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On Unions of Knots

By Shin'ichi KINOSHITA and Hidetaka TERASAKA

Introduction

If two knots ιc and κf with a common arc <#, of which K, lies inside
a cube Q and πf outside of it, a lying naturally on the boundary of Q,
are joined together along oίy that is, if a is deleted to obtain a single
knot out of K and K!', then we have by definition the product of K and
K'. If a knot K cannot be the product of any two non trivial knots,
then fc is said to be prime. It is H. Schubert £9] who showed that the
genus of the product of two knots is equal to the sum of their genera
and that every non trivial knot is decomposable in a unique way into
prime knots.

Now a close inspection through the table of knots by Alexander and
Briggs [1] as reproduced in the book of Reidemeister [8~], where only
prime knots are given, or rather a simple experiment by a thread, will
show that there are a number of knots composed of prime knots in a more
complicated way. Thus 85, 810, 815, 819Cw), 820Cw), 82lCw), 916, 924 and 928 of
the Alexander Briggs table are all composed of two trefoil knots 3i in
the following way (Fig. 1 indicates the composition of 819 out of two

30 : First join the trefoil knots K and d together along their arcs AB

X.

Fig. 1.
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Λ7\

and yl'β' as the usual product making and then wind them together in

the neighbourhood of the arcs CD and C'D'. Likewise 922, 925, 930, 936,
942c«), 943Cw), 944Cw) and 945^ are composites of the trefoil knot 31 and the
knot 4X (Fig. 3).

Such a composition of knots will best be described if we make use
of the graphs of knots [15]: The graph of a knot is a linear graph on
a plane, where the vertices represent the alternating, the so-called white
or black, domains ([8], p. 9), and the edges the crossing points, of the
ordinary regular projection of the knot. To every edge is attached
further a sign -f , which may well be understood, or —, according as
the knot passes the crossing point right-handedwise or left-handedwise.
Every knot has a pair of graphs, dual to each other. Thus, the knots
85—945 are represented by the annexed graphs in Fig. 2 and Fig. 3, where
fo) and (c2) are the dual forms of a trefoil knot, and (d) represent the
knot 4j which is self-dual if we disregard its sign.
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Fig. 3.

In general, if (k) and (k') are the graphs of the knots K and /c'', bring
a pair of vertices A and A! together to a coincidence and connect anothei

(h)
Fig. 4.

pair of vertices β and B' with w edges ely ez, -~, en attached with one and
the same sign (Fig. 4). We shall call the knot whose graph is represent-
ed by such a composition a union of K and κ,r with the winding number
n if n is even and a sfeβw; wm'0w with the winding number n if n is odd.
A circumstance revealed to the authors that if two knots & and K! are
symmetrically situated and if we perform the above composition, the
Alexander polynomial [2] remains the same irrespective of the winding
number and that equals the square of the Alexander polynomial of K
if it is a union: One of the authors conjectured0 namely that every
knot could be obtained by joining together a pair of (in general linking)
trivial knots (= circles) along a common arc, and as the simplest cases
made tentatively such joinings with non linking circles as shown in

1) Meanwhile, this conjecture turned out to be true. See Appendix.
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,£> C?D
B

Fig. 5.

Fig. 5. Thus we obtained e. g. the product of trefoil knots, the knot 820

and a knot of 10 double points, all with the Alexander polynomial
(x2— x + l)2 if we gave 0, 2 or 4 windings beforehand, and the knots
G! and 946 with the Alexander polynomial 2x2—5x + 2, if these were 1 and
3. On writing these compositions by graphs, the other of the authors
generalised the fact to symmetric unions and skew unions.

The purpose of the present note is to show among others that every
union of two non trivial knots is always non trivial (Theorem 1) and
that the Alexander polynomial is independent of the winding number
for any symmetric union (skew union) of a knot (Theorems 2 and 3).
As an application we give an example of a non trivial knot of eleven
crossings with the Alexander polynomial Δ (x) = 1, the number of cross-
ings being smaller than those of the examples hitherto known of H.
Seifert [13] and of J. H. C. Whitehead [14]. In Appendix is further
proved that every knot is a sum of two trivial knots.

§ 1. Union of knots.

In the following we use freely such expressions as arcs, circles, disks,
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spheres, mappings, etc. but it should be understood that all figures we
shall be talking about are simplicial and mappings are all semi-linear.

