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Introduction. Let G be a connected semi-simple algebraic group defined

over the finite field Fq and let F be a Frobenius endomorphism of G. The

principal purpose of this work is to give the values of discrete series characters of

GF (the group of .F-fixed points of G) at regular unipotent elements. These

values are shown to be sums of products of Gauss sums and are in a sense dual

to the Jacobi sums discussed by Weil in [10]. They are computed by taking

certain Fourier transforms over the first Galois cohomology group Hl(F, Z),

where Z is the centre of G.

The group G can be embedded ([2], 1.21) in a reductive group G with

connected centre and compatible F-structure and the method employed here

is to study the characters of GF via those of GF, about which a certain amount

is known ([2], §10 and [6]). In particular we give a characterization of the

discrete series characters (Theorem 3.7) of GF which have a Whittaker model,

and prove some results about the restriction of characters from GF to GF. It

transpires that to compute the character values above, one must decompose

the restriction of Rψ to GF, where T is minisotropic and θ is in general posi-

tion, and this decomposition depends on a certain subgroup WF(Θ) of H\F, Z).

It is actually over this group that one takes the Fourier transform to perform the

computation.

In § 3 of the present work the role of Hl(F, Z) in studying restrictions is made

explicit and §4 the same theme is exploited in the situation of TF-orbits of

linear characters of UF. In §5 some character sums are computed in terms of

certain invariants of the root systems of the split groups and in §6 these are

evaluated by the Fourier transform technique.

The main result for the split groups is given in general form in Theorem 7.4,

which incorporates the evaluation of the Fourier transforms, while the indivi-

dual classical groups are treated explicitly later in §7. Finally, §8 outlines

the corresponding procedure for the non-split case, and the computations are

carried out for the finite unitary groups.

The author would like to thank P. Deligne for many enlightening con-

versations, G. Lusztig for help with the proof of Theorem 3.7 and IHES and
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the University of Oregon for hospitality.

NOTATION: For any group B, Ϊ[1B denotes the direct product BxBx
-•• xB (/times), while for an abelian group A, Ad denotes the subgroup of dth

powers in A.

1. Some exact sequences. In this section we recall some (well-known)
constructions which shall be used throughout the remainder of this work. Let
H be a connected linear algebraic group defined over Fq with Frobenius map

F and let Z be an F-fixed finite subgroup of the centre of H.

Lemma 1.1. We have an exact sequence

l^ZF-»HF^> (H\Z]F -> ZI(F-l)Z -> 1 (1.1.1)

[Here, and elsewhere in this work, HF denotes the group of F-fixed points of H].

Proof. To define δ, notice that hZ is F-fixed (h^H)^hFh~l^Z. Hence
S(hZ)=(F—l)h is well-defined on (H/Z)F, to within multiplication by an ele-
ment of (F—l)Z. The surjective nature of δ follows from Lang's theorem,
which says that F-l is surjective on H when H is connected. The remainder

of the proof is routine.
Note that the sequence (1.1.1) is the well-known sequence in Galois cohomo-

logy:

1 -> H\F, Z) -> HΨ, H) -> H°(F, H/Z) -> H\F, Z) -» H\F, H) = 1

which comes from the exact sequence l->Z-»/ί->/f/Z-»l. We therefore
often write Hl(F, Z) for Z/(F~ 1)Z. We remark also that (as R. Steinberg has
pointed out) this sequence provides an easy proof of the equality | HF \ = I (H/Z)F \.

Corollary 1.2. Let G be as in the introductίon-vίz. a semi-simple group with

(finite) centre Z, and suppose that T is an F-fixed maximal torus of G. Then we

have the following exact sequences:

1->ZF->GF-+ (G/Z)F -> Z\(F-V)Z -> 1 (1.2.1)

i -> ZF -> TF -> (τ\zγ -> z/(F-i)z -> i (1.2.2).

We now embed G in a connected reductive group G which has connected
centre as follows (c.f. [2], §1.21): let Z-+Z be an embedding of Z in a torus
defined over Fq (e.g. one can take Z to be any F-fixed maximal torus of G);

then take G to be the pushout of the diagram

G ->G
T t
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i.e. G=GxZ/{(z, z~l)\z^Z}. We are thus provided with monomorphisms
G->G and Z->G which are F-equivariant, and we have

Lemma 1.3. (i) Z is the centre of G} Z=Zf}G, and ZF=ZF Π GF,
(ii) G/Z is canonically isomorphic to G/Z and (G/Z)F^GF/ZF,

(iii) Any F-stable maximal torus T of G is contained in an F-stable maximal
torus T of G such that G=G.f and GΓ(f=T.

Proof, (i) is obvious. To see (ii), recall that the isomorphism G/Z->
G/Z is F-equivariant and hence (G/Z)F^(G/Z)F. Since Z is connected, by
Lang's theorem gZ is F-stable *=*gZ contains an element of GF Hence (G/Z)F

« GF/ZF. For (iii) one can take T=TxZ/ {(*, z~l}\z<=Z}.

Corollary 1.4. We have, in the above notation, that

GF = GFTF and GF Γι TF = TF .

Proof. Clearly GF=(GT)F^GFTF. Now GF(Ί TF=TF and so \GFTF\
= \GF\\TF\\TF\~1. On the other hand bytaking H=G_ and T respectively in
1.1.1 we see_that |GF |-|_GF | \ZF\ and | TF\ = \ TF\ \ZF\ . Thus|GFTF |-
I GF I I TF I I ZF I I TF I -1- I ZF I and the result follows.

Proposition 1.5. With notation as in Lemma 1.3, there exists a canonical sur-
jectίon δ: GF-*Z/(F—l)Z such that the following sequences are exact:

> GF Z/(F-l)Z -> 1 (1.5.1)

- δ
1 -> TFZF -> TF -> Z/(F-1)Z -> 1 (1.5.2).

Proof. From the exact sequence 1.2.1 we have, using Lemma 1.3 (ii)

1 -> GF/ZF-> GF/ZF -> Z/(F-1)Z - 1 (1.5.3).

Now the image of G^/ZF in GF/ZF is GFZF\ZF and so
The map δ may thus be taken as the composite of the natural map GF^>GF/ZF

with the map of 1.5.3 above. The proof of 1.5.2 is the same. For future re-
ference we describe δ explicitly: for g^GF 3 zg^Z such that gzg^G. Then

We now turn attention to the action of the Weyl group on a torus.

DEFINITION. For an F-stable maximal torus T of G we define W(T)=
NG(T)IT. Correspondingly for T (an F-stable maximal torus of G containing T

we define W( f)=Nc( f )/ T .
The map F acts on W(T) and W(T) and we have corresponding sets of fixed

points W(Ty=NGF(T)/TF etc.

