<table>
<thead>
<tr>
<th><strong>Title</strong></th>
<th>Enantioselective organocatalyzed aza-Morita-Baylis-Hillman and formal [n+2] cycloaddition reactions of ketimines</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Author(s)</strong></td>
<td>Arteaga Arteaga, Fernando</td>
</tr>
<tr>
<td><strong>Citation</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Issue Date</strong></td>
<td></td>
</tr>
<tr>
<td><strong>Text Version</strong></td>
<td>ETD</td>
</tr>
<tr>
<td><strong>URL</strong></td>
<td><a href="https://doi.org/10.18910/50461">https://doi.org/10.18910/50461</a></td>
</tr>
<tr>
<td><strong>DOI</strong></td>
<td>10.18910/50461</td>
</tr>
<tr>
<td><strong>rights</strong></td>
<td></td>
</tr>
</tbody>
</table>
Enantioselective organocatalyzed aza-Morita-Baylis-Hillman and formal [n+2] cycloaddition reactions of ketimines

A Doctoral Thesis
Submitted to the Department of Chemistry
Graduate School of Science
Osaka University

By
Fernando Arteaga Arteaga

Synthetic Organic Chemistry
The Institute of Scientific and Industrial Research (ISIR)
August, 2014
Dedicated to my parents, the driving force of my life.
# CONTENTS

**Abbreviation**

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter 1: Background</td>
<td>1</td>
</tr>
<tr>
<td>Chapter 2: Aza-Morita-Baylis-Hillman (aza-MBH) reaction of ketimines</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 3: Formal [2+2] cycloaddition reaction of ketimines</td>
<td>16</td>
</tr>
<tr>
<td>Chapter 4: Formal [4+2] cycloaddition reaction of ketimines</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 5: Synthesis of cyclobutane by formal [2+2] cycloaddition reaction of tetrasubstituted alkenes</td>
<td>29</td>
</tr>
<tr>
<td>Supplementary section</td>
<td>34</td>
</tr>
<tr>
<td>Conclusions</td>
<td>41</td>
</tr>
<tr>
<td>List of publications</td>
<td>42</td>
</tr>
<tr>
<td>Acknowledgements</td>
<td>43</td>
</tr>
</tbody>
</table>
**Abbreviations**

