<table>
<thead>
<tr>
<th>Title</th>
<th>Self-mapping degrees of 3-manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sun, Hongbin; Wang, Shicheng; Wu, Jianchun; Zheng, Hao</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 49(1) P.247-P.269</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2012-03</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5043</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5043</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
SELF-MAPPING DEGREES OF 3-MANIFOLDS

HONGBIN SUN, SHICHENG WANG, JIANCHUN WU and HAO ZHENG

(Received March 3, 2010, revised October 7, 2010)

Abstract

For each closed oriented 3-manifold M in Thurston’s picture, the set of degrees of self-maps on M is given.

Contents

1. Introduction .. 247
 1.1. Background. .. 247
 1.2. Main results. ... 249
 1.3. A brief comment of the topic and organization of the paper. .. 252
2. Examples of computation, orientation reversing homeomorphisms 253
3. $D(M)$ for connected sums 255
 3.1. Relations between $D_{iso}(M_1 \# M_2)$ and $\{D_{iso}(M_1), D_{iso}(M_2)\}$. 255
 3.2. $D(M)$ for connected sums. 258
4. $D(M)$ for Nil manifolds 260
 4.1. Self coverings of Euclidean orbifolds. 260
 4.2. $D(M)$ for Nil manifolds. 265
5. $D(M)$ for $H^2 \times E^1$ manifolds 267
References .. 268

1. Introduction

1.1. Background. Each closed oriented n-manifold M is naturally associated with a set of integers, the degrees of all self-maps on M, denoted as $D(M) = \{\deg(f) \mid f: M \to M\}$.

Indeed the calculation of $D(M)$ is a classical topic appeared in many literatures. The result is simple and well-known for dimension $n = 1, 2$. For dimension $n > 3$, there are many interesting special results (See [3], [10], [15] for recent ones and references therein), but it is difficult to get general results, since there are no classification results for manifolds of dimension $n > 3$.

The case of dimension 3 becomes attractive in the topic and it is possible to calculate $D(M)$ for any closed oriented 3-manifold M. Since Thurston’s geometrization conjecture, which seems to be confirmed, implies that closed oriented 3-manifolds can be classified in a reasonable sense.

2000 Mathematics Subject Classification. 55M25, 57M10.
Thurston’s geometrization conjecture claims that the each Jaco-Shalen-Johanson decomposition piece of a prime 3-manifold supports one of the eight geometries, which are H^3, $\overline{PSL}(2, R)$, $H^2 \times E^1$, Sol, Nil, E^3, S^3 and $S^2 \times E^1$ (for details see [24] and [20]). Call a closed orientable 3-manifold M is geometrizable if each prime factor of M meets Thurston’s geometrization conjecture. All 3-manifolds discussed in this paper are geometrizable.

The following result is known in early 1990’s:

Theorem 1.0. Suppose M is a geometrizable 3-manifold. Then M admits a self-map of degree larger than 1 if and only if M is either

(a) covered by a torus bundle over the circle, or
(b) covered by $F \times S^1$ for some compact surface F with $\chi(F) < 0$, or
(c) each prime factor of M is covered by S^3 or $S^2 \times E^1$.

Hence for any 3-manifold M not listed in (a)–(c) of Theorem 1.0, $D(M)$ is either $\{0, 1, -1\}$ or $\{0, 1\}$, which depends on whether M admits a self-map of degree -1 or not. To determine $D(M)$ for geometrizable 3-manifolds listed in (a)–(c) of Theorem 1.0, let’s have a close look of them.

For short, we often call a 3-manifold supporting Nil geometry a Nil 3-manifold, and so on. Among Thurston’s eight geometries, six of them belong to the list (a)–(c) in Theorem 1.0. 3-manifolds in (a) are exactly those supporting either E^3, or Sol or Nil geometries. E^3 3-manifolds, Sol 3-manifolds, and some Nil 3-manifolds are torus bundle or semi-bundles; Nil 3-manifolds which are not torus bundles or semi-bundles are Seifert fibered spaces having Euclidean orbifolds with three singular points. 3-manifolds in (b) are exactly those supporting $H^2 \times E^1$ geometry; 3-manifolds supporting S^3 or $S^2 \times E^1$ geometries form a proper subset of (3). Now we divide all 3-manifolds in the list (a)–(c) in Theorem 1.0 into the following five classes:

Class 1. M supporting either S^3 or $S^2 \times E^1$ geometries;
Class 2. each prime factor of M supporting either S^3 or $S^2 \times E^1$ geometries, but M is not in Class 1;
Class 3. torus bundles and torus semi-bundles;
Class 4. Nil 3-manifolds not in Class 3;
Class 5. M supporting $H^2 \times E^1$ geometry.

$D(M)$ is known recently for M in Class 1 and Class 3. We will calculate $D(M)$ for M in the remaining three classes. For the convenience of the readers, we will present $D(M)$ for M in all those five classes. To do this, we need first to coordinate 3-manifolds in each class, then state the results of $D(M)$ in term of those coordinates. This is carried in the next subsection.
1.2. Main results.

Class 1. According to [13] or [20], the fundamental group of a 3-manifold supporting S^3-geometry is among the following eight types: \mathbb{Z}_p, D^*_n, T^*_n, O^*_q, I^*_r, $T_{8,3r}^*$, $D^*_n,2r^*$ and $\mathbb{Z}_m \times \pi_1(N)$, where N is a 3-manifold supporting S^3-geometry, $\pi_1(N)$ belongs to the previous seven ones, and $[\pi_1(N)]$ is coprime to m. The cyclic group \mathbb{Z}_p is realized by lens space $L(p, q)$, each group in the remaining types is realized by a unique 3-manifold supporting S^3-geometry. Note also the sub-indices of those seven types groups are exactly their orders, and the order of the groups in the last type is $m[\pi_1(N)]$. There are only two closed orientable 3-manifolds supporting $S^2 \times \mathbb{E}^1$ geometry: $S^2 \times S^1$ and $RP^3 \# RP^3$.

Theorem 1.1. (1) $D(M)$ for M supporting S^3-geometry are listed below:

<table>
<thead>
<tr>
<th>$\pi_1(M)$</th>
<th>$D(M)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathbb{Z}_p</td>
<td>${k^2 \mid k \in \mathbb{Z}} + p\mathbb{Z}$</td>
</tr>
<tr>
<td>D^*_n</td>
<td>${h^2 \mid h \in \mathbb{Z}; 2 \nmid h \text{ or } h = \text{nor } h = 0} + 4n\mathbb{Z}$</td>
</tr>
<tr>
<td>T^*_n</td>
<td>${0, 1, 16} + 24\mathbb{Z}$</td>
</tr>
<tr>
<td>O^*_q</td>
<td>${0, 1, 25} + 48\mathbb{Z}$</td>
</tr>
<tr>
<td>I^*_r</td>
<td>${0, 1, 49} + 120\mathbb{Z}$</td>
</tr>
<tr>
<td>$T_{8,3r}^*$</td>
<td>${(k^2 \cdot (3^{3r-2p} - 3^q) \mid 3 \nmid k, q \geq p > 0} + 8 \cdot 3^q\mathbb{Z}$</td>
</tr>
<tr>
<td>$D^_n,2r^$</td>
<td>${(k^2 \cdot (3^{3r-2p} - 3^{q+1}) \mid 3 \nmid k, q \geq p > 0} + 8 \cdot 3^q\mathbb{Z}$</td>
</tr>
<tr>
<td>$\mathbb{Z}_m \times \pi_1(N)$</td>
<td>$\left{d \in \mathbb{Z} \left</td>
</tr>
</tbody>
</table>

(2) $D(S^2 \times S^1) = D(RP^3 \# RP^3) = \mathbb{Z}$.

Class 2. We assume that each 3-manifold P supporting S^3-geometry has the canonical orientation induced from the canonical orientation on S^3. When we change the orientation of P, the new oriented 3-manifold is denoted by \tilde{P}. Moreover, lens space $L(p, q)$ is orientation reversed homeomorphic to $L(p, p - q)$, so we can write all the lens spaces connected summands as $L(p, q)$. Now we can decompose each 3-manifold in Class 2 as

$$M = (mS^2 \times S^1) \# (m_1P_1 \# n_1\tilde{P}_1) \# \cdots \# (m_sP_s \# n_s\tilde{P}_s) \# \cdots \# L(p, q_{i,1}) \# \cdots \# L(p, q_{i,1}) \# \cdots \# L(p, q_{i,r_i})$$

where all the P_i are 3-manifolds with finite fundamental group different from lens spaces,
all the \(P_i \) are different from each other, and all the positive integer \(p_i \) are different from each other. Define

\[
D_{\text{iso}}(M) = \{ \text{deg}(f) \mid f : M \to M, \ f \text{ induces an isomorphism on } \pi_1(M) \}.
\]

Theorem 1.2.
(1) \(D(M) = D_{\text{iso}}(m_1 P_1 \# n_1 \tilde{P}_1) \cap \cdots \cap D_{\text{iso}}(m_s P_s \# n_s \tilde{P}_s) \cap D_{\text{iso}}(L(p_1, q_{1,1}) \# \cdots \# L(p_1, q_{1,r_1})) \cap \cdots \cap D_{\text{iso}}(L(p_r, q_{1,1}) \# \cdots \# L(p_r, q_{r,r}));
\]

(2) \(D_{\text{iso}}(mP \# n\tilde{P}) = \begin{cases}
D_{\text{iso}}(P) & \text{if } m \neq n, \\
D_{\text{iso}}(P) \cup (-D_{\text{iso}}(P)) & \text{if } m = n;
\end{cases} \)

(3) \(D_{\text{iso}}(L(p, q_1) \# \cdots \# L(p, q_n)) = H^{-1}(C). \)

The notions \(H \) and \(C \) in Theorem 1.2 (3) is defined as below:

Let \(U_p = \{ \text{all units in ring } \mathbb{Z}_p \}, U^2_p = \{ a^2 \mid a \in U_p \}, \) which is a subgroup of \(U_p \).

We consider the quotient \(U_p/U^2_p = \{ a_1, \ldots, a_m \}, \) every \(a_i \) corresponds with a coset \(A_i \) of \(U^2_p \). For the structure of \(U_p \), see [9] p. 44. Define \(H \) to be the natural projection from \(\{ n \in \mathbb{Z} \mid \text{gcd}(n, p) = 1 \} \) to \(U_p/U^2_p \).