Lemma 1.6. Let T and T be as in Lemma 1.3. Then there is a canonical
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isomorphim : W( T) -> W( T) which is compatible with F. Thus W( T)F^ = W( T)F.

Proof. For any subgroup L of G which contains Z, write

L=LxZ/{(z,z~l)\z<=Z\. The observation that W(T)=NG(T)/T makes the
Lemma clear.

Now W(T)F(= W(T)F) acts on TF (and on T) as a group of automorphisms.
For w^ W(T)F we write adw for the action of w on TF (or T) and further write ad

w: t-+tw where tw=wtw~l (t^T). W(T)F also acts dually on the complex cha-
racter group of TF. For any character θ of TF we write θw(t)=θ(tw)=

(ad w)θ(t).

Proposition 1.7. Let T and T be maximal tori of G and G as above. Then
the group W(T)F (= W(T)F) acts on TF and stabilizes TF and TFZF, Moreover

W(T)F acts trivially on the quotient TF/TF.

Proof. Each element of W(T)F is represented by an element g of NGf(T)
(Lemma 1.6) and g clearly normalizes TF and TFZF. Since W(T) acts trivially
on T/T (because T=TZ and ad g acts trivially on Z), W(T)F acts trivially on

(T/T)F which may be identified with TF/TF since T is connected.

EXAMPLES. Suppose G is simply connected and has irreducible root system
R. Then Z^P(R)/Q(R) where P(R) and Q(R) are the lattices of weights and
roots respectively.

(a) G=SL(n,k\ k=Fq (the algebraic closure of Fq). Here G=GL(n,k),
Z=k*, Z^Z/np'Z. F acts on Z by raising to the qth power. Hence Z/(F— l)Z=

Z/(n/d)Z where d=gcd(n, q—l).
(b) G=Sρin(4τz, &), k as in (a). Here G is obtained by adding similarities

to the Spin representation of G. Z=ZβZx ZβZ, Z=k*xk* and F acts on Z

by raising to the f power. Thus
odd).

2. Splitting of characters. We are concerned in this section with the
following question: given an irreducible character p of GF, how does it split on res-
triction to GF ? We begin with the following general situation: let K be a normal
subgroup of the finite group H and let p be an irreducible complex character of
H\ suppose μ is an irreducible component of the restriction p\κ and denote by
H(μ) its centralizer in H. For any finite abelian group A write (A) A for its com-
plex character group. Now suppose that H/K is abelian; then (H/K)A can be
identified with the set of linear characters of H whose restriction to K is trivial.
Thus (H/K)A acts on the set of irreducible characters of H via ρi-*aρ=a®ρ
(α<ΞΞ(#//qA). We write A(p) for the set {a£Ξ(H/K)A \ap=p}. From Clifford
theory we have p|#— £#(ρ)ΣμΛ where eκ(p) is an integer and the sum is over
the distinct ίf-conjugates. of μ. The results summarized in the following
lemma are easy consequences of Frobenius reciprocity and Clifford theory and
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may be found in ([3], Theorem 1).

Lemma 2.1. Let H, K, A=H/K, p, μ, A(p) and H(μ) be as above. Then
(i) Two irreducible characters p1 and p2 of H have either disjoint or coincident

restrictions to K. Moreover pι\κ~P2\κtf an^ onfy tf Pι=ap2 for some & e (f^/K) Λ .
(ii) \A(p)\=(p\K9p\κ)=eκ(p)2\HIH(μ)\ (usual scalar product of group

characters).

If eκ(p)=l, which is always the case when H/K is cyclic and which also
occurs in many other cases we shall be considering, we have additional infor-
mation:

Proposition 2.1. With notation as in Lemma 2.1, suppose that eκ(p)=l.

ThenH(μ)= Π ker a.

Proof. Write ker A(ρ)= Π ker a. By duality we have \A(ρ)\ =
Λ€Ξ4(P)

\H/kerA(p)\. Comparing this with Lemma 2.1 (ii) we see that \ker A(p)\ =

\H(μ)\ since eκ(p)=l.
On the other hand since H(μ) centralizes all the irreducible components of

p I Kί all the irreducible components of p \ H(^ remain irreducible upon restriction

to K. Hence ( P \ H M , pU(μ)=(p|jo P\κ) Again using Lemma 2.1 (ii) we see
that \A(p)\ = \A'(p)\ where A\p)={a^(H!H(μ))Λ \ap=p} is a subgroup of
A(p). Hence each element of A(ρ) is in Af(p\ i.e. H(μ)<ker A(p). Together

with the equality of the orders proved above, this implies the proposition.

Corollary 2.3. With notation as above, if ρ\κ is multiplicity-free, then the
irreducible components of p\κ are in 1-1 correspondence with the elements of A(p)

and A(p) permutes them regularly.

Proof. Clearly the components of p \ κ correspond 1-1 with H/H(μ). But

by 2.2, H(μ)=ker A(p) and hence H/H(μ)=H/ker A(p)^A(p) (by dualtiy).

The result follows.
The observation above also shows that A(p)=H/H(μ) permutes the com-

ponents of p\κ regularly (i.e. transitively, and only l^A(ρ) fixes any com-

ponent).
For the situation which concerns us we have

Proposition 2.4. Consider the following sequence of normal subgroups of

GF: GF>GFZF>GF. We have

(i) GFIGF^(ZIZγ

(ii) Any irreducible character v of GFZF remains irreducible on restriction

toGF.
(iii) For any irreducible character p of GF, if μ is an irreducible component of
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p I GF then the centralίzer GF(μ) contains GFZF.
(iv) If, in (iii) we have a^(GF/GF)A such that ap=ρ, then her &>GFZF.

Proof, (i) is clear since G\G^Z\Z\ (iii) follows from (ii), since given (ii), it

follows that GFZF centralizes all irreducible components of p \ GF. To prove (ii),
observe that if a^(GFZF/GF) Λ is such that av=v> then ker αό supp v (where

supp v= {g^GFZF\v(g)^0}). Since v is irreducible, the centre of GFZF is re-
presented by scalar matrices in any representation corresponding to v and so

ZF is contained in supp v. Hence each coset of GF in GFZF contains an element

of supp v and thus ker αlD supp v implies that α=l. By Lemma 2.1 (ii), the
restriction v\G

p is irreducible. The same proof demonstrates (iv).
Proposition 2.4 shows that when studying the restriction p \ GF, it is sufficient

to consider p \ GfjF.

Corollary 2.5. With notation as above,
(i) The group A(p)= {a^(GF/GF) Λ | ap=p} is isomorphic to a subgroup of

(ii) If d=\Z/(F — 1)Z| then the number of irreducible components of p \ G f

divides d.