Let Q be a solid cube and let K be a knot which has two disjoint

segments AD and BC in common with the surface Q of Q> the remain-

ing arcs AB=oίl and CD = a2 of K lying wholly within Q except for
their endpoints. Similarly for another cube Q' and a knot K, the cor-
responding points and arcs being primed. It will be convenient to call
Q and Q' the cubes of union.

To define a union of K and K' we proceed as follows:
Place Q and Q' apart and parallel to each other, one face 2 of Q

facing the face 2' of Q' in such a way that 2 and 2' make together a
pair of opposite faces of a rectangular parallelepiped. If E is the plane
containing a face of the last named parallelepiped different from 2 and
2", then Q and ζK are seen to be lying on E, when E is thought of as
a ground plane.

By suitable semi-linear transformations of Q and Q' onto themselves
bring K and K! to such positions that the segments AD and BC and the
segments A'D' and B'C' lie respectively on 2 and 2' and that A, Z?, C,
D and A'y B', C, Df lie in these orders along straight lines parallel to
the ground plane E, and finally that AA\ BB', CC' and DD' are perpendi-
cular to 2 and 2'.

Now let β and β' be disjoint arcs connecting B with C and Bf with

QC' respectively outside Q and Q', thus
BC^jβ and B'C'\jβ' making together a
link, such that their projections on E are
each a polygon contained within the pro-
jection of the rectangle BCC'B', cutting
each other alternatively one above the
other in the same sense, as indicated in
Fig. 6. Speaking more exactly, the pro-
jections of β and β' on E intersect at Flg* 6>

2n points P1, P2, •••, P2n arranged in this order on either of the projec-
tions of β and β', the original β passes above (or always under) β' at
every second crossing point P2i+l beginning with P lβ

Replace now the segments AD and A'D' with the segments AA/

and DD', and the segments BC and B'C' with β and βf respectively.
Then the knot thus obtained will be called a union of /c and κf joined
along AD and A'D' and winded along BC and B'C' with the winding
number 2n. n should be taken >0 if β passes above Pί9 otherwise <^0.

Likewise for a skew union with the winding number 2n + l.
A union (skew union) depends in general on the locality of its winding
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and on its winding number. It is uniquely determined if the winding
number is 0, in which case the union is merely the usual product.

REMARK. More general union can be defined if we make windings
at several places, not only one. Even in this generalised union Theorem
2 is seen to hold, and most probably Theorem 1 also holds.

First we prove the following

Lemma 1. Let K be a knot consisting of an arc 7 on the surface Q
of a solid cube Q and an arc a connecting the endpoints of 7 within Q.
If /c = a\jγ can be spanned by a disk Δ, then K can also be spanned by a
disk Δ' wholly contained within Q, provided that Δ lies wholly within Q
in some neighbourhood of 7.

Proof. On account of the assumption there is a polygonal region

P on Q containing 7 in its interior and two disks S1 and S2 bounded by

the boundary P of P, of which Sλ lies outside and S2 inside Q, such that
the sphere Sx wP has no point in common with the disk Δ except along
7. By a suitable semi-linear mapping which fixes all points of S2 map

the region outside 8^82 into the region bounded by S2 and by Q—P.
Then the image of the disk Δ is just the desired one spanning K within

Q.
Every knot has a representation by bridges (Schubert CIO]), the

smallest number of its bridges being an invariant. We shall call K a
knot with n bridges if K has a representation by n bridges but not less.
According to this definition every non trivial knot is a knot with at
least two bridges. We shall say that a knot K has an n-bridged form
with respect to a cube Q if K is decomposed by Q into 2n arcs a19 a2,
••-,#„ and βίy β2, ~,βn such that at lie wholly inside Q and βg lie
wholly outside Q except for their endpoints and that af(i = 1, 2, •••,«)
and £,.(/ = !, 2, •••, n) can be spanned by disjoint disks within and without
Q respectively, i.e., if K makes inside and outside Q n simple chords in
Schubert's terminology ([11], p. 135).

Then we have

Lemma 2. Let K" be a union of .two non trivial knots K and κf with
the cubes of union Q and Q'. Then, if K is not of the two-bridged form
with respect to Q, K is a non trivial knot.