Define \(\tilde{A}_i = \{ L(p, q_i) \mid q_i \in A_i \} \) (with repetition allowed). In \(U_p/U^2_p \), define \(B_i = \{ a_i \mid \# \tilde{A}_i = l \} \) for \(l = 1, 2, \ldots \), there are only finitely many \(l \) such that \(B_i \neq \emptyset \). Let \(C_l = \{ a \in U_p/U^2_p \mid a_i \in B_i, \forall a_i \in B_i \} \) if \(B_i \neq \emptyset \) and \(C_l = U_p/U^2_p \) otherwise. Define \(C = \cap_{l=1}^{\infty} C_l \).

Class 3. To simplify notions, for a diffeomorphism \(\phi \) on torus \(T \), we also use \(\phi \) to present its isotopy class and its induced 2 \times 2 matrix on \(\pi_1(T) \) for a given basis.

A torus bundle is \(M_\phi = T \times I/(x, 1) \sim (\phi(x), 0) \) where \(\phi \) is a diffeomorphism of the torus \(T \) and \(I \) is the interval \([0, 1] \). Then the coordinates of \(M_\phi \) is given as below:

(1) \(M_\phi \) admits \(E^2 \) geometry, \(\phi \) conjugates to a matrix of finite order \(n \), where \(n \in \{ 1, 2, 3, 4, 6 \} \);

(2) \(M_\phi \) admits Nil geometry, \(\phi \) conjugates to \(\pm \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix} \), where \(n \neq 0 \);

(3) \(M_\phi \) admits Sol geometry, \(\phi \) conjugates to \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \), where \(|a + d| > 2, ad - bc = 1 \).

A torus semi-bundle \(N_\phi = N \cup_{\phi} N \) is obtained by gluing two copies of \(N \) along their torus boundary \(\partial N \) via a diffeomorphism \(\phi \), where \(N \) is the twisted \(I \)-bundle over the Klein bottle. We have the double covering \(p: S^1 \times S^1 \times I \to N = S^1 \times S^1 \times I/\tau \), where \(\tau \) is an involution such that \((x, y, z) = (x + \pi, -y, 1 - z) \).

Denote by \(l_0 \) and \(l_\infty \) on \(\partial N \) be the images of the second \(S^1 \) factor and first \(S^1 \) factor on \(S^1 \times S^1 \times \{ 1 \} \). A canonical coordinate is an orientation of \(l_0 \) and \(l_\infty \), hence there are four choices of canonical coordinate on \(\partial N \). Once canonical coordinates on each \(\partial N \) are chosen, \(\phi \) is identified with an element \(\begin{pmatrix} a & b \\ c & d \end{pmatrix} \) of \(GL_2(\mathbb{Z}) \) given by \(\phi(l_0, l_\infty) = (l_0, l_\infty)_{\begin{pmatrix} a & b \\ c & d \end{pmatrix}}. \)
With suitable choice of canonical coordinates of ∂N, N_{ϕ} has coordinates as below:

1. N_{ϕ} admits E^3 geometry, $\phi = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ or $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$;
2. N_{ϕ} admits Nil geometry, $\phi = \begin{pmatrix} 1 & 0 \\ z & 1 \end{pmatrix}$, $\begin{pmatrix} 0 & 1 \\ 1 & z \end{pmatrix}$, or $\begin{pmatrix} 0 & z \\ 1 & 0 \end{pmatrix}$, where $z \neq 0$;
3. N_{ϕ} admits Sol geometry, $\phi = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, where $abcd \neq 0$, $ad - bc = 1$.

Theorem 1.3. $D(M_{\phi})$ is in the table below for torus bundle M_{ϕ}, where $\delta(3) = \delta(6) = 1$, $\delta(4) = 0$.

<table>
<thead>
<tr>
<th>M_{ϕ}</th>
<th>ϕ</th>
<th>$D(M_{\phi})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E^3 finite order $k = 1, 2$</td>
<td>$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>E^3 finite order $k = 3, 4, 6$</td>
<td>$(kt + 1)(p^2 - \delta(k)pq + q^2)</td>
<td>t, p, q \in \mathbb{Z}$</td>
</tr>
<tr>
<td>Nil</td>
<td>$\pm \begin{pmatrix} 1 & 0 \ n & 1 \end{pmatrix}$, $n \neq 0$</td>
<td>$\left{l^2</td>
</tr>
<tr>
<td>Sol</td>
<td>$\begin{pmatrix} a & b \ c & d \end{pmatrix}$, $</td>
<td>a + d</td>
</tr>
</tbody>
</table>

(2) $D(N_{\phi})$ is listed in the table below for torus semi-bundle N_{ϕ}, where $\delta(a, d) = ad/gcd(a, d)^2$.

<table>
<thead>
<tr>
<th>N_{ϕ}</th>
<th>ϕ</th>
<th>$D(N_{\phi})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E^3</td>
<td>$\begin{pmatrix} 1 & 0 \ 0 & 1 \end{pmatrix}$</td>
<td>\mathbb{Z}</td>
</tr>
<tr>
<td>E^3</td>
<td>$\begin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix}$</td>
<td>$(2l + 1</td>
</tr>
<tr>
<td>Nil</td>
<td>$\begin{pmatrix} 1 & 0 \ z & 1 \end{pmatrix}$, $z \neq 0$</td>
<td>$\left{l^2</td>
</tr>
<tr>
<td>Nil</td>
<td>$\begin{pmatrix} 0 & 1 \ 1 & z \end{pmatrix}$ or $\begin{pmatrix} 1 & 0 \ z & 1 \end{pmatrix}$, $z \neq 0$</td>
<td>$\left{(2l + 1)^2</td>
</tr>
<tr>
<td>Sol</td>
<td>$\begin{pmatrix} a & b \ c & d \end{pmatrix}$, $abcd \neq 0$, $ad - bc = 1$</td>
<td>$\left{(2l + 1)^2</td>
</tr>
</tbody>
</table>

To coordinate 3-manifolds in Class 4 and Class 5, we first recall the well known coordinates of Seifert fibered spaces.

Suppose an oriented 3-manifold M' is a circle bundle with a given section F, where F is a compact surface with boundary components c_1, \ldots, c_n with $n > 0$. On each boundary component of M', orient c_i and the circle fiber h_i so that the product of their orientations match with the induced orientation of M' (call such pairs $\{(c_i, h_i)\}$ a section-fiber coordinate system). Now attach n solid tori S_i to the n boundary tori.
of M' such that the meridian of S_i is identified with slope $r_i = c_i^\alpha \beta_i^\beta$, where $\alpha > 0$, $(\alpha, \beta) = 1$. Denote the resulting manifold by $M(\pm g; \beta_1/\alpha_1, \ldots, \beta_n/\alpha_n)$ which has the Seifert fiber structure extended from the circle bundle structure of M', where g is the genus of the section F of M, with the sign $+$ if F is orientable and $-$ if F is non-orientable, here ‘genus’ of nonorientable surfaces means the number of RP^2 connected summands. Call $e(M) = \sum_{i=1}^n \beta_i/\alpha_i \in \mathbb{Q}$ the Euler number of the Seifert fibration.

Class 4. If a Nil manifold M is not a torus bundle or torus semi-bundle, then M has one of the following Seifert fibreing structures: $M(0; \beta_1/2, \beta_2/3, \beta_3/6)$, $M(0; \beta_1/3, \beta_2/3, \beta_3/3)$, or $M(0; \beta_1/2, \beta_2/4, \beta_3/4)$, where $e(M) \in \mathbb{Q} - \{0\}.

Theorem 1.4. For 3-manifold M in Class 4, we have

1. $D(M(0; \beta_1/2, \beta_2/3, \beta_3/6)) = \{l^2 \mid l = m^2 + mn + n^2, l \equiv 1 \pmod{6}, m, n \in \mathbb{Z}\}$;
2. $D(M(0; \beta_1/3, \beta_2/3, \beta_3/3)) = \{l^2 \mid l = m^2 + mn + n^2, l \equiv 1 \pmod{3}, m, n \in \mathbb{Z}\}$;
3. $D(M(0; \beta_1/2, \beta_2/4, \beta_3/4)) = \{l^2 \mid l = m^2 + n^2, l \equiv 1 \pmod{4}, m, n \in \mathbb{Z}\}$.

Class 5. All manifolds supporting $H^2 \times E^1$ geometry are Seifert fibered spaces M such that $e(M) = 0$ and the Euler characteristic of the orbifold $\chi(O_M) < 0$.

Suppose $M = (g; \beta_{1,1}/\alpha_1, \ldots, \beta_{1,m_1}/\alpha_1, \ldots, \beta_{n,1}/\alpha_n, \ldots, \beta_{n,m_n}/\alpha_n)$, where all the integers $\alpha_i > 1$ are different from each other, and $\sum_{i=1}^n \sum_{j=1}^{m_i} \beta_{i,j}/\alpha_i = 0$.

For each α_i and each $a \in U_{\alpha_i}$, define $\theta_a(\alpha_i) = \#\{\beta_{i,j} \mid p_i(\beta_{i,j}) = a\}$ (with repetition allowed), p_i is the natural projection from $\{n \mid \gcd(n, \alpha_i) = 1\}$ to U_{α_i}. Define $B_i(\alpha_i) = \{a \mid \theta_a(\alpha_i) = l\}$ for $l = 1, 2, \ldots$, there are only finitely many l such that $B_i(\alpha_i) \neq \emptyset$. Let $C_i(\alpha_i) = \{b \in U_{\alpha_i} \mid ab \in B_i(\alpha_i), \forall a \in B_i(\alpha_i)\}$ if $B_i(\alpha_i) \neq \emptyset$ and $C_i(\alpha_i) = U_{\alpha_i}$ otherwise. Finally define $C(\alpha_i) = \bigcap_{i=1}^\infty C_i(\alpha_i)$, and $\bar{C}(\alpha_i) = p_i^{-1}(C(\alpha_i))$.

Theorem 1.5. $D(M(g; \beta_{1,1}/\alpha_1, \ldots, \beta_{1,m_1}/\alpha_1, \ldots, \beta_{n,1}/\alpha_n, \ldots, \beta_{n,m_n}/\alpha_n)) = \bigcap_{i=1}^m \bar{C}(\alpha_i)$.

1.3. A brief comment of the topic and organization of the paper. Theorem 1.0 was appeared in [25]. The proof of the “only if” part in Theorem 1.0 is based on the results on simplicial volume developed by Gromov, Thurston and Soma (see [21]), and various classical results by others on 3-manifold topology and group theory ([5], [19], [17]). The proof of “if” part in Theorem 1.0 is a sequence elementary constructions, which were essentially known before, for example see [6] and [11] for (3). That graph manifolds admits no self-maps of degrees > 1 also follows from a recent work [2].

