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On Unions of Knots

By Shin’ichi KinosHIiTA and Hidetaka TERASAKA

Introduction

If two knots « and « with a common arc «, of which « lies inside
a cube @ and « outside of it, « lying naturally on the boundary of @,
are joined together along «, that is, if « is deleted to obtain a single
knot out of « and «’, then we have by definition the product of « and
«’. If a knot « cannot be the product of any two non trivial knots,
then « is said to be prime. It is H. Schubert [9] who showed that the
genus of the product of two knots is equal to the sum of their genera
and that every non trivial knot is decomposable in a unique way into
prime knots.

Now a close inspection through the table of knots by Alexander and
Briggs [1] as reproduced in the book of Reidemeister [8], where only
prime knots are given, or rather a simple experiment by a thread, will
show that there are a number of knots composed of prime knots in a more
complicated WaY- Thus 85, 810» 815’ 819(;.)» 820(n)) 821(;4)» 915; 924 and 928 Of
the Alexander Briggs table are all composed of two trefoil knots 3, in
the following way (Fig. 1 indicates the composition of 8, out of two

3): First join the trefoil knots « and «’ together along their arcs AB

k&x{j o
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Fig. 1.
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and A’B’ as the usual product rlliking aggl\ then wind them together in
the neighbourhood of the arcs CD and C’D’. Likewise 9,,, 95, 90, 9,
96,05 s> Qe and 9, are composites of the trefoil knot 3, and the
knot 4, (Fig. 3).

Such a composition of knots will best be described if we make use
of the graphs of knots [15]: The graph of a knot is a linear graph on
a plane, where the vertices represent the alternating, the so-called white
or black, domains ([8], p. 9), and the edges the crossing points, of the
ordinary regular projection of the knot. To every edge is attached
further a sign +, which may well be understood, or —, according as
the knot passes the crossing point right-handedwise or left-handedwise.
Every knot has a pair of graphs, dual to each other. Thus, the knots
8,—9,; are represented by the annexed graphs in Fig. 2 and Fig. 3, where
(c) and (c,) are the dual forms of a trefoil knot, and (d) represent the
knot 4, which is self-dual if we disregard its sign.



On Unions of Knots 133

—

AN

= @3

v

O4atnd O44tm> 945(n) 942(m>
Fig. 3.

oy
B (R
@@@%

Ej
b

(A9

e

g
J

In general, if (k) and (k') are the graphs of the knots « and «’, bring
a pair of vertices A and A’ together to a coincidence and connect another

e

Fig. 4.

pair of vertices B and B’ with » edges ¢,, ¢,, -, ¢, attached with one and
the same sign (Fig. 4). We shall call the knot whose graph is represent-
ed by such a composition a union of « and « with the winding number
nif nis even and a skew unmion with the winding number n if n is odd.
A circumstance revealed to the authors that if two knots « and «’ are
symmetrically situated and if we perform the above composition, the
Alexander polynomial [27] remains the same irrespective of the winding
number and that equals the square of the Alexander polynomial of «
if it is a union: One of the authors conjectured” namely that every
knot could be obtained by joining together a pair of (in general linking)
trivial knots (=circles) along a common arc, and as the simplest cases
made tentatively such joinings with non linking circles as shown in

1) Meanwhile, this conjecture turned out to be true. See Appendix.
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Fig. 5. Thus we obtained e. g. the product of trefoil knots, the knot 8,,
and a knot of 10 double points, all with the Alexander polynomial
(x*—x+1)% if we gave 0, 2 or 4 windings beforehand, and the knots
6, and 9,, with the Alexander polynomial 24°—5x+2, if these were 1 and
3. On writing these compositions by graphs, the other of the authors
generalised the fact to symmetric unions and skew unions.

The purpose of the present note is to show among others that every
union of two non trivial knots is always non trivial (Theorem 1) and
that the Alexander polynomial is independent of the winding number
for any symmetric union (skew union) of a knot (Theorems 2 and 3).
As an application we give an example of a non trivial knot of eleven
crossings with the Alexander polynomial A(x) =1, the number of cross-
ings being smaller than those of the examples hitherto known of H.
Seifert [13] and of ]J. H. C. Whitehead [14]. In Appendix is further
proved that every knot is a sum of two trivial knots.

§1. Union of knots.

In the following we use freely such expressions as arcs, circles, disks,
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spheres, mappings, etc. but it should be understood that all figures we
shall be talking about are simplicial and mappings are all semi-linear.