Proof. For (i), observe that by Proposition 2.4 (iv), A(ρ) is a subgroup of
(GF/GFZF) Λ ^Z/(F— 1)Z. (ii) follows simply from the observations that restric-

tions from GFZF to GF remain irreducible, and that GF\GFZF^Z\(F—V)Z (Pro-
position 1.5).

Corollary 2.6. If Z is cyclic then p \ GF is multiplicity free for any irreducible

character p of GF>

For in this case Z/(F—l)Z^GF/GFZF is cyclic.

REMARK. If G has irreducible root system R, since Z is isomorphic to a
subgroup of P(R)/Q(R) (where P(R) and O(R) are the weight and root lattices
respectively), Lemma 2.6 includes all cases except where R—D2n and the simply
connected covering group of G is Spin (4n, k).

Let T be an F-stable maximal torus of G and let T be as in Lemma 1.3.
The action of TF on restrictions is described in

Lemma 2.7. Let p be an irreducible character of GF and let p be an irredu-
cible component of \ GF. Then TF permutes the irreducible components of p\GF

transitively and the stabilizer TF(μ) of μ contains TFZF. If ρ\G

F i$ multiplicity-
free then fF/fF(μ)^A(p)(={a(Ξ(GFIGF)Λ \ap=p})^a subgroup of Z/(F-l)Z.

Proof. From Corollary 1.4 we have GF=GFTF, whence TF is transitive
on the components of ρ \ G f . The remaining statements follow from this
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observation, together with Proposition 2.4 and Corollary 2.5.

3. Restrictions of Gelfand-Graev characters and cuspidal Rθ

τ

In this section we show first that Gelfand-Graev characters have multiplicity-
free restrictions to GF and we give more detailed information on the restriction

cuspidal Deligne-Lusztig representations RT.
We recall the definition of Gelfand-Graev characters (see, e.g., [2] §10 or

[6] §4) : Take an F-stable Borel subgroup B of G, and an F-stable maximal torus

T of B. Then B= TU where U is the unipotent radical of B (of course U<G).
Let U. be the subgroup of U generated by the non-fundamental root sub-

groups. Then U/U. is commutative and isomorphic to ϊiUΛ, where a runs
over the fundamental roots. Let / be the set of F-orbits of fundamental roots

(c.f. [6], p. 259) and for ί e/ let U{ be the product of the UΛ with «eί. The [/,.

are F-stable and (U/U.Y=U ί/f. A linear character % of UF which is
iei

trivial on UF. (this is true for all % in good characteristic) is called regular if %
defines a non-trivial character of UF for each ίe/. All such regular % are
conjugate under the action of TF since Z is connected.

DEFINITION. The induced character Γ=%^ (for any regular linear

character % of UF) is called the Gelfand-Graev character of GF.
It is clear that Γ is independent of % (since all regular X are conjugate

under TF) and it is known (see Steinberg [8], Theorem 49) to be multiplicity free.

Theorem 3.1. Let p be an irreducible component of the Gelfand-Graev
character Γ of GF Then the restriction p \ Gf is multiplicity free.

Proof. By Frobenius reciprocity, p \ VF contains each regular linear charac-
ter of UF with multiplicity one. Now all the irreducible components of p \ GF

are conjugate under TF, and since TF maps regular linear characters of UF to
regular linear characters, it follows that each component μ of p \ G? contains a
regular linear character in its restriction to UF. Since this occurs with multipli-

city one in p \ VF^ the component μ occurs with multiplicity one in p \ GF.
We now turn to the virtual modules Kψ\ we abuse notation by also writing

RΨ for the (generalized) character corresponding to the module. Each R^

corresponds to an F-stable maximal torus T of G, and a character 0e(TF)Λ

(recall that (A) A denotes the complex character group of an abelian group A).
The restriction of R^ to GF is Rθ

τ, where T= T(Ί G (T is an F-stable maximal
torus of G). Now since GF/GF^TF/TF, for any element ψ£Ξ(GF/GF)A, we
may regard ψ as an element of (TF/TF)A by restricting -ψ to TF. With this

identification, we have

Lemma 3.2. ([2], 1.27). Let ψe(GF/GF) Λ . Then R^=R^.
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For any .F-stable maximal torus T of G, W(T)F acts on TF and hence on
( TF) Λ . For θ e ( T F) Λ we denote by W-F(Θ) the group {w e H (̂ T)F 1 01"- 0} . For
T— Tf lG and φ^(TF)Λ we denote by WF(φ) the corresponding subgroup
of PF(Ty (^^(Tf). For 0<Ξ(TF)Λ, Wr(0) denotes the stabilizer of the re-
striction to TF of θ. Clearly H

Lemma 3.3. ([2], Theorem 6.8.) Let θ,β'tΞ(TF)\ Then (Rθ

τ, R*f)=

\{wSΞW(T)F\θw=θ'}\.

Thus in particular we have that ±Rψ is irreducible <=> Wf (θ)— {!}.

Proposition 3.4. Let T and T be as in the preamble to Lemma 3.2, and take

^e(f F) A . Then for w^W(T)F, θ and θw have the same restriction to TF if and
only ifθw=θψfor some ψζΞ(TFjTFZF)\

Proof. Clearly θw=θ on TF^θ»=θψ, with ψeΞ(fF/ΓF)A. But θ"=θ
on ZF since W(T)F acts trivially on ZF. Thus <v/r=l on TFZF. The converse

is trivial.

Proposition 3.5. Let T, T be as above and let #e(TF) Λ . There is a mono-
morphίsm φ: WF

r(θ)/WF

Γ(θ)->(TF/TFZF)A ^Z/(F-l)Z such that Im(φ)={ψ<=Ξ
(GF/GF) A I R^=RΘ

Ψ} . (Here we identify (GF/GF) A and ( TF/TF) A as in 3.2.)

Proof. By 3.2 and 3.3, for ψGΞ(GF/GF) A we have Rirfr=R± if and only if
θΛjf=θw, for some w^W(T)F. For such w, we must have w^WF(θ), since θ^
and θ have the same restriction to TF. On the other hand, w^WF(θ) implies
that θw=θψw, with ker ψw>TF, i.e. ψtt,e(TF/71F)Λ . Consider the map φ:

WF(Θ)-+(TF/TF)A given by w-+ψw: this is a group homomorphism because
by 1.7, J^(7y acts trivially on \TF/TF)Λ thus for v,wtΞWF

τ(θ\ θvw=(θv)w=

(0^rJr=Qtyv^w> and we have tyvw=tyvtyW' The map φ clearly has kernel precisely
Wψ(d). The proof of (i) is completed by the observations that Im φ={^r^L
(GFIGF)*\θψ>=θw, some_ w} = {ψ£Ξ(GF/GF) A 1^^= }̂ and that by 3.4,
Im(φ) is contained in (TF/TFZF)A.

