
Title
Daikonを利用した表明動的生成改善手法の実プロジェ
クト教材への適用実験とテストデータ生成改善手法の
検討

Author(s) 小林, 和貴; 岡野, 浩三; 楠本, 真二

Citation 平成23年度情報処理学会関西支部支部大会講演論文
集. 2011, 2011

Version Type VoR

URL https://hdl.handle.net/11094/50255

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



平成 23年度　情報処理学会関西支部　支部大会

B-04

Daikonを利用した表明動的生成改善手法の実プロジェクト教材への適用実験と
テストデータ生成改善手法の検討

Application of Automatic Assertion Generation using Daikon to a Real Example and a study of

test data generation

小林　和貴 † 岡野　浩三 † 楠本　真二 †
Kazuki Kobayashi Kozo Okano Shinji Kusumoto

１． はじめに

Design by Contractに基づくアサーション記述（以下，

表明という）は，ソースコードの仕様理解の補助やプロ

グラム検証に役立つ．表明の自動生成手法の一つである

表明の静的生成手法は，プログラムを静的に解析するこ

とで表明を生成する．Houdini [1]は静的解析器を繰り返

し適用することにより，表明を生成する．この方法では，

表明生成にかかる時間が長いことが課題である．一方，表

明の動的生成手法を実装したツールの一つにDaikon [2]