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ac</td>
<td>acetyl</td>
</tr>
<tr>
<td>anhyd.</td>
<td>anhydrous</td>
</tr>
<tr>
<td>aq.</td>
<td>aqueous or water solution</td>
</tr>
<tr>
<td>Ar</td>
<td>aryl</td>
</tr>
<tr>
<td>atm.</td>
<td>atmosphere</td>
</tr>
<tr>
<td>β-ICD</td>
<td>β-isocupreidine</td>
</tr>
<tr>
<td>BINOL</td>
<td>1,1′-bi-2, 2′-naphthol</td>
</tr>
<tr>
<td>Bn</td>
<td>benzyl</td>
</tr>
<tr>
<td>Boc</td>
<td>tert-butoxycarbonyl</td>
</tr>
<tr>
<td>Bz</td>
<td>benzoyl</td>
</tr>
<tr>
<td>cat.</td>
<td>catalyst or catalytic amount of</td>
</tr>
<tr>
<td>COSY</td>
<td>correlation spectroscopy</td>
</tr>
<tr>
<td>CPME</td>
<td>cyclopentylmethyl ether</td>
</tr>
<tr>
<td>‘Hex or Cy</td>
<td>cyclohexyl</td>
</tr>
<tr>
<td>d</td>
<td>days</td>
</tr>
<tr>
<td>DABCO</td>
<td>1,4-diazabicyclo[2.2.2]octane</td>
</tr>
<tr>
<td>DBU</td>
<td>1,8-diazabicyclo[5.4.0]undec-7-ene</td>
</tr>
<tr>
<td>DCM</td>
<td>dichloromethane</td>
</tr>
<tr>
<td>DEA</td>
<td>diethylamine</td>
</tr>
<tr>
<td>DIBAL</td>
<td>diisobutylaluminium hydride</td>
</tr>
<tr>
<td>DMAP</td>
<td>4-(dimethylamino)pyridine</td>
</tr>
<tr>
<td>DMP</td>
<td>Dess-Martin periodinane</td>
</tr>
<tr>
<td>dr</td>
<td>diastereomeric ratio</td>
</tr>
<tr>
<td>E</td>
<td>entgegen</td>
</tr>
<tr>
<td>EDG</td>
<td>electron donating group</td>
</tr>
<tr>
<td>ee</td>
<td>enantiomeric excess</td>
</tr>
<tr>
<td>eq</td>
<td>equivalent</td>
</tr>
<tr>
<td>ESI-MS</td>
<td>electrospray ionization mass spectrometry</td>
</tr>
<tr>
<td>Et</td>
<td>ethyl</td>
</tr>
<tr>
<td>EVK</td>
<td>ethyl vinyl ketone</td>
</tr>
<tr>
<td>EWG</td>
<td>electron withdrawing group</td>
</tr>
<tr>
<td>Fc</td>
<td>ferrocenyl</td>
</tr>
<tr>
<td>FMO</td>
<td>frontier molecular orbital</td>
</tr>
<tr>
<td>FG</td>
<td>functional group</td>
</tr>
<tr>
<td>Fig.</td>
<td>figure</td>
</tr>
</tbody>
</table>
FT-IR  Fourier transform infrared spectroscopy
GPC  gel permeation chromatography
h  hour
HFIPA  1,1,3,3,3-hexafluoroisopropyl acrylate
HMBC  heteronuclear multiple bond correlation
HMQC  heteronuclear multiple quantum correlation
HOMO  highest occupied molecular orbital
HPLC  high performance liquid chromatography
IBX  2-iodoxybenzoic acid
INADEQUATE  incredible natural abundance double quantum transfer experiment
INEPT  insensitive nuclei enhanced by polarization transfer
IPA  isopropyl alcohol
J  coupling constant
KHMDS  potassium hexamethyldisilazide
LA  Lewis acid
LAH  lithium aluminium hydride
LB  Lewis base
LDA  lithium diisopropylamide
LHMDS  lithium hexamethyldisilazide
liq.  liquid
LUMO  lowest unoccupied molecular orbital
MBH  Morita-Baylis-Hillman
Me  methyl
Mes  mesyl (2,4,6-trimethylphenyl)
min  minute
MO  molecular orbital
MOM  methoxymethyl
m.p.  melting point
Ms  mesyl (methanesulfonyl)
MS  molecular sieve
MTBE  methyl tert-butyl ether
MVK  methyl vinyl ketone
M.W.  molecular weight
µW  microwave
NBS  N-bromosuccinimide
NCS  N-chlorosuccinimide
NIS  N-iodosuccinimide
NMR  nuclear magnetic resonance
NOE  nuclear Overhauser effect
NOESY  nuclear Overhauser effect spectroscopy
Np  naphthyl
NR or n.r.  no reaction
Ns  nosyl (nitrosobenzenesulfonyl)
Nu or Nuc  nucleophile
ORTEP  Oak Ridge Thermal Ellipsoid Program
PG  protecting group
Ph  phenyl
Ph-H  benzene
Piv  pivaloyl
PMP  para-methoxyphenyl
PPA  polyphosphoric acid
ppm  parts per million
'Pr  isopropyl
Proton-sponge  1,8-Bis(dimethylamino)naphthalene
P.T.  proton transfer
PTC  phase-transfer-catalyst
PTSA  p-toluenesulfonic acid
Py  pyridine
quant.  quantitative
R  alkyl
R  rectus
rac  racemic
RCM  ring-closing metathesis
RDS  rate-determining step
Rf  retention factor in chromatography
Rochelle salt  potassium sodium tartrate
ROESY  rotating frame nuclear Overhauser effect spectroscopy
ROM  ring-opening metathesis
rt  room temperature
S  sinister
s  seconds
SET  single electron transfer
(R)-SITCP (11aR)-(+)\text{-}5,6,10,11,12,13\text{-}Hexahydro\text{-}5\text{-}phenyl\text{-}4H\text{-}diindenophosphine[7,1\text{-}cd:1',7'\text{-}ef]

