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時間システムを対象とした

到達可能性解析の高速化手法の提案

田 中 俊 彰†1 長 岡 武 志†1

岡 野 浩 三†1 楠 本 真 二†1

時間オートマトンの CEGARを用いた到達可能性解析について，高速化手法の提
案とその評価実験を行う．本稿では，著者らが既に提案している時間オートマトンの

CEGARを用いた到達度解析手法に対して，反例抽出部分の処理を並列化することで
処理の高速化を目指す．また，手法に対して複数の時間システムを用いて実験を行っ

た．実験で得られた結果を基にして手法の優位性や問題点についての評価を行い，さ

らにいくつかの改良点について考察を行う．

Fast Method of Reachability Analysis for Timed Systems

TOSHIAKI TANAKA, †1 TAKESHI NAGAOKA, †1

KOZO OKANO†1 and SHINJI KUSUMOTO†1

This report proposes an efficient method of reachability analysis for timed systems and
experimental results. Our research group has already proposed CEGAR loop for timed
automaton and parallel processing of the CEGAR loop for the timed system.We have pro-
totyped a tool and performed experiments. The report mainly focuses on the experimental
results and some improvements.

1. ま え が き

本稿では，時間オートマトンに対してクロック変数を除去する時間抽象化を行う抽象洗練手

法15)に対する，高速化を目的とした手法の改良を提案する．15)はClarkeらのCounter-example

†1 大阪大学大学院情報科学研究科
GraduateSchool of Infomation Science and Technology, Osaka University

Guided Abstraction Refinement1) の枠組みを利用しており，時間システムを対象としたモデ

ル検査に対して状態爆発を回避する効果的な手法ではあるが，大規模なモデルに対しては処

理速度が通常のモデル検査に対して劣る傾向にある．これは，状態数を削減する処理に起因

する．

そこで，本研究では15)の手法を基に，初期段階での反例を複数抽出し，抽出された反例

に基づく洗練結果を統合することで手法の高速化を目指す．また，並列計算機を用いて手

法の高速化に取り組んだ文献18)の手法に対して，複数の時間システムを用いて実験を行い，

実験結果から提案されている手法の有用性を示すとともに，問題点の考察を行い，文献18)

の手法の改良を行う．

以下 2では，まずモデルとして利用される時間オートマトンについて述べる．また，本稿

で利用する CEGARループついて簡潔に述べる．3では，本研究で提案する CEGARループ

の反例抽出並列化手法の概要とアルゴリズムについて述べ，4で手法に対する評価実験を行

う．5で手法問題点とその改良に対する考察を行い，6でまとめる．

2. 準 備

本節では,時間オートマトンの定義とその意味，そして一般的な CEGARのアルゴリズム

について述べる．

2.1 時間オートマトン

定義 2.1 (C 上の差分不等式). クロックの有限集合 C 上の差分不等式 E の構文と意味を

以下のように与える. E ::= x − y ∼ a | x ∼ a, ここで x, y ∈ C, a は実数定数リテラル,

∼∈ {≤,≥, <,>}.差分不等式の意味は通常の不等式と同じである.

定義 2.2 (C のクロック制約式). クロックの有限集合 C 上のクロック制約式 c(C)を以下の

ように与える．クロックの有限集合 C 上の差分方程式全てからなる集合を c(C)とする．あ

る要素 in1 と in2 が c(C)の要素である時，in1 ∧ in2 も同様に c(C)の要素である．

定義 2.3 (時間オートマトン). 時間オートマトン A は (A,L, l0, C, I, T )という以下の 6個

の要素から成る

A: アクションの有限集合

L: ロケーションの有限集合

l0 ∈ L: 初期ロケーション

C: クロックの有限集合

I ⊂ (L → c(C)): ロケーションからクロック制約式への写像，ロケーションインバリア
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ントと呼ばれる

T ⊂ L×A× c(C)×R ×L,ここで c(C)はクロック制約式であり,ガードと呼ぶ．R = 2C :

リセットクロック集合.