Proof. Retaining our earlier notations, suppose that the contrary
were true and let σ be a disk spanning the union /cx /= jiφ/c7, i.e., let σ

be a semi-linear image f(K) of a circular region K, the image f ( K ) of
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the boundary K of K being /c". By a usual consideration we can modify
the mapping/, if necessary, so that σ=f(K) "intersects" the surf ace Q
of the cube Q along arcs γx and 72 connecting two pairs of points of A,
B, C and D and eventually along polygons, which together with γx and
72 are all disjoint from one another.

Denote the inverse images of A, B, C, D, A, B'', C', D' and 7^ 72 by
#, 6, c, d, a!, b'y c', d' and wί9 w2 respectively. We notice in the first
place that neither of r^l and 72 is a path connecting A and D on Q, for
if 7i, say, were such a path,
then w1 = f~1(<γ1) would be a
path leading from a to d in
/Γ, and the image by / of the
region bounded by w1 and by
the arc ad of K containing
a', 6', c', d' would be a disk
spanning the knot a\\jβf\j
az' \j Ό'D \J 7i \jAAy which is
equivalent to the knot κf9 con-
trary to the supposition that
κr was a non trival knot.

We suppose therefore that
and D on Q, and consequently that wl and
with d respectively in K.

If σ intersects Q besides rγ1 and 72 along some polygons, we shall call
each one of the latter an intersection-polygon. Now let Π be one of the
intersection-polygons and let Π be one of the polygonal regions bounded
by Π on Q such that Π has no point in common with σ. It does not
matter whether such an intersection-polygon actually exists or not. Let
P be further the inverse image of Π in K: f(P)=ή, and let P be the
region bounded by P in K. Then, since Πw/(P) is clearly a sphere, we
can by a usual consideration (see e. g. [4], [9]) modify the mapping /
in the neighbourhood of P and within P, so that the new semi-linear map-
ping /' of K coincides with/ outside a certain polygon P' containing P in
its interior and that /'(P')> where P' denotes the region bounded by P',
runs in the neighbourhood of Π without having any point in common
with Q. Then fr(K) intersects Q other than fγ1 and 72 along polygons
whose number is diminished by one in comparison with f(K).

Operating with this modification as long as there remains any inter-
section-polygon of the above type, we get finally a mapping, which we

Fig. 7.

/! connects A and B and 72 connects C
connects a with b and c
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denote again by the same letter /, such that every intersection-polygon,
if any, has on either side γx or γ2 . Let P be the inverse image of one of
these polygons such that there is no inverse image of any of the inter-
section-polygons within P. If P denotes the region bounded by P, then
f(P) has points in common with Q solely along /(P). f(P) lies moreover
within Qy for otherwise the arc AA'\ja\\jBB' (CK") would have point in
common with /(P), which is impossible. Thus the interior of Q is divided
by f(P) into two domains Q1 and Q2. If 7\ and T2 denote two regions
of Q divided by /(P), of which T1 contains γx and T2 contains γ2, then
Ql and Q2 are the domains bounded by the sphere f ( P ) \ j T 1 9 which con-
tains #!, and the domain bounded by /(P)vT2, which contains α^, in
their interiors. Since a^^ is spanned by the disk which is the image
by / of the region in Abounded by ab\Jwly so oίl\j^/l can also be spanned
by a disk within f ( P ) \ j T 1 9 on account of Lemma 1. Likewise oί-2\J^2

can be spanned by a disk within /(P) \j T2 . Thus the knot turned out
to be equivalent to the knot

which is a knot of two-bridged form with respect to Q, contradicting
the original assumption of our Lemma. If there is no intersection-poly-
gon on Q, that is, if f(K) does not intersect Q except along γx and
72, then, since oί1\jjl and ^2wγ2 are spanned within Q by disks disjoint
from each other, namely by disks which are the images of the regions
bounded by ab\Jwl and by cd\JW2 in Ky K would be equivalent to a knot
of two-bridged form with respect to Q, contradicting again the assump-
tion.

Thus the proof of Lemma 2 is complete.
Next we prove the following

Lemma 3. Let K" be a union of two non trivial knots K and κf with
the cubes of union Q and Q' . Then, even if K and K' are of the two-bridged
form with respect to Q and Q', K" is a non trivial knot.