The table in Theorem 1.1 is quoted from [1], which generalizes the earlier work [7]. The statement below quoted from [7] will be repeatedly used in this paper.

Proposition 1.6. For 3-manifold M supporting S^3 geometry,

$$D_{\text{to}}(M) = \{k^2 + l |\pi_1(M)|, \text{ where } k \text{ and } |\pi_1(M)| \text{ are co-prime}\.$$
The topic of mapping degrees between (and to) 3-manifolds covered by S^3 has been discussed for long times and has many relations with other topics (see [26] for details). We just mention several papers: in very old papers [16] and [14], the degrees of maps between any given pairs of lens spaces are obtained by using equivalent maps between spheres; in [8], $D(M, L(p, q))$ can be computed for any 3-manifold M; and in a recent one [12], an algorithm (or formula) is given to the degrees of maps between given pairs of 3-manifolds covered by S^3 in term of their Seifert invariants.

Theorem 1.3 is proved in [23].

Theorems 1.2, 1.4 and 1.5 will be proved in Sections 3, 4 and 5 respectively in this paper. In Section 2 we will compute $D(M)$ for some concrete 3-manifolds using Theorems 1–5. We will also discuss when $-1 \in D(M)$ and when $-1 \not\in D(M)$ implies that M admits orientation reversing homeomorphisms.

All terminologies not defined are standard, see [5], [20] and [9].

2. Examples of computation, orientation reversing homeomorphisms

Example 2.1. Let $M = (P \# \bar{P}) \# (L(7, 1) \# L(7, 2) \# 2L(7, 3))$, where P is the Poincare homology three sphere.

By Theorem 1.2 (2), Proposition 1.6 and the fact $|\tau_1(P)| = 120$, we have $D(P \# \bar{P}) = D_{\text{iso}}(P) \cup (-D_{\text{iso}}(P)) = \{120n + i \mid n \in \mathbb{Z}, \ i = 1, 49, 71, 119\}$.

Now we are going to calculate $D((L(7, 1)\# L(7, 2) \# 2L(7, 3)))$ following the notions of Theorem 1.2 (3). Clearly $U_1 = \{1, 2, 3, 4, 5, 6\}$ and $U_2 = \{1, 2, 4\}$. Then $U_7/U_2^2 = \{a_1, a_2\}$, where $a_1 = 1$ and $a_2 = \bar{3}$; $U_7 = \{A_1 \cup A_2\}$, where $A_1 = U_7^2$, $A_2 = 3U_7^2$; $\# \bar{A}_1 = 2$ and $\# \bar{A}_2 = 2$; $B_2 = \{1, \bar{3}\}$, $B_l = \emptyset$ for $l \not= 2$. Since $U_7/U_2^2 = B_2$, we have $C_2 = B_2$ and also $C_1 = U_7/U_2^2$ for $l \not= 2$; then $C = \bigcap_{l=1}^{\infty} C_l = U_7/U_2^2$. Then for the natural projection $H: \{n \in \mathbb{Z} \mid \gcd(n, p) = 1\} \to U_7/U_2^2$, $H^{-1}(C)$ are all number coprime to 7, hence we have $D_{\text{iso}}((L(7, 1)\# L(7, 2) \# 2L(7, 3))) = \{l \in \mathbb{Z} \mid \gcd(l, 7) = 1\}$ by Theorem 1.2 (3).

Finally by Theorem 1.2 (1), we have $D(M) = \{120n + i \mid n \in \mathbb{Z}, \ i = 1, 49, 71, 119\} \cap \{l \in \mathbb{Z} \mid \gcd(l, 7) = 1\} = \{840n + i \mid n \in \mathbb{Z}, \ i = 1, 71, 121, 169, 191, 239, 241, 289, 311, 359, 361, 409, 431, 479, 481, 529, 551, 599, 601, 649, 671, 719, 769, 839\}$. Note $-1 \not\in D(M)$.

Example 2.2. Suppose $M = (2P \# \bar{P}) \# (L(7, 1) \# L(7, 2) \# L(7, 3))$.

Similarly by Theorem 1.2 (2), Proposition 1.6 and $|\tau_1(P)| = 120$, we have $D(2P \# \bar{P}) = D_{\text{iso}}(P) = \{120n + i \mid n \in \mathbb{Z}, \ i = 1, 49\}$.

To calculate $D(L(7, 1) \# L(7, 2) \# L(7, 3))$, we have $U_7, U_7^2, U_7/U_7^2 = \{a_1, a_2\}$, $U_7 = \{A_1, A_2\}$ exactly as last example. But then $\# \bar{A}_1 = 2$ and $\# \bar{A}_2 = 1$; $B_1 = \{\bar{3}\}$, $B_2 = \{1\}$, $B_l = \emptyset$ for $l \not= 1, 2$. Moreover $C_1 = C_2 = \{\bar{1}\}$, and $C_l = U_7/U_7^2$ for $l \not= 1, 2$; then $C = \bigcap_{l=1}^{\infty} C_l = \{\bar{1}\}$, and $H^{-1}(C) = \{7n + i \mid n \in \mathbb{Z}, \ i = 1, 2, 4\}$. Hence we have $D_{\text{iso}}((L(7, 1)\# L(7, 2) \# L(7, 3))) = \{7n + i \mid n \in \mathbb{Z}, \ i = 1, 2, 4\}$ by Theorem 1.2 (3).

By Theorem 1.2 (1), $D(M) = \{120n + i \mid n \in \mathbb{Z}, \ i = 1, 49\} \cap \{7n + i \mid n \in \mathbb{Z}, \ i = 1, 2, 4\} = \{840n + i \mid n \in \mathbb{Z}, \ i = 1, 121, 169, 289, 361, 529\}$. Note $-1 \not\in D(M)$.

Self-Mapping Degrees of 3-Manifolds

253
EXAMPLE 2.3. By Theorem 1.3, for the torus bundle M_ϕ, $\phi = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right)$, among the first 20 integers > 0, exactly 1, 4, 5, 9, 11, 16, 19, $20 \in D(M_\phi)$.

EXAMPLE 2.4. For Nil 3-manifold $M = M(0; \beta_1/2, \beta_2/3, \beta_3/6)$, $D(M) = \{l^2 \mid l = m^2 + mn + n^2, l \equiv 1 \mod 6, m, n \in \mathbb{Z}\}$. The numbers in $D(M)$ smaller than 10000 are exactly 1, 49, 169, 361, 625, 961, 1369, 1849, 2401, 3721, 4489, 5329, 6241, 8291, 9409. Since all $l \equiv 1, 4, 5 \mod 6$ and $\frac{l^2}{6}$ is an integer, all $l \leq 10000$ can be presented as $m^2 + mn + n^2$ except $l = 55, 85$ (if $5 \mid m^2 + mn + n^2$, then $5 \mid (2m + n)^2 + 3n^2$, therefore $5 \mid 2m + n$ and $5 \mid n$, it follows that $25 \mid m^2 + mn + n^2$).

EXAMPLE 2.5. For $H^2 \times E^1$ manifold $M = M(2; 1/5, 1/5, -2/5, 1/7, 2/7, -3/7)$, we follow the notions in Theorem 1.5 to calculate $D(M)$.

First we have $U_5 = \{1, 2, 3, 4\}$ with indices $\theta_5(5)$ are $\{2, 0, 1, 0\}$ respectively. Then $B_1(5) = \{3\}, B_2(5) = \{1\}, B_1(5) = \emptyset$ for $l \neq 1, 2$ and $C_1(5) = C_2(5) = \{1\}$. Hence $C(5) = \bigcap_{i=1}^{\infty} C_i(5) = \{1\}$. Hence $\tilde{C}(5) = \{5n + 1 \mid n \in \mathbb{Z}\}$.

Similarly $U_7 = \{1, 2, 3, 4, 5, 6\}$ with indices $\theta_7(7)$ are $\{1, 1, 0, 1, 0, 0\}$ respectively. Then $B_1(7) = C_1(7) = \{1, 2, 4\}, B_1(7) = \emptyset$ and $C(7) = \bigcap_{i=1}^{\infty} C_i(7) = \{1, 2, 4\}$. $\tilde{C}(7) = \{7n + i \mid n \in \mathbb{Z}, i = 1, 2, 4\}$.

Finally $D(M) = \{5n + 1 \mid n \in \mathbb{Z}\} \cap \{7n + i \mid n \in \mathbb{Z}, i = 1, 2, 4\} = \{35n + i \mid n \in \mathbb{Z}, i = 1, 11, 16\}$.

EXAMPLE 2.6. Suppose M is a 3-manifold supporting S^3 geometry. By Proposition 1.6, M admits degree -1 self mapping if and only if there is integer number h, such that $h^2 \equiv -1 \mod \pi_1(M)$. Then we can prove that if M is not a lens space, $-1 \notin D(M)$, (see proof of Proposition 3.10). With some further topological and number theoretical arguments, the following results were proved in [22].

(1) There is a degree -1 self map on $L(p, q)$, but no orientation reversing homeomorphism on it if and only if (p, q) satisfies: $p \mid q^2 + 1$, $4 \nmid p$ and all the odd prime factors of p are the $4k + 1$ type.

(2) Every degree -1 self map on $L(p, q)$ are homotopic to an orientation reversing homeomorphism if and only if (p, q) satisfies: $q^2 \equiv -1 \mod p, p = 2, p_1^{e_1}, 2p_1^{e_1}$, where p_1 is a $4k + 1$ type prime number.

EXAMPLE 2.7. Suppose M is a torus bundle. Then any non-zero degree map is homotopic to a covering ([25] Corollary 0.4). Hence if $-1 \notin D(M)$, then M admits an orientation reversing self homeomorphism.

(1) For the torus bundle M_ϕ, $\phi = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array} \right)$, $-1 \in D(M_\phi)$. Indeed for $\phi = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$, if $|a + d| = 3$, then $-1 \in D(M_\phi)$. Since $p^2 + ((d - a)/b)pr - c/br^2 = -1$ has solution $p = 1 - d, r = b$ when $a + d = 3$, and solution $p = -1 - d, r = b$ when $a + d = -3$.