がある．対象プログラムに対し，テストケースを与え実

行しメソッドの返り値を監視することで，表明を生成す

る．同様のツールとして DySy [3]がある．C＃言語の

対象プログラムを実行し，内部変数の更新を監視するこ

とで，表明を生成する．動的生成手法はテストケースを

用い，対象プログラムを直接実行するため，静的手法と

比較して短時間で表明が生成できる [4]．

しかし，動的生成手法には，実行データを取得する際

に用いるテストケースに生成される表明が依存するとい

う，テストケース依存問題 [5]がある．そのため，イン

バリアントカバレッジ [6]が提案されている．このカバ

レッジの値が高いとき，動的生成手法は信頼性の高い表

明を生成できる．著者が所属する研究グループでは，モ

デル検査技術を利用しインバリアントカバレッジの値が

高いテストケースを自動生成する手法の提案を行ってき

た [7–9]．

本稿では，提案手法を実プロジェクト教材として利用

されている大学教務システムに対して適用実験を行った

結果について報告する．提案手法を実際のシステムに対

する適用可能性や生成される表明の精度・有用性につい

て評価した．また，適用対象のメソッドについて，テス

トデータとして要求されるクラスについて調査した．

その結果，全体の 4パーセントのメソッドに対して手

法を適用することができ，全てにおいて有用な表明を生

成することができた．これらの表明を，対象システムの

† 大阪大学大学院情報科学研究科
Graduate School of Information Science and Technology, Os-

aka University

単体テスト時に利用されるテストケースを用いて生成し

た表明と比較した．その結果，人手によるテストケース

を利用した場合に生成される，テストデータを表明記述

に含むようなテストデータに依存した表明は，提案手法

において生成されないことがわかった．さらに，対象シ

ステムに対して，別プロジェクトにおいて人手によって

記述した表明と比較したところ，不要な表明も出力され

ているものの，ほぼ同様の表明を出力できていることが

わかった．そして，今回表明生成改善手法の適用できな

かったメソッドについて，テストデータを生成する手法

について検討を行った．

２． 準備

2.1 表明

ソースコード中に表明と呼ばれる記述を行うことによ

り，Designed by Contractにおける契約を記述できる．

この表明により，ESC/Java2 [10]などを用いた静的解析

によりプログラムの妥当性を検証でき，開発者の意図し

ない不具合の混入を防ぐことができる．

2.2 表明の自動生成手法

近年のソースコードサイズの増加に伴い，手動による

表明生成は困難になりつつある．そこで，表明の自動生

成手法や自動検査手法が注目されている．表明の生成と

検査の自動化手法に，静的手法と動的手法の 2種類があ

る [11]．

静的手法 [1,10]はソースコードの状態を表すモデルを

生成し，実行し得る全ての状態とそのときの実行条件を

求めることで，表明を生成する．そのため，精度の高い

表明の自動生成 [1]や自動検査 [10]が可能である．しか

し，一般的にモデルの状態数に対するスケーラビリティ

が課題である．

動的手法は対象ソースコードとテストケースを入力と

し，テストケースを用いて対象ソースコードを実行し，

得られたデータから表明を生成する．

テストケースの品質が低い場合，生成される表明の精



度が低下する問題が指摘されている [5]が，一般的に比

較的少ない時間とメモリで表明の生成が可能である．そ

のため，動的手法は表明の自動生成に用いられることが

多く，その代表的ツールとしてDaikon [2]がある．この

ツールを用いることで，手作業で表明を記述するより表

明生成に必要な時間的，人的コストを軽減できる．また，

実際にプログラムを実行した結果を用いるため，プログ

ラマがソースコード記述時には気づかなかった表明を生

成することもできる．これはプログラムの保守，デバッ

グにも有効である．

2.3 テストケース依存問題

動的生成手法により表明を自動生成する際，生成され

る表明の精度は入力であるテストケースの品質に依存す

る．これをテストケース依存問題という．動的生成手法

で用いるテストケースは対象メソッドの引数生成部とそ

の引数が満たすべき条件，対象メソッド呼び出しの 3つ

からなる手続きであるが，この引数の条件が十分でない

場合，得られる実行データが少なくなる．このとき，限

定的あるいは誤った表明が生成されてしまう場合がある．

2.4 インバリアントカバレッジ

テストケース依存問題を解決するため，インバリア

ントカバレッジが提案されている．インバリアントカバ

レッジは，表明の動的生成ツールに用いるテストケース

の品質測定を目的として提案されたカバレッジである．

このカバレッジに基づいてテストケースを生成すること

で，テストケース依存問題を改善できる．われわれの研

究グループではインバリアントカバレッジに基づくテス