Proof. Retaining again our earlier notations, cut Q by a plane parallel
to the face 2 in a square 2. By a semi- linear transformation which maps
Q onto itself bring the knot K into its normal form (a, β) ([11], p. 140)

represented by two disjoint arcs ό^1 = AB and a2 = CD lying on 2 with
the bridges AA\jAD\jDD and BB\JBC\JCC, where AA, BB, CC, DD
are perpendiculars between 2 and 2. The same for the knot K! and its
cube of union Q ', and make a union κ"=ιcζQκ' with K and */.
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We are now going to compute the fundamental group of the two-
fold covering space branched along K" to show that it is not trivial.

Fig. 8.

To this end consider first the two-fold covering manifold Q2 of Q
branched along /e", which is a solid torus ([11], p. 146). Let <xt be the

"projection" of δz on 1,. If m is a meridian on the boundary Q2 of Q2

given by a closed path on 2 including the arc α^ in its interior and ex-

cluding oί2 outside of it, and if / is a longitude of Q2, then the funda-
mental group F(Q2) of Q2 will be given by the presentation

Generators : /, m .

Relation : m = 1,

where / and m stand for the elements of the path group corresponding
to the path / and m respectively.

Similarly the fundamental group F ( Q 2 ) of the two-fold covering
manifold Q'2 of Q' branched along K" is given by

Generators: /', mf.

Relation : m'= 1,

where /' and mr have the similar meaning.
Finally let us compute the fundamental group of the two-fold cover-

ing manifold R2 branched along κfr of the exterior R of Q and Q', the
boundaries of Q and Q' being included. Let x, p, q be closed path in
R-K", encircling respectively AA', AA\jDDf, AA \J DDf \J BB', the same
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for #', and let r19 r2, •••, r2n_λ be closed paths in R—κ" passing respectively
through where the 2n times windings were performed, thus linking
with both β\jBC and /3'ufi'C', as shown in Fig. 8. Then the funda-
mental group of the space R—K," has the following presentation:

Generators: *, p, qy q', rlt r2, •••, r2n_,.

Relations : q~1rlq
/~1 = 1,

if the winding number of the union 2n is I> 0. This presentation can be
transformed into

Generators : x, p, qy qf .

Relation : p = (qq'-l}n(q-l4)n.

It should be remarked that this presentation holds true even if n is
negative,

Now, if we introduce on 2 a circular path u encircling the segment
AD and excluding B and C outside of it and a circular path v encircling
BD and excluding A and C outside of it, and similarly vr on 2', then,
since

the last obtained presentation can further be transformed into

Generators : x, u, v, vf

Relation : u = (vvf^)n(x~lv-lvrx)n.

Observing the relations

~\ xυ'x~l = v'~\

which hold in R2, we have as a presentation of the fundamental group
F(R2) the following (cf . [3], [6]) :

Generators : u, v, υr

Relations : u = (vv'-1)2™,

u-1 = (v~lv')2n.

We are now in a position to calculate the fundamental group F(M2)
of the two-fold covering space M2 of S3 branched along K", which is the
sum of the two-fold covering manifolds Q2 , R2 and Q'2 considered above.
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On the torus Q2r\R2 we have indeed the relations:

where a and β are the torsion and the crossing -class of the knot K" in
its normal form (tf, β) introduced in the beginning of our proof, and
where μl and μ2 are some integers.

Similarly we have

κ' = /'«Wμ3, ι/ = Γ?nιP4

on the torus Q'2r\R2.
The fundamental group F(M2) assumes consequently (Seifert and

Threlfall [12]) the following presentation :

Generators : u, υ, v', /, Γ.

Relations : u = /*, v = lβ

u = l'*', ι/ = Γ?

u = (vv'-l}2n, u'1 = (fΓV)2*,

which can be transformed into :

Generators : /, /'.

Relations : l« = l'«' = ( W')2" = (l'*W*.

Since oί and ex! are both 2^3, because K and K' are non trivial knots,
F(M2) is seen to be non trivial50. Thus the proof of Lemma 3 is complete.

Combining Lemma 1 and Lemma 2 we have immediately

Theorem 1. Every union of two non trivial knots is a non trivial
knot.

§ 2. Symmetric union and symmetric skew union.

If two knots K and κf with their cubes of union Q and Q' are
situated symmetric to each other, then a union (skew union) of K and K!
will be called a symmetric union (skew union") of K. It is not assumed
that ιc is non trivial.