(2) For the torus bundle M_ϕ, $\phi = \left(\begin{array}{cc} 2 & 3 \\ 1 & 2 \end{array} \right)$, $-1 \notin D(M_\phi)$. Indeed for $\phi = \left(\begin{array}{cc} a & b \\ c & d \end{array} \right)$, if $a + d \pm 2$ has prime decomposition $p_1^{e_1} \cdots p_n^{e_n}$ such that $p_i = 4l + 3$ and $e_i = 2m + 1$ for
some i, then $-1 \notin D(M_0)$. Since if the equation $p^2 + ((d-a)/b)pr - (c/b)r^2 = -1$ has integer solution, then $(((a+d)^2 - 4)r^2 - 4b^2)/b^2$ should be a square of rational number. That is $((a+d)^2 - 4)r^2 - 4b^2 = s^2$ for some integer s. Therefore $(a+d+2)(a+d-2)r^2$ is a sum of two squares. By a fact in elementary number theory, neither $a + d + 2$ nor $a + d - 2$ has $4k + 3$ type prime factor with odd power (see p. 279, [9]).

3. $D(M)$ for connected sums

3.1. Relations between $D_{iso}(M_1 \# M_2)$ and $\{D_{iso}(M_1), D_{iso}(M_2)\}$. In this section, we consider the manifolds M in Class 2: M has non-trivial prime decomposition, each connected summand has finite or infinite cyclic fundamental group, and M is not homeomorphic to $RP^3 \# RP^3$. (Note for each geometrizable 3-manifold P, $\pi_1(P)$ is finite if and only if P is S^3 3-manifold, and $\pi_1(P)$ is infinite cyclic if and only if P is $S^2 \times E^1$ 3-manifold.) Since each S^3 3-manifold P is covered by S^3, we assume P has the canonical orientation induced by the canonical orientation on S^3. When we change the orientation of P, the new oriented 3-manifold is denoted by \tilde{P}. Moreover, lens space $L(p, q)$ is orientation reversing homeomorphic to $L(p, p - q)$, so we can write all the lens spaces connected summands as $L(p, q)$. Now we can decompose the manifold as

$$M = (mS^2 \times S^1) \# (m_1P_1 \# n_1\tilde{P}_1) \# \cdots \# (m_nP_n \# n_n\tilde{P}_n)$$

$$\# (L(p_1, q_{1,1}) \# \cdots \# L(p_1, q_{1,r_1})) \# \cdots \# (L(p_t, q_{t,1}) \# \cdots \# L(p_t, q_{t,r_t})), $$

where all the P_i are 3-manifolds with finite fundamental group different from lens spaces, all the P_i are different with each other, and all the positive integer p_i are different from each other. We will use this convention in this section.

Suppose F (resp. P) is a properly embedded surface (resp. an embedded 3-manifold) in a 3-manifold M. We use $M \setminus F$ (resp. $M \setminus P$) to denote the resulting manifold obtained by splitting M along F (resp. removing int P, the interior of P).

The definitions below are quoted from [17]:

Definition 3.1. Let M, N be 3-manifolds and $B_f = \bigcup_i (B_i^+ \cup B_i^-)$ is a finite collection of disjoint 3-ball pairs in int M. A map $f: M \setminus B_f \to N$ is called an almost defined map from M to N if for each i, $f|_{\partial B_i^+} = f|_{\partial B_i^-} \circ r_i$ for some orientation reversing homeomorphism $r_i: \partial B_i^+ \to \partial B_i^-$. If identifying ∂B_i^+ with ∂B_i^- via r_i, we get a quotient closed manifold $M(f)$, and f induces a map $\tilde{f}: M(f) \to N$. We define $\deg(f) = \deg(\tilde{f})$.

Definition 3.2. For two almost defined maps f and g, we say that f is B-equivalent to g if there are almost defined maps $f = f_0, f_1, \ldots, f_n = g$ such that either f_i is homotopic to f_{i+1} rel($\partial B_i \cup \partial B_{f_i}$) or $f_i = f_{i+1}$ on $M \setminus B$ for an union of balls B containing $B_{f_i} \cup B_{f_{i+1}}$.

Lemma 3.3 ([17] Lemma 3.6, [25] Lemma 1.11). Suppose $f \colon M \to M$ is a map of nonzero degree and $\bigcup S_i^2$ is an union of essential 2-spheres. Then there is an almost defined map $g \colon M \setminus B_g \to M$, B-equivalent to f, such that $\deg(g) = \deg(f)$ and $g^{-1}(\bigcup S_i^2)$ is a collection of spheres.

Lemma 3.4 ([25] Corollary 0.2). Suppose M is a geometrizable 3-manifold. Then any nonzero degree proper map $f \colon M \to M$ induces an isomorphism $f_* \colon \pi_1(M) \to \pi_1(M)$ unless M is covered by either a torus bundle over the circle, or $F \times S^1$ for some compact surface F, or the S^3.

The following lemma is well-known.

Lemma 3.5. Suppose M is a closed orientable 3-manifold, $f \colon M \to M$ is of degree $d \neq 0$. Then $f_* \colon H_2(M, \mathbb{Q}) \to H_2(M, \mathbb{Q})$ is an isomorphism.

Theorem 3.6. Suppose $M = M_1 \# \cdots \# M_n$ is a non-prime manifold which is not homeomorphic to $RP^3 \# RP^3$. Each $\pi_1(M_i)$ is finite or cyclic, and $\pi_1(M_i) \neq 0$. If $f \colon M \to M$ is a map of degree $d \neq 0$, then there exists a permutation τ of $\{1, \ldots, n\}$, such that there is a map $g_i \colon M_{\tau(i)} \to M_i$ of degree d for each i. Moreover, g_i* is an isomorphism on fundamental group.

Proof. Call M' a punctured M, if $M' = M \setminus B$, where B is a finitely many disjoint 3-balls in the interior of M. We use \hat{M}_n to denote the 3-manifold obtained from M_n by capping off the boundary spheres with 3-balls.

M is obtained by gluing the boundary sphere of $M'_1 = M_1 \setminus \text{int}(B_1)$ to a n-punctured 3-sphere. The image of ∂B_1 in M, which is denoted by S_1, is a separating sphere.

By Lemma 3.3, there is an almost defined map $g : M \setminus B_g \to M$, B-equivalent to f, such that $g^{-1}(\bigcup S_i)$ is a collection of spheres and $\deg(g) = d$. Let $M_g = M \setminus B_g$.

Let $U = M_g \setminus g^{-1}(\bigcup S_i) = \{M'_i \mid j = 1, \ldots, l_i, i = 1, \ldots, n\}$. The components of $g^{-1}(M'_i)$ are denoted by M'_1, \ldots, M'_i.

By Lemma 3.4, $f_* \colon \pi_1(M) \to \pi_1(M)$ is an isomorphism. Since g is differ from f just on the 3-balls B_g up to homotopy rel ∂B_g, it follows that $g_* \colon \pi_1(M \setminus B_g) = \pi_1(M) \to \pi_1(M)$ is an isomorphism.

Since the prime decomposition of 3-manifold M is unique, and M_g is just a punctured M, each component of U is either a punctured non-trivial prime factor of M, or a punctured 3-sphere.

By Lemma 3.5, f_* is an injection on $H_2(M, \mathbb{Q})$. If S_i is a separating sphere, then $[S_i] = 0$ in $H_2(M, \mathbb{Q})$. So each component S' of $f^{-1}(S_i)$ is homologous to 0, thus S' separates M. By the process of construction of g (see the proof of Lemma 3.4, [17]), which is B-equivalent to f, each component S of $g^{-1}(S_i)$ is also a separating sphere in M_g. So $\pi_1(M_g)$ is the free product of the $\pi_1(M'_i)$, $i = 1, \ldots, n$, $j = 1, \ldots, l_i$.

Note \(\pi_1(M) = \pi_1(M_1) \ast \cdots \ast \pi_1(M_n) \), each \(\pi_1(M_i) \) is an indecomposable factor of \(\pi_1(M) \). Since \(g_1 \) is an isomorphism and each punctured 3-sphere has trivial \(\pi_1 \), from the basic fact on free product of groups, it follows that there is at least one punctured prime non-trivial factor in \(g_1^{-1}(M_i) \). Since this is true for each \(i = 1, \ldots, n \) and there are at most \(n \) punctured prime non-trivial factors in \(U \), it follows that there are \(n \) punctured prime non-trivial factors in \(U \). Hence there is exactly one punctured prime non-trivial factor in \(g_1^{-1}(M_i) \), denoted as \(M_{1(i)} \), moreover \(g_1: \pi_1(M_{1(i)}) \to \pi_1(M_i) \) is an isomorphism, where \(\tau \) is a permutation on \(\{1, \ldots, n\} \).

Since \(\pi_1(M_i) = \mathbb{Z} \) if and only if \(M_i = S^2 \times S^1 \), it follows that if \(M_i = S^2 \times S^1 \), then \(M_{1(i)} = S^2 \times S^1 \). Since \(D(S^2 \times S^1) = \mathbb{Z} \), below we assume that \(M_i \neq S^2 \times S^1 \), and to show that there is a map \(g_i: M_{1(i)} \to M_i \) of degree \(d \).

Since the map \(g: M \to M \) has degree \(d \) (see Definition 3.1), then \(g_i = g|_{\bigcup_{j=1}^i M'_j} : \bigcup_{j=1}^i M'_j \to M_i \) is a proper map of degree \(d \), which can extend to a map \(\hat{g}_i : \bigcup_{j=1}^i \hat{M}'_j \to M_i \) of degree \(d \) between closed 3-manifolds. The last map is also defined on \(\left(\bigcup_{j=1}^i M'_j \right) \setminus \partial B_\infty = \left(\bigcup_{j=1}^i \hat{M}'_j \right) \setminus B_\infty \subset \left(\bigcup_{j=1}^i \hat{M}'_j \right) \), where \(\partial B_\infty \subset M(g) \) is the image of \(\partial B_\infty \subset M \).

Now consider the map \(\tilde{g}_i : \left(\bigcup_{j=1}^i \hat{M}'_j \right) \setminus B_\infty \to M_i \). Since \(\pi_2(M_i) = 0 \), we can extend the map \(\tilde{g}_i \) from \(\bigcup_{j=1}^i \hat{M}'_j \setminus B_\infty \) to \(\bigcup_{j=1}^i \hat{M}'_j \). More carefully, for each pair \(B_\infty \), we can make the extension with the property \(\tilde{g}_i|_{B_\infty} = \hat{g}_i|_{B_\infty} \circ \tau_i \), where \(\tau_i : B_\infty \to B_\infty \) is an orientation reversing homeomorphism extending \(\tau_i : \partial B_\infty \to \partial B_\infty \). Now it is easy to see the map \(\hat{g}_i : \bigcup_{j=1}^i \hat{M}'_j \to M_i \) is still of degree \(d \).