Let @ be a solid cube and let « be a knot which has two disjoint
segments AD and BC in common with the surface @ of Q, the remain-
ing arcs AB— a, and CD— a, of £ lying wholly within @ except for
their endpoints. Similarly for another cube @’ and a knot «’, the cor-
responding points and arcs being primed. It will be convenient to call
Q and Q' the cubes of union.

To define a union of x and « we proceed as follows:

Place @ and Q' apart and parallel to each other, one face = of @
facing the face = of @’ in such a way that = and I’ make together a
pair of opposite faces of a rectangular parallelepiped. If E is the plane
containing a face of the last named parallelepiped different from =% and
3/, then @ and @’ are seen to be lying on E, when E is thought of as
a ground plane.

By suitable semi-linear transformations of @ and @’ onto themselves
bring « and «’ to such positions that the segments AD and BC and the
segments A’D’ and B’C’ lie respectively on = and ¥’ and that A, B, C,
D and A’, B/, C’, D’ lie in these orders along straight lines parallel to
the ground plane E, and finally that AA’, BB, CC’ and DD’ are perpendi-
cular to = and 3.

Now let B and B be disjoint arcs connecting B with C and B’ with

C’ respectively outside @ and Q’, thus Q E o
BCupB and B’C’vf’ making together a P
link, such that their projections on E are di g B T_ﬁ' n
each a polygon contained within the pro- c Q c
jection of the rectangle BCC’'B’, cutting dZC/D il o
each other alternatively one above the A A
other in the same sense, as indicated in T 5

Fig. 6. Speaking more exactly, the pro-
jections of 8 and B on E intersect at
2n points P,, P,, ---, P,, arranged in this order on either of the projec-
tions of 8 and A, the original 3 passes above (or always under) 8 at
every second crossing point P,;,, beginning with P,.

Replace now the segments AD and A’D’ with the segments AA’
and DD’, and the segments BC and B’C’ with 8 and B respectively.
Then the knot thus obtained will be called a union of « and «’ joined
along AD and A’D’ and winded along BC and B'C’ with the winding
number 2n. n should be taken >0 if B passes above P,, otherwise <O0.

Likewise for a skew union with the winding number 2n+1.

A union (skew union) depends in general on the locality of its winding

Fig. 6.
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and on its winding number. It is uniquely determined if the winding
number is 0, in which case the union is merely the usual product.

REMARK. More general union can be defined if we make windings
at several places, not only one. Even in this generalised union Theorem
2 is seen to hold, and most probably Theorem 1 also holds.

First we prove the following

Lemma 1. Let « be a knot consisting of an arc v on the surface Q
of a solid cube Q and an arc o comnecting the endpoints of v within Q.
If k=a vy can be spanned by a disk A, then x can also be spanned by a
disk A’ wholly contained within Q, provided that A lies wholly within @
in some neighbourhood of <.

Proof. On account of the assumption there is a polygonal region
P on Q containing v in its interior and two disks S, and S, bounded by
the boundary P of P, of which S, lies outside and S, inside Q, such that
the sphere S,V P has no point in common with the disk A except along
v. By a suitable semi-linear mapping which fixes all points of S, map
the region outside S,uS, into the region bounded by S, and by Q—P.
Then the image of the disk A is just the desired one spanning « within
Q.

Every knot has a representation by bridges (Schubert [107]), the
smallest number of its bridges being an invariant. We shall call « a
knot with n bridges if « has a representation by # bridges but not less.
According to this definition every non trivial knot is a knot with at
least two bridges. We shall say that a knot « has an wn-bridged form
with respect to a cube Q if « is decomposed by @ into 2x arcs «,, «,,
-, a, and B, B,, -, B, such that «; lie wholly inside @ and B; lie
wholly outside @ except for their endpoints and that «;(i=1, 2, ---, n)
and B;((=1, 2, ---, n) can be spanned by disjoint disks within and without
Q respectively, i.e., if « makes inside and outside @ # simple chords in
Schubert’s terminology ([117], p. 135).

Then we have

Lemma 2. Let «” be a union of two non trivial knots « and « with
the cubes of union Q and Q. Then, if « is not of the two-bridged form
with respect to Q, « is a non trivial knot.