ある遷移 t = (l1, a, g, r, l2) ∈ T は l1
a,g,r−→ l2 と表記する. ν : C → R≥0 となる ν をクロッ

クの評価関数と呼ぶ. d ∈ R≥0 に対して (ν + d)(x) = ν(x) + dと定義する. r ∈ 2C に対し

て，r(ν) = ν[x 7→ 0], x ∈ r と定義する．この時， ν[x 7→ 0]は各クロック xに対する値を

0とするクロック評価関数を表すとする．全ての ν からなる集合を N とする．

定義 2.4 (時間オートマトンの意味). 時間オートマトン A = (A,L, l0, C, I, T )に対して A

の状態集合を S = L × N とする．A の初期状態は (l0, 0
C) ∈ S で与えられる．状態遷移

l1
a,g,r−→ l2 (∈ T ),に対して，次の二つの遷移が定義される. 前者をイベント遷移，後者を時

間遷移と呼ぶ．
l1

a,g,r−→ l2, g(ν), I(l2)(r(ν))

(l1, ν)
a⇒ (l2, r(ν))

,
∀d′ ≤ d I(l1)(ν + d′)

(l1, ν)
d⇒ (l1, ν + d)

定義 2.5 (時間オートマトンの意味モデル). 時間オートマトン A = (A,L, l0, C, I, T )につ

いて，初期状態から開始するモデルである A の意味に従って，無限の遷移を持ったシステ

ムであると定義される．T (A ) = (S, s0,⇒)は A の意味上のモデルであることを示す．

本論文では，あるロケーション l上の状態とは， lのインバリアントを満たす ν の任意の

意味上の状態 (l, ν)を意味する．

2.2 CEGARアルゴリズム

モデル抽象化は時に実際のモデルの過度な抽象化を行うことがある．これにより，実際のモ

デルでは存在しない，誤った反例を生成する可能性がある．文献1)はCEGAR(Counterexample-

Guided Abstraction Refinement)と呼ばれるアルゴリズムを提案している (図 1).