Corollary 3.6. If θ above is in general position (i.e. Wψ(θ)= {!}) then
p—±R^ is irreducible, and p\G? is multiplicity free. If TQ is the stabilizer in

TF of any of the components of p \ GF then TF/ Tξ&L Wξ>(θ). Thus Wϊ(θ) permutes
the components of the restriction regularly.

Proof. That p is irreducible follows from 3.3. Each character Rψ has
a component in common with Γ (the Gelfand-Graev character) ([1], §10) and so
θ in general position implies that ρ= ± R^ is a component of Γ. By 3.1, p | GF is
multiplicity free. Hence by 2.4 TQ is the intersection of the ker a with α^
φ(WF

Γ(θ)}. Hence TFIT^φ(WF

Γ(θ)}^WF

Γ(θ)\ this group permutes the com-
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ponents of the restriction regularly by 2.3.

We next prove a result characterizing the discrete series characters of a

group with connected centre which appear as components of the Gelfand-Graev
character Γ. This characterization is instrumental in providing a complete

picture of the values of discrete series characters at regular unipotent elements
when combined with the results of §§3, 4 and 5.

Theorem 3.7. Suppose the centre of G is connected. If % is cuspidal,

irreducible and a component of Γ, the Gelfand-Graev representation of GF, then %

is of the form X,= ±R^, where T is an F -stable maximal torus of G and θ is a non-

singular character of TF.

Proof. By [2 (Lemma 10.6]) for any irreducible component % of Γ we have

%==]>] -L_j — IL. Rθ

Ty the sum being over the GF-conjugacy classes of pairs (T, θ)
(Rτ> RT)

where T is an jF-stable maximal torus of G and θ is a character of TF (note that
these RT form an orthogonal system, so that this statement is merely that X lies
in their linear span). Now if % is cuspidal, then for any T which is contained

in a proper parabolic subgroup P we have (%, R^)=0. For if P=L. UP is a Levi

decomposition of P then by [2, 8.2] Rθ

τ=(Rθτ,L*)GF where * denotes the lift
from L to P, using the projection t/P-* P->L. Thus by the cusp condition

for P, (%, Rθτ)=0. Hence if X is cuspidal, only jR^ with T minisotropic can
occur with non zero coefficient on the right hand side of the above expression.

On the other hand by [2, §10.7] the irreducible components of Γ are

parametrized by the geometric conjugacy classes x of pairs (T, θ), and we have

where the sum is precisely over the GF-conjugacy classes of pairs (T, θ) which lie

in the geometric conjugacy class x. Further, each geometric conjugacy class
contains a "maximally split" pair (T, θ) [2, 5.25] and by [2, 5.27] if (T, θ) is

maximally split and T is minisotropic then θ is non-singular. Hence if X=ρx

is cuspidal, the geometric conjugacy class x contains a (maximally split) pair

(Γ, θ) such that T is minisotropic and θ is non-singular. We show finally
that for such a pair (T1, θ) the geometric conjugacy class coincides with the
GF-conjugacy class, which will complete the proof.

From [2, 5.21. 5,5.24] there is a bijection (T, 0)->(Γ', 0') between GF-

conjugacy classes of pairs (Ty θ) where T is an P-stable maximal torus of G

and θ is a character of TF and G*F-conjugacy classes of pairs (T", θ') where

Tr is an ^-stable maximal torus of the dual group G* of G and θf is an element

of Tr such that (T19 θ^) and (T2, Θ2) are geometrically conjugate if and only if

θι and Θ2' are G*F-conjugate. Now if in (T9 θ) we have that θ is non-singular,
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then in the corresponding G*F-class of (Γ', 0') we have 0' is regular, and is

therefore contained in a unique maximal torus of G*, viz. T''. Hence for such

(T, θ) if (Ti, #ι) is in its geometric conjugacy class then θl

ί=adg(θ/) for some

g<=G*F and by regularity, we have T^=adg(T\ whence (T', θ'} and (7\, '#/)
are G*F-conjugate and so (Γ, θ) and (Tly θ^) are GF-conjugate.

Consequently we have %=—^=—— jRJ where T is minisotropic and 0
(Rτ, RT)

is non-singular, and the result follows since for such (T, θ), (Rθ

τ, R
θ

τ)= 1.

EXAMPLE. The discrete series characters J<θ> of GL(?z, <?) (see [4]) are of

the form in 3.6 above. They correspond to a character θe(F*»)Λ. Here W(T)F

is cyclic of order n, and acts via θ->θqi. Hence θ is in general position if θ has

period n under the Frobenius map. If GF=SL(n, q), we have TF=(T)9~l; thus
for θ in general position, if θ \ TF has (reduced) period m under Frobenius, then

Wτ(θ)~Z/(n/m)Z, and n/m divides d=(n,q—l). This case has been treated

in [4].

4. Character values and orbits of regular linear characters

The remainder of this work is directed towards the computation of the

value of an irreducible cuspidal character of GF on a regular unipotent element.

Since the regular unipotent elements of GFare not all conjugate, we shall actually
compute the set of values on the various classes of regular unipotents. We

assume henceforth that the characteristic p of Fq is good for G. With this
assumption, it was proved in [5] that

Theorem 4.1. If U is an F-stable maximal unipotent subgroup of G, λ is

an irreducible complex character of UF of degree greater than 1, and u is a regular

unipotent element of G contained in U, then \(u)=Q.

Thus for any irreducible character μ of GF, to compute μ(u) it is sufficient to

compute ^m^X,(u) over the linear characters % of U which are constituents of

μ I σf (here the multiplicity of % in μ \ σF is m^). For the case where the centre is

connected we have the following statements (which were proved in [6] for the
adjoint case - i.e. for trival centre, but the general case has the same proof):

Theorem 4.2. Let p be a cuspidal irreducible character of GF. Then p \ σF

either contains no linear character, or has linear content precisely the sum of all the

regular linear characters, each occuring with multiplicity one. The two situations

correspond to (py Γ)=0 or (p, Γ)=l, where Γ is the Gelfand-Graev character.

The connection between this and cuspidal characters of GF is established by

Proposition 4.3. μ is an irreducible cuspidal character of GF<=> each compo-
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nent of the induced character μ^F is cuspidal <=> μ is a component of p \ GF for an irredu-

cible cuspidal character p of GF.