Proof. Retaining our earlier notations, suppose that the contrary
were true and let o be a disk spanning the union «/=xr®«/, i.e., let &
be a semi-linear image f(K) of a circular region K, the image f(K) of
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the boundary K “of K being «”. By a usual consideration we can modify
the mapping f, if necessary, so that o= f(K) “intersects” the surface Q
of the cube @ along arcs v, and v, connecting two pairs of points of A,
B, C and D and eventually along polygons, which together with v, and
v, are all disjoint from one another.

Denote the inverse images of A, B, C, D, A’, B/, C’, D’ and v,, v, by
a b, c, d, a, b, c,d and w,, w, respectively. We notice in the first
place that neither of v, and v, is a path connecting A and D on Q, for
if «v,, say, were such a path,
then w,=/f"'(y,) would be a
path leading from a to d in
K, and the image by f of the
region bounded by w, and by
the arc ad of K containing
a, b, c, d would be a disk
spanning the knot o/, ufB' v
a’ v D'Dvuy, VAA’, which is
equivalent to the knot «/, con-
trary to the supposition that
« was a non trival knot.

We suppose therefore that v, connects A and B and v, connects C
and D on Q, and consequently that w, and w, connects ¢ with & and ¢
with d respectively in K.

If o intersects Q besides «, and v, along some polygons, we shall call
each one of the latter an intersection-polygon. Now let II be one of the
intersection-polygons and let II be one of the polygonal regions bounded
by II on @ such that IT has no point in common with o. It does not
matter whether such an intersection-polygon actually exists or not. Let
P be further the inverse image of II in K: f(P)=1l, and let P be the
region bounded by P in K. Then, since IIu f(P) is clearly a sphere, we
can by a usual consideration (see e.g. [4], [9]) modify the mapping f
in the neighbourhood of P and within 15, so that the new semi-linear map-
ping f’ of K coincides with f outside a certain polygon P’ containing P in
its interior and that f/(P’), where P’ denotes the region bounded by P,
runs in the neighbourhood of II without having any point in common
with Q. Then f/(K) intersects @ other than v, and v, along polygons
whose number is diminished by one in comparison with f(K).

Operating with this modification as long as there remains any inter-
section-polygon of the above type, we get finally a mapping, which we

Fig. 7.



138 S. KiNnosHITA and H. TERASAKA

denote again by the same letter f, such that every intersection-polygon,
if any, has on either side v, or ¢,. Let P be the inverse image of one of
these polygons such that there is no inverse image of any of the inter-
section-polygons within P. If P denotes the region bounded by P, then
F(P) has points in common with @ solely along F(P). F(P) lies moreover
within @, for otherwise the arc AA’va’,w BB’ (Cx”) would have point in
common with f(P), which is impossible. Thus the interior of @ is divided
by f(P) into two domains @, and Q,. If T, and 7, denote two regions
of @ divided by f(P), of which T, contains v, and 7, contains v,, then
@, and @, are the domains bounded by the sphere f(P)vuT,, which con-
tains «,, and the domain bounded by f(P)vT,, which contains «,, in
their interiors. Since «@,\uUs, is spanned by the disk which is the image
by f of the region in K bounded by abv w,, so &, U, can also be spanned
by a disk within f(P)uT,, on account of Lemma 1. Likewise «,uUv,
can be spanned by a disk within f(P)vT,. Thus the knot turned out
to be equivalent to the knot

vV(AA'VA'D'UD’'D) Uy, UB,

which is a knot of two-bridged form with respect to @, contradicting
the original assumption of our Lemma. If there is no intersection-poly-
gon on Q, that is, if f(K) does not intersect Q except along «, and
v., then, since a,vv, and &,\Ury, are spanned within @ by disks disjoint
from each other, namely by disks which are the images of the regions
bounded by Zz-IBuwl and by EZluwz in K, « would be equivalent to a knot
of two-bridged form with respect to @, contradicting again the assump-
tion.

Thus the proof of Lemma 2 is complete.

Next we prove the following

Lemma 3. Let «”’ be a union of two non trivial knots « and «' with
the cubes of union Q and Q'. Then, even if « and & are of the two-bridged
form with respect to Q and Q', ¥’ is a non trivial knot.

Proof. Retaining again our earlier notations, cut @ by a plane parallel
to the face % in a square 3. By a semi-linear transformation which maps
@ onto itself bring the knot « into its /1_19rma1 form /(ir, B) ([11], p. 140)
represented by two disjoint arcs & =AB and @&,=CD lying on X with
the bridges AAvADUDD and BBUBCuUCC, where AA, BB, CC, DD
are perpendiculars between 3 and =. The same for the knot «’ and its
cube of union €, and make a union "=+ @« with « and «’.
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We are now going to compute the fundamental group of the two-
fold covering space branched along «” to show that it is not trivial.