トケースを利用することにより，動的生成による表明の

精度が向上することを文献 [8]で確認している．

３． テストケース自動生成問題

表明動的生成において，入力となるテストケースをど

のように生成するかという問題がある．Daikonでは人

手により作成した単体テストを利用できるが，人手によ

るテストケースの作成はコストがかかることや，テスト

漏れが生じるなどの課題がある．われわれの研究グルー

プでは，インバリアントカバレッジの高いテストケース

を自動生成する手法について研究してきた．特にモデル

検査器や定理証明器を利用し対象プログラムを解析する

ことで，インバリアントカバレッジの高いテストケース

の条件を導出できる手法について提案してきた．

3.1 定理証明器を利用した手法

われわれの研究グループでは，既存手法 [7]を改善す

る手法として定理証明器を利用した手法について提案し

た [12]．改善手法は，ESC/Java2の反例出力を利用した

テストケース制約式の導出手法である．ESC/Java2に

『インバリアントカバレッジに影響を与えるパスを通ら

ない』という仕様を与えることにより，インバリアント

カバレッジに影響を与えるパスの情報を反例として取得

することができる．

これは，ESC/Java2が，Java1.4以前の Javaで記述

されたプログラムと仕様記述言語 JML [13]で記述され

た仕様をそれぞれ述語論理に変換し，内部の定理証明器

を用いて充足不能性を判定することで，プログラム仕様

と実装の一致性の検証を行うツールであることを利用し

ている．一般的な Javaライブラリに対する仕様を，あ

らかじめ準備しているため，より一般的な対象に対して

検証を行える．

改善手法は，既存手法に比べて短時間でテストケース

制約式を導出することができ，対象プログラムについて

も，既存のクラスでは対応できなかった参照型変数を含

むメソッドに対しても適用できる．

3.1.1 インバリアントカバレッジに基づく実行パスの

導出

表明動的生成に適したテストケースを生成するため，

インバリアントカバレッジを満たす実行パスを導出する

必要がある．対象メソッドについて，返り値の値が変化

しうる実行パスをループを除きすべて求める．そのため

に，プログラム依存グラフを用いて変数の定義-使用関

係を探索する．本実験の実装ではプログラム依存グラフ

の構築にMASU [14]を用いた．

3.1.2 ESC/Java2の反例による対象プログラムの解析

ESC/Java2は，入力したプログラムと仕様の間に不

一致の可能性がある場合，反例を出力する．この反例出

力には，変数間の関係や，型に関する情報が含まれてい

る．改善手法では，この情報を構文解析器によって抽出

し，テストケース制約式を導出する．

プログラム依存グラフから実行パスを取得した後，解

析対象のプログラムに対し，求めた実行パスを通らない

という仕様を与え，ESC/Java2で検証を行う．検証によ

り，実行パスを通る条件を反例として取得できる．



3.1.3 テストケース生成と表明の生成

得られたテストケース制約式を用いてテストケースを

生成する．テストケースは，インバリアントカバレッジ

に影響を与える各実行パスごとに生成する．実行パスを

通るために必要な入力データであるテストデータを，予

め得られた型の情報から，ランダムなデータとして動的

に生成し，テストケース制約式によって選択する．各実

行パスに対し複数回テストデータを入力し実行すること

により，実行パスにおける変数の情報を Daikonに取得

させることができる．Daikonはこのテストケースを実

行することで，対象プログラムの表明を生成する．

４． 実プロジェクト教材への適用実験

改善手法が実プロジェクトのプログラムにおいて適用

可能な範囲や，人手と比べて表明の正確さに変化が見ら

れるかなどを確認するため，実プロジェクト教材を対象

に適用実験を行った．

4.1 適用対象

本稿における実プロジェクト教材は，ITSpiralで作成

された実プロジェクトの教材データを用いた．大学教務

システム開発プロジェクトによって作成されたシステム

で，規模や JUnitテストスイートの数を表 1に示す．

対象システムは実用的なサイズの Javaプログラムで

あり，一般的な業務システムであるため，適用対象とし

て十分なサイズである．また，文献 [15]において，人手

で理想的な JMLが記述されていることから，本実験で

生成された JMLと比較することにより，表明の精度を

評価できる．

なお，対象システムは Java1.5で記述されている．改

善手法の現在の実装では，対象プログラムのテストケー

ス制約解析に ESC/Java2を利用しているため，表明を

出力させたいメソッドやクラスは Java1.4以前の文法で

記述されている必要がある．本稿の実験においては，総

称型による表現やイテレータによる配列や集合への操作

を，実際の動作内容に変更がない範囲内で対象を Java1.4

に対応する文法にて一部書きなおしている．今回の対象