SOMO \quad \text{single occupied molecular orbital}

SPRIX \quad \text{spiro bis(isoxazoline)}

TBAB \quad \text{tetrabutylammonium bromide}

TBS \quad \text{tert\text{-}butyldimethylsilyl}

TBHP \quad \text{tert\text{-}butylhydroperoxide}

TEA \quad \text{triethylamine}

TEMPO \quad 2,2,6,6\text{-}tetramethylpiperidinyloxy

temp. \quad \text{temperature}

Tf \quad \text{trifluoromethanesulfonyl}

TFA \quad \text{trifluoroacetic acid}

TFAA \quad \text{trifluoroacetic anhydride}

THF \quad \text{tetrahydrofuran}

TLC \quad \text{thin layer chromatography}

TMEDA \quad N,N,N',N'-\text{tetramethylethylenediamine}

TMG \quad 1,1,3,3\text{-}tetramethylguanidine

TMS \quad \text{tetramethylsilyl or tetramethylsilane}

Ts \quad \text{para\text{-}toluenesulfonyl}

TS \quad \text{transition state}

UV \quad \text{ultraviolet}

vic \quad \text{vicinal}

Weinreb amide \quad N,O\text{-}dimethylhydroxamic acids

XRD \quad \text{x\text{-}ray diffraction}

xyl or xylyl \quad 3,5\text{-}dimethylphenyl

y. \quad \text{yield}

Z \quad \text{benzyloxycarbonyl}

Z \quad \text{zusammen}
Chapter 1
Background

Synthesis of enantiopure compounds represents one of the most attractive and challenging fields in organic synthesis.\(^1\) Complementary to the traditional metal-mediated asymmetric synthesis,\(^2\) and inspired by the enzymatic labor in Nature, the use of simple and small organic compounds as catalyst has gained more and more applications in current organic synthesis.\(^3\) Coined and defined in 2000 by W. C. MacMillan,\(^4\) organocatalysis has had a fast developing owing to their in general important advantages such as: non-toxic, usually stable under aerobic conditions, commercially available or easy synthesized, reactions conducted under mild conditions, among others.\(^3\)

Scheme 1.- Pioneering example of organocatalysis promoted by (S)-proline.

Historically, the discovery of organocatalysis can be dated to the late of 1950s with the report of Pracejus on the preparation of (-)-α-phenyl methylpropionate in 74% ee by using an alkaloid-type tertiary amine.\(^5\) However, high yield and high enantioselectivity was first observed on the (S)-proline promoted Robinson annulation, up to 93% ee, thereby considered one of the frameworks of organocatalysis (Scheme 1).\(^6\) The process involving aldol reaction and known as Hajos-Parris-Eder-Sauer-Wiechert reaction provides access to some key intermediates for the synthesis of natural products. Identified as potential versatile catalyst, in 2000 List and Barbas applied (S)-proline on the aldol reaction achieving results comparable in terms of enantioselectivities to those obtained by using metal-containing catalyst (Scheme 2).\(^7\)

Scheme 2.- Asymmetric aldol reaction catalyzed by (S)-proline.
MacMillan reported secondary amine catalyst to activate enals via iminium ion for the synthesis cyclohexenyl ring systems by Diels-Alder reaction with notably enantioselectivity levels (Scheme 3).\[4\] Thus, the concept of iminium ion activation together with the proline aldol research described by List and Barbas set the bases for the emerging organocatalysis generation.

**Scheme 3.-** Asymmetric Diels-Alder cycloaddition catalyzed by imidazolidinone catalyst.

The fast development of organocatalysis has allowed it to be recognized as an independent synthetic area. The organocatalysts have two main functions; they can activate the electrophile or the nucleophile (or both in the case of bifunctional catalysis), or they create an asymmetric environment that is responsible for setting the chirality of the product.
Based on the interaction or activation, organocatalysts can be classified into two big groups as covalent or non-covalent catalysts (Figure 1). In covalent catalysis, a covalent bond between the organocatalyst and the substrate is formed. In this category, aminocatalysis\(^8\) and carbenes\(^9\) are included. In the case of non-covalent interactions between the substrate and the catalyst, the activation of the substrate occurs via hydrogen bonds\(^10\) (e.g., thioureas,\(^11\) squaramides\(^12\) and phosphoric acids\(^13\)) or ionic interactions (e.g., chiral bases such as cinchona alkaloids\(^14\) and phase-transfer-catalysts\(^15\)).

