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1. Introduction

Let S denote a nonsingular minimal complex algebraic surface of general type
and 'y, Iy, ..., I';, the (—2)-curves on S. Then it is well known that for m >
5, the pluricanonical system |mKg| defines a holomorphic map S — P¥, which is
embedding exept I';’s (cf. [1] and [2] or [3] ). On the other hand, Yang [4] defined the
minimally negative cycle W on S and showed that for sufficiently large m, the linear
system |mKg — W| gives a projective embedding of S which is everywhere injective.

In the present paper we will construct some projective embeddings of S which
take, in some sense, middle positions between the above two.

The author would like to express his thanks to Professors Sampei Usui and
Kazuhiro Konno for their advises and encouragements. He also thanks to Mr. Yoshiaki
Fukuma and the referee for pointing out many mistakes in the earlier version.

2. Minimally negative cycle and partially negative cycles

In the following arguments, we always assume that S has some (—2)-curves I';.
In [4], Yang introduced the notion of the minimally negative cycle on S as follows:

DEFINITION 1 (cf. [4, Definition 1.1]). A cycle D = 'y +rol'g + - + 1,1y
is said to be negative if I';D < 0 (1 < j < n). A negative cycle W is called the

minimally negative cycle if, for every negative cycle D, W < D.

The existance and uniquness of the minimally negative cycle on a surface are shown
by the same way as for the foundamental cycle. Moreover we have:

Lemma 1. (cf. [4, Corollary 1.5]) Let W be the minimally negative cycle. Then
we have T;W = —1 or =2 (1 < j < n).

Now we will generalize the above definition.
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DEFINITION 2. Let 44, 49, ..., 4; denote any numbers which are mutually distinct.
Acycle X = X, iy....5, = 8101 + 822 + - - - + s,y is called partially negative cycle
for the suffixes (i1, 42, ..., i) if [';;X = 0 for every j and I'; X < 0 for every
1 #11, doy ..., .

Note that a negative or partially negative cycle is always effective.

Lemma 2. For any suffixes (i1, iz, ...,1;), there exists a partially negative cycle
for them.

Proof. We may assume (i1,%2,...,%) = (1,2,...,]) (1 < I < n). Let
(@141, @142, - - - ,an) be negative rational numbers (e.g. (—1,—1,...,—1)) and set

(31,89,...,8,) = (0,...,0,a141,...,a,) M~}

where M is the intersection matrix of the (—2)-curves I'y,..., T, (cf. Appendix).
Now let m be a positive integer such that s; = m3; is also a nonnegative interger

(1 < j < n). Then we get acycle X = s1I'1 +---+ s, such that T'; X =0 (1 <

j<Dand ;X <0 (I+1<j<n). O

Since the minimally negative cycles are given in [4, p.174], we get the following
alternative construction:

Let W be a negative cycle on S (e.g. the minimally negative cycle). For [-variables
z1, Tz, -+, T1, We set

X(.’L‘l, T2y vy .Z‘[) ::W—le‘,-l——ng‘i2—...—xlI‘il.
Let us consider the following linear equations on (z1, g, ..., Z;):
(1) Fin(xh T2, «--, 27[):0 (1S]§l)

Then, since all the components of the inverse matrix of the intersection matrix of I';,,
[s,, ..., Iy, are nonpositive (see Appendix) and moreover I';; W < 0 for all j, we get
that (1) has a root

(.’131, T2y «vey l‘l) = (Cl, C2y ..y Cl)
where all the c;’s are nonnegative rational numbers. Now let m be a positive in-
teger such that all the mc;’s are also (nonnegative) integers, and we define X as
mX'(cl, cg, ..., ¢;). Then it is easy to see that X = X; i, is one of the
partially negative cycles which we want.

1,82, -en

For readers’ convenience, we will give a concrete description for small [.Let W be
the minimally negative cycle on S:
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EXAMPLE 2.1 (I =1). By Lemma 1, we have I''W = —1 or —2. So we can
define X = X; by

x.o_[2W-Ti if TW=-1
T W=, if TWW=-2

EXAMPLE 2.2 (I = 2). We may assume I''W > T2 W, that is, (I'tW, T2 W) =
(-1,-1), (—-1,-2) or (—2, —2). Then we can define X = X; 5 as follows:

(I) The case of I';T'y = 0.

oW —T, —Ty if (I1W, ToW) = (—1,-1)
Xip={ 2W—T1 -2y if (D'W, [oW) = (-1,-2)
W-T1-Ty if (I1W, [oW) = (-2, -2)

(II) The case of I'1T's = 1.

W-T,-Ty,  if (I'/W, ToW) = (=1,-1)
X1o=1{ 3W —d4I'y —5Ty if (O1W, ToW) = (-1, -2)
W —2T; — 2Ty  if (DWW, ToW) = (=2, -2)

3. Projective embeddings of S

Let X = X, 4,,.., i denote a partially negative cycle for suffixes (i1,12,...,1)
on S.

Theorem 1. For a sufficiently large n, the divisor nKg — X defines a holomor-
phic map S — PN which is an embeding except the indicated (—2)curves T;,, T,
N

REMARK 3.1. The meaning of sufficiently large is that there exists a number
no = no(K2, X?) such that the theorem holds for every n larger than ny.

REMARK 3.2. The following proof is almost parallel to that of [4, Theorem 2.2]
except the last paragraph.

Let us recall a theorem of Reider (cf. [3, THEOREM 1]):

Reider’s Theorem Let S be a smooth complex algebraic surface and let L be a
nef divisor on S.

