0 0/1/0/0 0/0/0/1 0/0/0/0

27 1/2/1/1 0/1/0/2 2/0/2/0 0/1/0/1 2/1/2/1

28 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

29 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0 0/0/0/0

されていることを示している．これらの組は，ドメインを

対象とした辞書とは別の辞書に分けて収録するべきだと思

われる．また，表 14 にQ7の結果を示す．Q3の結果と同

様，Q7の結果からも，辞書には他のドメインの辞書に分

離するべき組が収録されていたことを確認した．

さらに，各抽出パターンが有用な 3つ組の抽出に貢献し

ていたかを確認するため，抽出パターンとその抽出パター

ンにより抽出された 3つ組に対する評価との関連を調査し

た．表 16 は，各抽出パターンにより抽出された 3つ組が，

Q1，Q2，Q5，Q6において受けた評価を示している．1列

目は抽出パターンの IDであり，2列目以降の各セル内の数

値は，1行目に記述されている評価を受けた 3つ組の数に

ついて，Q1/Q2/Q5/Q6のそれぞれの回答における評価の

数という形式で表している．表より，高い評価を受ける 3

つ組の抽出に最も貢献したのは抽出パターン 3であり，こ

れはメソッドの抽出に最も貢献したためであると考えられ

る．また抽出パターン 14や抽出パターン 20など，3つ組

を抽出できたメソッドが少なくても評価の高い 3つ組の抽

出に貢献していたものもあった．

4.4.1 結果に対する追加調査

実験結果を精査したところ，いくつかの 3つ組は辞書が

対象とするドメインに属するプログラム，または Javaプ

ログラム一般で見られるにもかかわらず，開発者にとって

望ましいものではないと評価されていることが分かった．

そこで，被検者に対して，望ましくないと判断した理由に

ついて追加の質問を行った．その結果，以下の回答が得ら

れた．

• 3つ組に省略語など意味が不明瞭な語が使われていた．

• 3つ組が平均的な技能を持つ開発者にとって常識的な

ものだった．

• 3つ組はドメイン全体で使われるものではなく，ある

特定のライブラリに依存したプログラムにだけ出現す

るものだった．

以上の回答から，辞書には，省略語が使われた 3つ組，

c© 2013 Information Processing Society of Japan 866



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

常識的な 3 つ組，特定のライブラリに依存した 3 つ組と

いった，開発者にとって提示しても有用とはいえない関係

が収録されていたことが分かった．辞書をより有用なもの

にするには，これらの 3つ組に対して何らかの対応が必要

である．省略語が使われた 3つ組については，辞書中に 3

つ組に出現した省略語についての説明を加えるという対応

が考えられる．

常識的な 3つ組については，辞書から取り除く必要はな

いと考えられる．なぜなら，平均的な開発者が皆知ってい

る常識的な関係というのは，初心者にとっては有用な情報

であると考えられるからである．

特定のライブラリに依存した 3つ組については，辞書作

成の際の入力となるソフトウェアを増やし，フィルタリン

グの閾値も大きくして，ライブラリに依存した 3つ組が辞

書に収録されないようにするという対応が考えられる．

4.5 議論

Q2と Q3の結果から別のドメインに属する動詞–目的語

関係が辞書に含まれることが分かった．この理由は以下の

2つが考えられる．

• フィルタリングに使用した閾値がノイズを取り除くの
には小さすぎた．

• ソフトウェアは一般的に複数のドメインを扱うことが
あり，異なるソフトウェアで意図せず同じドメインを

扱っていた可能性がある．

1つ目の問題を解決する単純な方法は，入力するソフト

ウェアの数を増やし，フィルタリングの閾値も大きくする

ことである．

2つ目の問題を解決する方法としては，我々は以下に示

す方法を考えている．まず，ドメインの数と入力するソフ

トウェアの数を増やし，ソフトウェアをドメインごとに非

排他的に分類する．そして，3つ組を抽出し辞書を作成し

たのち，各 3つ組の抽出元のソフトウェアを特定する．も

し，同じ 3つ組が複数の辞書に出現した場合，抽出元のソ

フトウェアが所属するドメインを基に，最も多くのソフト

ウェアが共通して扱っているドメインを特定する．最終的

に，そのドメインを 3つ組を収録するのに最善の辞書と判

断し，他の辞書からはその 3つ組を除外する．

4.6 妥当性への脅威

評価対象となった 3つ組は辞書から無作為に抽出したた

め，データは全標本から無作為抽出したものとなっている．

しかし，辞書を作成する際の入力となったソフトウェアは

無作為に収集したものではなく，ソフトウェアの数も不十

分な可能性がある．そのため，本実験で作成した辞書は，

提案手法で作成可能な辞書として，十分に一般的でない可

能性がある．しかし，ソフトウェアは意図的に実験結果を

制御するために集めたものではなく，あくまでドメインご

とに分類するために意図的な収集を行ったものである．

被験者については，彼らは大学院生でありソフトウェア

開発の専門家ではない．しかし，彼らはアルバイトや研究