\eu

;r = = g
e\, <2 ,
[j(m\ml() \ I@:__E
i/ TN
) i ‘,7: “““““ /It/ «\ L\ A\ A
- B u ¢ x p g
P // /’//1 - ;:/_,///‘
Q Q.
Fig. 8.

To this end consider first the two-fold covering manifold @, of @
branched along «”, which is a solid torus ([11], p. 146). Let «; be the
“projection” of &; on =. If m is a meridian on the boundary Q, of Q,
given by a closed path on X including the arc «, in its interior and ex-
cluding @, outside of it, and if / is a longitude of ,, then the funda-
mental group F(Q,) of @, will be given by the presentation

Generators: /, m.
Relation : m=1,

where / and m stand for the elements of the path group corresponding
to the path / and m respectively.

Similarly the fundamental group F(Q,’) of the two-fold covering
manifold @', of @ branched along «” is given by

Generators: 7, w'.

Relation : m=1,

where / and m’ have the similar meaning.

Finally let us compute the fundamental group of the two-fold cover-
ing manifold R, branched along «” of the exterior R of @ and @’, the
boundaries of @ and @’ being included. Let x, p, ¢ be closed path in
R—«", encircling respectively AA’, AA’vDD', AA’\ DD’ uBB’, the same
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for ¢/, and let 7, 7,, -+, 7,,_, be closed paths in R—«” passing respectively
through where the 2# times windings were performed, thus linking
with both 8UBC and 8 VB’C/, as shown in Fig. 8. Then the funda-
mental group of the space R—«” has the following presentation :

Generators: x, p, q, ¢, 71, %5y 5 Vapy.
Relations : g 'rg '=1,
rg'rgd =1,

rz'z—1q—1pq,_l =1 ’

if the winding number of the union 2# is >0. This presentation can be
transformed into

Generators: z, p, q, ¢.

Relation : p= (g9 )" (@'
It should be remarked that this presentation holds true even if # is

negative.
Now, if we introduce on = a circular path # encircling the segment

AD and excluding B and C outside of it and a circular path v encircling
BD and excluding A and C outside of it, and similarly ¢ on =X/, then,

since
p=u q=vx, ¢=0x,

the last obtained presentation can further be transformed into

Generators: =x, u, v, v/
Relation : u= (' "z v x)".

Observing the relations

1 /-1

l=u™, xx =0 xx =07,

xux”

which hold in R,, we have as a presentation of the fundamental group
F(R,) the following (cf. [3], [6] :

Generators: u, v, v/
Relations : u= ('™
u—l — (U-ll)/)zn.
We are now in a position to calculate the fundamental group F(M,)

of the two-fold covering space M, of S® branched along «’/, which is the
sum of the two-fold covering manifolds @,, R, and @’, considered above.
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On the torus @, R, we have indeed the relations:
u=101"m", v=[Pm',

where « and B are the torsion and the crossing-class of the knot «” in
its normal form («, B) introduced in the beginning of our proof, and
where w, and u, are some integers.

Similarly we have

w=10m", v =10"Fm"
on the torus Q,NR,.

The fundamental group F(M, assumes consequently (Seifert and
Threlfall [12]) the following presentation :

Generators: u, v, v/, [, /'.
Relations : u=10° ov=1["
U= l/‘”/, v =1"

U — (wl—l)Z”’ u 1 — (v—lvl)zn’
which can be transformed into:

Generators: [/, /.
Relations: /= l'Y = ([fI'F)>" = (I'F'[8)*",

Since « and o’ are both >3, because « and «' are non trivial knots,
F(M,) is seen to be non trivial®. Thus the proof of Lemma 3 is complete.
Combining Lemma 1 and Lemma 2 we have immediately

Theorem 1. FEvery union of two mnon trivial knots is a mnon trivial
knot.

§ 2. Symmetric union and symmetric skew union.

If two knots « and «° with their cubes of union @ and Q' are
situated symmetric to each other, then a union (skew union) of « and «
will be called a symmetric union (skew wunion) of x. It is not assumed
that « is non trivial.