**Catalytic formation of tetrasubstituted carbon stereogenic centers**

Preparation of enantiopure compounds bearing a tertiary stereogenic center in academia and industry has reached very good levels by applying the large variety of available methods including chiral auxiliaries, ligands or catalysis.\(^{16}\) However, synthesis of biologically relevant molecules bearing a tetrasubstituted stereogenic center still remains as challenging field.\(^{17}\)

![Scheme 4](image)

**Scheme 4.** Asymmetric addition of TMSCN to ketimines.

The straightforward method to create tetrasubstituted carbon centers is through the nucleophilic addition. Several groups were involved on the addition of silyl enolates to ketones where a chelating ketone was coordinate to different metal complexes to yield high levels of stereoselectivity.\(^{18}\) Similarly, it was envisioned the synthesis of amines on a tetrasubstituted carbon center by the corresponding nucleophilic addition to ketimines. The Strecker reaction represents an important transformation which provides access to \(\alpha\)-disubstituted amino acids derivatives. Vallée reported the first examples of metal-catalyzed asymmetric additions of TMSCN or HCN catalyzed by titanium-based complexes, and more successfully with chiral heterobimetallic scandium complex (Scheme 4).\(^{19}\) In a subsequent series of publications Shibasaki described the use of gadolinium complexes affording high enantioselectivities, up to 98% ee.\(^{20}\)
This work

Although generation of compounds bearing a tetrasubstituted carbon center has been partially developed by using metallic-complexes,\textsuperscript{17-21} there is great concern about the use of metal-containing catalyst, especially for the synthesis of compounds with potential application in the pharmaceutical industry. In this work, I have developed a series of strategies involving organocatalysis for the synthesis of several important compounds possessing a chiral tetrasubstituted carbon center in high enantioselectivities (Scheme 5).

**Scheme 5.** Enantioselective synthesis of relevant structures bearing a tetrasubstituted stereogenic carbon center.
References


Chapter 2
Aza-Morita-Baylis-Hillman (aza-MBH) reaction of ketimines

The Morita-Baylis-Hillman (MBH) reaction is known to be one of the most efficient C-C bond forming reactions between electron-deficient alkenes with aldehydes, allowing access to highly functionalized allylic alcohols with atom economy in straightforward manner.\(^1\) The reaction was first reported in 1968 by Morita and co-workers (Scheme 1a).\(^2\)

![Scheme 1.- Morita-Baylis-Hillman (MBH) reaction.](image)

Unfortunately, this phosphine-promoted transformation suffered from low yields and it was neglected for a while. In 1972 a German patent indicating similar transformation under tertiary amine catalysis was reported (Scheme 1b).\(^3\) Owing to its synthetic importance, several groups were involved on the study of the reaction mechanism and the development of different methods to expand the scope of MBH reaction by using metal and metal-free protocols.\(^1\) Among these, the introduction of β-ICD (β-isocupreidine) by Hatakeyama and Iwabuchi represented an important step through the development of asymmetric MBH reaction. They reported the addition of acrylates to a variety of aromatic and aliphatic aldehydes for the formation of MBH-adducts up to 99\% ee (Scheme 2).\(^4\) The use of that

![Scheme 2.- Asymmetric MBH reaction of aldehydes and HFIPA catalyzed by β-ICD.](image)
Asymmetric aza-MBH reaction catalyzed by β-ICD

particular substrate 1,1,1,3,3,3-hexafluoroisopropyl acrylate (HFIPA) displayed an almost
200-fold rate acceleration compared to methyl acrylate, under identical reaction conditions.
The same organocatalyst showed high activity on the corresponding reaction of enone 4 and
imine 5, aza-MBH reaction, for the enantioselective synthesis of allylic amines as reported by
Shi in 2002 (Scheme 3).[5]

As demonstrated by our group and others,[6] BINOL and SPINOL-based bifunctional
chiral organocatalysts (phosphines or tertiary amines) among other systems, have been found
to work exceptionally well on the aza-MBH reaction of aldimines (Scheme 4). The general
accepted mechanism is illustrated in Scheme 5.[1,4-7] Michael addition of chiral Lewis base
(LB) organocatalyst generates the formation of an enolate intermediate A. Using a brønsted
carbon acid would help to enhance the stability of this intermediate through hydrogen bonding.
donation. The second step involves the aldol type addition to the electrophile, in this case aldime, generating thus a new C-C bond (intermediate B). This is also the enantioselectivity- determining step. As described on the intermediate B, complexity on the enantioselective discrimination arises from the fact that two different possible diastereomeric intermediates can be generated. To avoid steric interactions, catalyst would prefer to approach \textit{via} the less congested face of the substrate, locating the bulky group far from the approaching site. The next step is a proton transfer to generate C. Finally, a retro-Michael step delivers the enantioenriched aza-MBH adduct with concurrent regeneration of the organocatalyst to complete the catalytic cycle. It is clear that in the case of one of the substituents on aldime is an aryl group and the other hydrogen, the transition state generally favors location of aryl group far from the catalyst backbone decreasing steric hindrance, thereby increasing the possibility to obtain higher enantioselectivity.