Then one of the theorems to be proved is the following

Theorem 2. // Δκ(#) denotes the Alexander polynomial of a knot K,
then the Alexander polynomial ΔK//(Λ;) of every symmetric union K" of K is

2) If we add a relation 1<* = 1 to the above ones, then we have a presentation

(y, /; Λ /< Cy/)2"}
of a subgroup of F(M2), where y=lP, y=l'&', showing the group to be non trivial.
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equal to the square of ΔΛ(χ) :

(1) AK,,(*) = (

and is therefore independent of the winding number and the locality of
winding of the union.

ones by a0, aly b, CQ and c'0. Since
ΔK/,(Λ) is independent of the choice of orienta-
tion of κn ', we may suppose that /e" is oriented
as in Fig. 9. Then the Alexander matrix of
K" will take the following f orm3) :

α,

Proof. Let 2n be the winding number of the union /c". If
then κ"(x) is the product of # with its symmetric image κf9 and
immediate.

Suppose now that n is positive. Then Q
the projection *% of /c" on the ground plane
E assumes the form as shown in Fig. 9. *'£
decomposes E into domains, of which those ,
contained within the left-hand square QE are /\
denoted by c19 c29 •• 9cm9 the symmetric image
of £.(/ = !, 2, ••-, m) by c/9 and the remaining ^

Co . Co

Fig. 9.

n = Q,
(1) is

Q'

c;

( 2 )

1 0
0 1

0 x
0 0

:
0 0
0 0

*

*

0 0
f) n

1 0 - 0
1 x ••• 0

•..

0 ••• x 1
0 ••• 0 1

0

0

n
o

0
0
:
ό
X

1

-δ,

-L

o
o

— X
-1

:
— X
-1

0

0

o ... ou u
o ... o

0

«„
0

o
o

-1
— X

\

-1
— x

O n
0 ... 0

0

0

~cn

3) The matrix defined originally by Alexander was not a square one. But some con-
sideration of the presentation of the knot group will convince us of the naturality of using
the square matrix of the following shape.
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where i = 1, 2, •••, m + 1 and =0, 1, •••, m.
Subtract the (2w + l)-th row from the (2n + 2)-ih row and then the

2«-th row from the (2n+l)-th row, etc.; omitting the unnecessary rows
and columns from this matrix in order to obtain the Alexander poly-
nomial, we have

(3)

b

— X

L
— b\

— brnjrι

Γ Γ •• Γ°0 °1 ^m

— nx + n 0 ••• 0

c,,

0

c' cr ••• cr
o o c 1 o m

nx-n 0 ••• 0

0

~CiJ

Adding each (m + 3 + /)-th column (/ = 0, 1, •••, m) to the (2 + /)-th
column and then each (l-M)-th row (i = 1, 2, •••, m + 1) to the
(ra +2-f/)-th row respectively, we have further

(4)

b c0 c, ••• CM c'0 c'x ••• c'm

-Λ:

1

0

0 0 - 0 nx—n 0 ••• 0
1

c.,

0

0

-c,;

We have therefore

where /) is a suitably chosen integer.

On the other hand, since the Alexander matrix of K takes the form

(5)

1 0

0 1

*
\

0

0

- 0 ϊ
... o

c"
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where / = !, 2, •••, m + 1 and j = Q, 1, •••, m, we have

where />' is a suitably chosen integer. We have therefore

which was to be proved.
Since our method yields the same result even if n is negative, the proof

of Theorem 2 is thus complete.
Concerning a symmetric skew union we have only the following

weaker result:

Theorem 3. If κλ and κ2 are symmetric skew unions of a knot K with
the same place of joinings and windings, their
Alexander polynomials ΔKl(x) and ΔK2(x) coin- ^ 3
cίde:

even if the winding numbers are different
from each other.

Proof. Let K" be a symmetric skew union
of K with the winding number 2n + l. Suppose
first that 2n + l is positive, and let the pro-
jection K'E of K," on the ground plane E
assume the form as shown in Fig. 10. K^ decomposes E into domains
as indicated in the figure. Then we are only to prove that the deter-
minant of the matrix

X
Ci

Co 3 Co'

(aψ.i

A—-
a0

X
α

Fig. 10.

b

X

b\

bm+1

— bm+1

Γ Γ Γco cι Lm

-(n + l)x+n 0 ••• 0

cn

0

c' c' ••• c'0 0 ° i c m

nx-(n + l) 0 ••• 0

0

-',,

corresponding to (3) of the proof of Theorem 2 is independent of n.
The matrix corresponding to (4) takes the form
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( 6 )

0

-jc-l 0 • •• 0

0

-(n + l)x+n 0 ••• 0

Adding the first column to the second and then the second column
multiplied by x to the first, we have

0

*>'

-1 0 - 0 0 ••• 0

the determinant of which is seen to be independent of n. Since our
method yields the same result even if 2n + \ is negative, the proof of
Theorem 3 is thus complete.

