
Title 分散処理を用いたコーディングパターン検出ツールの
実装

Author(s) 悦田, 翔悟; 伊達, 浩典; 石尾, 隆 他

Citation 情報処理学会第71回全国大会講演論文集. 2009, 1,
p. 339-340

Version Type VoR

URL https://hdl.handle.net/11094/50438

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

1M-2 情報処理学会第 71回全国大会

分散処理を用いたコーディングパターン検出ツールの実装

悦田朔悟f 伊達浩典I 石尾隆I 井上克郎t

T大阪大学基礎工学部 I大阪大学大学院情報科学研究科

1 はじめに

オブジェクト指向プログラミングには，継承や

多態性など，モジ、ュール化された部品を活用するた

めの機構がある.しかし，すべての機能がモジ、ュー

ル化されるわけではなく，ロギングや同期処理な

どは，複数のモジ、ュールに分散した定型的なコー

ド片，すなわち，コーデイングパターンとして実

装される.
コーデ、イングパターンを検出することにより，

定型的なライブラリの使い方や，エラー処理など

ソフトウェアを理解する上で有益な情報が得られ

る.我々の研究グループは，シーケンシャルパター

ンマイニング手法の1つである Pre五xSpanアルゴ、

リズム [1]を用いて， Javaのソースコードに対す
るコーテ、イング、パターン検出手法を実現している

[2].しかし，コーデイングパターン検出は対象ソー
スコードの規模が増大するにつれて，計算コスト

が大幅に増加する.そのため数百万行におよぶ大

規模ソフトウェアに対しては，既存手法によるパ

ターン検出が困難である.

そこで，本研究ではコーデイング、パターン検出

における PrefixSpanアルゴリズムを分散実行さ

せることにより，パターン検出の高速化を実現し，

大規模ソフトウェアへの適用を可能にする.

2 コーディングパターンマイニング

コーデ、イングパターンとは，ソースコードの複

数個所に出現する類似した構造そもつコードであ

る.我々の研究グループでは，コーデイングパター

ンをメソッド呼び出し要素と制御構造要素で構成

される定型的な列と捉えたパターンマイニング手

法を提案している [2].図1は，画像編集ソフト

Implementation of distributed coding pattern de-

tection tool

lShogo ETSUDA， tHironori DATE， + Takashi ISHIO，
'Katsuro INOUE

;school of Bng♂1悶r

Graduate School 0ぱflnfおorma抗tiぬonScience釘 1吋dTechnology，
Osaka University

Subclasses 01 AbstractCommand

org.jhotdraw.standard.DuplicateCommand

public void execute () (
super. execute () "
2且J;Jl且忌♀主旦tiv主主y(.s.reateUndoAc十ivity());
FigureSelecヒエanselecヒュon'" view(} .geヒ

I /creaヒeduplicaヒefiguどe(5)
FユgureEnumeraヒionfigures "" (Figure
旦呉主立旦且旦主旦主主Z主主y()
seヒAffecヒedFioureg(figures)i
view () . cleaどSelection() ;

Subclasses 01 AbstractHandle

org.jhotdraw.standard.ResizeHandle

public void invokeStart (
int x， inヒy.
DrawingView view) (
三旦主立旦卓2主主主主ヱ主主エ{
cr向ateUndoActivit'II
view)) ;

Z阜主立E且旦主旦旦iY主主工()
setAffectedFiollreg{、
((RseizeHandle. Undo

図 1:JHotDraw 5.4b1における画像の編集作業

を「元に戻す」実装パターン

JHotDraw 5.4b1から検出されたコーデイングパ

ターンの例で，編集作業を「元に戻す」ことを可

能とするための実装の一部である.

既存手法では， Javaソースコードをメソッド単

位に分割し，メソッド呼び出し要素と制御構造要

素の特徴列として正規化する.それにより得られ

た配列データベースに対して， PrefixSpanを適用

し，頻出する部分911.すなわち，コーディングパ
ターンを検出する.