From the map \(\hat{g}_i : \left(\bigcup_{j=1}^i \hat{M}'_j \right) \to M_i \) one can obviously define a map \(g_i : \#_{j=1}^i \hat{M}'_j \to M_i \) of degree \(d \) between connected 3-manifolds. Since all \(\hat{M}'_j \) are \(S^3 \) except one is \(M_{1(i)} \), we have map \(g_i : M_{1(i)} \to M_i \).

Definition 3.7. For closed oriented 3-manifold \(M, M' \), define

\[
D_{\text{iso}}(M, M') = \{ \deg(f) \mid f : M \to M', f \text{ induces isomorphism on fundamental group} \},
\]

\[
D_{\text{iso}}(M) = \{ \deg(f) \mid f : M \to M, f \text{ induces isomorphism on fundamental group} \}.
\]

Under the condition we considered in this section, we have \(D(M) = D_{\text{iso}}(M) \) by Lemma 3.4.

Lemma 3.8. Suppose \(f_i : M_i \to M'_i \) is a map of degree \(d \) between closed \(n \)-manifolds, \(n \geq 3 \), \(f_{i*} \) is surjective on \(\pi_1 \), \(i = 1, 2 \). Then there is a map \(f : M_1 \# M_2 \to M'_1 \# M'_2 \) of degree \(d \) and \(f_{A*} \) is surjective on \(\pi_1 \). In particular,

1. \(D_{\text{iso}}(M_1 \# M_2, M'_1 \# M'_2) \supset D_{\text{iso}}(M_1, M'_1) \cap D_{\text{iso}}(M_2, M'_2) \),
2. \(D_{\text{iso}}(M_1 \# M_2) \supset D_{\text{iso}}(M_1) \cap D_{\text{iso}}(M_2) \).

Proof. Since \(f_{A*} \) is surjective on \(\pi_1 \), it is known (see [18] for example), we can homotope \(f_i \) such that for some \(n \)-ball \(D'_i \subset M'_i \), \(f_i^{-1}(D_i) \) is an \(n \)-ball \(D_i \subset M_i \). Thus
we get a proper map \(\tilde{f}_i: M_1 \setminus D \to M_1' \setminus D_1' \) of degree \(d \), which also induces a degree \(d \) map from \(\partial D \) to \(\partial D_1' \). Since maps of the same degree between \((n - 1)\)-spheres are homotopic, so after proper homotopy, we can paste \(\tilde{f}_1 \) and \(\tilde{f}_2 \) along the boundary to get map \(f: M_1 \# M_2 \to M_1' \# M_2' \) of degree \(d \) and \(f \) is surjective on \(\pi_1 \).

3.2. \(D(M) \) for connected sums. Suppose

\[
M = (m S^2 \times S^1) \# (m_1 P_1 \# n_1 \tilde{P}_1) \# \cdots \# (m_3 P_3 \# n_3 \tilde{P}_3)
\]

\[
\# (L(p_1, q_{1,1}) \# \cdots \# L(p_1, q_{1,r_1})) \# \cdots \# (L(p_t, q_{t,1}) \# \cdots \# L(p_t, q_{t,r_t}))
\]

where all the \(P_i \) are 3-manifolds with finite fundamental group different from lens spaces, all the \(P_i \) are different with each other, and all the positive integer \(p_i \) are different from each other.

To prove Theorem 1.2, we need only to prove the three propositions below.

Proposition 3.9.

\[
D(M) = D_{\text{iso}}(m_1 P_1 \# n_1 \tilde{P}_1) \cap \cdots \cap D_{\text{iso}}(m_3 P_3 \# n_3 \tilde{P}_3) \cap D_{\text{iso}}(L(p_1, q_{1,1}) \# \cdots \# L(p_t, q_{t,1}) \# \cdots \# L(p_t, q_{t,r_t})).
\]

\(^{*}\)

Proof. For every self-mapping degree \(d \) of \(M \), in Theorem 3.6 we have proved that for every oriented connected summand \(P \) of \(M \), it corresponds to an oriented connected summand \(P' \), such that there is a degree \(d \) mapping \(f: P \to P' \), and \(f \) induces isomorphism on fundamental group. By the classification of 3-manifolds with finite fundamental group (see [13], 6.2), \(P \) and \(P' \) are homeomorphism (not considering the orientation) unless they are lens spaces with same fundamental group. Now by Lemma 3.8 (1), we have \(d \in D_{\text{iso}}(m_1 P_1 \# n_1 \tilde{P}_1) \) and \(d \in D_{\text{iso}}(L(p_j, q_{j,1}) \# \cdots \# L(p_j, q_{j,r_j})) \), for \(i = 1, \ldots, s \) and \(j = 1, \ldots, t \). Hence we have proved

\[
D(M) \subset D_{\text{iso}}(m_1 P_1 \# n_1 \tilde{P}_1) \cap \cdots \cap D_{\text{iso}}(m_3 P_3 \# n_3 \tilde{P}_3) \cap D_{\text{iso}}(L(p_1, q_{1,1}) \# \cdots \# L(p_t, q_{t,1}) \# \cdots \# L(p_t, q_{t,r_t})).
\]

(Since \(D(m S^2 \times S^1) = \mathbb{Z} \), we can just forget it in the discussion.)

Apply Lemma 3.8 once more, we finish the proof.

Proposition 3.10. If \(P \) is a 3-manifold with finite fundamental group different from lens space, \(D_{\text{iso}}(m P \# n \tilde{P}) = \begin{cases} D_{\text{iso}}(P) & \text{if } m \neq n, \\ D_{\text{iso}}(P) \cup (-D_{\text{iso}}(P)) & \text{if } m = n. \end{cases} \)

Proof. If \(P \) is not a lens space, from the list in [13], we can check that \(4 \mid |\tau_1(P)| \). By Proposition 1.6, \(D_{\text{iso}}(Q) = \{ k^2 + l |\tau_1(Q)| \mid \gcd(k, |\tau_1(Q)|) = 1 \} \), where \(Q \) is any 3-manifolds with \(S^3 \) geometry. If \(k^2 + l |\tau_1(P)| = -k^2 - l |\tau_1(P)| \), then
\[k^2 + k'^2 = -(l+l')|\pi_1(P)|.\] Since \(4 \mid |\pi_1(P)|\) and \(\gcd(k, |\pi_1(P)|) = \gcd(k', |\pi_1(P)|) = 1\), \(k, k'\) are both odd, thus \(-(l+l')|\pi_1(P)| = k^2 + k'^2 = 4s + 2\), contradicts \(4 \mid |\pi_1(P)|\).

So \(D_{iso}(P) \cap (-D_{iso}(P)) = \emptyset\). (In particular \(-1 \neq D(P)\).)

From the definition we have \(D_{iso}(P) = D_{iso}(\tilde{P})\) and \(D_{iso}(P, \tilde{P}) = D_{iso}(\tilde{P}, P) = -D_{iso}(\tilde{P})\).

If \(m \neq n\), we may assume that \(m > n\). For the self-map \(f\), if some \(P\) corresponds to \(\tilde{P}\), there must also be some \(P\) corresponds to \(P\), so \(\deg(f) \in D_{iso}(P) \cap (-D_{iso}(P))\), it is impossible by the argument in first paragraph. So all the \(P\) correspond to \(P\), and all the \(\tilde{P}\) correspond to \(\tilde{P}\). Since \(D_{iso}(P) = D_{iso}(\tilde{P})\), we have \(D_{iso}(mP \# n\tilde{P}) \subset D_{iso}(P)\).

By Lemma 3.8 and the fact \(D_{iso}(P) = D_{iso}(\tilde{P})\), we have \(D_{iso}(mP \# n\tilde{P}) \subset D_{iso}(P)\).

If \(m = n\), similarly we have either all the \(P\) correspond to \(P\) and all the \(\tilde{P}\) correspond to \(\tilde{P}\); or all the \(P\) correspond to \(\tilde{P}\) and all the \(\tilde{P}\) correspond to \(P\). Since \(D_{iso}(P) = D_{iso}(\tilde{P})\) and \(D_{iso}(P, \tilde{P}) = D_{iso}(\tilde{P}, P) = -D_{iso}(\tilde{P})\), we have \(D_{iso}(mP \# m\tilde{P}) \subset D_{iso}(P) \cup (-D_{iso}(P))\). On the other hand from the argument above, we have \(D_{iso}(P) \subset D_{iso}(mP \# m\tilde{P})\), hence \(D_{iso}(mP \# m\tilde{P}) = D_{iso}(P) \cup (-D_{iso}(P))\). \(\square\)

Lemma 3.11. \(D_{iso}(L(p, q), L(p, q')) = \{k^2q^{-1}q' + lp \mid \gcd(k, p) = 1\}\), here \(q^{-1}\) is seen as in group \(U_p = \{\text{all the units in the ring } \mathbb{Z}_p\}\).

Proof. \(L(p, q)\) is the quotient of \(S^3\) by the action of \(\mathbb{Z}_p, (z_1, z_2) \rightarrow (e^{i2\pi/p}z_1, e^{i2\pi/p}z_2)\). Let \(f_{q,q'}: S^3 \rightarrow S^3, f_{q,q'}(z_1, z_2) = (z_1^q / \sqrt{|z_1|^2 + |z_2|^2}, z_2^q / \sqrt{|z_1|^2 + |z_2|^2})\). We can check that this map induces a map \(f_{q,q'}: L(p, q) \rightarrow L(p, q')\) with degree \(qq'\), moreover since \(q, q'\) are coprime with \(p\), \(f_{q,q'}\) is an isomorphism \(\pi_1\). By Proposition 1.6 \(D_{iso}(L(p, q)) = \{k^2 + lp \mid \gcd(k, p) = 1\}\). Compose each self-map on \(L(p, q)\) which induces an isomorphism on \(\pi_1\) with \(f_{q,q'}\), we have \(\{k^2q^{-1}q' + lp \mid \gcd(k, p) = 1\} \subset D_{iso}(L(p, q), L(p, q'))\). On the other hand, for each map \(g: L(p, q) \rightarrow L(p, q')\) of degree \(d\) which induces an isomorphism on \(\pi_1\), then \(f_{q,q'} \circ g\) is a self-map on \(L(p, q)\) which induces an isomorphism on \(\pi_1\), where \(f_{q,q'}: L(p, q') \rightarrow L(p, q)\) is a degree \(qq'\) map. Hence the degree of \(f_{q,q'} \circ g\) is \(qq'd\) which must be in \(\{k^2 + lp \mid \gcd(k, p) = 1\}\), that is \(qq'd = k^2 + lp, \gcd(k, p) = 1, d = k^2q^{-1}q' - 1 + pl = (kq^{-1})^2q^{-1}q' + pl \in \{k^2q^{-1}q' + lp \mid \gcd(k, p) = 1\}\). Hence \(D_{iso}(L(p, q), L(p, q')) = \{k^2q^{-1}q' + lp \mid \gcd(k, p) = 1\}\). \(\square\)

Let \(U_p = \{\text{all units in ring } \mathbb{Z}_p\}, U_p^2 = \{a^2 \mid a \in U_p\}\), which is a subgroup of \(U_p\). Let \(H\) denote the natural projection from \(\{n \in \mathbb{Z} \mid \gcd(n, p) = 1\}\) to \(U_p/U_p^2\).