Scheme 5.- Reaction mechanism of aza-MBH reaction.
Although several examples on the enantioselective aza-MBH reaction of aldimines are reported in literature,\textsuperscript{[1,4-7]} the corresponding process using ketimines as substrates (where hydrogen in imine is replaced for a different substituent), which eventually would provide access to a multifunctional allylic amines bearing a tetrasubstituted carbon center, remained undisclosed. The only example found in literature was reported in 2001 by Burger.\textsuperscript{[8]} A very activated bis-trifluoromethyl ketimine was reacted with acrylate in presence of a stoichiometric amount of DABCO delivering aza-MBH adduct in moderate yield (Scheme 6).

**Table 1.** Achiral LB catalyzed aza-MBH reaction of 11a with 12.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Lewis base</th>
<th>PG</th>
<th>Solvent</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMAP</td>
<td>Ts</td>
<td>DCM</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>DABCO</td>
<td>Ts</td>
<td>DCM</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>DBU</td>
<td>Ts</td>
<td>DCM</td>
<td>trace</td>
</tr>
<tr>
<td>4</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>DCM</td>
<td>trace</td>
</tr>
<tr>
<td>5</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>DCM</td>
<td>74</td>
</tr>
<tr>
<td>6</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>(CH\textsubscript{2}Cl)	extsubscript{2}</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>CHCl\textsubscript{3}</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>toluene</td>
<td>80</td>
</tr>
<tr>
<td>9</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>THF</td>
<td>34</td>
</tr>
<tr>
<td>10</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>Et\textsubscript{2}O</td>
<td>50</td>
</tr>
<tr>
<td>11</td>
<td>PPh\textsubscript{3}</td>
<td>Ts</td>
<td>MTBE</td>
<td>96</td>
</tr>
<tr>
<td>12</td>
<td>PPh\textsubscript{3}</td>
<td>PMP</td>
<td>MTBE</td>
<td>NR</td>
</tr>
</tbody>
</table>

**Conditions:** 11a (0.12 mmol), 12 (0.04 mmol), LB (10 mol%). PG = Protecting group. NR = No reaction.
With the aim of developing a method for construction of $\alpha,\alpha$-disubstituted amino acid derivatives bearing a chiral tetrasubstituted carbon center, ester-containing ketimine was selected as a model substrate. The reaction was initially explored with achiral Lewis bases (Table 1). Amine type catalyst such as DABCO and DMAP provided poor yields of the aza-MBH adduct accompanied with decomposition of ketimine (entries 1,2). Trace amount of

Table 2.- Enantioselective aza-MBH reaction of 11a with ketimine 12a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Chiral organocatalyst</th>
<th>Yield %</th>
<th>ee %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(R)-(S)-PPFA</td>
<td>trace</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>$\beta$-ICD</td>
<td>trace</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>(S)-BINAP</td>
<td>trace</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>(R)-MeO-MOP, (R)-7</td>
<td>trace</td>
<td>--</td>
</tr>
<tr>
<td>5</td>
<td>(R)-14</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(S)-8, (S)-10</td>
<td>trace</td>
<td>--</td>
</tr>
<tr>
<td>7</td>
<td>(S)-9</td>
<td>25</td>
<td>38</td>
</tr>
<tr>
<td>8</td>
<td>(S)-15a</td>
<td>87</td>
<td>96</td>
</tr>
<tr>
<td>9</td>
<td>(S)-15b</td>
<td>70</td>
<td>89</td>
</tr>
<tr>
<td>10</td>
<td>(S)-15c</td>
<td>42</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>(S)-15d</td>
<td>52</td>
<td>17</td>
</tr>
<tr>
<td>12</td>
<td>(S)-15e</td>
<td>trace</td>
<td>--</td>
</tr>
</tbody>
</table>

Conditions: 11a (0.12 mmol), 12a (0.04 mmol), chiral organocatalyst (10 mol%).
product was observed by using DBU or 2-phenyl-2-imidazolidine (entries 3,4). Gratifyingly, the reaction proceeded smoothly under PPh₃ catalysis, affording the racemic α,α-disubstituted amino acid derivative in 74% yield (entry 5). Further screening improved the yield up to 96% chemical yield by using t-BuOMe (MTBE) as solvent (entry 11). No reaction was observed when PMP was used as protecting group (entry 12).