Theorem 4. If K" is a symmetric union or a symmentric skew union
of a knot K, then

where T2(κ) denotes the product of torsion numbers of the two- fold branched
covering space of K.

Proof. Since T2(/c) = |ΔK(-1) | (cf. [5], [6]) for every knot K, we
are only to prove that

If K" is a symmetric union, this equality follows immediately from
Theorem 2. Therefore let K," be a symmetric skew union. Then from
(5) we have
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and from (6), where we put c^ in-
stead Of Cfj,

It is easy to see that for each /(/ = 1, Fi n

2, •••, m-1) (see Fig. 11)

Therefore

and the proof is complete.

§ 3. Union of knots with the same Alexander polynomial.

We have mentioned in Introduction that the knots 85, 810, 815, 819,
820, 821, 916, 924 and 928 of Alexander and Briggs table are unions of two
trefoil knots. Now, if we decompose the Alexander polynomials of
these knots into factors, we find a remarkable fact that they have a
factor x2—x+l in common:

Knot Factorization-

85 1- 3+ 4- 5= (1-1) (1-2 + 1)
810 1- 3+ 6- 7 = (1-1)3

815 3- 8+11 = (1-1) (3-5)
8W 1- 1+ 0+ 1 = (1-1) (1 + 0-1)
820 1-2+3 = (l-l)2

821 1 - 4 + 5 =(1-1) (1-3)
916 2- 5+ 8- 9 = (1-1) (2-3 + 3)
924 1- 5 + 10-13 = (l-l)2(l-3)
928 1- 5 + 12-15 =(1-1) (1-4 + 7).

But this is not a mere contingency. We have in fact

Theorem 5. If K and κf are knots with the same Alexander poly-
nomial Δ(Λ ), then every union of K and κr has a factor Δ(Λ) in its Alex-
ander polynomial.

Proof. Since the theorem is clear in the case 2n — 0, first let

4) (1-1) (1-2+1) means e.g. (*2-A:+lX*4-2*3+*2-2*+l).
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As in the proof of Theorem 2 the Alexander matrix takes the following
form:

/7 // // /7 A /» /» ... »̂ /»' /»' . .. /»^ .
MO Wi W2 t*2w u C0 °1 °w ° 0 c 1 c w7

Λ 0
0 1

0 x
0 0

•

0 0
0 0

*

*

o o
o o

1 0 ••• 0
1 x - 0

.

0 ••• x 1
0 - 0 1

0

0

o
o

0
0

0
X

*

#

Π

o

— x
-1

— x
-1

0 ... 0
π ... o

0

c«

0

n
o

-1
— x

•

-1
_ Λf

o ... o
0 ... 0

0

0

4

where

a, c

1 0
0 1

*
\

0
0

... o

... o

c.

0 1

represent the Alexander matrices of K and K' respectively.
For the sake of the generality of speaking let c^x) be the greatest

common factor of elements in the ^-column. Divide the Ci-column by

c^x) and multiply the c0-column by c^x). Then by elementary trans-
formations operating on rows bring all elements but one, say cίj9 of the
Ci-column to 0, letting c^ be equal to 1. Again by elementary trans-
formations operating this time on columns bring all elements of the row
of Cv except for this one equal to 0.

Proceeding in this way with c2-column, etc. and interchanging row
and columns suitably, we have finally
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1 0
0 1

*

*

0

*

0

*

0

0

0

*

*

0

*

0

* 0

±**Δ(*) 0
1

,t

1

0

0

* 0

0

±χqΔ(χ) 0
1

0 1

the determinant of which, by deleting the first two rows and columns
and by expanding along the last 2(m + \) rows, shows immediately that
it has indeed a factor Δ(Λ ) = ±xs\c{j\ = ±xr\c'ij\.