特有ではあるが，大幅な変更が要求される列挙型に関し

ては，今回は改善手法の適用対象から除外した．

4.2 実験方法

人手により記述されたテストケースを用いて生成され

た表明と，改善手法で生成される表明および人手により

記述した理想的な表明との間で表明の数や精度にどのよ

うな差があるかや，改善手法が実システムのプログラム

に対してどの程度適用可能かを調べるために，以下の実

験を行った．

4.2.1 適用可能なメソッド数の調査

対象システムに存在するメソッドのうち，改善手法が

現在の実装において適用可能なメソッド数を調査した．

今回の実験対象は Java1.5で記述されており，そのまま

では一部メソッドに対し改良手法を適用できないが，書

き換え可能な範囲において Java1.4 に書き換えを行い，

適用可能かどうかを調査した．この場合，適用できるか

どうか判定する基準としては以下の基準が挙げられる．

1. 対象メソッドの引数が基本型およびその配列また

は java.lang.String型であること

2. 対象メソッドを持つクラスがnewキーワードによっ

てインスタンス化可能であること

3. 対象メソッドを持つクラスのコンストラクタが pri-

vateな場合は，getInstanceなど一般的なシングル

トンパターンのメソッドを通じてインスタンスへ

の参照を得られること

これらの条件を満たすメソッドの数を対象システム内で

計測した．

4.2.2 人手によるテストケースを利用した表明の取得

対象システムは開発時に JUnitによるテストを作成し

ている．このテストスイートの JUnit実行を Daikonで

監視させ，Daikonから対象システム内のメソッドの事

前条件・事後条件を表明として出力させた．

4.2.3 改善手法によるテストケースを利用した表明の

取得

本実験では，人手によるテストケースと改善手法によ

るテストケースで生成される表明の数や精度の変化を調

べるため，人手によるテストケースで表明が出力できた

376メソッドのうち，データベースを直接操作したり単

体テストで用いるためのデータベース復帰用のメソッド

など 71メソッドを除き，改善手法におけるテストデータ

生成部が対応しているデータ型を引数に取る 36メソッ

ドを対象に，改善手法により表明生成を試行した．

4.2.4 人手により記述した表明と動的生成した表明の

比較

人手によるテストケースおよび改善手法によるテスト

ケースを利用した表明と，人手で記述した理想的な表明

を比較し調査した．調査では，対象メソッドの動作を表



表 1: 対象システムと人手で記述されたテストケースの規模
パッケージ数 15 （パッケージ）

クラス数 181 （クラス）

メソッド数 955 （メソッド）

コード行数 14521 （行）

テストメソッド数 467 （メソッド）

すのに必要な表明が生成されているかや，他の表明に包

含され不要な表明が生成されているかを調査した．

５． 適用実験の評価

適用実験の結果について示し，考察を行う．改善手法

の適用可能範囲について議論を行い，改善手法により生

成された表明について人手によるテストケースで生成さ

れた表明および人手で記述した理想的な表明と，表明の

生成数を計測した結果を示し，生成された表明について，

有用性について考察を行う．

5.1 改善手法の適用可能範囲

実験で表明を生成できたメソッド数について，人手で

記述したテストケース（単体テスト）と改善手法が対応

しているメソッドとに分けて，表 2に示す．本稿の実験

では，改善手法は 4.2.1において定義したメソッドに対

して適用が可能である．対象システムが Java1.5で記述

されていたことに起因する適用不能なクラスが存在した

ものの，多くは対象メソッドの引数のデータ型に対応し

ていなかったり，対象メソッドが引数を取らないメソッ

ド（getterなど）や，データベースの値に依存して返り

値を返すメソッドであるためである．これらのメソッド

は改善手法では表明を生成できないものとした．

メソッド引数にシステム固有のクラスのデータ型を用

いている場合は，対応するデータを表すオブジェクトを

生成するクラスを追加することで対応が可能である．モッ

クオブジェクトを生成するライブラリ利用し，データを

生成する [16]ことも可能であると考えられる．

引数を取らないメソッドに関しては，現在の実装にお

いてはテスト対象のオブジェクトに対しフィールド値を

設定していないため，実験を行っていない．対象メソッ

ドに対する表明生成では，改善手法と人手によるテスト

ケースとの間に生成される表明の精度に大きな差はない

か，または人手によるテストケースで生成される表明が

精度が良いことが考えられる．人手によるテストケース

において，『setterメソッドにて値を設定した後，getter

メソッドなどを呼び出す』といったシナリオを複数回行っ

ている場合は人手によるテストケースで精度の良い表明

が生成されることが考えられる．しかし，テストデータ