Next, various chiral catalysts such as (R)-(S)-PPFA, β-ICD, (S)-BINAP, (R)-MeO-MOP, and compounds (R)-7, (S)-8-10, were tested as shown in Table 2. Some of them, which are known to mediate the enantioselective MBH-type processes, showed no activity with ketimine 12a (entries 1-4, 6). Chiral organocatalyst (R)-14 possessing highly nucleophilic phosphine led to racemic product (entry 5). The acid-base organocatalyst (S)-9[^6f] promoted the reaction to give 13a in 25% yield and 38% ee (entry 7). During the screening process, P-chirogenic[^10] organocatalysts were found to promote the aza-MBH reaction. Thus, the ferrocenyl P-chirogenic organocatalyst (S)-15a promoted the reaction in

![Scheme 7](image)

**Scheme 7** - Substrate scope catalyzed by P-chirogenic organocatalyst.
87% yield with 96% ee (entry 8), whereas (S)-15c with methyl and (S)-15d with methoxymethyl as ortho-substituents exhibited low asymmetric inductions (entries 10, 11). No catalytic activity was observed when (S)-15e bearing an ortho-hydroxy substituent was used (entry 12). Since the organocatalyst (S)-15b having an ethyl substituent afforded 13a with high enantioselectivity (entry 9), the steric effect of the hydroxymethyl group or the ethyl substituent on the catalyst (S)-15a and (S)-15b respectively, would be important to promote the reaction with high enantiocontrol.

With the optimized conditions, substrate scope was studied (Scheme 7). Moderate to high enantioselectivities were obtained irrespective of the electronic nature of the substituent on the aromatic ring (entries 13a to 13e). Replacing ethyl ester for trifluoroethyl ester delivered the aza-MBH adduct in higher enantioselectivity, 97% ee (entry 13f). The reaction was not restricted to MVK (methyl vinyl ketone), but also ethyl group was successfully introduced (entry 13g). However, the reaction was sensitive to sterically demanding ortho-substituted substrates, resulting in no reaction (entry 13h).

Scheme 8.- aza-MBH reaction of isatin-derived ketimine 16.

Cyclic isatin-derived ketimine was also found to be suitable substrate, affording the desired product 17 in 90% ee (Scheme 8). Applying catalyst (S)-15a and (S)-15b to α,β-unsaturated ketimine 18 delivers the desired aza-MBH product in low yield and moderate enantioselectivities, along with the formation of tetrahydropyridine 20,[11] generated through a

Scheme 9.- aza-MBH reaction of α,β-unsaturated ketimine 18 using (S)-15a-b.

[a] (S)-15a was used. [b] (S)-15b was used.
\[ 11a + \text{Ph-} \text{CO}_2\text{Et} \xrightarrow{\text{MTBE, 5 °C}} 19 \]

\[ (67, 72\% \text{ ee}[^a]) \]
\[ (96, 53\% \text{ ee}[^b]) \]

[a] \((R,R)-15f\) was used. [b] \((R,S)-15f\) was used.

**Scheme 10** - aza-MBH reaction of \(\alpha,\beta\)-unsaturated ketimine 18 using catalyst 15f.

[4+2] cyclization process (Scheme 9). The reaction was then explored with more bulky catalysts. Using P-chirogenic organocatalysts \((R,R)-15f\) and \((R,S)-15f\) were found to give the aza-MBH adduct 19 in moderate yield and moderate enantioselectivities (Scheme 10).

**Scheme 11** - Synthetic transformations of aza-MBH adducts 13.
To demonstrate the synthetic utility of highly functionalized aza-MBH products 13, a variety of transformations were performed (Scheme 11). The \( \alpha \)-methyl ketone 21 was obtained in good yield by 1,4-conjugated reduction of 13a using Pd/C under H\(_2\) without over reduction. Amino acid derivative 22 can be easily obtained after 2 steps, reduction and hydrolysis, accompanied by a five-membered ring byproduct 23, starting from 13a. Furthermore, Michael addition of BuLi with CuI or diethylmalonate with K\(_2\)CO\(_3\) to 13d produced the cyclic products 24 and 25 via sequential 1,4-addition/lactonization with over 85\% yields, respectively.