(i) If L> > 5 and p is a base point of |Kg + L|, then there exists an effective
divisor E on S passing through p such that
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either LE =0, E? = —1
or LE=1,E?=0.
(ii) If L? > 10 and points p, q, are not separated by |Kg + L|, then there exists
an effective divisor E on S passing through p and q such that
either LE =0 and E%? = -1 or —2
orLE=1and E*?=—-1o0r0
or LE =2 and E? = 0.

Proof of Theorem 1. Let us begin with an inequality to estimate intersection
numbers of X and other divisors. Let E denote an irreducible curve on S. Then,
since D := (K%)E — (KsE)Kj5 satisfies DKs(= XKgs) = 0, we have (X?)(D?) —
(X D)? > 0, which implies the following:

) (XE)? < X? (E2 - (Kls{f )2) .

Now let L denote the divisor (n — 1)K — X. Then we have L? > 10 if

n—1)2> ﬂ

(=172 =

Hence, to apply the Reider’s theorem, we need to verify that L is nef if n is sufficiently
large.

Let E denote an irreducible curve on S as before. If KgE = 0, then we have
XE <0 and hence LE > 0 for any n. So we assume KgFE > 0 and will show that
(n —1)2(KsE)? — (XE)? > 0 (for large n). Since KgE > 0, we have 3(KsE)2+
E? > (KsE)> + E>+2> KsE + E? 4+ 2 > 0 and therefore, by (2),

(n—1)*KsE)? - (XE)? > (n-1)?(KsE)? — X2 (E2 B (st::y)
KS

((n —1)? ﬁ—z) (KsE)? — X?E*
S

((n -1)% + % + 3X’~’) (KsE)?

~X?(3(KsE)*+E*) >0
for any n such that

X2
(n—1)2+F+3X220.
S
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Now suppose there exist points p, g on S which are not separated by the linear
system |nKg — X|. Then by Reider’s theorem (ii), there exists a divisor E > 0 on S
such that (LE, E?) = (0,-1), (0,-2), (1,0), (1,—1) or (2,0).

() (LE,E?* # (0,-2). If KgE = 0, then E? is even and negative, which
contradict the above. Hence we have KgFE > 0 and therefore

(XB)? < X* <E2-—(KIS{§)2)
1

< X*(E?- F)(KSE)2~
Consequently we get that

LE = (n—1)KsE-XE

1

> ((n—l)— X?(Ez-K—§)> KsE

with E2 = 0, —1. Therefore, for large n, we have LE > 2, a contradiction.

(I) (LE,E?) = (0,—2). If KsE > 0, then we get that LE > 0 for large n by
the same way as in (I). Hence we have KgF = 0, and hence X E = 0. Therefore F is
nothing but a finite sum of the indicated (—2)-curves I';,, I';,, ..., I';,. OJ

Appendix

Though it may be well known, we will write down the inverse matrices of the intersec-
tion matrices of some of (—2)-curves on S. For simplicity, we consider only the cases
that the (—2)-curves form a connected subset of S. We denote the (i, j) component of
the intersection matrix (resp. the inverse matrix of it) for each types by (A,);; etc.
(resp. (A, 1); ; etc.). All the statements in this appendix are easily verified.

1. A, (See Figure 1.)

A, o O O crereeeenes o 0
Fl F2 F3 Fn—l Fn
Figure 1:

The intersection matrix is as follows:
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Hi=1

-2 j=
(Ap)ij=Q 1 j=2
0 3<j<n

()2<i<n-1

1<5j<i-2
1 j=i—-1
(An)ij=4 -2 j=i
1 j=i+1
1+2<j<n

(iii) i = n

(An)n,j = 1 j:n—l
-2 j=n

Its inverse is given as follows:

(A1), = —@E—j_:—_l) 1<i<j
mo _jln—itl) j<i<n
n+1
2. D, (See Figure 2.)
Iy

Figure 2:

The intersection matrix is as follows:
Hi=1
-2 j=1

Dp)iyj=8 1 j=2
0 3<j<n
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2<i<n-3

0 1<j<i—2
1 j=i-1
Dn)ij=94 -2 j=i
1 j=i+1
0 1+2<j37<n
(i) i =n—2
0 1<j<n-—-4
1 j=n-3
Dn -2, — .
( )nZ,J -9 ]=’l’l—2
1 j=n-1n
ivyi=n-1
0 1<j<n-3
_J 1 j=n-2
(Dn)n—l,] - ) ] —n—1
0 gJ=n
V)i=n
0 1<j<n-3
)1 j=n-2
Dn)ns =9 o j=n-1
-2 Jj=n
Its inverse is given as follows:
MW1<j<n-2
-1 1<:i<y
(DY) =4 —J Jsisn-2
3 j=n-1n
i)j=n-1
1 :
(D in-1 = ~7 i=n-—1
n—2

611
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(i) j =n

3. E¢, E7 and Eg (See Figure 3, 4 and 5.)

1<i<n-2
i=n-—1
i=n

o—-o -
o}

E6 . O O O
Fz Fg F4 Fs F6
Figure 3:
r,
E;: O—O——i O— O —O
FQ F3 F4 Fg, F6 F7
Figure 4:
Eg N
ry
o O j, O— O O— O
Iy I3 Iy I's T's ' I's
Figure 5:

We have the following;
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8 5 10 15 12 9 6 3
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Note added in proof. Recently, the auther was intormed by Professor Sigehumi
Mori that Theorem 1 is also obtained as a conseguence of J.Lipman’s classical result
(cf. Inst. Hutes. E tudes. Sci. publ. 195-279). The author would like to express his
gratitude to Professor Mori for this instruction.
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