の数が少ない場合は表明中に setterメソッドで設定した

固有の値が現れるなど，表明の精度が低下するおそれも

ある．

データベースの値に依存して返り値を変えるメソッド

は，スタブを利用することで対応可能であると考えられ

る．データベースと入出力を行っているクラスをスタブ

で置き換え，データを制御することにより，表明を生成

できる可能性がある．

5.2 改善手法による表明の評価

実験において，改善手法により生成された表明の数と

人手によるテストケースで生成された表明の数を比較し，

テストケースの違いによって表明の生成数に差が現れる

のかを調べた．また，人手で記述した表明と改善手法に

より生成された表明との比較を行い，改善手法により生

成された表明の正確さについて評価を行った．

5.2.1 人手によるテストケースで生成した表明との比較

人手で記述した単体テストと改善手法によるテスト

ケースで表明を生成した．表明の生成数は事前条件と事

後条件を対象に表 3に示す．表中『単体テスト（一部）』

と表示した行は，改善手法を適用可能なメソッドに対し

て単体テストを適用した結果である．

人手で生成したテストケースを利用した場合，適用対

象メソッド数と表明の生成数の割合に大きな変化がない

ことがわかる．個々の適用対象のメソッドによって生成

される表明の数に差があったものの，改善手法が適用可

能なメソッドにおいて特に表明の生成されやすさに変化

は見られなかった．

一方，改善手法と人手によるテストケースを利用した

表明生成を比較すると，改善手法において表明の生成数

が明らかに減少していることがわかる．特に，事前条件

について，事後条件に比べて減少した割合が高いことが

わかる．

これは，改善手法では 1つのメソッドに対するテスト



表 2: 表明を動的生成できたメソッドの数と割合
単体テストによる生成 改善手法による生成 全体

メソッド数 376 36 955

割合 0.40 0.038 1

表 3: 動的生成手法による表明の生成数
生成方法 メソッド数 事前条件 事後条件 合計

単体テスト（全体） 376 6345 20052 26397

単体テスト（一部） 36 735 1753 2488

改善手法 36 59 278 337

データを投入する数が，人手によるテストケースより多

いことが理由として考えられる．人手でテストケースを

記述した場合最大で 1メソッドあたり数個のテストデー

タを与えるのみであるが，改善手法では 1つのメソッド

において最低 20個のテストデータを与える．改善手法

ではテストデータ生成はランダムであるため，同一の値

を入力として与える可能性もあるが，より多くのテスト

データを与えることによって表明の出力数を減少させる

ことができると考えられる．特に，事前条件において表

明生成数が減少したことは，この現象を表している理由

と考えられる．

5.2.2 人手で記述した理想的な表明との比較

表明数の比較 人手で記述した表明数と改善手法で生成

した表明数および人手で記述した単体テストを利用した

表明の生成数を表 4に示す．

人手による表明の数に比べ，改善手法や人手で記述し

たテストケースを利用した動的生成手法で生成した表明

の数が多いことがわかる．人手による表明は，コードか

ら人間が容易に分かる表明を中心に記述してあるため，

実際に動作させて初めて分かる表明などは記述されてい

ない．

一方，動的生成による表明は，コードを実際に実行さ

せて表明を出力するため，テストデータに依存した表明

など一般に成り立たない表明が出力されるものの，人間

が想定していない表明が出力されるため，表明記述の見

落としを発見する手がかりになる可能性がある．しかし，

表明生成数が多くなるとそれぞれの表明が一般的に成り

立つかどうか検証する手間が増えるため，必要な表明を

残しつつもできるだけ表明の生成数は少ないほうが望ま

しいと考えられる．

表明精度の比較 表明の精度について人手による表明

と改善手法による表明の比較（表 5）を中心に詳細に評

価する．人手による表明について，事前条件は『引数が

Null参照でない』という条件であった．この条件は引数

が Null参照の際に処理ができないメソッドに対しての

み記述されていた．事後条件は，『引数がNull参照でない

ときフィールドの値は引数になり，そうでなければNull

参照になる』という setterメソッドの条件や，パスワー

ドのハッシュ化を行うメソッドでは，『返り値の Stringの

ハッシュ後の長さが 32である』という条件が記述され

ていた．

一方，改善手法によって生成された表明は，事前条件

は『引数が Null参照でない』という条件や『引数が正

数である』といった一般に成立しうる条件の他に，『すで

にフィールドに値が設定されている場合は引数とフィー

ルドの値は一致しない』という条件や『引数は（対象

フィールドとは異なる無関係な）フィールドの値より大

きい（小さい）』といった，テストデータの入力に依存

した表明や無意味な表明を生成した．また，事後条件に

