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層 流 か ら 乱 流 へ

基礎i工学部 吉 信 宏 夫(豊 中4460)

流体力学は古い学問で、その基礎はすでに19世 紀 に確立 したと思 ってい る人 も多いが、それはあくま

で も粘性や熱伝導等の輸送特性を省略 した完全流体についてである。 この省略の結果、完全流体の力学

は実験事実 と合わない多 くの所謂"paradox"を 残 して きた。その最 も有名 な例 はD'Alembertのparadox

と呼 ばれるもので、 「静止流体中を一定の速度で進む物体 は抵抗を受けない」 という結論である。 これ

らのparadokの 克服のためには粘性の存在を考慮に入れ る必要があった。粘性流体 の運動を支配す る基

礎方程式はNavier-Stokesの 方程式で、本質的に非線型 の偏微分方程式である。 このために、20世 紀

の流体力学 はこの非線型性 と格闘せざるを得 な くなるのである。

粘性の大 きい場合(厳 密にいえば流場 の中の代表的 な流速 σ。、代表的長 さL。及び流体の動粘性率 り

で作 ったReynolds数 と呼ばれ る無次元数、1～θ=ひ 。L。/り が小 さい場合),基 礎方程式 はStokes近 似

やOseen近 似 によって線型化できて取扱が容易になり、理論的に導かれる抵抗値は実験結果 と合致 し、

低Reynolds数 の流れに関す る限 りD'Alembertのparadoxは 克服 された。流れは境界条件や初期条件 に

従って、定常的であるか又は規則正 しく変動 し、所謂 「層流」が実現 され る。

しかしなが ら、我々にとって最も卑近な流体である空気や水の動粘性率は通常 レMOづ ～10弓(m2/sec)

と極 めて小 さ く、その中で起る 日常 的な流動現象ではReynolds数 飽 駕106～107と 極 めて大きい。Rθ

→。。の漸近理論 と してPrandtlの 境 界層理論 があ るが、 これが全面的 に成功 しているのは翼形などの流

線形物体 を過 る流れの場合のみであり、ず ん ぐりとした形 の物体では流れは側面 から剥離 して後方に後

流を形成 し、その中では空間的にも時間的にも不規則な変動を生 じ、所謂 「乱流」 となっている。

一般 に
、幾何学配置を一定 にしてお くと、低Reynolds数 で は層流 が実現 されるが、Reynolds数 を 大

きくするにつれて定常 な流れが存在 し難 くな り、まず規則的な振動が現われ、次第に高周波 の撹乱が重

なって不規則な振動 となり、遂には完全な乱流になる。そこでどのように して層流の中に撹乱が発生 し、

どのような過程を経て乱流 に至 るかとい うことが問題になって くる。

ここでは具体的な一つの例 として、水平な線熱源から浮力を受けて立ち昇る上昇気流(平 面 プルーム)

の乱流遷移 を示 そう。P・2'β'・4'写真1に 見 られるように流れは線 熱源を含む鉛直面に沿 うた薄い層の内

に局限 された内部境界層を形成す る。境界層近似を適用 して得 られる定常解(層 流解)は 流速、温度分

布 とも対称な指数関数様で、流速は熱源か らの鉛直距離κの1/5乗 で加速 され、温度 はκ4'5で 減 衰 し、

.境界層の厚 さはκ'15で拡 がる。流れを支配す る無次元パラメターのReynolds数(こ こではGで 表わす)

は高 さxの 水平面毎に中心での流速、境界層 の厚 さ、動粘性率で定義 され る。従って、他の実験条件を

固定す るとG㏄ がノ5とな り、各 々の高 さの水平面毎 にそ こでの0値 に対応す る層流解 が実現 されてい る

ことになる。

写真1は 熱源の真下か ら送 り込まれた煙に よる流脈 の写真で、G≒140ま で流脈 は真直 ぐに立ち昇 り、

層流 が実現されていることが分る。写真2は タイム ・ライソの写真で同 じくG≒140迄 は 層流解にほぼ
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写真1流 脈の可視化写真(自 然遷移)Q=20.4W/m

