
Title 保守支援を目的としたコードクローン情報検索ツール
の試作

Author(s) 泉田, 聡介; 植田, 泰士; 神谷, 年洋 他

Citation 第２回情報科学技術フォーラム(FIT2003)一般講演論
文集. 2003, 1, p. 215-217

Version Type VoR

URL https://hdl.handle.net/11094/50373

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

F I T (情報科学技術フォーラム)2003

8-036 保守支援を自的としたコードクローン情報検索ツールの試作
Code Clone Search Tool for Software Modification

泉閉聡介f 横田泰士f 神谷年洋5 橋本真ニf 井上克部f
Sousuke Izumida Yasushi Ueda Toshihiro Kamiya Shi吋iKusumoto Katsuro Inoue

1. まえがき
近年，ソフトウェアシステムの大規模化，複雑化に伴
い，プログラムの保守・デ、バッグ作業に要するコストが増

加してきでいる.ソフトウェア保守を困難にしている一
つの要因としてコードクローンが指摘されている.コー
ドクローンとは，ソースコード中に含まれる向ーまたは
類似したコード片のことである [3].それらは多くの場
合，既存システムに対する変更や拡張特におけるコピー
とペーストによる安易な機能的再利用の際に発生する.
もしあるコード片にパグが含まれていた場合，そのコー
ド片に対する全てのコードクローンについて修正を行わ
なければならない.また，機能追加においても同様であ
る.そこで，大規模ソフトウェアから効率よくコードク
ローンを検出する手法が求められている.

これまで様々なコードクローン検出法が提案されてい
る[1]期間[5][7][8].我々もトークン単位でのコードクロー
ンを検出するツール(CCFinder[6])を開発してきており，
様々なソフトウェアに対する適用者E行ってきている.こ
れらの適用の中で， CCFinderは大規模なソースコード
も，総粒度でのコードクローン解析を非常に高速に行う
ことが可能であると評価されてきた.しかし， CCFinder
の出力結果は，テキスト情報であり，実際の保守作業に
おいて利用する場合には，コードクローンの佼置情報を
遊感的に把握することが困難であった.

本研究では，コードクローン検出ツールCCFinderで
検出されたコードクローン情報に基づいて，ソフトウェア
保守を効率よく実施するためのコードクローン検索ツー
ルについて提案する.また，本ツールの有効性をgrepと
の比較を用いて示した.

2. CCFinder
2.1 コードクローン

ある系列中に存在する 2つの部分系列α，sが「等級」
であるとき，C(α，s)と書き，αはPのクローンであると
言う.また， α，βの組をクローンペアと呼ぶ.通常，C
は，反射，推移，対称律;lf:満たし，同値関係である.αを
含む悶値類をαのクローンクラスと言う.

任意のα，sに対して C(α，s)ならば，それぞれの部分
系列 00'，β'(α'く @α，s'<.βと書く)に対してC(α'，s')
が成り立つ.また，拒意の 00"，s"(α<-αヘβ<-β")に
対してC(αヘグ')ではなく，かつC(α，s)ならば，α，βそ
極大クローンペアと呼ぶ.本稿では，ある部分系列αに
対し， 7jlJの部分系列βがαと極大クローンペアを構成す
るとき， αを単に「クローン」と呼ぶ.

f大阪大学大浮!涜情報科学研究科
(jraduate School of Information Science and Technology， Osaka
Univ，田sitv
E科学技術振奥主事業団さきがけ研究21
PRESTO， Jap叩 Scienceand Technology Corp

215

系列Sが与えられたとき， 8中の極大クローンペアα，
β(ただし α手β)を全て発見することを，クローン発
見問題と言う.通常， rクローン検出Jあるいは「重複
コード発見」ツールと呼ばれるものは，このクローン発
見関題を解くことを目的としている.ただし，ある一定
の長さ以上の極大クローンペアのみを出力するようにし
ているのが普通である.短いクローンは，多数発見され
るζとが多いが，その意味や存在には，興味のない場合
が多いからである.

2.2 コードクローン検出ツール CCFinder

コードクローン検出ツールCCFinderは，単一または複
数のファイルのソースコード中から全てのコードクロー
ンを検出し，それをクローンペアの佼置情報として出力
する.CCFinderの持つ主な特徴は以下の通りである.

(1)ソースコードをトークン単位で直接比較することに
よりクローンを検出する.

(2)クローン検出アルゴリズ、ムにサフィックス木を用い
ることで高速化を図っており，数百万行規模のシス
テムにも実用時間で解析可能である.

(3)実用的に意味のないクローン(モジュールの先頭に
あるテーブルの初期化文等の繰迭し)は検出しない.