アルゴリズムにおいて，第一段階として実際のモデルを過度に抽象化する (これを初期抽

象化と呼ぶ)．次に，生成された抽象モデルに対してモデル検査を行う．この段階で，抽象

モデルが与えられた性質を満たすのであれば，実際のモデルでも性質を満たすと結論付け

ることができる．これは，抽象モデルが実際のモデルの over-approximationであるためであ

る．もしモデル検査器がモデルは性質を満たさないという結果を返してきた場合，検出さ

れた反例が本来実行可能でない反例（偽反例と呼ぶ）であるか否かを検証する段階に入る．

(これをシミュレーションと呼ぶ)シミュレーションで，もし反例が実際のモデルでも存在す

るものであるのならば，ループを終了する．そうでないのならば，間違った反例をなくすよ

図 1 一般的な CEGARアルゴリズム

Fig.1 General CEGAR Algorithm

うな抽象モデルの洗練を行う．これらの段階を繰り返し，正しい出力を得る．

3. 提 案 手 法

本章では，本稿で提案する確率時間オートマトンの抽象化洗練手法について示す．提案す

る抽象化洗練手法では，著者らが文献15)で提案した時間オートマトンの抽象洗練手法を利

用し，さらに高速化のために反例抽出を並列に行っている（図 2）．

( 1 ) 入力として与えられたモデルと満たすべき性質に対して，時間抽象による初期抽象化

を行う．

( 2 ) 　初期抽象化したモデルをそれぞれのワーカ計算機に配布する．このとき，配布され

るモデルは同一のものである．

( 3 ) 　抽象モデルを受け取ったワーカ計算機は，モデル検査を行う．この時，性質を満た

すのであれば Trueを，満たさないのであれば反例を出力する．

( 4 ) 　反例が出力された場合，反例を基にシミュレーションが行われる．シミュレーショ

ンによって，抽象化していないもとモデルでも成立する反例であるのならば Falseを，

元のモデルでは存在しない反例ならばシミュレーション結果を返す．

( 5 ) 各ワーカ計算機で求められたシミュレーション結果を，マスタ計算機で統合する．

( 6 ) 　マスタ計算機で統合されたシミュレーション結果を元に，抽象モデルを洗練する．

以下，提案手法の各操作について詳細に述べる．
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図 2 並列実行環境を利用した CEGARアルゴリズム

Fig.2 Our CEGAR Algorithm

3.1 初期抽象化

初期抽象化では，文献15) と同様に，クロック変数に関する制約を全て除去することで，

over approximationを満たすように抽象化を行う．

定義 3.1 (抽象化関数 h). 時間オートマトン A とその意味上のモデル T (A ) = (S, s0,⇒)

について，抽象化を行う関数 h : S → Ŝ を以下のように定義する．

h((l, ν)) = l.

その逆関数 h−1 : Ŝ → 2S は hを用いて以下のように定義する．ŝ = lである抽象モデルに

対して h−1(ŝ) = (l,DI(l))

定義 3.2 (抽象モデル). 時間オートマトン A = (A,L, l0, C, I, T ) とその意味上のモデル

T (A ) = (S, s0,⇒)から求められる抽象モデル M̂ = (Ŝ, ŝ0, ⇒̂)は以下のように定義される．

• Ŝ = L,

• ŝ0 = h(s0)

• ⇒̂ = {(h(s1), a, h(s2)) | s1
a⇒ s2)}.

3.2 抽象モデルの配布

初期抽象化した抽象モデルを，各ワーカ計算機に配布する．この時，配布される抽象モデ

ルは同一のものである．

3.3 モデル検査

モデル検査は，文献15)と同様に行う．

定義 3.3 (抽象モデル上の反例). 抽象モデル M̂ = (Ŝ, ŝ0, ⇒̂)上の反例は Ŝ の連続する状態

と遷移の系列である．ある長さ nの抽象モデルの反例 ρ̂は以下のように表わされる．

ρ̂ = ⟨ŝ0
a1→ ŝ1

a2→ ŝ2
a3→ · · ·

an−1→ ŝn−1
an→ ŝn⟩

このとき，到達度解析を行うアルゴリズムの探索戦略を各計算機において変化させること

で，抽象モデル上で性質を満たさないと判定された場合に出力される反例が異なることが期

待できる．

3.4 シミュレーション

シミュレーションでは，文献15)で提案されているシミュレーションアルゴリズムに従っ

て，各ワーカ計算機上で DBM10)の演算によって到達可能か判定する．

3.5 シミュレーション結果の統合

各ワーカ計算機上で計算されたシミュレーション結果を，マスター計算機送り，統合する．

このとき，モデル検査やシミュレーションでの終了判定も行う．

3.6 抽象モデルの洗練

抽象モデルの洗練は，文献15)で述べられている手法を基にしている．

3.6.1 洗練時に行われる処理

抽象モデルを洗練するとき，以下の 3つの処理が行われている．

• 状態を複製する
• 状態間の遷移を追加する
• 状態間の遷移を除去する
このとき，状態の複製，遷移の複製，除去に関しての条件は文献15)において定義されてい

る (アルゴリズム 1:図 3)．

ここで示されているアルゴリズム 1を，提案手法に対応させるために以下のように変更

したアルゴリズム 1’(図 4)を与える．

ある反例の集合 P̂ に対して，順にアルゴリズム 1を実行する．その結果は時間オートマ

トン A に反映される．もし仮に，反例の badstateを解消できない場合は，アルゴリズム 1
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Refinement