Later, we will omit the \(p\), denote them by \(U\) and \(U^2\). We consider the quotient \(U/U^2 = \{a_1, \ldots, a_m\}\), every \(a_i\) corresponds with a coset \(A_i\) of \(U^2\). For the structure of \(U\), see [9] p.44, then we can get the structure of \(U^2\) and \(U/U^2\) easily.

Define \(\bar{A}_i = \{L(p, q_i) \mid q_i \in A_i\}\) (with repetition allowed). In \(U/U^2\), define \(B_i = \{a_i \mid \#\bar{A}_i = l\}\) for \(l = 1, 2, \ldots\), there are only finitely many \(B_i's\) are nonempty. Let \(C_i = \{a \in U/U^2 \mid a_i a \in B_i, \forall a_i \in B_i\}\) if \(B_i \neq \emptyset\) and \(C_i = U/U^2\) otherwise, \(C = \bigcap_{i=1}^{\infty} C_i\).

Proposition 3.12. \(D_{iso}(L(p, q_1) \# \cdots \# L(p, q_n)) = H^{-1}(C)\).
Proof. By Lemma 3.11, we have \(D_{iso}(L(p, q), L(p, q')) = \{ k^2 q^{-1} q' + lp \mid \gcd(k, p) = 1 \} \). Therefore \(D_{iso}(L(p, q), L(p, q')) \) will not change if we replace \(L(p, q) \) by \(L(p, s^2 q) \) (resp. \(L(p, q') \) by \(L(p, s^2 q') \)) for any \(s \in U_p \).

Now we consider the relation between two sets \(D_{iso}(L(p, q), L(p, q')) \) and \(D_{iso}(L(p, q_s), L(p, q_s')) \). It is also easy to see if \((q/q')(q_s/q_s) = s^2 \) in \(U_p \), then \(D_{iso}(L(p, q), L(p, q')) = D_{iso}(L(p, q_s), L(p, q_s)) \). and if \((q/q')(q_s/q_s) \neq s^2 \) in \(U_p \), then \(D_{iso}(L(p, q), L(p, q')) \cap D_{iso}(L(p, q_s), L(p, q_s)) = \emptyset \).

Let \(f: L(p, q_1) \# \cdots \# L(p, q_n) \rightarrow L(p, q_1) \# \cdots \# L(p, q_n) \) be a map of degree \(d \neq 0 \). Suppose \(f \) sends \(L(p, q_i) \) to \(L(p, q_k) \) and sends \(L(p, q_j) \) to \(L(p, q_l) \) in the sense of Theorem 3.6. Since \(D_{iso}(L(p, q_i), L(p, q_j)) \cap D_{iso}(L(p, q_j), L(p, q_i)) \neq \emptyset \), by last paragraph, we must have \((q_i/q_j)(q_j/q_i) = s^2 \) in \(U_p \). Hence \(q_i/q_j \) is in \(U^2 \) if and only if \(q_i/q_k \) is in \(U^{2} \); in other words, \(L(p, q_i) \) and \(L(p, q_j) \) are in the same \(\tilde{A}_s \) if and only if \(L(p, q_k) \) and \(L(p, q_i) \) are in the same \(\tilde{A}_i \). Hence \(f \) provides 1-1 self-correspondence on \(\tilde{A}_1, \ldots, \tilde{A}_m \), and if some elements in \(\tilde{A}_s \) corresponds to \(\tilde{A}_t \), there is \(#\tilde{A}_s = #\tilde{A}_t \).

Let \(f: L(p, q_1) \# \cdots \# L(p, q_n) \rightarrow L(p, q_1) \# \cdots \# L(p, q_n) \) be a self-map. For each \(a_i \in U/U^2 \), \(f \) must send \(\tilde{A}_i \) to some \(\tilde{A}_j \) with \(#\tilde{A}_i = #\tilde{A}_j = l \), and both \(a_i, a_j \in B_1 \). Assume \(L(p, q_i) \in \tilde{A}_i, L(p, q_j) \in \tilde{A}_j \), then \(\deg(f) \in \{ k^2 q_i^{-1} q_j + lp \mid \gcd(k, p) = 1 \} \) by Lemma 3.11. By consider in \(U/U^2 \), we have \(H(\deg(f)) = \tilde{q}_i/\tilde{q}_j = a_i/a_j \), that is \(H(\deg(f))a_i = a_j \in B_1 \). Since we choose arbitrary \(a_i \) in \(B_1 \), we have \(H(\deg(f)) \in C_1 \). Also we choose arbitrary \(l \), we have \(H(\deg(f)) \in \bigcap_{i=1}^{\infty} C_i = C \), hence \(\deg(f) \) in \(H^{-1}(C) \).

On the other hand, if \(d \in H^{-1}(C) \), then \(H(d) = c \in C = \bigcap_{i=1}^{\infty} C_i \). For each \(B_i \neq \emptyset \) and each \(a_i \in B_i \), we have \(c a_i = a_j \in B_i \). Then \(A_i \mapsto A_j \) gives 1-1 self-correspondence among \(\{ \tilde{A}_i \mid #\tilde{A}_i = l \} \). We can make further 1-1 correspondence from elements in \(\tilde{A}_i \) to elements in \(\tilde{A}_j \). Since our discussion works for all \(B_i \neq \emptyset \), we have 1-1 self-correspondence on \(\{ L(p, q_1), \ldots, L(p, q_n) \} \) (with repetition allowed). Therefore for each \(L(p, q_i) \in \tilde{A}_i \) and \(L(p, q_j) \in \tilde{A}_j \), we have \(q_i = q_j^{-1} \). Therefore \(d \) have the form \(k^2 q_j q_i^{-1} \) mod \(p \) with \((k, p) = 1 \). By Lemma 3.11, there is a map \(f_{i,j}: L(p, q_i) \rightarrow L(p, q_j) \) of degree \(d \) which induces an isomorphism on \(\pi_1 \).

By Lemma 3.8, we can construct a self-mapping of degree \(d \) of \(L(p, q_1) \# \cdots \# L(p, q_n) \) which induces an isomorphism on \(\pi_1 \). Hence \(H^{-1}(C) \subset D_{iso}(L(p, q_1) \# \cdots \# L(p, q_n)) \). Thus \(D_{iso}(L(p, q_1) \# \cdots \# L(p, q_n)) = H^{-1}(C) \). \(\square \)

4. \(D(M) \) for Nil manifolds

4.1. Self coverings of Euclidean orbifolds.

DEFINITION 4.1 (20). A 2-orbifold is a Hausdorff, paracompact space which is locally homeomorphic to the quotient space of \(\mathbb{R}^2 \) by a finite group action. Suppose \(O_1 \) and \(O_2 \) are orbifolds and \(f: O_1 \rightarrow O_2 \) is an map. We say \(f \) is an orbifold covering if any point \(p \) in \(O_2 \) has a neighbourhood \(U \) such that \(f^{-1}(U) \) is the disjoint union of
sets \(V_\lambda \), \(\lambda \in \Lambda \), such that \(f|_{V_\lambda} \to U \) is the natural quotient map between two quotients of \(\mathbb{R}^2 \) by finite groups, one of which is a subgroup of the other.

In this paper, we only consider about orbifold with singular points. Here we say a point \(x \) in the orbifold is a \textit{singular point of index} \(q \) if \(x \) has a neighborhood \(U \) homeomorphic to the quotient space of \(\mathbb{R}^2 \) by rotate action of finite cyclic group \(\mathbb{Z}_q \), \(q > 1 \).

An orbifold \(\mathcal{O} \) with singular points \(\{x_1, \ldots, x_s\} \) is homeomorphic to a surface \(F \), but for the sake of the singular points, we would like to distinguish them through denoting \(\mathcal{O} \) by \(F(q_1, \ldots, q_s) \). Here \(q_1, \ldots, q_s \) are indices of singular points. Here the covering map \(f: \mathcal{O}_1 \to \mathcal{O}_2 \) is not the same as the covering map from \(F_1 \) to \(F_2 \).

If \(f: \mathcal{O}_1 \to \mathcal{O}_2 \) is an orbifold covering, the singular points of \(\mathcal{O}_2 \) are \(\{x_1, \ldots, x_s\} \), for any \(y \in \mathcal{O}_2, y \neq x_1 \), define \(\deg(f) = \# f^{-1}(y) \). For any singular point \(x \), let \(f^{-1}(x) = \{a_1, \ldots, a_t\} \). At point \(a_j \), \(f \) is locally equivalent to \(z \to z^{a_j} \) on \(\mathbb{C} \), \(x \) and \(a_j \) correspond to 0. Here we have \(\sum d_j = d, a_j \) is an ordinary point if and only if \(d_j \) equals to the index of \(x \). Define \(D(x) = [d_1, \ldots, d_t] \) to be the \textit{orbifold covering data at singular point} \(x \), and \(\mathcal{D}(f) = \{D(x_1), \ldots, D(x_s)\} \) (with repetition allowed) to be the \textit{orbifold covering data of} \(f \).

The following lemma is easy to verify.

Lemma 4.2. If a Nil manifold \(M \) is not a torus bundle or a torus semi-bundle, then \(M \) has one of the following Seifert fibering structures: \(M(0; \beta_1/2, \beta_2/3, \beta_3/6) \), \(M(0; \beta_1/3, \beta_2/3, \beta_3/3) \), or \(M(0; \beta_1/2, \beta_2/4, \beta_3/4) \), where \(e(M) \in \mathbb{Q} - \{0\} \).

Proof. Consider Nil manifold \(M \) as a Seifert fibered space, then its orbifold \(\mathcal{O}(M) \) has zero Euler characteristic. So \(\mathcal{O}(M) \) must be one of following orbifolds: the torus \(T^2 \), the Klein bottle \(K \), \(P^2(2, 2) \), \(S^2(2, 3, 6) \), \(S^2(2, 4, 4) \), \(S^2(3, 3, 3) \) and \(S^2(2, 2, 2, 2) \).