(4) 複数のプログラミング言語 (C/C++，JAVA，
COBOL， Fortran， EmacsLisp， Plain text)への対
応も実現している.

図lにCCFinderの出カ仔iJ;lf:示す.CCFinderの出カ
はテキストファイルであり，その内容は，最初の部分が
検索時のオプション，次のfiledescriptionの部分で入カ
となったソースファイルに振られた内部的なID番号，最
後のcloneの部分で検出されたクローンペアそれぞれに
ついての原始位霞，終了位置となっている.例えば，函1
の下線部分はファイルIDO.95のファイルの2331行自の
5カラム臣から 2333行自の5カラム呂までと，ファイル
IDl.Oのファイルの1行自 lカラム白から 3行自 1カラ
ム白までがコードクローンであることを意味している.
このように，クローンの検出結果はクローンペアの位
置情報のみであるので，ユーザ、の利用自的に応じたユー
ザ、インタフェースを作成する必要がある.

3. コードクローン検索ツール
3.1 基本方針

今回作成したコードクローン検索ツールは，デバッグ
時の利用と機能追加時の利用を想定している.具体的に
は，修正(あるいは，機能追加)対象のコード片が特定
された時に，そのコード片に対応するコードクローンを
前もって検出しておき，それらについても修正(あるい

F I T (情報科学技術フォーラム)2003

#vorsion: ccfindor 4.5h
#langspoc: C
#option: -b 12，1
4場。ption・ -k:
#option: -r abdtikmnpstv
得。p乞ェ。n: -c w-f-g
#begエnfiledescrエption
0.0 1475 3441 D:¥Can皿 L田町四¥Canna36¥C山四¥C阻 a.c
0.1 3213 9753 D:¥C祖国a_so世臼¥C叩副¥C間的叫c四国岨・C
0.2 3584 11442 D:¥C出血8-source¥C叩a36¥cc四七叩¥lisp.c
0.3 588 1600 D:¥C組閣L回世間¥C叩a36¥ccustom¥parse.c

替end.filedescription
#beginsynta:x error
#endsynta.x error
券beginclono
O.95 2331，5，7202 2333，5，7216 1.0 1，1，0 3，1，14 14
0.952348，5，7258 2350，5，7272 1.0 1，1，0 3，1，14 14
0.952349，5，72652351，5，7279 1.0 1，1，0 3，1，14 14
0.952350，5，72722352，5，7286 1.0 1，1，0 3，1，14 14
0.952373，5，73832375，5，7397 1.0 1，1，03，1，14 14
0.952374，5，73902376，5，7404 1.0 1，1，03，1，14 14

様endclone

コード片・

G

図 1:CCFinderの出力例

コードウローン検索ツーJレ

|吋阿仁CCFindcr

t;」~，I
図 2:システム構成

は，機能迫力口)が必要であるかを検討するための支援を
行う.

コードクローンの検出部分として， CCFinderを用い
ているが，検索ツールとしては，ユーザが入力したコー
ド片に対して，そのコードクローンを含むファイルを検
索し，ユーザに対してわかりやすく提示する必要がある.
また，それらの処理を簡使に行えることも重要である.

3.2 概要

開発した検索ツールでは，まず，入力として，ユーザが
指定するコード片とコードクローン検出対象となるファ
イル名のリストを与える.その結果，出力としてユーザ
が指定したコード片のクローンを含むファイルのリスト
を表示する.
検索ツールの構成図を罰2に示す.図のように本ツー
ルはユーザの入力情報から， CCFinderへのオプション，
入力ファイルを作成し，検索結果をクローンが検出され
たファイル別に表示を行う.
検索ツールの額面例を図3に示す.Aにコードクロー
ン検出対象となるファイル名のリストを入力し， Bには
ユーザが指定するコード片を入力する.コード片はエ

216

一一一一一一一…

一一「

日

図 3:開始爾面

図4:検索結果(1)

ディタ等からコピーとペーストによって入力することも
できる.また， Aへ入力するリストはCに提示されてい
るディレクトリ構造から検索対象ファイルを選ぶ操作に
よっても作成できる.

コードクローンの検索が終了すると，結果を表示する
ための新たなウインドウが関かれ(図4)，ユーザが指定
したコード片のクローンを含むファイルのリストが?新
しいウインドウに表示される.ユーザはこのリストから
ファイルを選択して(図中の下線のついたファイル名をク

リックする)，そのファイルのテキストを表示させ，コー
ドクローンの位置を確認することができる(検索された

コードクローンはハイライトで表示される)(図5).

3.3 適用例

開発したツールを用いた疑似デバッグによって，ツー
ルの適用例を示すとともに，その有効性を評価する.