Similarly for the case 2n<^0 and the proof is complete.

§ 4. Knots with the Alexander polynomial equal to unity.

H. Seifert [13] and J. H. C. Whitehead [14] determined some types
of knots whose Alexander polynomials are equal to 1. Here another
type of such knots will be given.

The basic idea of the construction is this: If the Alexander poly-
nomial of a knot K is unity, then by Theorem 2 that of every symmetric
union of K is also unity therefore, if we take as K a trivial knot, we
would obtain a knot of the above property. The main difficulty is, how
to determine the place of joining and winding in order that the union
be a non trivial knot.

Let K be a trivial knot given in its graphical representation (k) by
2p+l sided polygon AQA1 A2p of p consecutive sides A0Aly A±A2, ••• ,
Ap^Ap with negative signs. Let A!^A\ ••• A!2P be another polygon of
consecutive sides APA'P+1, A'p+lAp+2, •••, A!2p_±A!2p with negative signs,
symmetric to AA ••• A2p with respect to a straight line. Bring AQ and
A'0 to a coincidence and connect Ap and A'p with 2n arcs el9 e2J ••• 9e2n.
The knot represented by this graph, which is a symmetric union of K
with the winding number 2n, will be denoted by κ(ρy 2ri). n should be
taken negative if the signs of et are negative.
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Then we have

Theorem 6. K," = κ(p, 2n) is a non trivial knot with the Alexander
polynomial Δ^jt) = 1, whenever p^2 and wφO. Especially κ(2y 2) is a
knot of eleven crossings with the Alexander polynomial equal to unity.

Proof. As will be seen from the structure of κ(p, 2n) it suffices to
prove the theorem only for the case n^>0. It is also immaterial whether
p is even or odd, but first let p be an odd number. Then, passing over
from the original graph to its dual form, we see that κ(p, 2n) is a union
of knots K! and κ2 whose graphs (k^ and (k2) consist respectively of:

Fig. 12.

(&i): vertices E0, Eί9 •••, E2n and B and 2n consecutive edges with
negative signs E0Ely EJE2y ~ ,E2n_JE2ny a bundle of p+I edges with nega-
tive signs connecting B and £0 and a bundle of p edges connecting B
and E2n.

(k2): vertices E2n and Bf and a bundle of p edges with negative
signs connecting these vertices.

Now the knot κ2 represented by (k2) is alternating and so by Bank-
witz's theorem ([3], see [8], p. 34) a non trivial knot.

In order to show that κl is also non trivial, we proceed as follows5^:
(1) A graph can be carried over to an equivalent one, if we insert

between two vertices A and B of the graph two edges AC0 and C0B
with positive signs (which are understood) and an edge AC0 with a
negative sign:

o
A

o
B

o
A Co 8 Co

-o
B

(2) By inserting between the vertices A and B of a graph three

5) For the reduction of graphs see p.5_|.
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edges of the type of (1), a bundle of m edges with negative signs con-
necting A and B can be substituted by m + 2 edges AC0, C0Cly ••• , CmB
and by an edge ACm with a negative sign:

A Co C

•
A Co Ci

(3) If two vertices A and B of a graph is connected by m + 1 con-
secutive edges ADly AA> ••• >DmB with negative signs and another
vertex C is further connected with Dl by an edge CD19 then it will be
shown by repetition of a fundamental operation on graphs [15] that
these edges can be substituted by a bundle of m edges connecting A
and C, by the edge BC and by the edge AB with a negative sign.

C

A ft D2 Dm B D*B B

(4) Applications of (2) and (3) shows finally the following reduction
of (&i) to an alternating knot:

21Ί-1

one.
Again by Bankwitz's theorem the knot κ1 is seen to be a non trivial

Hitherto we have assumed that p was an odd number, but if p is
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even, a similar decomposition of (k") into knots will be obtained if we
exchange E09 Ely •••, E2ny β, β', p and
p + 1 seriatim by E2ny E2n_ly — 9E09B'9
β, p +1 and ^> in the definitions of (kj
and (k2).

The knot /c" is thus seen to be a
union of two non trivial knots /c1 and
κ29 and consequently it is by Theorem 1
non trivial. κ(2> 2) W

By a similar reduction of graph Fig 13

it can be proved without difficulty that if p = 2 and n = 1, K (2, 2) is
a knot of 11 crossings with the graph (k) as shown in Fig. 13.