Note:

By the same time of the report of our research, and independently, the groups of Shi and Chen have reported enantioselective aza-MBH reaction of ketimines using different catalysts and different substrates to those described here.\(^{[12]}\)
References

Chapter 3

Formal [2+2] cycloaddition reaction of ketimines

Chiral azetidines constitutes an important class of N-containing four-membered heterocycles incorporated in natural products, and recently also applied as a chiral ligand for asymmetric transformations.\(^1\) The general approach for their preparation normally involves a large sequence of linear steps delivering the heterocycles in low yields.\(^2\) More efficient route

**Achiral**

\[
\begin{align*}
\text{a)} & \quad \begin{array}{c}
\text{Ar} & \text{H} \\
\text{NTs} & \\
\end{array} + \begin{array}{c}
\text{CO}_2 \text{R} \\
\end{array} & \rightarrow \\
\begin{array}{c}
\text{TsN} \\
\end{array} & \begin{array}{c}
\text{CO}_2 \text{R} \\
\end{array} \\
\text{Ar} & \\
\text{DCM or PhH, MS 4A, rt} & \text{26} & \text{27} & \text{31-99% yields}
\end{align*}
\]

**Chiral**

\[
\begin{align*}
\text{b)} & \quad \begin{array}{c}
\text{Ar} & \text{H} \\
\text{NSO}_2 \text{Y} & \\
\end{array} + \begin{array}{c}
\text{26} \\
\end{array} & \rightarrow \\
\begin{array}{c}
\text{YO}_2 \text{SN} \\
\end{array} & \begin{array}{c}
\text{CO}_2 \text{R} \\
\end{array} \\
\text{Ar} & \\
\text{PhH, MS4A, rt} & \text{26} & \text{29} & \text{3-18% yields}
\end{align*}
\]

**Scheme 1.**- Formal [2+2] cycloaddition of aldimines with allenoates.
to azetidines is through [2+2] cycloaddition reaction.[3] In an attempt to extend the scope of aza-Morita-Baylis-Hillman reaction to a different α,β-unsaturated enones, Shi and co-workers identified generation of azetidines in the reaction with aldimines and 2,3-butadienone by using DABCO as catalyst via formal [2+2] cycloaddition process (Scheme 1a).[4] The corresponding asymmetric protocol was later developed by Masson and Zhu by using an achiral formal [2+2] cycloaddition of ketimines with allenoates.

**Table 1.** Catalyst screening for formal [2+2] cycloaddition of ketimines with allenoates.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Organocatalyst</th>
<th>Solvent</th>
<th>T (°C)</th>
<th>t (h)</th>
<th>Yield %</th>
<th>ee %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DABCO</td>
<td>THF</td>
<td>25</td>
<td>96</td>
<td>43</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>DMAP</td>
<td>THF</td>
<td>25</td>
<td>96</td>
<td>20</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>DBU</td>
<td>THF</td>
<td>25</td>
<td>96</td>
<td>0</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>β-ICD</td>
<td>THF</td>
<td>25</td>
<td>24</td>
<td>42</td>
<td>80</td>
</tr>
<tr>
<td>5</td>
<td>β-ICD</td>
<td>1,4-dioxane</td>
<td>25</td>
<td>24</td>
<td>58</td>
<td>82</td>
</tr>
<tr>
<td>6</td>
<td>β-ICD</td>
<td>DCM</td>
<td>25</td>
<td>24</td>
<td>36</td>
<td>66</td>
</tr>
<tr>
<td>7</td>
<td>β-ICD</td>
<td>toluene</td>
<td>25</td>
<td>24</td>
<td>28</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>β-ICD</td>
<td>THF</td>
<td>0</td>
<td>24</td>
<td>45</td>
<td>84</td>
</tr>
<tr>
<td>9</td>
<td>β-ICD</td>
<td>THF/1,4-dioxane (1:1)</td>
<td>0</td>
<td>24</td>
<td>49 (69)b</td>
<td>89(87)b</td>
</tr>
<tr>
<td>10</td>
<td>β-ICD</td>
<td>THF/1,4-dioxane (1:2)</td>
<td>-5</td>
<td>48</td>
<td>82b</td>
<td>87b</td>
</tr>
<tr>
<td>11</td>
<td>36</td>
<td>THF/1,4-dioxane (1:1)</td>
<td>0</td>
<td>24</td>
<td>10(trace)c</td>
<td>65(nd)c</td>
</tr>
<tr>
<td>12</td>
<td>37</td>
<td>THF/1,4-dioxane (1:1)</td>
<td>0</td>
<td>24</td>
<td>23</td>
<td>59</td>
</tr>
<tr>
<td>13</td>
<td>cinchonine, quinidine or 8</td>
<td>THF/1,4-dioxane (1:1)</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>--</td>
</tr>
</tbody>
</table>