InputsAi, π, succ list

{π = ⟨l0
a1,g1,r1−→ l1

a2,g2,r2−→ · · · an,gn,rn−→ ln(ln = e)⟩ }
{succ list = ⟨(l0, D0), (l1, D1), · · · , (lk, Dk)⟩,
where(lj , Dj) represents thej-th reachable state set along withπ, andlk is the last location

reachable from the initial state.}
Ai+1 := Ai

for j := succ list.length downto1 do

ej := (lj−1, aj−1, gj−1, rj−1, lj)

Ai+1 := Duplication(Ai+1, succ listj, ej)

{Duplication of the Location and Transitions}
if IsRemovable(Ai+1, succ listj , ej) then

Ai+1 := RemoveTransition(Ai+1, ej)

{Removal of Transitions}
break

else ifj = 1 then

Ai+1 := DuplicateInitialLocation(Ai+1, (l0, D0))

{Duplicate the initial location and transitions

from the initial location}
end if

end for

return Ai+1

図 3 アルゴリズム 1：洗練アルゴリズム

Fig. 3 algorithm 1: Refinement Algorithm

を適用せず，P̂ の次の反例に対して処理を繰り返す.

3.6.2 反例の重複

抽象モデルを洗練するときに問題となるのは，複数の反例を抽象モデルの洗練に適用した

際，反例の選択順序により誤った洗練を行わないことを保証することである.

まず，反例の重複について,定義 3.4で与える．

RefinementOfCEs

InputsAi, P
{P = ⟨ρ0, ρ1, · · · , ρk)⟩}
Ai+1 := Ai

for j := P.length downto1 do

Ai+1 := Refinement(Ai+1, ρj)

end for

return Ai+1

図 4 アルゴリズム 1’： 洗練アルゴリズム (複数パス)

Fig. 4 algorithm 1’ : Refinment Algorithm of CEs

定義 3.4 (反例の重複). ある反例 ρ̂1 と ρ̂2 が重複しているということは，反例 ρ̂1 と ρ̂2 が共

通する 1つ以上の初期状態以外の状態 ŝを保持していることである．反例の集合が重複し

ていないとは，その集合のどの 2つをとっても重複していないことを意味する．

定義 3.5(badstate). ある反例 ρ̂に含まれる遷移において，時間制約を満たさない最初の抽象

モデル上の状態のことを badstateとする．

定義 3.6. ある抽象モデル M̂ と，与えられた反例の集合 P̂ に対して，大域的に正しい洗練

M̂ ′ とは，P̂ が P̂1(̸= ∅), P̂2 に分割でき，P̂1 に含まれる反例に対しては badstateが解消さ

れ，P̂2 の中の反例は M̂ ′ で実行不能な洗練のことである．

以下の定理は文献18)で与えられており，並列化された提案手法の正しさの一部を保証す

るものである．

定理 3.1. 到達可能性解析においては反例集合の反例をどのような順番でアルゴリズム 1’ を

適用しても大域的に正しい洗練である．

定理 3.2. 重複のない反例の集合に対して，到達可能性解析においては反例集合の反例をど

のような順番でアルゴリズム 3を適応しても大域的に正しい洗練になる．

定理 3.3. 重複のある反例集合に対して，到達可能性解析においては反例集合の反例をどの

ような順番でアルゴリズム 1’ を適応しても大域的に正しい洗練になる．

なお，反例の適用順序により一般に得られる抽象モデルは異なリうる可能性がある．ま

た，逆に適用順にかかわらず同一の結果を生み出すこともある．
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4. 評 価 実 験