実験では， SourceForgeで開発されている臼本語入力
システム「かんなJ[4]の修正例を用いた.具体的には，
fかんな」パージョン3.6とパージョン 3.6p1閣でのセ
キュリティ問題の修正で，バッファ処理の前にオーバー

フローを調べる処理を追加してあり，その中でほぼ同じ
修正を行っている 21箆所を対象とした
修正されたコード片の一つから残り 20個のコード片を
検索する作業において，標準的な検索ツールである grep
と本ツールを比較する.まず， grep t.r用いた検索では，
修正箇所で使用されている“Request勾rpe"という変数

F I T (情報科学技荷フォーラム)2003

<<-叶.叫町一明・町一

昨同輔副甲山一

誕一山一_.......1

……一-_.叩一昨問問問軍側側

問……!町一山町
、問問削帥t.._.噌……

図 5:検索結果(2)

名の一部で、検索を行った.本ツールではバッファ処理を

行っている部分の 2行を入力コード片として与えて検
索を行った.検索対象ファイルは fかんなJver3.6の全
ソースコード (C言語，約21，000行)である.
検索結果と検索に要した時間を表1に示す.grepでの
検索結泉では 234行が検出された.このうち， 2行以上連
続したコード片を 1つの修正対象コード片とみなすと，
全部で 58箇所となった.このうち， 134行 (20筒所)が
修正箆所に関連した場所であった.一方，本ツールの検
索結果では， 17箇所が検出され， 4箇所が発見されなかっ
た.しかし，発見された 17箇所は全て正しく修正箇所を
示していた.本ツールで、発見されなかった部分は，入力
コード片として与えた2行が連続していなかった部分で

あった.
2つのツールの検出結果をf値 [9]を用いて比較する.
f値とは完全性と効率性からt情報検索の精度を評価する

ものであり，

2x完全性x効率性
f個出

完全性+効率性

と定義されている.

ここで，完全性は必要な情報のうち実際に検索された
情報の割合，効率性は実擦に検索された情報のうち必要
な情報の説会であり，筒方ともに高いほど優れた検索シ
ステムであると判断される.従って， f値が大きいほど，
情報検索の精度が高いといえる.

本実験結泉に対して，fiI菌を計算した結果を表2に示
す.本ツールの結果が， gr句者E用いた検索結巣よりもよ
い結果そ示している.

4. まとめ
本論文では，ソフトウェア保守を支援するためのコー
ドクローン検索ツールについて述べ，本ツールの有効性
を示した.今後の課題としては，実擦の保守現場での適

217

用・評価や検索されたコードクローンの絞り込み等の改
良が考えられる，

参考文献

[1] B.S. Baker，“Parameterized Duplication in Strings:
A1goriぬms組 dan Application to Software Main司
tenance" ， SIAM Journal on Computiη.g， 1997，
26(5):134与1362.

[2] M. Balazinska ， E. Merlo， M. Dagen錦， B. Lague，
回 dK. Kontogi叩 nis，“MeasuringC10ne Based
Reengineering Opportunities"， Proceedings of the
Sixth InternationalSymposium on Sojtware Metrics
(METRICS99)， 1999，292幽303.

[3] I.D. B制民 A.y，油in，L. Moura， M. S叩 t'Anna，
and L. Bier，“C10ne Detection Using Abstrac七Syn幽
古砿宝'rees"，Proceedings of the 14th International
Confernce on Soj旬。re MintenanceρCSM98)，
1998， 368-377.

[4]日本語入力システム「かんな j
http://c釦 na.sourceforge.jp/

[5] S. Ducasse ， M. Rieger， and S. Demeyer.“ALan幽
思lageIndependent Approach for Detecting Dup1ふ
ca七日dCodeぺProceedingsIEEE }ηternational Con-
fe陀 nceon Soj苦ωareMainteηance-1gg9， 1999， 109幽
118.

[6] T. K叩 iya， S. Kusumoto，阻.d K. Inoue，
“CCFinder: A multilinguis七ictoken-based code
clone de七ectionsystem for 1arge scale source code" ，
IEEE Transactions on Sojtware Engineering， 2002，
28(7):65ι670.

[7] R. Komondoor， and S. Horwitz，“Us泌.gslicing to
iden'七iおTduplication in sourc巴 code"， Proceedings
8th Internatioηal Symposium on Static Analysis，
2001.

[8] J. Krinke，“Identifying Si凶1arCode with Prか
gram Dependence Graphs"， Proceedings 8th Work-
ing Conference 0ηReverse Engineering， 2001， 562-
584.

[9]徳永武信，“情報検索と言語処理"，東京大学出版会，
2002.