活動でのプログラミング経験があり，辞書のドメインにつ

いての十分な知識を有している．ただし，被験者の数は十

分ではなかったため，辞書に対し被験者を無作為に割り当

てることはできなかった．

5. 関連研究

本章は，ソースコード中の動詞–目的語関係についての

関連研究を示し，本研究との違いについても述べる．

Fryら [14]はオブジェクト指向プログラムのソースコー

ド中のメソッドから動詞と直接目的語の組を抽出する方

法を示した．Shepherdら [16]はメソッドから抽出した動

詞と直接目的語の組を用いて，Action-Oriented Identifier

Graphと呼ばれるグラフを作成し，フィーチャーロケー

ションやアスペクトマイニングに利用する手法を提案した．

Hillら [17]は，動詞と直接目的語に加え，間接目的語もメ

ソッドから抽出し，<動詞，直接目的語，間接目的語 >の

3つ組を利用して，ソースコードに対する検索クエリを開

発者に提示する手法を提案している．我々の手法との相違

点としては，彼らの手法が単一のソフトウェアを対象にし

ていることに対して，我々の手法は複数のソフトウェアを

対象にしている点と，フィルタリングによりドメイン固有

の関係を取り出している点があげられる．ただし，我々の

手法のメソッドから動詞–目的語関係を抽出する部分につ

いてはこれらの手法を参考にしている．

Høstら [18]はメソッド名に含まれる動詞とメソッドの

特徴を基に，メソッド名に用いられる動詞の辞書を作成し

た．この辞書は，メソッド名に用いられる代表的な動詞 40

個について，その動詞が使われるメソッドが持つ特徴と特

徴を持つ頻度を収録した辞書となっている．たとえば，get

という動詞については，「非常に多くの場合状態の読み込み

を行い，引数を持つことは稀である」といった特徴と頻度

が記述してある．我々の手法は，辞書に動詞だけでなく目

的語が含まれている点が大きく異なっている．そのため，

我々の作成した辞書からは，動詞だけでなく目的語まで含

めてメソッド名を提案することができる．

Zhou ら [19] は，ソースコードに出現する is-a 関係と

has-a関係をソフトウェアのクラス図から抽出し，抽出し

た関係と，人手で作成されたドメインの is-a関係と has-a

関係の知識とを統合し，プログラム理解や設計ミスの発見

に役立てる手法を提案している．Zhouらの研究とは異な

り，我々の研究の目的はドメインの知識を作成することで

ある．加えて，本研究でドメインの知識として収録される

関係は，is-a関係や has-a関係ではなく，動詞–目的語の関

係である．Zhouらの手法で使用されるドメインの知識に，

我々の手法で作成された辞書をあわせて用いることで，彼

c© 2013 Information Processing Society of Japan 867



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

らの手法では扱っていなかった関係もあわせて表示される

ようになり，プログラムや設計ミスの発見により役立つこ

とが期待される．

6. まとめと今後の課題

本研究はドメイン固有の動詞–目的語関係を収録した辞

書を作成する手法を提案した．辞書に収録されているの

は，<V，DO，IO>で構成される 3つ組であり，それらは

メソッドに関連する識別子から収集したものである．

評価実験では，29個の抽出パターンを人手で作成し，4

つのドメインの辞書を作成し，6名の被験者が辞書を評価

した．その結果辞書に含まれる関係の多くが，辞書が対象

とするドメインまたは Javaプログラム一般で見られる関

係であったことを確認した．さらに，開発者に良い命名の

例として見せてもよい関係が多く収録されていることも確

認した．

今後の課題としては，辞書の精度を上げること，大規模

なソースコード集合を対象に，より大きな辞書を作成する

ことがあげられる．また，命名支援のために，ソースコー

ドのコンテキストにあわせて開発者に対し良い名前の例を

提示するシステムの開発も必要である．良い命名を支援す

るためには，辞書をドメインの知識がない開発者に対して

視覚化することが有用であると考えられる．

謝辞 本研究は，日本学術振興会科学研究費補助金基盤

研究（A）（課題番号：21240002）と文部科学省科学研究

費補助金若手研究（B）（課題番号：21700031）の助成を受

けた．

参考文献

[1] Fjeldstad, R.K. and Hamlen, W.T.: Application Pro-
gram maintenance study: Report to our respondents,
Proc. GUIDE 48 (1983).

[2] Corbi, T.A.: Program understanding: Challenge for the
1990’s, IBM Syst. J., Vol.28, No.2, pp.294–306 (1989).

[3] von Mayrhauser, A. and Vans, A.M.: Identification of
Dynamic Comprehension Processes During Large Scale
Maintenance, IEEE Trans. Softw. Eng., Vol.22, No.6,
pp.424–437 (1996).