Then one of the theorems to be proved is the following

Theorem 2. If A (x) denotes the Alexander polynomial of a knot «,
then the Alexander polynomial A, (x) of every symmetric union '’ of «x is

2) If we add a relation /#=1 to the above ones, then we have a presentation
(90, 55 9% 5, (99)%}
of a subgroup of F(M,), where y=IB, y=I'#’, showing the group to be non trivial.
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equal to the square of A.(x):
( 1 ) AK'/(x) = (Ax(x))z ’

and is therefore independent of the winding number and the locality of
winding of the union.

Proof. Let 2# be the winding number of the union «”. If =0,
then «”(x) is the product of « with its symmetric image «/, and (1) is
immediate.

Suppose now that # is positive. Then Q Q
the projection «% of «” on the ground plane — s, 4,
E assumes the form as shown in Fig. 9. «% &
decomposes E into domains, of which those Y /a.; , N
contained within the left-hand square @y are / /\
denoted by ¢,, ¢,, -**, ¢,,, the symmetric image j’
of ¢c;(¢=1, 2, ---, m) by ¢/, and the remaining Ce @ Ce
ones by a,, a,, -, @.,, b, ¢, and ¢/,. Since
A/(x) is independent of the choice of orienta-
tion of «”/, we may suppose that « is oriented
asin Fig. 9. Then the Alexander matrix of
«” will take the following form®:

ao al az ...... aZ ”

—x —1
—1 —x

_x 1
2) |

SO OO O~
o
(=N e]

oo Hk
ow
[

i

3) The matrix defined originally by Alexander was not a square one. But some con-
sideration of the presentation of the knot group will convince us of the naturality of using
the square matrix of the following shape.
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where =1, 2, .-, m+1 and j=0, 1, -

Subtract the (@2n+1)-th row from the (2n+2)—th Tow and then the
2n-th row from the (2n+1)-th row, etc.; omitting the unnecessary rows
and columns from this matrix in order to obtain the Alexander poly-

nomial, we have

b C €t Cp o e O
—x |—nx+n0 -+ 0 nx—n0 - 0
b,
: Ci; 0
(3) bm+l
—b,
: 0 c;
_bm+1 ’
Adding each (m+3+1i¢)-th column (=0, 1, ---, m) to the (2+17)-th
column and then each (1+i)-th row (=1, 2, ---, m+1) to the

(m+2+1i)-th row respectively, we have further

b G € Cp ¢y e C'm
—x 0O 0.0 nx—n0 -+ 0
b,
: Ci;j 0
(4) boms
0 0 Cij

We have therefore
Ayr(x) = :hxplcijlz ’

where p is a suitably chosen integer.
On the other hand, since the Alexander matrix of « takes the form

ay, a, C, -+ Cp
1 0/0 -+ 0
0 1/0 -+ 0

(5)
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where 1=1, 2, ---, m+1 and j=0, 1, ---, m, we have
Ag(x) = :txp/|cij] ,
where p’' is a suitably chosen integer. We have therefore

Awr(x) = (Ac(2))*,

which was to be proved.

Since our method yields the same result even if # is negative, the proof
of Theorem 2 is thus complete.

Concerning a symmetric skew union we have only the following

weaker result:

Theorem 3. If «, and r, are symmetric skew unions of a knot x with
the same place of joinings and windings, their )
Alexander polynomials A, (x) and A, (%) coin- W - 2
cide: —9@’9—
A (x) = Ay, (), % G 413 g \/
even if the winding numbers arve different 4 : y N
from each other. Ci s" C{

’

Proof. Let «” be a symmetric skew union b
of # with the winding number 2#+1. Suppose Z"
first that 2n+1 is positive, and let the pro- o
: : ” 7" Fig. 10.
jection «% of x«” on the ground plane E
assume the form as shown in Fig. 10. «% decomposes E into domains
as indicated in the figure. Then we are only to prove that the deter-

minant of the matrix

b Co ¢, ¢, ¢y ¢, -,
x |—m+l)x+n O - 0| nx—(MmM+1) O --- O
b,
I;)er1 Ci; 0

—b,

—I:),,m 0 —Cy;

corresponding to (3) of the proof of Theorem 2 is independent of .
The matrix corresponding to (4) takes the form
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b Co € * Cp ¢/ ¢/ G
x  |—x—1 0 -0 —m+1)x4n 0 -+ 0
b,
: Cij 0

(6) bpta
0 0 —C;;

Adding the first column to the second and then the second column
multiplied by x to the first, we have

0 -1 0 .. 0 —m+l)x+n 0 - O
b/

: ciy 0

i ’
0 0 -—C,-j

the determinant of which is seen to be independent of #. Since our
method yields the same result even if 2x+1 is negative, the proof of
Theorem 3 is thus complete.