Proof. For a proper character p of GF, p cupsidal means (p, lp£)=0 for
each unipotent radical V of an F-stable parabolic subgroup of G. Now μ (on

GF) is cuspidal <^> (μ, 1££)=0 for the same set of unipotent radicals V (since

these are contained in G). Further (μδF, l££)=Σι(μ, ^G

gv
F

 g-
l)cF <\ gc

F

 g~
l by the

Mackey formula (where the sum is over a set of GFfGF coset representatives).
But^F^"1 is a unipotent radical if V is; hence if μ is a cusp form, so is μGF.
The converse is simple. The second equivalence follows by Frobenius recipro-

city.
Now 4.1 and 4.2 enable one to compute (see [5] §4) ρ(u) for p an irreducible

cuspidal character of GF and u regular unipotent (note that in good character-

istic, the regular unipotent elements form a single conjugacy class if the centre is

connected): referring to the notation in the preamble to 3.1, we have ρ(u)=0

(if(p,Γ)=0) or .p(«)= Σ (ΠX,(l))=(-l)m if (P,Γ)=1. Thus p(u)=

( — l)'7l(p, Γ). In view of 4.3, to evaluate μ(u) for μ an irreducible cuspidal
character of GF and u regular unipotent we can assume that μ is a component

of p \ G F where p is an irreducible cuspidal character of GF. If (p, Γ)=0, then
μ\uF contains on linear character of UF and so μ(u)—Q. Thus we can restrict
ourselves to the case where (p, Γ)=l. We first record

Lemma 4.4. The regular unipotent class of GF splits into d~ \Z/(F—l)Z\

classes in GF. These are permuted regularly by TF/TFZF~Z/(F — 1)Z (where

Ty f are as in 1.3).

Proof. Let u be a regular unipotent element in UF. Then the centralizer

GU=Z.UU and its connected component is G2=t/lί. Thus GJGQ

U=Z and so

the class of u splits into \H\F,Z) \ = \Z/(F-\)Z\=d classes in GF by [7], §3.4.
These d classes are clearly conjugate under TF since GF=GFTF, and each is

stable under TFZF. Hence the second statement. Henceforth let B— TU be
an F-stable Borel subgroup of G, T an .F-stable maximal torus of B and U the
unipotent radical of B.

Proposition 4.5. The group TF has d orbits on the set of regular linear charac-
ters of UF. These are permuted regularly by TF/TFZF.

Proof. Consider the exact sequence 1.2.2:

l-*ZF-*TF-*(T/Z)F-+ZI(F-l)Z-^l. We see that TF/ZF is a subgroup of

(T/Z)F of index d. But (T/Z) is an J^-stable maximal torus of the adjoint group
of G. Hence by Theorem C' of [5] (T/Z)F acts regularly on the regular linear

characters of UF. Thus TF/ZF, and hence TF, has d orbits. The second
statement follows from the isomorphism (T/Z)F^TF/ZF.
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From 4.4 and 4.5 we have labellings of the regular unipotent classes cz and

orbits Ω, of regular linear characters (z<=TF/TFZF^Z/(F—l)Z) such that for
*'<ΞZ/(F-1)Z, (c,Y=ad **(€,)=€,/ and (atf=ad z>(nβ)=Slu>.

Now for a cuspidal character p of GF such that (p, Γ)— 1, if μ is a com-
ponent of p I GF then the linear characters in μ \ VF from a union of TF-orbits
of regular linear characters of UF\ in fact we have

Proposition 4.6. Let TF(μ) be the stabilizer of μ in TF (c.f. 2.7). Then the
linear content of μ \ VF is precisely a TF(μ)-orbίt of regular linear characters of UF.

Proof. TF(μ) contains TFZF and since (p,Γ)=l, by 3.1, _2.3_and 2.7,

TF/TF(μ) permutes the TF conjugates of μ regularly. By 4.5, TF/TF(μ) also
permutes the TF(μ)-orbits of regular linear characters regularly. The result

follows.
The isotropy group TF(μ) corresponds to a unique subgroup X(μ) of H1

(F, Z), viz. X(μ)= TF(μ)/TFZF and a TF(μ)-orbit of regular linear characters of
UF is a union of the Ωz, taken over a coset of X(μ). Thus the set of these

orbits is permuted regularly by Y(μ)^=H1(Fί Z)/X(μ), as is the set of GF-
conjugates of μ. We therefore label the former Ω^,— UΩ2 and latter as μy in

such a way that Ω^ is the set of (regular) linear characters in the restriction

μy\uF

Let cz be a regular unipotent class of GF(z^.H\F, Z)).

Lemma 4.7. We have, with notation as above

where H\F, Z) acts on Y(μ)=H1(Fy Z)/X(μ) in the obvious way.

This is clear. It shows that the computation of the various character
values can be reduced to the evaluation of the set of conjugates of μ at a fixed
regular unipotent element. One has one such sum for each y^Y(μ) and ex-
plicitly, for a fixed regular unipotent u

μy(u) = Σ χ(«) = Σ Σ κ(«) (4.7.1)

where y is regarded as a coset of X(μ) in H\F, Z). The latter formula shows that
to compute μ(u') for μ a component of p | Gf and uf regular unipotent it suffices to
compute

(a) The group X(μ)=TF(μ)/TFZF<H\F, Z).

(b) The sums 3Π X(u)=σzy for u a fixed regular unipotent element of

For the characters which concern us, the group X(μ) has already been deter-
mined in terms of the Weyl group in 3.5 and 3.6, given the characterization of
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cuspidal characters which are components of Gelfand-Graev furnished by
Theorem 3.7.

We now show that the computation of the sums (b) can be reduced to the
case where G is simply connected. Let π: G-*G be the simply connected
covering of G and let T=π~\T). Then T is an F-stable maximal torus of G
and TF acts on the regular linear characters of UF (π~\UF)^UF). Writing
Z=ker 7r, we have from 1.1.1:

1 -> ZF -> TF ->(T/Z)F = TF-> H\F, Z) -> 1 .