REMARK. The non triviality of knots /c1 and κ2 can also be proved
directly and without difficulty by means of the calculation of the deter-
minant of knot.

APPENDIX

The sum of knots modulo 2.

Let K! and κ2 be two knots having a single arc 7 as their meet:

Klr\κ2 = ry , then the sum modulo 2 of κί and /c2, that is the point set
Kι\Jκ2— (7), where (7) denotes the open arc of 7, will be called the sum
of κl and κ29 and denoted by κl(+)κ2. We are going to prove that any
knot can always be represented as a sum of two trivial knots.

A knot K will be said to be decomposable into trivial knots by a pair
of different points A and β on κy if there is an arc 7, a decomposition-
arc, connecting A and β outside K such that K is represented as the sum
of knots a\jrγ and β\Jj9 where a and β are two arcs of K of endpoints
A and β.

According to this definition, if a knot K is the sum of two trivial
knots κ1 and κ2, then there must be a pair of points A and B on Λ; such
that K is decomposable into trivial knots by A and β; for the endpoints
of the common arc κ1r\κ2 have this property.

Then we have

Lemma 1. If a knot K is decomposable into trivial knots by two points
A and B on K, then K can also be decomposable into trivial knots by any
two points A and B' of K.

Proof. Let AA' be the arc of K which does not contain β. Then,
if 7 is a decomposition-arc of endpoints A and β, an arc 7X connecting
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A! and B sufficiently near ΛA /w<γ 1 will be found as a decomposition-arc
of endpoints A' and B. By the same reason there can be found further
a decompotition-arc of endpoints A! and B/ sufficiently near γ2, q.e.d.

Lemma 2. Let Q be a solid cube that has two segments in common
with a knot K and let 7 be an arc that connects two points X and Y of K
lying outside Q and that has no points in common with K except for X
and Y. Then X and Y can be connected wholly outside Q by an arc that
is isotopic to 7 in the complementary E3—κ of K.

Proof. Qr\κ can be thought of as consisting of two perpendiculars
AB and CD between a pair of opposite faces 2 and 2' of Q. Suppose
7 intersect 2 in a point P. Then we can substitute a sufficiently small
arc β of 7 containing P in its interior by an arc βf that is isotopic
to β in E3— K and that has no point in common with 2, so that the
newly obtained arc 7' intersects 2 in points less by one in number as
compared with 7. Proceeding in the same way with all intersection points
of 7 and 2, which we may suppose finite in number, we can obtain finally
an arc 7" that is isotopic to 7 in E3—/c and that has no points in common
with 2. Then by a homeomorphism of E3 leaving all points of K and 2
fixed "drive away" 7" out of Q in the direction from 2 to 2' so that the
image of 7" becomes the desired arc lying wholly outside Q.

We are now in a position to prove

Theorem. Every knot can be represented as the sum of two trivial
knots.

Proof. We prove the theorem by induction on the unknotting num-
ber of a knot [7~]9 that is the minimum number of cuts in order to
change the given knot to a trivial one.

First suppose that the theorem holds true if the unknotting number
of a knot is n— 1, and let /c be a knot of unknotting number n(~:>l).
Then there are by the definition of the unknotting number an equivalent
of K, which we denote again by the same letter K, and a solid cube Q
having two segments AB and CD in common with K such that if AEB
is a triangle within Q having a point in common with CD and if we
substitute the arc AB of K by AE\JEB, the newly obtained knot κf

becomes a knot of the unknotting number n — 1. By our assumption K!
is the sum of two trivial knots, and so K is decomposable into trivial
knots by two points X and Y on κr . Then by Lemma 1 X and Y can
be taken outside Q. Let 7 be a decomposition-arc of endpoints X and
Y: by Lemma 2 7 can be so chosen that it lies wholly outside Q. If ct
and β are arcs of xf of endpoints X and Y, of which β contains the
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segment CD, then a\j^ and /5wγ are trivial knots. But since 7 has no
points in common with Q, (α(-h)ΔABβ)U7 is also a trivial knot. Thus
K turns out to be the sum of two trivial knots (<*(+)ΔAEJ3) wγ and βvγ.

Since the theorem is true if n = 0, that is, if the knot is itself
trivial, the theorem is thus proved to be true for any knot.

(Received August 1, 1957)
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