Theorem 4. If «’ is a symmetric union or a symmentric skew union
of a knot «, then

T,(x") = (T,(x))* ’

where T,(x) denotes the product of torsion numbers of the two-fold branched
covering space of «.

Proof. Since T,(x) =|A(—1)| (cf. [5], [6]) for every knot x, we
are only to prove that

[Aw(=1) [ = [Ad=1)[*.

If £/ is a symmetric union, this equality follows immediately from
Theorem 2. Therefore let «” be a symmetric skew union. Then from
(5) we have

[Ad—=1) [= £ c;;(—1)|
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and from (6), where we put c¢;; in- N I
stead of ¢, x /
+ he! -
| A(=1)| = el (—1)|? | ?Xl /\ 2

Y /l (—Jf)
It is easy to see that for each 7 (1=1, Fig. 11.
2, .-, m—1) (see Fig. 11)

(Ci,o(_']-): ci,l(—l) y "ty ci.m(—l))

== :t(c:,o(—l) ) C:I(_l) y Ty C:m(—l)) .
Therefore
[Av(—=1) | = |A(—1)|?

and the proof is complete.

§3. Union of knots with the same Alexander polynomial.

We have mentioned in Introduction that the knots 8;, 8,,, 8, 8.,
8., 8.1, 9%, 9, and 9, of Alexander and Briggs table are unions of two
trefoil knots. Now, if we decompose the Alexander polynomials of
these knots into factors, we find a remarkable fact that they have a
factor #*—x+1 in common:

Alexander

Knot polynomial Factorization®
8 1— 3+ 4— 5=(01-1)1—-2+1)
8, 1— 3+ 6— 7=(@1-1)°
8, 3— 8+11 = (1—1) (3—5)

8, 1— 1+ 0+ 1=(1-1) 1+0-1)
8, 1— 2+ 3 = (1 1)2

8, 1— 4+ 5 =(1-1) 1-3)

9, 2— 5+ 8— 9_( 1) 2—3+3)
9,, 1— 5+10—13 = (1—-1)*(1—-3)

9, 1— 5+12—15=(1-1) 1—4+7).

But this is not a mere contingency. We have in fact

Theorem 5. If « and «' are knots with the same Alexander poly-
nomial A(x), then every union of « and «' has a factor A(x) in its Alex-
ander polynomial.

Proof. Since the theorem is clear in the case 2n=0, first let 2n_>0.

4) (1-1) (1-2+1) means e.g. (a2—x+1)(x*—223+22-22+1).
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As in the proof of Theorem 2 the Alexander matrix takes the following
form:

Ay Ay Ay +woveoee @, b ¢ ¢ Cpw €y €', ¢
1 00 eeeennns 0/0101]0 0700 0
O 1[0 «veveeens 0/0/0]|0 0(0|0 0
0 /1 0 «+ 0]0|—x —1
0 0|1 - 0]0]|-1 —x
: i) 0 i 0
0 0|0 -« x 1|0 |—x —1
0 0(0 -0 1]|x|-1 —x
* 0 * Cij 0
* 0 * 0 Cij
where
a, a, ¢, Cp a, a, ¢, ¢
1 0(0 -0 1 0/0 -0
0 1/0 -0 0 1/0 .- 0
*® I C;j * l Cij

represent the Alexander matrices of # and x’ respectively.

For the sake of the generality of speaking let c,(x) be the greatest
common factor of elements in the c¢,—column. Divide the ¢,—~column by
¢,(*) and multiply the c,—column by c,(x). Then by elementary trans-
formations operating on rows bring all elements but one, say c,;, of the
¢,~column to O, letting c,; be equal to 1. Again by elementary trans-
formations operating this time on columns bring all elements of the row
of c,; except for this one equal to 0.

Proceeding in this way with ¢,—~column, etc. and interchanging row
and columns suitably, we have finally
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Ay A, @y +oveveeee a,, b Cy wrevreonrees Clo .........
1 0
0 1 0 0 0 0
* * % | ok 0 * 0
* % | £2?Ax) O
1
0 0 0 0
1
+x?Ax) O
* 0 * 0 1 .
0 1

the determinant of which, by deleting the first two rows and columns
and by expanding along the last 2(m+1) rows, shows immediately that
it has indeed a factor A(x) = x4°|c;;| = 47|l

Similarly for the case 2#< 0 and the proof is complete.