Hence TF/ZF is a subgroup of TF of index | H\F, Z) \ , and contains ZF since

T contains Z(G). Thus a TF '-orbit of regular linear characters is a union of

\Hl(F, Z)| TF-orbits; moreover the TF-orbits are permuted regularly by
H\F,Z(G)} (apply 4.5 to (?), of which H\F,Z) is a subgroup. For s^H1

(F, Z((?)),write σs for the sum corresponding to (b) (consider T^-orbits) then

for z^H\F,Z)^H\F,Z(G}}IH\F,Z) we have σ2-Σ σs (* regarded as a
S(=Z

coset of Hl(F, Z)). More explicitly, we have the following chain of subgroups:

(T/Z(G))F>TF/ZF>TF/Z(G)F and the successive quotients are H\F, Z) and
H\F, Z). Now (TIZ(G)Y acts transitively on the regular linear characters

and the subgroups have orbits as described above.
To compute the sums σz (z^H\F, Z)) it is therefore sufficient to compute

the σs (s<=H\F,Z(G)} and add these over H\F, Z)-cosets thus it suffices to

consider the case G=G, i.e. we may assume G is simply connected.
We summarize some of the results of this section in

Theorem 4.8. Let G be a semi-simple group and let u be a regular unίpotent
element of UF (notation as above). Suppose μ is an irreducible cuspidal character
of GF which is a component of p \ GF where p is an irreducible (cuspidal} character of

GF such that p(tt)Φθ. Then μ defines a subgroup X(μ) of H\F, Z(G)) (G being
the universal cover of G) and the values of the \ H\Fy Z) | components of p \ GF at u
are given by the sums Σ σs corresponding to cosets of X(μ) in H\F, Z(G)) and

σs= 2 ̂ (u), Ωs being a TF -orbit of regular linear characters of UF.
xeΩs

Fixing u has the advantage that the pz may be regarded as being function
values of a function σ : H\F, Z) -> C. These values will later be computed by
taking a Fourier transform of the function σ.

5. Some character sums-the split case. The remainder of this

work is addressed to the problem of evaluating the sums

where z^Hl(F,Z), u is a fixed regular unipotent element of UF and the sum is
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over the regular linear characters of UF in the TF-orbit Ωz. The result 4.8 shows
that one may confine attention to the simply connected case. In this section we
make the additional assumption that the torus T is /^-split, i.e. all of the charac-
ters of T are defined over Fq. [Notation: B=TU is an .F-stable Borel subgroup

as in the previous sections.] We denote by k the algebraic closure Fq of Fq. In
the split case TF is just the set of /^-rational points of T.

Now suppose that G is simply connected and that T is /^-split. Let

#ι, •••, ai be the fundamental roots of G with respect to T and let ωly •••, ω/ be
the fundamental weights. Consider the maps

ω: T-» IΓ^*; ω(ί) =

α: Γ-> IΓ£*; α(ί) = (tfι(0> "•> α/l
/

Suppose αf, =Σ ai ω (ai ^Z} Define
y-i ; ; ;

Π^*-^ li'Fg* by &(tly ••-, tf)=(sly •-•, s^ where ίf =Π ̂ '

We then have:

Proposition 5.1. (i) ω is an Fq-rational isomorphism: T-

(ii) ω\τp is an isomorphism: ΓF~>Π/^*
(iii) The following diagram commutes:

ύ)

«Γ Λ

Proof, (i) follows because T is F9-split and the ω( form a basis of the
character group X(T).

(ii) follows since ω is /^-rational; hence ω maps the /^-rational points of

T onto the /^-rational points of Π7^*, viz. onto TilFq*.
(iii) is the definition of the map a: we have

Si = Π f?" = Σ ̂ ω/ί) - α£(ί) .
y=ι y=ι J J

Henceforth €Ίm(α)" will refer to a(TF).
The relevance of this to evaluating the sums σz is as follows: a linear

character % of C/^ is given by a sequence %=(%!, •-,%/) where X ίe(ί/S l.)
Λ=(^+)A>

and % is regular if and only if %z is non-trivial for each / ([6], §3, recall that we
are assuming good characteristic). Since Fq is self dual, we may obtain all the
characters in (F/)A as follows: fix a non-trivial λe(F/)Λ and then any λxe
(F/)Λ is given by λ^λ* (a^Fq) where \a(x)=\(ax). Now we have seen
(4.7) that we may choose the regular unipotent element u arbitrarily. Thus

we take
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Hence for X=(Xί9 •••, %,) we have

Moreover for t EΞ TF,

/ς 9\ ytfiΛ Ύ ((D.Δ) Λ, (U) — Λ,^.

Thus we have

/c Q\ /Y ... v
^J.JJ V. 1> 9 ^

Now choose a set {%} of representatives for TFZF in TF (recall TF/TF/ZF

^H\F, Z)=Z/(F—l)Z). Then for any fixed regular linear %, the set {%Z|#GΞ

/^(F, Z)} is a set of representatives for the TF-orbits of regular linear characters.

Thus by (5.2)

/ .
O~2 = 7 i %Z\Cίι(t), •", Q?/(ί))

/ST^

(5.4) \ =Si)...ΣermW^ι,-,^)

KΊ γ ^ c ^ . . . γ f ^ c ^— Z_ι ^iV^i/ ^/v 0 //

Proposition 5.5. H^ A^^ UlF*/Im a^H\F, Z)=Z./(F- 1)Z.

Proof. We have an exact sequence 1—»Z—^T1*—^Π'^*-*!, since Im a, is
closed and has dimension /. Hence as in 1.1.1 we have the following exact se-

quence :

1 -> ZF-^ TF-* (Π7**)F = Π'-Fi*-* H\F, Z) -> 1 .

Hence Π'Ff/Im a^Hl(F, Z) and the result follows.

We can therefore label the cosets of Im a in Π7^* as Cz(zdH\F,Z)).

Comparing with (5.4) we get

(5.6)

Here X=(X1, •••, X7) is an arbitrary regular linear character of (f//t/.)F, and

thus we may take %=(%, •••,%) (by abusing notation) where % (on the right

hand side) is a non-trivial element of (/^+)Λ .

We then have

(5.7) σz=^

= ΣCΊ.
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Note that changing % or the labelling Cz has the effect of changing the
labelling σz by a translation by an element of H\F, Z).

6. Fourier transforms and products of Gaussian sums. In this
section we show that the sums σz can be computed by taking Fourier trans-

forms Σ Ψ(z)σz (where ψ^H\F,Z)^) and evaluating these as products of

certain Gaussian sums. We proceed now to compute certain of these sums

and in the next section show how to apply the computations to the simply con-
nected classical groups.

For this section, we introduce the following notation: g is a generator of

Ff\ we assume d\(q— 1) and denote by Cf the coset g*Fq** of Ffd in Ff\ note
that F*/F*d^Z/dZ. We fix (as in §5) a non-trivial character Xe(F f f+)A and
write 4,±= Σ X(s).

•eOf

Let Λ/r<EΞ(Z/rfZ)A. Then £(<i/r)= Σ (̂*K = Σ Ψ(^W where ψ is
«ez/rfZ *eFff*

regarded as a character of /^* with kernel containing Fq*. Thus S(^Jr) is a Gauss

sum over Fq. We shall evaluate the sums σ, = Σ X^ipCfe)'"^/) m terms of

the Gauss sums /(ψ) for a fixed integer sequence nly ••-, w,.