本章では提案手法について評価実験を行う．

4.1 実 験 環 境

提案手法を実行する並列計算環境を以下に示す．

マスター計算機

CPU : Intel(R) CoreTM2 Duo

CPU L7700 1.80GHz

メモリ : 2.00GB OS : Ubuntu 10.0.4

ワーカ計算機（14台）

CPU : Dual Core AMD OpteronTM

Processor 2210 HE 1.80GHz

メモリ : 6.00GB OS : CentOS 5.4

また，マスター・ワーカ間の通信には Javaの RMI フレームワークを利用した．

4.2 モデル検査ツール

モデル検査は，モデル検査ツール UPPAAL9) のモデル検査モジュールを利用する．反例

の探索戦略は深さ優先の最適化探索とし，同階層の状態に対する選択戦略はランダムに設定

する．このことで今回のアルゴリズムの主目的である異なる複数の反例を出力させる．

モデル検査による反例抽出処理がランダムで行われるため，出力を均一化するために 1つ

の事象につき 5回ずつ実験を行い，その平均を実験結果として用いる．

4.3 対象とした例題

Fischerの相互排除プロトコル9)と Gear Controller14)をそれぞれ利用する．

4.3.1 Fischerの相互排除プロトコル

Fischerの相互排除プロトコルは，n個のプロセス間で 1つしかない資源の使用を管理す

るプロトコルである．1つのプロセスはたかだか 4つのロケーションしか持たないため，比

較的複雑度の低いモデルでであると言える．また，各プロセスがシンメトリな構造を持つた

め，出力される反例が複数あることが期待できる．そのため，文献18)の手法に適している

と判断した．

4.3.2 Gear Controller

Gear Controllerモデルは自動車などの乗り物に用いられるギアの操作をモデル化したもの

である．このモデルは 5つの異なる構造をしたプロセスから構成される．そのため，シス
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Fig. 5 Number of Iterations : Fischer

100

150

200

250

300

350

n
u

m
b

e
r 

o
f 

lo
o

p

Gear Controller : Shortest Trace

Gear Controller : Fastest Trace

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10 11 12 13 14

n
u

m
b

e
r 

o
f 

lo
o

p

computer node

Gear Controller : Shortest Trace

Gear Controller : Fastest Trace

図 6 ループ回数 : Gear Controller

Fig. 6 Number of Iterations : Gear Controller

テム全体の複雑度が高く，ロケーション数も多い．Fischerの相互排除プロトコルとは対照

的であり，シンメトリな構造を持たないため出力される反例が複数ない可能性があるため，

手法の性能を評価する上で適していると判断した．

4.4 反例抽出の優先度について

今回の実験では，出力される反例の性質の違いに対しても効果が表れるかどうかについて

実験を行った．反例の探索戦略としては，探索された反例の中で最も早く発見された反例を

返す Fastest Traceと，発見された反例の中で長さが最短の反例を返す Shortest Traceの 2つ

について評価実験を行った．

4.5 評価項目について

評価項目について述べる．提案手法では，反例を 1ループ内で複数洗練することでループ

回数を削減し，高速化を実現させようとしている．そのため，1ループ内で反例を複数洗練

することがループ回数削減に繋がっているかを確認する必要がある．また，最終的な目標で

ある実行時間の短縮について，計算機台数に対する実行時間も評価する必要がある．この 2

つの項目について評価を行う．

4.6 実 験 結 果

実験結果について以下に示す．

4.6.1 ループ回数

まず，ワーカ計算機を増やした際のループ回数に対する台数効果について調べる．ここで，
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図 7 実行時間 : Fischer

Fig. 7 Excute Time : Fischer
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図 8 実行時間 : Gear Controller

Fig. 8 Excute Time : Gear Controller
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図 9 状態生成数 : Fischer

Fig. 9 Number of States : Fischer
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図 10 状態生成数 : Gear Controller

Fig. 10 Number of States : Gear Controller

ループ回数とは提案手法の処理が行われた回数を示している．図 5，6は，ループ回数に対

する台数効果を表している．これは，Fischer，Gear Controller双方においてワーカ計算機の

台数に応じてループ数が減少していることを示している．ただ，Gear Controllerの Shortest

Traceの場合，ループ回数の減少が他よりも鈍化していることがわかる．

4.6.2 実 行 時 間

次に，実行時間の台数効果について調べる．図 7，8では，実行時間に対する台数効果を

表している．Fischerの相互排除プロトコルはどちらも途中から実行時間が横ばいになる傾
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図 11 同一反例の割合 : Fischer