この手法は，解析対象のソースコードが大きく

なると，長時間の解析を必要とする.そこで，既

存手法における Pre五xSpanアルゴリズムの計算

を分散実行することで解析時簡を短縮する.具体

的には，マスタ・ワーカ法による PrefixSpanの分

散処理法 [3]を適用し，パターンマイニング、部分
を複数のジョブに分割し，複数のワーカでパター

ン検出を行う.本研究の対象データは，従来の負

荷分散手法の実験が対象としていたアミノ酸など

のデータに比べて，要素の種類が多く，列の長さ

が短いという特徴があることから，どの程度分散

1-339

表 1:実験対象のデータ

処理により性能が改善されるか，実験を行った.

3 適用実験

適用実験における分散処理のJ構成を示す.本研究

ではマスタPCには， Pentium4 3.2GHzを搭載す

る計算機を，ワーカpcrこは， PentiumM 1.2GHz
を搭載する計算機を用いた.そしてこれらの計算機

を100base-TXで接続した.OSはWindowsXP，

通信には JavaRMIそ使用した.
実験対象には，表1に示す4つのソフトウェア

を用いた.各ソフトウェアで，少なくとも 6つの
メソッドに出現するコーデ、イングパターンを検出

する処理そ，ワーカの台数を 1~3 台として実行

した.解析時間を計測した結果そ表2に示す.

ワーカ台数を1台から2台に増やすと性能は1.5
~1.8 倍に向上し， 3 台に増やすと1.8~2.4倍に向

上した.ワーカ台数を増やすごとに性能は上がっ

ていくが， jEdi七はワーカ台数を増やしても性能

はさほど向上しなかった.

本実験におけるjEdi七解析時の各ワーカの解析

時間は表3のとおりである.表3に示すように，各

ワーカの解析時間には偏りが見られる.特にワー

カ台数が3台のとき，ワーカ 3の解析時聞は他の

2台のワーカと比べてかなり大きい.これは特定

のジョブの処理時間が他のジョブに比べて大きく，

それを担当したワーカの負荷が他のワーカよりも

大きくなったためと考えられる.今回の実験では，

lつのジョブの解析が終わらないために，全体の

解析時間が延びるケースが多く見られた.また，

各ジ、ヨブの処理時閣の偏りは，実験対象によって

異なっていたため，実験対象によって性能向上比

にばらつきが見られた.

4 まとめ

コーディングパターン検出における課題のlつ

として，対象を大規模ソフトウェアとしたときの解

析時間の増加があげられる.本研究ではマスタ・

ワーカ法を用いて PrefixSpanアルゴリズムそ分
散計算させることにより，パターン検出において，

平均して台数 xO.77倍の高速化を実現した.今回

表 2:実験対象ごとの解析時間と性能向上比

表 3:jEdit解析時の各ワーカの解析時間

の実験では，ジ、ヨブの処理時留に大きなばらつき

が見られた.処理時間が長いジョブがパターン検

出の後半で出現すると，特定のワーカに負荷が偏

り，性能向上比が低くなる.これを改善するため

にはワーカの負荷を均等にする必要があり，動的

に負荷分散を行うタスク・スティール法などが有

効であると考えられる.今後は，負待分散の手法

君主取り入れ，パターン検出のさらなる高速化を目

指示

謝辞

本研究は，科学研究費補助金基盤研究 (A)

(課題番号:17200001)および萌穿研究(課題番
号:18650006)の助成を得た.

参考文献

[1] Pei， J.， Han， J.， Mor同zavi-Asl，B.， Pinto，

H.， Chen， Q.， Dayal， U. and Hsu， M.: Pre-

fixSp叩 MiningSequential Patterns Effi-
ciently by Prefix-Projec七巴dPat七ernGrowth，
Proc. 17th International Conference on

DatαEngineering， pp.215-224 (2001).
[2] Ishio， T.， Da七e，日.， Miy乱ke，T. and In-

oue， K.: Mining Coding Patterns to Detect
Crosscutting Concerns in Java Programs，
Proc. 15th Working Conference on Reverse

Engine巴門ng，pp.123-132 (2008).
[3] Sutou， T.ヲ Tamura，K.ヲ Mori，Y. and Ki-
七akami，H.: Design and Implementation of
Parallel Modified PrefixSpan Method， Proc.
5th Int巴rnαtionα1Symposium on High Per-

formance Computingぅpp.412鮒422(2003)

1-340