Theorem 6.1. PFtϊA notation as above, let σf =2 %(ίι)X(j2)
ίww i«i«gr oz ^r ( ,̂ •• ,ί/)eΠ//^* ίw^A ίAβί Π^'^Q. For any ̂

3

write σ( ψ )= Σ Ψ(ϊ)σi (^w w /A^ Fourier transform of the function σ). 7/
«ez/rfZ

of the integers nj is ± 1 mod d then

i= Σ 9<ί)%(ί).
s^Fq*

Proof. We have σ-,— Σ Σ *(*) «Σ

- Σ \ MΣ xfe)-^/)
k^z/dz IVj^Ci-n^

— ••• (repeating the above procedure)

Σ

Now by assumption one of the w . is ±1 mod */; we may without loss take w/ =

± 1 mod d. To fix ideas take W / Ξ 1 mod rf (the proof for nt= — 1 mod d is the

same). Then we have
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Hence

σ(ψ) = Σ3Ψ(ί>ί Σ ^1 ^
But ψ<f) = ψ(i-nA ----- ni-iAi-i)

Hence σ(ψ) = Σ ψX^Kr'ΨMViKj-iΣ^-^i ----- »ι-ι*ι-ι)
*!,-••,*/-! *

since w,= 1 mod <f.

Corollary 6.2. W!e λβ^e (with notation as in 6.1)

<r, = Σ

This is obtained by simply inverting the formula σ(-ψ-)=

using 6.1.

A useful result for evaluating these sums is the following

Lemma 6.3. We have

This is well-known and simple to verify.

EXAMPLE 6.4. Because of their relevance for some of the groups consi-
dered in the next section, we give some explicit computations for the case d=2.
Here we have two cosets C0 and Q of F^2 with corresponding sums 40 and .̂
There are two characters, 1 and £, of ZβZ and we have

Now d0 and ̂  may easily be computed by evaluating the sum Σ Σ
α±o *eF9*

)= Σ Σ %(fl(l+s)) in two different ways. One obtains

40 — ̂ 3= zfc \/(— 1)(9 1)/2^, the sign being determined by the original choice of %.

We assume % is chosen so that 40— ̂ =\/(— 1)(9~1)/2^.
Suppose now that, of the integers n} in 6.1, £ are even and e' are odd (of

course e+S=l). Then σ(l)=(~l)/ σ(6)=(-l)β.

From (6.2) we therefore have

<r0 = ̂ ((-ly+ί
(6.4) 2 _ _ t _

and σ, = 1 ((-!)'-(- l)'(V(-l)(f-1)/s?)") =(jγi-'(l-(N/(-l)(f-I)/2ί) /)
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7. The classical groups (split case). We give explicit computations of
the sums σz for the split simply connected classical groups - i.e. the simply

connected groups (in good characteristic) with irreducible root system of type
A,B,C or D. The crux of the computation is to identify the subgroup Im a of

Π'̂ * (see (5.1) and (5.7)) in a form amenable to the computations of § 6.

Lemma 7.1. Let L be a lattice in Rl and let M be a sublattίce such that
L/M is a finite cyclic group of order n. Suppose OΊ, ••-, γ/ is a basis of M. Then

there exists a Z-linear combination 7=^Σni

(γi such that <γ^nL and gcd (nly •••,

n,)=l.

Proof. By the elementary divisor theorem, there is a basis βίy •• ,/3/ of
L such that nβly β2y •••, /?/ is a basis of M. We take fγ=nβ1. This is clearly
a Z-linear combination of the γ, and gcd (nly •••, nt}=l since γ is a member of
a basis of M.

Now take L=P(R), M=G(R)y the lattices of weights and roots of G res-
pectively. Then since G is simply connected, L/M^Z. Thus in case Z is

cyclic, (7.1) applies. Suppose {aίy * ,α/} are the fundamental roots (a basis

of M=Q(R)) and let γ=Σ *W be as in Lemma 7.1.

Proposition 7.2. Suppose Z^Z/nZ and let d=(nyq—l). With notation

as in §5, we have Im a= {(sly •••, s^ \ T[sj

nj^F*4} .

Proof. Consider the homomorphism

vι TllF*-» Ff given by v(sl9 -, s,)=s^ ••• *Λ .

Since g.c.d. (nly • ••, w/)=l, this is a surjection. Suppose (̂ , •••, sl)=(aι(t)y •••,

aι(t))^Im a(t^ TF). Then i;̂ , —,ί/)=(Σ »,-«•) (0=(Λω) (0 for some ωeP(,R).
Thus ι;(ί!, •••, ί/)=ω(ί)ne Fff*. Hence ι/(/m α)< F*d). But the index of Im a
in Π7^* is d (see (5.5); (#— l)Z=rfZ) and since v is surjective we must have

Corollary 7.3. ΓA^ coίrfj Q (i<=Z/dZy see 5.5) o//ιw α in U1F* are C~

{(sι> •"> ^/) I Πs/^^,?1^*^} wA^re £ M α generator of Fg*.

This result, together with (6.2) reduces the computation (in the case where
Z is cyclic) to finding the vector y of (7.1). This leaves only the case of Spin

(4n) (which has root system of type D2n)y and we treat this separately.
We can now summarize our result for Z cyclic as follows:

Theorem 7.4. Suppose G is a simply connected group with cyclic centre
Z^ZfnZy and assume that G is Fq-splity so that H\Fy Z)=Z/dZy where d=

(ny q — 1). Let μ be an irreducible discrete series character of GF

y ana let u be a

regular unίpotent element of GF. Let aίy •••,«/ be the fundamental roots of G and
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suppose f7=^niai s an element of Q(R) as described in (7.1) and assume nt;= ± 1

mod d for some j. Write (for it

-,- V Σ

where for φ^(Z/dZ)A, @(φ) is the Gaussian sum described in the preamble to

(6.1). Then there is a subgroup X(μ) of Z\dZ such that

μ(u) = \X(μ)\(Γ, μ)G' Σ
- -

Here jX(μ) is a coset of X(μ) and Γ w the Gelfand-Graev character of GF

We take X(μ)= TF(μ)/TFZF. X(μ) acts on the ΓF-orbits of regular linear

characters and hence on the σf . If (Γ, μ)G

F=Q then μ\vF contains no linear
character and so μ(u)— 0. Otherwise the value on u of the sum of a T"F-orbit

of regular linear characters is crt and μ(u) is a sum of these over an .XΓ(μ,)-orbit

(4.8). The formula follows by observing that (Γ, μ)GF=(Γ, μG^Όf

REMARK. Notice that for any subgroup X of Z\dZ, say X=Z\eZ
where e\d, one can consider the ^Γ-orbits of crt, and we have

, where e= /

This may also be verified directly.