おいては，『引数で与えた値がフィールドの値になる』と

いった setterメソッドの表明が出力されたものの，多く

は『他のフィールドの値同士が一致する』という一般的

に成り立たない表明が生成された．これは，テストデー

タをテスト対象メソッドに投入するごとにテスト対象の

オブジェクトのフィールドの値をランダムに設定してい

ないため起こる現象であると考えられる．この問題につ

いては解決が可能と考えている．

また，人手によるテストケースによって生成された表

明は，事前条件はテストデータに依存した表明である

『引数は 2006,2007,2008のいずれかである』のような値

を含む表明や，改善手法においても生成された『引数は

（対象フィールドとは異なる無関係な）フィールドの値



表 4: 動的生成手法による表明と理想的な表明の生成数

人手で記述した表明 改善手法による表明 単体テストによる表明

事前条件 事後条件 事前条件 事後条件 事前条件 事後条件

2 36 59 278 735 1753

より大きい（小さい）』といった表明が生成された．事

後条件においては，改善手法で生成された『引数で与え

た値がフィールドの値になる』といった setterメソッド

の表明が生成されたのに加え，『他のフィールドの値はメ

ソッド呼び出し前のフィールドの値と同じ』という表明

も生成された．これは，各フィールドの値が全体のテス

トケースを実行することを通じて変化し，対象となるオ

ブジェクトの状態が多くなったために生成された有用な

表明であると考えられる．

６． テストデータ生成改善手法の検討

6.1 テストデータ生成問題

表明の動的生成においては，その入力となるテスト

データの生成方法は生成される表明の制度に影響を与え

る重要な要素である．本稿の実験では，人手で生成した

テストケースと表明動的生成改善手法で生成したテスト

ケースでは生成表明について，具体的な値を含む表明の

生成割合が異なっていた．

人手でテストケースを生成する場合，境界値分析など

を行い効率的にカバレッジの高いテストケースを生成す

ることが一般的であると考えられる．また，テストにか

かる工数や時間的・空間的な制約から，入力値としてと

りうる値を全てをテストデータとして生成することは現

実的ではない．参照型変数，特に複数フィールドを持つ

オブジェクトの場合は，各フィールドに対して入力値を

設定する必要がある．

6.2 テストデータ生成改善手法

現在，われわれの研究グループでは，インバリアント

カバレッジに基づくテストケースを生成することを提

案しており，インバリアントカバレッジを満たすテスト

ケースをプログラムの戻り値の変化しうるプログラムパ

スの集合に近似している．各プログラムパスを通るテス

トデータの条件をテストケース制約として求め，テスト

データ生成に利用している．

しかし，現在の実装においては，対象となるテストデー

タの生成は乱数によるテストデータ生成を行っているた

め，テストケース制約を満たすテストデータの生成が効

率的でない．文献 [16]は，テストデータに付加されてい

る表明を利用し，モックオブジェクトを生成する手法に

ついて提案を行っている．モックオブジェクトを利用す

る場合，データベースやネットワークなど外部の環境を

テスト実行と分離できる [16]ため，表明動的生成では有

効である．参照型変数のランダム生成に比べて効率的に

テストデータを生成することが可能であるが，対応する

表明が部分的であることや，具体的なフィールド値固定

値とすることが課題である．

また，文献 [17]では，記号実行と状態探索木を用いた

テストデータ生成列の生成方法を提案している．これは，

テストデータクラスのメソッドの呼び出しによるテスト

データオブジェクトの状態遷移を木構造で保持し，各状

態間を同値判定することにより，効率的なテストデータ

生成を行う事が出来る手法である．テストデータクラス

のメソッド呼び出しの最大長を限定する必要があるもの，

各フィールドの値域を効果的にカバーできるため，精度

の高い表明を生成するのに有効であると期待できる．

表明の動的生成のためのテストデータ生成を考えた場

合，できるだけ多くのテストデータを生成することが望

ましい．テストデータが少ない場合は，表明中に値を含

む可能性があり，一般的な表明とならない可能性がある．

いずれの既存研究においても，テストデータを最終的に

一定の値としてテストデータを生成するため，ある一定

の条件を満たした複数のテストデータを生成したいとい

う要求に対しては改善する必要がある．

6.3 テストデータ生成対象の検討

また，改善手法の問題点として，テストデータ生成対

象が限定されるという問題がある．表 6は，対象とした

システム全体において，メソッド引数の有無及び引数の

型の種類によってメソッド数を計測した結果である．

現在の改善手法の実装が生成可能なテストデータが

基本型とその配列および java.lang.String型のみである．

本稿で利用した情報システムの場合，引数を取らないメ