Fig. 11 Ratio of the Same Counterexample : Fischer
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図 12 同一反例の割合 : Gear Controller

Fig. 12 Ratio of the Same Counterexample : Gear

Contorller

向が見られた．一方，Gear Controllerは Fastest Traceでは実行時間が途中から横ばいになる

が，Shortest Traceでは 4台から増加傾向になり，台数を増やすごと処理時間が増加傾向に

あることがわかる．

4.7 実験結果の考察

ループ回数と実行時間の実験結果に対する考察を行う．まず，ループ回数に対する台数効

果は実験結果を見る限り出ていると考えられる．このことは，提案手法が効果的であるとい

うことを表している．しかし，実行時間はループ回数が減少しているにも関わらず途中で横

ばい，あるいは増加傾向にある．この現象について，2つの可能性が考えられる．

1つは，1ループあたりの実行時間が増加している可能性である．複数の反例に対して同

時に洗練を行う際，本来はあまり重要度の高くない，洗練の必要性のない個所まで洗練を

行っている可能性がある．洗練手法は状態を複製して行われるため，状態数は増加する．状

態数が増加するとモデル検査にかかる時間が増大し，結果 1ループあたりの実行時間が増

加してしまう．

もう 1つは，出力される反例に同一のものが含まれている可能性である．各ワーカーマシ

ンで出力される反例が同一のものであった場合，本来の台数効果を求めることができなくな

り，結果として実行時間が横ばいもしくは増加してしまう可能性が考えられる．

以上の考察を裏付けるために，さらに 2つの項目についてデータの詳細分析を行う．ま

ず，状態生成数について調べる．これは，前者の可能性を裏付けるための指標である．台数

に応じて状態が増加しているのであれば，本来では優先度の低い反例が抽出され，洗練が行
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われて状態数が増加していることになる．そして，同一反例の割合について調べる．これ