By [4] p. 38 and p. 40, we can see that \(M \) has structure of torus bundle if \(\mathcal{O}(M) \) is \(T^2 \) or \(K \), and \(M \) has structure of torus semi-bundle if \(\mathcal{O}(M) \) is \(P^2(2, 2) \) or \(S^2(2, 2, 2, 2) \).

The remaining three cases \(S^2(2, 3, 6) \), \(S^2(2, 4, 4) \) and \(S^2(3, 3, 3) \) correspond to the three cases claimed in the lemma. Clear \(e(M) \in \mathbb{Q} - \{0\} \) since Nil manifolds have non-zero Euler number. \(\square \)

Proposition 4.3. Denote the degrees set of self covering of an orbifold \(\mathcal{O} \) by \(D(\mathcal{O}) \). We have:

(1) For \(\mathcal{O} = S^2(2, 3, 6) \), \(D(\mathcal{O}) = \{m^2 + mn + n^2 \mid m, n \in \mathbb{Z}, (m, n) \neq (0, 0)\} \).

Moreover, if \(d \in D(\mathcal{O}) \) is coprime with 6, then

(i) \(d \equiv 1 \mod 6 \);

(ii) this covering map of degree \(d = 6k + 1 \) is realized by an orbifold covering from \(\mathcal{O} \) to \(\mathcal{O} \) with orbifold covering data

\[
\{D(x_1), D(x_2), D(x_3)\} = \{[2, \ldots, 2, 1], [3, \ldots, 3, 1], [6, \ldots, 6, 1]\},
\]
where x_1, x_2 and x_3 are singular points of indices 2, 3 and 6 respectively.

(2) For $\mathcal{O} = S^2(3, 3, 3)$, $D(\mathcal{O}) = \{m^2 + mn + n^2 \mid m, n \in \mathbb{Z}, (m, n) \neq (0, 0)\}$. Moreover, if $d \in D(\mathcal{O})$ is coprime with 3, then

(i) $d \equiv 1 \mod 3$;

(ii) this covering map of degree $d = 6k + 1$ is realized by an orbifold covering from \mathcal{O} to \mathcal{O} with orbifold covering data

$$\{D(x_1), D(x_2), D(x_3)\} = \{[3, \ldots, 3, 1], [3, \ldots, 3, 1], [3, \ldots, 3, 1]\},$$

where x_1, x_2 and x_3 are singular points of indices 3, 3 and 3 respectively.

(3) For $\mathcal{O} = S^2(2, 4, 4)$, $D(\mathcal{O}) = \{m^2 + n^2 \mid m, n \in \mathbb{Z}, (m, n) \neq (0, 0)\}$. Moreover, if $d \in D(\mathcal{O})$ is coprime with 4, then

(i) $d \equiv 1 \mod 4$;

(ii) this covering map of degree $d = 4k + 1$ is realized by an orbifold covering from \mathcal{O} to \mathcal{O} with orbifold covering data

$$\{D(x_1), D(x_2), D(x_3)\} = \{[2, \ldots, 2, 1], [4, \ldots, 4, 1], [4, \ldots, 4, 1]\},$$

where x_1, x_2 and x_3 are singular points of indices 2, 4 and 4 respectively.

Proof. We only prove case (1). The other two cases can be proved similarly.

$S^2(2, 3, 6)$ can be seen as pasting the equilateral triangle as shown in Fig. 1 geometrically.

$\pi_1(S^2(2, 3, 6))$ can be identified with a discrete subgroup Γ of $\text{Iso}_+ (\mathbb{E}^2)$, a fundamental domain of Γ is shown in Fig. 2. It is as a lattice in \mathbb{E}^2 with vertex coordinate $m + ne^{i\pi/3}$, $m, n \in \mathbb{Z}$.
For the covering $p: T^2 \to S^2(2, 3, 6)$, T^2 can be seen as the quotient of a subgroup $\Gamma' \subset \Gamma$ on \mathbb{E}^2, with a fundamental domain as Fig. 3. Here Γ' is just all the translation elements of Γ, thus Γ' is generated by $z \to z + \sqrt{3}i$ and $z \to z + (\sqrt{3}/2)i + 3/2$.

For every self covering $f: S^2(2, 3, 6) \to S^2(2, 3, 6)$, $f_0: \pi_1(S^2(2, 3, 6)) \to \pi_1(S^2(2, 3, 6))$ is injective. Since p is covering, $f_0 \circ p_0: \pi_1(T^2) \to \pi_1(S^2(2, 3, 6))$ is also injective. So $f_0(p_0(\pi_1(T^2)))$ is a free abelian subgroup of $\pi_1(S^2(2, 3, 6))$.

For every $\gamma \in \Gamma$, which is not translation, it can be represented by $f: z \to e^{2k\pi/n}z + z_0$. $\gcd(k, n) = 1$, $n > 1$. Then $f^n(z) = (e^{2k\pi/n})^n z + \cdots + e^{2k\pi/n + 1})z_0 = z$. So γ is a torsion element, thus $\gamma \notin f_0(p_0(\pi_1(T^2)))$ except $\gamma = e$. So $f_0(p_0(\pi_1(T^2))) \subset p_0(\pi_1(T^2))$, thus there exists $\tilde{f}: T^2 \to T^2$ being the lifting of f.

$$
\begin{array}{ccc}
T^2 & \xrightarrow{j} & T^2 \\
\downarrow{p} & & \downarrow{p} \\
S^2(2, 3, 6) & \xrightarrow{f} & S^2(2, 3, 6).
\end{array}
$$

Here we have

$$
\deg(f) = \deg(\tilde{f}) = [\pi_1(T^2) : f_0(\pi_1(T^2))] = \frac{\text{area(fundamental domain of } \tilde{f}_0(\pi_1(T^2))\text{)\}}{\text{area(fundamental domain of } \pi_1(T^2)\text{)}}.
$$

here $\tilde{f}_0(\pi_1(T^2)), \pi_1(T^2)$ are all seen as subgroup of $\pi_1(S^2(2, 3, 6))$.
Clearly, we can choose a fundamental domain of \(f_3(S^2(2, 3, 6)) \) to be an equilateral triangle in \(\mathbb{E}^2 \) with vertices as \(m + ne^{i\pi/3} \), then the fundamental domain of \(\tilde{f}_3(T^2) \) is an equilateral hexagon with vertices as \(m + ne^{i\pi/3} \). The scale of area is the square of the scale of edge length. The scale of edge length must be \(\sqrt{m^2 + mn + n^2} \). So \(\deg(f) = m^2 + mn + n^2 \).

On the other hand, for every \((m, n) \in \mathbb{Z}^2 - \{(0, 0)\}\), choose \(g: \mathbb{E}^2 \to \mathbb{E}^2 \), \(g(z) = (m + ne^{i\pi/3})z \). It is routine to check that for any \(\gamma \in \Gamma \), there is \(\gamma' \in \Gamma \), such that \(g(\gamma(z)) = \gamma'(g(z)) \). So \(g \) induces \(\tilde{g} \), which is self covering on \(S^2(2, 3, 6) \), and \(\deg(\tilde{g}) = m^2 + mn + n^2 \). We have proved the first sentence of Proposition 4.3 (1).

If \(m^2 + mn + n^2 \) is coprime to 6, \(m^2 + mn + n^2 \equiv 1 \) or \(5 \mod 6 \). Since \(m^2 + mn + n^2 \equiv 4m^2 + 4mn + 4n^2 \equiv (2m + n)^2 \mod 3 \), and any square number must be 0 or 1 \(\mod 3 \), we must have \(m^2 + mn + n^2 \equiv 1 \mod 6 \). We have proved Proposition 4.3 (1) (i).

Assume \(h \) is a self covering of degree \(d = 6k + 1 \), \(x_1, x_2, x_3 \) are the singular points on \(S^2(2, 3, 6) \) with indices 2, 3, 6. For \(x_1 \), \(h^{-1}(x_1) \) must be ordinary points or singular point of index 2. Since the degree \(d = 6k + 1 \), \(h^{-1}(x_1) \) is 3k ordinary points and \(x_1 \). Similarly, for \(x_2 \), \(h^{-1}(x_2) \) is 2k ordinary points and \(x_2 \). Then \(x_1, x_2 \notin h^{-1}(x_3) \), so \(h^{-1}(x_3) \) is k ordinary points and \(x_3 \). Thus the covering map of degree \(d = 6k + 1 \) is realized by a self covering of \(\mathcal{O} \) with orbifold covering data \([2, \ldots, 2, 1], [3, \ldots, 3, 1], [6, \ldots, 6, 1]\). We have proved Proposition 4.3 (1) (ii).
4.2. $D(M)$ for Nil manifolds.

Lemma 4.4. For Nil manifold M, $D(M) \subset \{l^2 | l \in \mathbb{Z}\}$.

Proof. Let f be a self map of M. By [25, Corollary 0.4], f is either homotopic to a covering map $g: M \to M$, or a homotopy equivalence.

If f is homotopic to a covering, since M has unique Seifert fibering structure up to isomorphism, we can make g to be a fiber preserving map. Denote the orbifold of M by O_M. By [20, Lemma 3.5], we have:

\[
\begin{align*}
 e(M) &= e(M) \cdot \frac{l}{m}, \\
 \deg(g) &= l \cdot m,
\end{align*}
\]

where l is the covering degree of $O_M \to O_M$ and m is the covering degree on the fiber direction. Since $e(M) \neq 0$, from equation (4.1) we get $l = m$. Thus $\deg(f) = \deg(g)$ is a square number l^2.

If f is a homotopy equivalence, then $\deg(f) = \pm 1$. To finish the proof of the lemma, we need only to show that the degree of f is not -1. Otherwise composing a self covering g of degree $n > 1$, then $g \circ f$ is of degree $-n$, which is not a homotopy equivalence, therefore is homotopic to a covering, and must have degree > 0 by the last paragraph, a contradiction. \qed

Theorem 4.5. For 3-manifold M in Class 4, we have

1. For $M = M(0; \beta_1/2, \beta_2/3, \beta_3/6)$, $D(M) = \{l^2 | l = m^2 + mn + n^2, l \equiv 1 \mod 6, m, n \in \mathbb{Z}\}$;

2. For $M = M(0; \beta_1/3, \beta_2/3, \beta_3/3)$, $D(M) = \{l^2 | l = m^2 + mn + n^2, l \equiv 1 \mod 3, m, n \in \mathbb{Z}\}$;

3. For $M = M(0; \beta_1/2, \beta_2/4, \beta_3/4)$, $D(M) = \{l^2 | l = m^2 + n^2, l \equiv 1 \mod 4, m, n \in \mathbb{Z}\}$.