ソッド（主に getterメソッド）を多く定義するため，表

明生成改善手法が有効に働かないメソッドが存在する原

因となっている．これらのメソッドの表明を精度よく生



表 5: 人手による表明記述数と表明動的生成改善手法による生成表明数の評価
人手による表明 表明動的生成改善手法による表明

正しい表明 有用な表明 不要な表明 誤った表明

事前条件 2 2 25 1 31

事後条件 36 36 64 73 105

表 6: メソッド引数のクラスによる分類
対応 配列 Javaライブラリ 外部ライブラリ システム固有 列挙型 引数なし

該当メソッド数 239 14 128 56 234 2 321

成するには，テスト対象のオブジェクトのフィールド値

を適切に設定することが有効であると考えられる．特に

インバリアントカバレッジが向上するようなパスの条件

式中に現れるフィールド変数の制約を求め，制約を満た

すフィールド変数の値を設定することで，精度の良い表

明が生成されると考えている．

また，システム固有のクラスのテストデータを生成す

ることも重要である．システム固有のクラスの場合，表

明生成ツールとしてテストデータ生成クラスをあらかじ

め準備することは難しいため，モックオブジェクトを利

用したテストデータ生成が有効であると考えられる．テ

ストケース制約中に現れるシステム固有クラスのオブ

ジェクトをモックオブジェクト化し，テストケース制約

を満たすように変更を加えた上でテストデータとして利

用することが考えられる．

本稿の実験対象のメソッド数としては少ないものの，

Javaライブラリのクラスや配列型の引数を取るメソッド

は一般的であると考えられる．これらのクラスは仕様が

定まっているため，テストデータとしてランダム生成が

しやすいと考えられる．これらのクラスのテストデータ

を生成できるよう改善をすることは有効である．

７． おわりに

本稿では，表明動的生成手法における改善手法を実プ

ロジェクトの教材として開発されたシステムに対して適

用した．システム付属の人手によるテストケースを利用

して生成した表明や文献 [15]において人手で記述した表

明と，改善手法によって生成された表明とを比較した．

その結果，動的生成手法によって表明を生成した場合，

テストデータに依存した表明が多く生成され，メソッド

の性質を表す有用な表明は少ないことがわかった．一方，

改善手法などを用い，多くのテストデータを用意するこ

とや，テスト対象となるオブジェクトの状態を増やすこ

とにより，不要な表明を減少させたり，有用な表明を出

力させやすくなることがわかった．

今後の課題として，テストデータやテスト対象のオブ

ジェクトの状態を変化させた場合に生成される表明の精

度がどのように変化するかや，テスト対象の状態を分割

する手法 [18]などを利用した場合の表明の精度につい

て，定量的に調査する必要がある．

謝辞

本研究の一部は科学研究費補助金基盤 C（21500036）

と文部科学省「次世代 IT 基盤構築のための研究開発」

（研究開発領域名：ソフトウェア構築状況の可視化技術

の普及） の助成による．

参考文献

[1] C. Flanagan and K. R. Leino. Houdini, an annota-

tion assistant for esc/java. in Proc. of Int. Symp.

of Formal Methods Europe on Formal Methods

for Increasing Software Productivity, FME 2001,

pages 500–5178, 2001.

[2] M. D. Ernst, J. H. Perkins, P. J. Guo, S. Mcca-

mant, C. Pacheco, M. S. Tschantz, and C. Xiao.

The daikon system for dynamic detection of likely

invariants. Science of Computer Programming,

69(1-3):35–45, 2007.

[3] C. Csallner, N. Tillmann, and Y. Smaragdakis.

DySy: Dynamic symbolic execution for invari-

ant inference. Proc. 30th ACM/IEEE Int. Conf.

on Software Engineering (ICSE), pages 281–290,

2008.



[4] Yi Wei, Carlo A. Furia, Nikolay Kazmin, and

Bertrand Meyer. Inferring better contracts. In

Proceeding of the 33rd international conference on

Software engineering, ICSE ’11, pages 191–200,

New York, NY, USA, 2011. ACM.