Corollary 7.5. μ(w) w «ΪA«r 0 or

μ(u) = — Σ Ψ(0 ̂ (^MI) ̂ (^W2) -^(^w/) /or some i <= Z//Z.

This follows directly from (7.4) and the remark above. We now give the wt

explicitly for the various classical groups with cyclic centre; a reference for the

computations with the roots is Bourbaki: [1], Ch. VI, §4.

Type At: G=SL(l+l)Z and thus d= (/+!, q— 1). The vector 7 may be
taken as 7=αι+2α2+3α3H ----- \-lat. An easy computation show that 7^
(l+l)P(R). The discrete series characters of SL are all of the type discussed

in the example after 3.6. Thus the integer of (7.5) is (l-\-l)/m (where m is the
reduced period of θ) and we have, for any component μ of J<θ> \ SL and regular
unipotent u (writing w=/+l),

m

In particular if n/m=2 we get the formulae (6.4) with e'=\ For /=!,
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this is the well-known formula for SL(2y q).

Using Lemma 6.3, together with fact that the powers i in ψ' may be taken

modulo 7+1, the product £(ψ)^(ψ2) S(ψl) may be simplified as follows:

suppose the order of -ψ is r(|/+l); then

and

W") WO- W Ό = ^ψσ^o/s^^^i^-υ/Yr-i^jf^ig^^

5,: G= Spin (27+1, A), GF= Spin (27+1, q) (characteristic Φ 2). Here

Z=ZβZ=H\F,Z). Wetake 7=αι+2α2+-+7α/e2P(/ί). (=2W/). Thus
we have the same values as for At when d=2. We have μ(u)=0 or (—I)7 or

<TO or σ! where σ, is given by (6.4) with e'=\ |

C/: G=Sp(2I,k), GF=Sp(2l,q) (characteristic Φ2). Here again Z—

ZI2Z=H1(F, Z). We take 7=α/. Thus μ(u)=Q or (- 1)' or σ0 or σx where σ,
are again given by (6.4), this time with '̂=1. Thus Sp behaves as SL(2).

Type Dh I odd: G=Spin (27, A) GF= Spin+(2/, q) (characteristic Φ 2). Here
Z=Z/4Z and we may take 7=2α1+4α2+6α3+ +2(/-2)α/_2+(2(7-l)+l)

α/_ι+(2/+ \)at. There are 4 possible sums σ0, σl9 σ2, σ3 which may be computed
easily using (6.2) by replacing 7 by 7/=2αι+2α3H ----- t-2α/_2+α/-ι+3tf/. Let

ψ be a generator of (Z/4Z) A . Then

-l)^^

where 8f t0 is the Kronecker δ.
Using Lemma 6.3 we see that S(ψ) 3(ψ*}=ψ(— l)q. Further, G(^2) is the

3(8) of (6.4), so that

3(tf) = -V(-l)p-1/2q. Hence

σ, - (-l)/(l+(-l)9-1/2ί)+2δ,ί0(-l)(/ί+^7/-25)/V/+1)/4(9Ξl (mod 4)) .

To complete the computations, we now treat the case of Έ)l (I even), where
G—Spin (27, k) and 4| 27. Here Z=ZβZx Z/2Z^H\F, Z), (since character-

istic Φ2), so that (7.1) does not apply directly. However we do have

ai-l+a,t=2P(R)

Hence in analogy with (6.2) we can consider the homomorphism v\

Ff X F^ given by
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Again as in (7.2), one shows that Im a={(sl9 •• ,s/)IK ίι> *"> $/)
Now clearly (F,*X F,*)/F,*2X F^^ZβZxZβZ and the cosets of
can be written 0^(1, j^ {0, 1)}) where cij=giFq*2Xg'Fq*

2 (£ being a generator of

). Thus the cosets Cί;. of Im a are given by

The sums which we have to evaluate are therefore

Now <rio+σil= 2 %(̂ ) — X(ί/) = σ-, _ and
•/-i /eσ,

^+o iy = Σ *(*) - X(ίf) = σ_ -
V2...s/-lecy

can be computed by (6.2).

Moreover o 00+σu= Σ

Hence σ10=σn.
Putting this information together with (6.3) we obtain

(where ί(ε)=dΰ-dί=-\/(-iγ-^q as in (6.3))

This completes the computation for the split classical groups.

8. The non-split case. The methods of the previous three sections can
be applied equally well to the non-split groups. In this section we briefly

indicate how this is carried out and give results for the unitary groups. Through-
out this section we suppose that G is simple and simply connected, and has
a set of fundamental roots aίy •••, at and corresponding fundamental weights
ωι> •"> ω/ In the non-split case, it can be shown (c.f. [9]) that there is a per-
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mutation r and power q of the characteristic such that, if F* is the dual of
F: T-+T,

F^ = qaTj (8.1)

Define a: T^ Π'k* by α(ί)=(α1(ί), •• ,a,(t)) as in the split case. Since
a has kernel Z and F(Z)cZ, the following diagram defines F': Π'k*-*ΐ['k*

T
\pt

a ^

Moreover by 8.1, (Π^*)F/— Ft* X ••• X Fj* where 119 ••-, lr are the sizes of the
orbits of T. By the argument of Lemma 1.1, we have an exact sequence

1 -> ZF -* TF (ΓΓ£*)F' -» ̂ (F, Z) -> 1 (8.1.1)

and again we are faced with the problem of identifying Im(ά) in (8.1.1). We
show howτ this is done in the case of the finite unitary groups. The method in
general is similar.

EXAMPLE 8.2. The unitary groups SU(2n+l, q2): Here (Π^*)F/-F9f
Fqf (n times) (since G=SL and each /, is 2), Consider the map

-̂ ί given by

Then Im(fγ)=K (the kernel of the norm: Fq^-^Fg) and for t^Im a, Ύ(t)=

Thus for such ί, <γ(ί)^(F$)2n+lf\K. A simple computation shows that
this latter group is K2n+1, which has index (#+1, 2n+l) in K. Now ίί1 ,̂ Z)=
Z/(F - l)Z=Z/(q+ 1)Z where Z is cyclic, of order 2n+ 1 . Thus | H\F, Z) \ =
(^+1, 2^+1) and we have identified Im a in analogous fashion to the split case
as: Im a— {(aly •••, an) \ j(aly •••, αw)e K2n+1} . The character values can now be
computed using the results of §6.

EXAMPLE 8.3. The unitary groups SU(2n, q2): Here

Using the method above, it is straightforward to obtain:

Im a = {(«!, — , an.ly an)\al9 •--, an.^Ff2, an^Ff and

^fll-flJlieF^ where d=(2n, q+1)} .

Once again, the computations may now be carried out using §6.
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