(aか らdま で0.25秒 間 隔の連続写真)撮:影:脇 谷俊一、吉信宏夫4'

一 致す る速度分布が見 られる
。図1は この領

域での温度変動の記録であ・・侮)(G-82・・)擁 鮮疑 嶋 三 ゑ,塗

ではスウェイと呼ばれ る周期1分 に近い極め

てゆるやかな振動のみが現われている。線型

安定論 によると、 これはG≒10の 附近 で増幅

率最大 とな り、その附近 で選択的に増幅され

た二次元反対称掩乱 と推定 される。 しか しこ

の撹乱は間 もな く増幅率が極 めて小 さ くなっ

て しまって0≒100で は殆ん ど増幅 され るこ

とがな くな り、(b)(G=105)で は 約0.8Hz

の撹 乱がスウェイに重なって現われる。これ

は このGの 値 の附近で最大の増幅率を もつ

反対称携乱である。(c)、(d)で は この撹乱 が発

達 し、(e)(G=158)で は 更 に高周波の振動

が重な り、逆 にスウェイは判然 としな くなる。
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写真2タ イムライソの可視化写真(自 然遷移)

9=20.6W/m

撮影=脇 谷俊一、吉信宏夫4>

σ≒140迄 は小 さい振動が重 なってはいるが規則正 しい ものであ り、線型安定論でほぼ説 明がつ く層流

領域とみ られ る。

図2は これ より下流での垂直速度成分 の変動の周波数に対するパワー ・スペク トルである。(温 度変

動のパ ワー ・スペク トルは これ と殆ん ど同 じ振舞を示すのでここには再録 しない。)(a)(G=91.6)パ

ワー ・スペク トルで見 ると、すでにスウェイを除いて3つ のピー クが見 られる。下流でのスペ ク トルと

対照させてみ ると∫、=0.8Hz、 ア2=1.1Hzの2つ が基本周波数 となっており、ア1よ り低 い0.5Hzの 撹

乱は∫1、∫,の非線型干渉の結果 として生 じた2ア 「 ∫2の 周波数に対応す る。(b)(G=117)で 現 われて

いるピー クは0.5Hz(2∫1一 ア2)、0.8Hz(∫1)、1.1Hz(∫2)、1.4Hz(2ア2一 ∫1)、1.6Hz(2ア1)で

あ る。(c)(0=139)で の ピーク位置は(b)と余 り変 らないが、2つ の基本周波数の掩乱の成長が著 しく、

線型成長がまだ衰えていないことを示 してい る。(d)(G=159)で は低周波領域で新たに0.3H乞(ア,一 ∫、)
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の ピー クが現 われ るが、九 よ り高周波の領域では顕

著な ピークは見 られず、非線型干渉が急速 に進 んで殆

んど連続 スペク トルに近 くな:ってい る。 ところが、(e)