§4. Knots with the Alexander polynomial equal to unity.

H. Seifert [13] and J. H.C. Whitehead [14] determined some types
of knots whose Alexander polynomials are equal to 1. Here another
type of such knots will be given.

The basic idea of the construction is this: If the Alexander poly-
nomial of a knot « is unity, then by Theorem 2 that of every symmetric
union of « is also unity; therefore, if we take as « a trivial knot, we
would obtain a knot of the above property. The main difficulty is, how
to determine the place of joining and winding in order that the union
be a non trivial knot.

Let « be a trivial knot given in its graphical representation (k) by
2p+1 sided polygon AA, -+ A,, of p consecutive sides A,4,, A4, -,
A, A, with negative signs. Let A’,A’,--- A, be another polygon of

consecutive sides A A, .., A, Ay, -+, Al A, with negative signs,
symmetric to A4, -+ A,, with respect to a straight line. Bring A, and
A’y to a coincidence and connect A, and A’, with 2n arcs ey, ¢,, -+, €,,.

The knot represented by this graph, which is a symmetric union of «
with the winding number 2x, will be denoted by x(p, 2n). # should be
taken negative if the signs of ¢; are negative.
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Then we have

Theorem 6. «”" = «(p, 2n) is a non trivial knot with the Alexander
polynomial Ay/(x) =1, whenever p>2 and n-=0. Especially (2, 2) is a
knot of eleven crossings with the Alexander polynomial equal to unity.

Proof. As will be seen from the structure of «(p, 2n) it suffices to
prove the theorem only for the case »>0. It is also immaterial whether
p is even or odd, but first let p be an odd number. Then, passing over
from the original graph to its dual form, we see that «(p, 2x) is a union
of knots «, and x, whose graphs (k) and (k,) consist respectively of:

E2n

Fig. 12.

(k): vertices E,, E,, -, E,, and B and 2x consecutive edges with
negative signs EE,, E\E,, -, E,,_,E,,, a bundle of p+1 edges with nega-
tive signs connecting B and E, and a bundle of p edges connecting B
and E,,.

(k,): vertices E,, and B’ and a bundle of p edges with negative
signs connecting these vertices.

Now the knot «, represented by (k,) is alternating and so by Bank-
witz’s theorem ([3], see [8], p. 34) a non trivial knot.

In order to show that «, is also non trivial, we proceed as follows®:

(1) A graph can be carried over to an equivalent one, if we insert
between two vertices A and B of the graph two edges AC, and C,B
with positive signs (which are understood) and an edge AC, with a
negative sign:

° o —> o o—o0 —> & n»—o
A B A C B A Co B

(2) By inserting between the vertices A and B of a graph three

5) For the reduction of graphs see [15].
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edges of the type of (1), a bundle of m edges with negative signs con-
necting A and B can be substituted by m+2 edges AC,, CC,,-,C,B
and by an edge AC,, with a negative sign:

AL AL A

e o & —>
A C C Cmn B

(3) If two vertices A and B of a graph is connected by m+1 con-
secutive edges AD,, D.D,, ---,D,B with negative signs and another
vertex C is further connected with D, by an edge CD,, then it will be
shown by repetition of a fundamental operation on graphs [15] that
these edges can be substituted by a bundle of m edges connecting A
and C, by the edge BC and by the edge AB with a negative sign.

C C C

1

A D, D, Dm B A D, Dn B A B

(4) Applications of (2) and (3) shows finally the following reduction
of (k) to an alternating knot:

EcEi E .
oo N BB B g3

NCo 1 P pu- = 24

1

Again by Bankwitz’s theorem the knot «, is seen to be a non trivial

one.

Hitherto we have assumed that p was an odd number, but if p is
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even, a similar decomposition of (k) into knots will be obtained if we
exchange E,, E,, -+, E,,, B, B/, p and

p+1 seriatim by E,,, E,,_,, -+, E,, B, f)

B, p+1 and p in the definitions of (&, /)//

and (k,). /./\ :/ 4
The knot «” is thus seen to be a

‘
union of two non trivial knots x, and '

x5, and consequently it is by Theorem 1
non trivial. «(2, 2) k)
By a similar reduction of graph Fig. 13.
it can be proved without difficulty that if p=2 and n=1, «(2, 2) is
a knot of 11 crossings with the graph (k) as shown in Fig. 13.