[5] J. W. Nimmer and M. D. Ernst. Static veri-

fication of dynamically detected program invari-

ants: Integrating daikon and esc/java. in Proc.

of First Workshop on Runtime Verification, RV

2001, pages 152–171, 2001.

[6] N. Gupta and Z. V. Heidepriem. A new struc-

tural coverage criterion for dynamic detection of

program invariants. in Proc. of Int. Conf. on Au-

tomated Software Engineering, ASE 2003, pages

49–58, 2003.

[7] 宮本敬三, 堀直哉, 岡野浩三, 楠本真二, and 西本哲.

Javaに対するループインバリアントを含むDaikon

生成アサーションの妥当性評価. 電子情報通信学会

論文誌 D, J91-D(11):2721–2723, 2008.

[8] 堀直哉, 岡野浩三, and 楠本真二. モデル検査技術

を用いたインバリアント被覆テストケースの自動生

成による Daikon 出力の改善. ソフトウェア工学の

基礎 XV 日本ソフトウェア科学会ソフトウェア工

学の基礎ワークショップ FOSE2008, pages 41–50,

2008.

[9] 宮本敬三, 岡野浩三, and 楠本真二. アサーション

動的生成のためのテストケース自動生成手法の生成

アサーションの妥当性評価. ソフトウェア工学の基

礎 XVI 日本ソフトウェア科学会ソフトウェア工学

の基礎ワークショップ FOSE2009, pages 183–190,

2009.

[10] L. Burdy, Y. Cheon, D. R. Cok, M. Ernst,

J. Kiniry, G. T. Leavens, K. R. M. Leino, and

E. Poll. An overview of jml tools and applications.

In T. Arts and W. Fokkink, editors, Eighth In-

ternational Workshop on Formal Methods for In-

dustrial Critical Systems (FMICS03), Electronic

Notes in Theoretical Computer Science, 80:73–89,

2003.

[11] J. W. Nimmer and M. D. Ernst. Invariant infer-

ence for static checking: An empirical evaulation.

in Proc. of SIGSOFT Symp. on Foundations of

Software Engineering 2002, FSE 2002, pages 11–

20, 2002.

[12] 小林和貴,宮本敬三,岡野浩三, and楠本真二.表明動

的生成を目的としたテストケース制約のESC/Java2

を利用した導出. ソフトウェア工学の基礎 XVII 日

本ソフトウェア科学会ソフトウェア工学の基礎ワー

クショップ FOSE2010, pages 35–44, 2010.

[13] G. T. Leavens, Albert L. Baker, and C. Ruby.

JML:A Notion for Detailed Design. in Behavioral

Specifications of Businesses and Systrems, pages

175–188, 1999.

[14] 三宅達也, 肥後芳樹, 楠本真二, and 井上克郎. 多言

語対応メトリクス計測プラグイン開発基盤MASU

の開発. 電子情報通信学会論文誌D, J92-D(9):1518–

1531, 2009.

[15] 宮澤清介, 花田健太郎, 岡野浩三, and 楠本真二.

OCL から JML への変換ツールにおける対応クラ

スの拡張と教務システムに対する適用実験. In 信

学技報, volume 110 of SS2010-72, pages 115–120,

2011.

[16] Stefan J. Galler, Andreas Maller, and Franz

Wotawa. Automatically extracting mock object

behavior from design by contract specification for

test data generation. In Proceedings of the 5th

Workshop on Automation of Software Test, AST

’10, pages 43–50, New York, NY, USA, 2010.

ACM.

[17] Tao Xie, Darko Marinov, Wolfram Schulte, and

David Notkin. Symstra: A framework for gen-

erating object-oriented unit tests using symbolic

execution. In In TACAS, pages 365–381, 2005.

[18] Nadya Kuzmina, John Paul, Ruben Gamboa, and

James Caldwell. Extending dynamic constraint

detection with disjunctive constraints. In Pro-

ceedings of the 2008 international workshop on dy-

namic analysis: held in conjunction with the ACM

SIGSOFT International Symposium on Software

Testing and Analysis (ISSTA 2008), WODA ’08,

pages 57–63, New York, NY, USA, 2008. ACM.