は，後者の可能性について調べるためで同一反例が多ければ多いほど台数効果が出ていない

ということになる．

4.7.1 状態生成数

生成状態数の増加量について調べる．図 9，10は，生成状態数に対する台数効果を表し

ている．状態は洗練時に複製されるため，生成状態数が増加することは抽象モデルに対し

て不必要な洗練が行われ，結果実行時間の増加に繋がるということを示している．図 9，10

から，Fischerの相互排除プロトコルや Gear Controllerの Fastest Traceでは緩やかな増加傾

向が見られたが，Gear Controllerの Shortest Traceでは強い相関の関係が見られた．

4.7.2 同一反例の割合

次に，同一反例の割合について調べる．図 11，12は，出力された全反例に対する，ユニー

クな反例の割合である．つまり，値が 1に近ければ近いほど，出力された反例の同一反例の

割合は低いと言える．しかしながら，Fischer，Gear Controller共に，Fastest Traceでは殆ど

同一反例は出力されていないことが見て取れるが，Shortest Traceにおいては同一反例が相

当数出力されていることがわかる．特に Gear Controllerでは 14台並列時の同一反例の割合

が 7割近くに上っていることがわかる．

5. 手法の問題点の考察

4で得られた実験結果より，提案手法の問題点と手法の改良について考察する．

5.1 1ループの実行時間の増加への対処

1ループ内での実行時間の増大の原因は，出力される反例を選別せずに洗練を行ったため，

与えられた性質を検査する上で本来必要のない状態の生成が行われたためだと考えられる．

この問題を解決するためには，反例の優先度を設定する必要がある．優先度の規則として

は，まず反例の長さから優先度を設定する規則が考えられる．図 7の結果を見てもわかるよ

うに，短い反例を出力する Shortest Trace戦略の方が台数が少ない場合においては実行時間

が少ない．また，図 9では状態生成数も Shortest Trace戦略の方が低減されていることがわ

かる．また，反例の洗練箇所によって優先度を設定する規則も考えられる．例えば，洗練箇

所が初期状態から近いものに対する優先度をあげる規則や，逆に遠いものの優先度を上げる

規則などが考えられる．このような規則に対して，実験による評価を行う必要があると考え

られる．

5.2 同一反例への対処

同一反例が出力される可能性については，k−最短路探索を用いることで解決できると考
えている．k−最短路探索のアルゴリズムを用いた到達度解析を行うモデル検査ツールを自
作することで，問題の解決を行えると考えている．k−最短路探索のアルゴリズムは Eppstein

の手法16)や Jiménezらの手法17)等があるが，実装の方針を考える上で，どのアルゴリズム

が有用であるかを以下で検討する．

5.3 閉路の扱いについての考察

次に，閉路の扱いについて述べる．一般的に時間オートマトンは閉路を持つことができ

る．閉路の回数が異なるだけの反例を複数取得しても洗練箇所が同一である可能性がある．

洗練箇所が同一な反例を複数抽出することは探索の冗長化になる恐れがある．しかし，閉路

の回数が異なるだけの反例だとしても，洗練箇所が異なる場合もあるため，閉路を含む反例

の扱いについては工夫が必要となる．解決策として，閉路の部分を抽象的に表現することで

反例を包括的に扱う手法を考えている．閉路の抽象化によりシミュレーション段階での反例

の見落としなどを防ぐことができ，また，閉路による余分な反例探索を削減することが可能

となるためである．

5.4 k−最短路探索の実装についての考察
実装についての方針について考察を行う．今回対象とする時間オートマトンはクロック変

数の他に整数変数を有する．モデル検査は CEGARループの抽象化によりクロック変数が

除去されたモデルに対して行われるため，整数変数の扱いについて考察を行う．整数変数の

性質を満たす反例を探索する手法としては，以下のものが考えられる．

• 整数変数と状態を引数とした状態を生成することで，整数変数を静的に扱う手法
• 一度全ての反例を探索してから，反例に対して整数変数の条件を満たすかをシミュレー
ションする手法

• 整数変数を動的に定義し，反例探索時に評価をしていく手法
整数変数を最も簡単に扱うには，整数変数を静的に扱う手法であるが，これは状態を指数的

に増加させる要因となり，結果としてモデル検査に要する時間が増大するため有用な手段と

は言えない．また，全ての経路を探索してから整数変数の評価を行う場合，条件に合わない

反例を相当数抽出させる結果になるため，効率的であるとは言い難い．実装の方針として

は，整数変数を動的に定義して，反例探索時に評価していく手法を採用する．整数変数の評

価による前向き枝刈りの効果も期待できる．そのため，k−最短路探索アルゴリズムは動的
計画法をベースとし，後ろ向きに探索を行う Jiménezらの手法より，前向き且つ幅優先的に
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探索を行う Eppsteinの手法の方が有用であると考えている．

6. お わ り に

本稿では，時間オートマトンに対する時間抽象化を用いた洗練手法を拡張し，抽象モデル

に対して複数の異なった反例抽出，洗練を行うことで手法の高速化を提案，実験を行った．

更に，実験結果を基にして高速化の阻害要因になっている問題を考察し，手法の改良に言及

した．

今後の課題として，5で述べたような手法について実装を速やかに行い，手法の改良とそ

の評価を行いたい．時間オートマトンは各状態間の遷移に重みを持たないため，全ての重み

を統一させることで短い反例を優先的に選択することが可能になる．また，同じ閉路を複数

含む反例は洗練箇所が重複している可能性が高いため，優先度を低くするなどの機能を追加

することで，手法のさらなる高速化を実現していきたい．
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