Proof. We will just prove Case (1). The proof of Cases (2) and (3) are exactly as that of Case (1). Below $M = M(0; \beta_1/2, \beta_2/3, \beta_3/6)$.

First we show that $D(M) \subset \{l^2 | l = m^2 + mn + n^2, l \equiv 1 \mod 6, m, n \in \mathbb{Z}\}$.

Since the orbifold $O_M = S^2(2, 3, 6)$, by Proposition 4.3 (1), we have $l = m^2 + mn + n^2$. Below we show that $l = 6k + 1$.

Let N be the regular neighborhood of 3 singular fibers. To define the Seifert invariants, a section F of $M \setminus N$ is chosen, and moreover ∂F and fibers on each component of $\partial(M \setminus N)$ are oriented.

Consider the covering $g_1: M \setminus g^{-1}(N) \to M \setminus N$. Let \tilde{F} be a component $g^{-1}(F)$. It is easy to verify that \tilde{F} is a section of $M \setminus g^{-1}(N)$. Now we lift the orientations on ∂F and the fibers on $\partial(M \setminus N)$ to those on $\partial(M \setminus g^{-1}(N))$, we get a coordinate system on $\partial(M \setminus g^{-1}(N))$. Therefore we have a coordinate preserving covering

\[
g: (M, M \setminus g^{-1}(N), g^{-1}(N)) \to (M, M \setminus N, N).
\]
Suppose V' is a tubular neighborhood of some singular fiber L'. The meridian of V' can be represented by $(c')^\alpha(h')^\beta$ ($\alpha > 0$), where (c', h') is the section-fiber coordinate of $\partial V'$.

Suppose V is a component of $g^{-1}(V')$ and the meridian of V is represented as $c^\alpha h^\beta$ ($\alpha > 0$), where (c, h) is the lift of (c', h'). Since $g: V \to V'$ is a covering of solid torus, so g must send meridian to meridian homeomorphically, thus $g(c^\alpha h^\beta) = (c')^\alpha(h')^\beta$. See Fig. 4.

Since g has the fiber direction covering degree $m = l$, $g(h) = (h')^l$. Since c, c' are the boundaries of sections and g send c to c', we have $g(c) = (c')^l$. Then $g(c^\alpha h^\beta) = (c')^\alpha(h')^\beta = (c')^\alpha(h')^\beta$. Hence we get $\beta \cdot l = \beta'$.

Let V' be a tubular neighborhood of singular fiber whose meridian can be represented as $(c')^\beta(h')^\beta$. By the arguments above, the meridian of the preimage V can be represent by $c^\alpha h^\beta$.

Since β' is coprime with 6. By $\beta \cdot l = \beta'$, so l is coprime with 6. Still by Proposition 4.3 (1), we have $l = 6k + 1$.

Then we show $\{l^2 \mid m^2 + mn + n^2, l \equiv 1 \mod 6, m, n \in \mathbb{Z}\} \subset D(M)$.

Suppose $l = m^2 + mn + n^2$ and $l = 6k + 1$, denote the quotient manifold of \mathbb{Z}_l free action on M by M_l. Then M_l has the Seifert fibering structure $M(0; l \cdot \beta_1/2, l \cdot \beta_2/3, l \cdot \beta_3/6)$. We have the covering $g_l: M \to M_l$ of degree l.

Claim. there exists a map $f_l: M_l \to M$ of degree l.

Let $D = D_1 \cup D_2 \cup D_3 \subset S^2(2, 3, 6)$ be the regular neighborhood discs of 3 singular points of indices 2, 3, and 6 respectively. By Proposition 4.3 (1), there exists a branched covering map $\tilde{f}_l: S^2(2, 3, 6) \to S^2(2, 3, 6)$ of degree l such that

1. \tilde{f}_l induce a covering map $\tilde{f}_l: S^2 \setminus \tilde{f}_l^{-1}(D) \to S^2 \setminus D$;
2. $\tilde{f}_l^{-1}(D_i)$ consists of $(3k + 1)$ discs with orbifold covering data $[2, \ldots, 2, 1]$ for $i = 1$, and $(2k + 1)$ discs with orbifold covering data $[3, \ldots, 3, 1]$ for $i = 2$, and $(k + 1)$ discs with orbifold covering data $[6, \ldots, 6, 1]$ for $i = 3$.

Fig. 4.
Clearly \(f_l^{-1}(D) \) consists of \((3k + 1) + (2k + 1) + (k + 1) = 6k + 3 \) disks.

Then we have the covering map \(f_l \times \text{id} \colon (S^2 \setminus f_l^{-1}(D)) \times S^1 \to (S^2 \setminus D) \times S^1 \) of degree \(l \), which can be extended to a covering map \(f_l \colon M' \to M \), where \(M' \) has the Seifert structure \(M(0; \beta_1, \ldots, \beta_l, \beta_2, \ldots, \beta_k, \beta_3/3, \beta_3, \beta_3/6) \). Clearly \(M' \) is isomorphic to \(M_l \).

Now the covering \(f_l \circ g_l \colon M \to M_l \to M \) has degree \(l^2 \).

We finish the proof of Case (1).

\[\Box \]

5. \(D(M) \) for \(H^2 \times E^1 \) manifolds

In this case, all the manifolds are Seifert fibered spaces \(M \) such that the Euler number \(e(M) = 0 \) and the Euler characteristic of the orbifold \(\chi(OM) < 0 \).

Suppose \(M = (g; \beta_{1,1}/\alpha_1, \ldots, \beta_{1,m_1}/\alpha_1, \ldots, \beta_{n,1}/\alpha_n, \ldots, \beta_{n,m_n}/\alpha_n) \), where all the integers \(\alpha_i > 1 \) are different from each other, and \(\sum_{i=1}^n \sum_{j=1}^{m_i} \beta_{i,j}/\alpha_i = 0 \).

For every \(\alpha_i \), consider \(U_{\alpha_i} \). For every \(a \in U_{\alpha_i} \), define \(\theta_a(\alpha_i) = \# \{ \beta_{i,j} | p_l(\beta_{i,j}) = a \} \) (with repetition allowed), where \(p_l \) is the natural projection from \(\{ n \mid \text{gcd}(n, \alpha_i) = 1 \} \) to \(U_{\alpha_i} \). Define \(B_l(\alpha_i) = \{ a \mid \theta_a(\alpha_i) = l \} \) for \(l = 0, 1, \ldots \), there are only finitely many \(B_l(\alpha_i) \) nonempty. Let \(C_l(\alpha_i) = \{ b \in U_{\alpha_i} \mid ab \in B_l(\alpha_i), \forall a \in B_l(\alpha_i) \} \) if \(B_l(\alpha_i) \neq \emptyset \) and \(C_l(\alpha_i) = U_{\alpha_i} \) otherwise. Finally define \(C(\alpha_i) = \bigcap_{l=1}^{\infty} C_l(\alpha_i) \), and \(\tilde{C}(\alpha_i) = p_l^{-1}(C_l(\alpha_i)) \).

Theorem 5.1.

\[
D \left(M \left(g; \frac{\beta_{1,1}}{\alpha_1}, \ldots, \frac{\beta_{1,m_1}}{\alpha_1}, \ldots, \frac{\beta_{n,1}}{\alpha_n}, \ldots, \frac{\beta_{n,m_n}}{\alpha_n} \right) \right) = \bigcap_{l=1}^{\infty} \tilde{C}(\alpha_i).
\]

Proof. Suppose \(f \) is a non-zero degree self-mapping of \(M \). By [25, Corollary 0.4], \(f \) is homotopic to a covering map \(g \colon M \to M \). Since \(M \) has the unique Seifert structure, we can isotope \(g \) to a fiber preserving map. Denote the orbifold of \(M \) by \(O_M \). Then \(g \) induces a self-covering \(\tilde{g} \) on \(O_M \), since \(\chi(OM) < 0 \), then \(\tilde{g} \) must be 1-sheet, thus isomorphism of \(OM \).

So \(g \) is a degree \(d \) covering on the fiber direction. Or equivalently, by the action of \(\mathbb{Z}_d \) on each fiber, the quotient of \(M \) is also \(M \). Thus \(d \in D(M) \) if and only if

\[
M' = M \left(g; d\frac{\beta_{1,1}}{\alpha_1}, \ldots, d\frac{\beta_{1,m_1}}{\alpha_1}, \ldots, d\frac{\beta_{n,1}}{\alpha_n}, \ldots, d\frac{\beta_{n,m_n}}{\alpha_n} \right)
\]

is homeomorphic to \(M \).

By the uniqueness of Seifert structure ([20] Theorem 3.9) and the fact \(e(M) = 0 \), we have that \(M \) is homeomorphic to \(M' \) if and only if \((\beta_{1,1}, \ldots, \beta_{1,m_1}) = (d\beta_{1,1}, \ldots, d\beta_{1,m_1}) \) under a permutation, all the numbers are seen as in \(U(\alpha_i) \).

For every \(a \in U(\alpha_i) \), if \((\beta_{1,1}, \ldots, \beta_{1,m_1}) = (d\beta_{1,1}, \ldots, d\beta_{1,m_1}) \) holds, we must have \(\theta_a(\alpha_i) = \theta_{d\alpha}(\alpha_i) \), thus \(p_l(d) \in C_{d\alpha}(\alpha_i) \). For \(a \) is an arbitrary element in \(U(\alpha_i) \), we have
\(p_i(d) \in C(\alpha_i) \), thus \(d \in \tilde{C}(\alpha_i) \). Since \(\alpha_i \) is also chosen arbitrarily, \(d \in \bigcap_{i=1}^{n} \tilde{C}(\alpha_i) \), thus \(D(M) \subset \bigcap_{i=1}^{n} \tilde{C}(\alpha_i) \).

For any \(d \in \bigcap_{i=1}^{n} \tilde{C}(\alpha_i) \), \(M \) is homeomorphic to \(M' \), so \(D(M) \supset \bigcap_{i=1}^{n} \tilde{C}(\alpha_i) \)

\begin{flushright}
\Box
\end{flushright}

\textbf{Acknowledgement.} The authors are partially supported by grant No. 10631060 of the National Natural Science Foundation of China and Ph.D. grant No. 5171042-055 of the Ministry of Education of China.

\begin{center}
\textbf{References}
\end{center}

Hongbin Sun
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: hongbin.sun2331@gmail.com

Shicheng Wang
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: wangsc@math.pku.edu.cn

Jianchun Wu
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: wujianchun@math.pku.edu.cn

Hao Zheng
School of Mathematical Sciences
Peking University
Beijing 100871
P.R. China
e-mail: zhenghao@mail.sysu.edu.cn