ReEMARK. The non triviality of knots «, and «, can also be proved
directly and without difficulty by means of the calculation of the deter-
minant of knot.

APPENDIX
The sum of knots modulo 2.

Let «, and «, be two knots having a single arc y as their meet:
k,Nr,=r; then the sum modulo 2 of «, and «,, that is the point set
x,\J k,— (y), where (y) denotes the open arc of ¢, will be called the sum
of x, and «,, and denoted by «,(+)x,. We are going to prove that any
knot can always be represented as a sum of two trivial knots.

A knot « will be said to be decomposable into trivial knots by a pair
of different points A and B on «, if there is an arc ¢, a decomposition-
arc, connecting A and B outside « such that « is represented as the sum
of knots @y and By, where @ and B are two arcs of « of endpoints
A and B.

According to this definition, if a knot « is the sum of two trivial
knots «, and «,, then there must be a pair of points A and B on « such
that « is decomposable into trivial knots by A and B; for the endpoints
of the common arc «,N«, have this property.

Then we have

Lemma 1. If a knot « is decomposable into trivial knots by two points
A and B on «, then x can also be decomposable into trivial knots by any
two points A’ and B’ of «.

Proof. Let ﬁ’ be the arc of x which does not contain B. Then,
if y is a decomposition-arc of endpoints A and B, an arc , connecting



152 S. KiNosHITA and H. TERASAKA

A’ and B sufficiently near A’X’\er1 will be found as a decomposition-arc
of endpoints A’ and B. By the same reason there can be found further
a decompotition-arc of endpoints A’ and B’ sufficiently near v,, g.e.d.

Lemma 2. Let Q be a solid cube that has two segments in common
with a knot « and let  be an arc that connects two points X and Y of «
lying outside Q and that has no points in common with « except for X
and Y. Then X and Y can be connected wholly outside Q by an arc that
is isotopic to o in the complementary E*—« of «.

Proof. @Qn«x can be thought of as consisting of two perpendiculars
AB and CD between a pair of opposite faces = and ¥ of Q. Suppose
v intersect % in a point P. Then we can substitute a sufficiently small
arc 8 of ¢ containing P in its interior by an arc £’ that is isotopic
to B8 in E*—« and that has no point in common with =, so that the
newly obtained arc 4’ intersects 3 in points less by one in number as
compared with 4. Proceeding in the same way with all intersection points
of ¢ and =, which we may suppose finite in number, we can obtain finally
an arc ¢ that is isotopic to ¢ in E’—« and that has no points in common
with =. Then by a homeomorphism of E® leaving all points of « and %
fixed “drive away” " out of @ in the direction from = to 3’ so that the
image of 4" becomes the desired arc lying wholly outside Q.

We are now in a position to prove

Theorem. Every knot can be represented as the sum of two trivial
knots.

Proof. We prove the theorem by induction on the unknotting num-
ber of a knot [7], that is the minimum number of cuts in order to
change the given knot to a trivial one.

First suppose that the theorem holds true if the unknotting number
of a knot is #—1, and let « be a knot of unknotting number #(>1).
Then there are by the definition of the unknotting number an equivalent
of x, which we denote again by the same letter », and a solid cube @
having two segments AB and CD in common with « such that if AEB
is a triangle within @ having a point in common with CD and if we
substitute the arc AB of « by AEVEB, the newly obtained knot «’
becomes a knot of the unknotting number z—1. By our assumption «’
is the sum of two trivial knots, and so «’ is decomposable into trivial
knots by two points X and Y on «. Then by Lemma 1 X and Y can
be taken outside Q. Let y be a decomposition-arc of endpoints X and
Y: by Lemma 2 ¢ can be so chosen that it lies wholly outside @. If «
and B are arcs of « of endpoints X and Y, of which 8 contains the
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segment CD, then a¢\uy and Buq are trivial knots. But since ¢ has no
points in common with @, (¥(+)AAEB)\Uy is also a trivial knot. Thus
« turns out to be the sum of two trivial knots (x(+)AAEB)\vy and Buy.

Since the theorem is true if =0, that is, if the knot is itself
trivial, the theorem is thus proved to be true for any knot.

(Received August 1, 1957)
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