(G』177)で 再 び この高周波領域 に1.4Hz、1.6Hz

以外 に更に高い周波数の1.9H乞(∫1十 ∫2)、2.2Hz(2ア,

)の ピー クが現われる。一旦消 えかけていたピー クが

再び発達す るようになるメカニズムはよくは分 らない。

(f),㈲ と進むにつれ高周波領域でのピークは再びな ら

され、(h)(0=242)で は低周波領域 になお少 し低 い

ピー クが見 られる.が、ほぼ連続 スペク トル となって完

全な乱流状態 とみなされる。

以上 に述べたスペク トル進化の過程の特徴は、更に

精.しい実験的検謹によって次の4つ にまとめられる。

(1)基本 周波数は∫、=0.8Hzと ∫2=1.1H2の2つ ある。

第一のものは線型安定論 から得 られる反対称撹乱で、

G≒100附 近 で最大の増 幅率 をもつ。 これに対 して第

二 のものは同じくこの附近で最大の増幅率をもつ対称

掩乱に起因す るものではないかと推測 されるが、直接

検謹はで きていない。(2)それ 以後の非線型千渉 による

スペク トル進化はかな り単純 かつ系統的で〃垢 ±π∫、

伽,η整数)の 高調波 スペク トルが現われ るが、第3

の基本周波数 らしい ものは見 られない。(3)遷移 過程は

比較的ゆるやかに推移 し、一定の高 さで波形を記録す

れば突発的変化や時間的な間歌性は見 られず、下流へ

行 くにつれて次第に全体 として不規則 さが増大す る。

(4)通常 、乱流 における変動は強い三次元性をもってい

るが、上述の過程 では(e)(G=177)ま で挽 乱はほぼ

完全に二次元的で あり、G≒200で もまだかな りよく

二次元性を保 っている。

Reynolds数 が大 き くな るにつれて流れは層流か ら

乱流に遷移す るとい う事実はどの ような流れについて

も共通であるが、その遷移の仕方は必ず しも同じでは

ない。安定性や遷移過程 の実験では不知不識 のうちに

思 いがけない外乱が侵入 して過程をす っか り変えて し

ま うことがあるので過去の研究の中にはそのための混

乱 が少なくない。最近は実験手段 も洗煉 されてきて、.
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図2垂 直 速 度 変 動 の パ ワ ー ス ペ ク トル

(自 然 遷 移)Q=205W/m

〔司 ズ'=10.0㎝ 、 ン呂4.Dm塒 、G=91.6;〔bj'富15.0㎝ 、 ン属4.7m、 σ=1三7

{o}π'=20.0㎝ 、 声5.3mm」G=139;{d)F=茄.O㎝ 、r5.8m、 σ=159

【の メ'=30.O㎝ 、 ン=6.5mm、(;=177….㈲'=35.0㎝ 、 ッ=7.Omm、 σ富195

〔9}π 「=釦.O㎝ 、 ン冒7,5mm、G胃211;〔h}F=50.0㎝ 、 ン雷8.5㎜ 、 σ=以 三
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遷移過程はほ癒次の2つ の型に類別されるようになった。5'その1つ は突発型と呼ばれる型で、半無限

平板上の境界層の流れの遷移がこれに当る。線型安定論に従 う二次元正弦波がある程度線型成長を遂げ

ると、その振幅が奥行:方向に周期的に変化する(三 次元分化)よ うになる。振幅の大きいところでは主

流の速度分布が瞬間的により不安定になって二次的不安定が起り、高周波撹乱を発生する。これが更に

高次の不安定を起 してより高周波の麗乱を生むという過程をくり返して遂には乱流に至る。従って下流

にゆくにつれてその変動波形に高周波の不規則波形が突発的かつ間敏的に現われるようになり、次第に

その頻度が高くなって遂には乱流に至るのである。第二の型はスペクトル進化型と呼ばれるもので、上

述の平面プルームは上にあげた4つ の特徴からみてこれに属する。二次元の噴流や後流のように固体境

界のない二次元自由勢断流の遷移は概ねこの型に属するようである。

ここにあげた2つ の種別はあくまでも線型安定論に従う微小撹乱から始って乱流に至る理想的な遷移

過程についてであって、途中で不知不識のうちに侵入する外乱によって過程はすっかり変ってしまうこ

ともある。過去の平面プルームの研究には、その遷移過程を突発型と断じているものもある。6'その変

動波形をみるとG≒70で すでに、低周波ではあるが極めて不規則になっている。これは恐らく外乱に対

する防護装置の不完全さによるもので、侵入した外乱が自然発生撹乱の三次元分化を惹き起して過程を

突発型に変えたものと想像される。安定性、遷移過程の実験では外乱を極力排除することに細心の注意

を彿わねばならない。
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