[4] Pennington, N.: Empirical studies of programmers: 2nd
workshop, Ablex Publishing Corp., pp.100–113 (1987).

[5] McConnell, S.: Code Complete, Second Edition,
Microsoft Press, Redmond, WA, USA (2004).

[6] Martin, R.C.: Clean Code: A Handbook of Agile Soft-
ware Craftsmanship, 1st edition, Prentice Hall PTR,
Upper Saddle River, NJ, USA (2008).

[7] Lawrie, D., Morrell, C., Feild, H. and Binkley, D.:
What’s in a Name? A Study of Identifiers, Proc. 14th
IEEE International Conference on Program Compre-
hension, pp.3–12 (2006).

[8] 早瀬康裕，市井 誠，井上克郎：ソフトウェア理解支援を
目的とした辞書の作成法，Proc. Winter Workshop 2008
in Dogo, No.3, pp.33–34 (2008).

[9] 鬼塚勇弥，早瀬康裕，石尾 隆，井上克郎：ソースコード
中に出現する動詞-目的語関係を利用したメソッド名の命

名支援手法，信学技報，Vol.111, No.481, pp.1–6 (2012).
[10] Oracle Corporation: The java tutorial, available

from 〈http://java.sun.com/docs/books/tutorial/java/
javaOO/index.html〉.

[11] Microsoft: Method Naming Guidelines, available from
〈http://msdn.microsoft.com/en-us/library/4df752aw(v=
vs.71).aspx〉.

[12] Høst, E.W. and Østvold, B.M.: Software Language En-
gineering, chapter The Java Programmer’s Phrase Book,
pp.322–341, Springer-Verlag, Berlin, Heidelberg (2009).

[13] Sun Microsystems: Java platform, standard edi-
tion 6 API specification, available from 〈http://java.
sun.com/javase/6/docs/api〉.

[14] Fry, Z., Shepherd, D., Hill, E., Pollock, L. and
Vijay-Shanker, K.: Analysing source code: Looking for
useful verb-direct object pairs in all the right places, IET
Software, Vol.2, No.1, pp.27–36 (2008).

[15] Miller, G.A.: WordNet: A lexical database for English,
Comm. ACM, Vol.38, No.11, pp.39–41 (1995).

[16] Shepherd, D., Pollock, L. and Vijay-Shanker, K.:
Towards supporting on-demand virtual remodulariza-
tion using program graphs, Proc. 5th International
Conference on Aspect-Oriented Software Development,
pp.3–14 (2006).

[17] Hill, E., Pollock, L. and Vijay-Shanker, K.: Automat-
ically capturing source code context of NL-queries for
software maintenance and reuse, Proc. 31st Interna-
tional Conference on Software Engineering, pp.232–242
(2009).

[18] Høst, E.W. and Østvold, B.M.: The Programmer’s Lexi-
con, Volume I: The Verbs, Proc. 7th IEEE International
Working Conference on Source Code Analysis and Ma-
nipulation, pp.193–202 (2007).

[19] Zhou, H., Chen, F. and Yang, H.: Developing Appli-
cation Specific Ontology for Program Comprehension by
Combining Domain Ontology with Code Ontology, Proc.
2008 The Eighth International Conference on Quality
Software, pp.225–234 (2008).

鹿島 悠

平成 22年大阪大学基礎工学部情報科

学科卒業．平成 24年同大学大学院修

士課程修了．同年同大学院博士課程

入学．

早瀬 康裕 （正会員）

平成 14年大阪大学基礎工学部情報科

学科卒業．平成 19年同大学大学院博

士後期課程修了．同年同大学特任助

教．平成 22年東洋大学総合情報学部

助教．平成 23年筑波大学システム情

報系助教．博士（情報科学）．オープ

ンソースソフトウェア開発，ソフトウェア保守の研究に従

事．IEEE会員．

c© 2013 Information Processing Society of Japan 868



情報処理学会論文誌 Vol.54 No.2 857–869 (Feb. 2013)

眞鍋 雄貴 （正会員）

平成 18年大阪大学基礎工学部情報科

学科退学．平成 23年同大学大学院情

報科学研究科博士後期課程修了．同年

同研究科特任助教．博士（情報科学）．

ソフトウェア再利用，ソフトウェアラ

イセンスの研究に従事．ACM会員．

井上 克郎 （フェロー）

昭和 59年大阪大学大学院基礎工学研

究科博士後期課程修了（工学博士）．

同年大阪大学基礎工学部情報工学科

助手．昭和 59～61年ハワイ大学マノ

ア校コンピュータサイエンス学科助教

授．平成 3年大阪大学基礎工学部助教

授．平成 7年同学部教授．平成 14年大阪大学大学院情報

科学研究科教授．平成 23年 8月より大阪大学大学院情報科

学研究科研究科長．ソフトウェア工学，特にコードクロー

ンやコード検索等のプログラム分析や再利用技術の研究に

従事．

c© 2013 Information Processing Society of Japan 869