[a] Determined by 1H-NMR. [b] MS 4Å was added. [c] 20 mol% of 2-naphthol was added. nd: Not determined.
alkaloid-type tertiary amine organocatalyst (Scheme 1b).\[^{[5]}\] Is important to notice that in the case of Masson and Zhu report, they observed the competitive formation of aza-MBH-adduct 30 as minor byproduct, affecting the yield of the desired azetidine. In 2012, the group of Ye has reported the achiral synthesis of azetidines bearing a tetrasubstituted carbon center via formal [2+2] cycloaddition of cyclic ketimines (Scheme 2).\[^{[6]}\] Interestingly, although they tried to develop the enantioselective process, they were not able to observe any formation of

\[
\begin{align*}
\text{NTs} & \quad \text{Ar} \quad \text{CO}_2\text{R}^1 \quad + \quad \text{CO}_2\text{R}^2 \\
\text{12} & \quad \text{26} & \quad \text{3 eq} \quad \beta\text{-ICD (20 mol\%)} \quad \text{THF/1,4-dioxane (1:2)} \quad \text{MS 3A, -5 °C, 48 h} \quad \text{34} \\
\end{align*}
\]

<table>
<thead>
<tr>
<th>Compound</th>
<th>Yield</th>
<th>ee</th>
</tr>
</thead>
<tbody>
<tr>
<td>34a</td>
<td>82%</td>
<td>87% ee</td>
</tr>
<tr>
<td>34b</td>
<td>93%</td>
<td>86% ee</td>
</tr>
<tr>
<td>34c</td>
<td>71%</td>
<td>90% ee</td>
</tr>
<tr>
<td>34d</td>
<td>83%</td>
<td>83% ee</td>
</tr>
<tr>
<td>34e</td>
<td>quant., 90% ee (44%, 92% ee)[^{[a]}]</td>
<td></td>
</tr>
<tr>
<td>34f</td>
<td>76%</td>
<td>86% ee</td>
</tr>
<tr>
<td>34g</td>
<td>79%</td>
<td>88% ee (&gt;99% ee)[^{[b]}]</td>
</tr>
<tr>
<td>34h</td>
<td>97%</td>
<td>85% ee</td>
</tr>
<tr>
<td>34i</td>
<td>71%</td>
<td>90% ee</td>
</tr>
<tr>
<td>38</td>
<td>18%</td>
<td></td>
</tr>
</tbody>
</table>

[a] At -20 °C. [b] After a single recrystallization.

**Scheme 3.**- Substrate scope catalyzed of formal [2+2] cycloaddition catalyzed by β-ICD.
azetidine when using chiral organocatalysts. Interested in establishing an enantioselective method, reaction using acyclic ketimine 12a was explored. Among the achiral organocatalyst tested, DABCO was superior delivering azetidine in 43% yield (entries 1-3). Next, various chiral amine catalyst were applied. β-Isocupreidine (β-ICD), acid-base organocatalyst known to mediate MBH-processes,[7] afforded 34a in moderate yield with 80% ee (entry 4). Using 1,4-dioxane or lowering the reaction temperature (entries 5, 8) had a positive effects on the chemical yield and enantioselectivities. Furthermore, the mixed solvent of THF/1,4-dioxane (1:1 ratio) achieved good outcomes in terms of enantioselectivity (entry 9). Applying amide-type analogous β-ICD 36 (in presence or absence of naphthol),[8] cinchonine, organocatalyst 37, quinine or organocatalyst 8,[9] exhibited low or no activity (entries 11-13).

Notably, neither formation of aza-MBH adduct 35a nor the Z-configuration of azetidine 34a was observed in any reaction; however, α-ketoester was formed due to partial hydrolysis of ketimine. To suppress the decomposition, molecular sieves (MS 4A) were added to reaction. The addition of MS 4A improved the chemical yield maintaining high enantioselectivity (entry 9). Further optimization allowed the optimal condition with a mixed solvent THF/1,4-dioxane (1:2) at -5 °C in the presence of MS 3A (Scheme 3, 34a). Under the optimal conditions, highly E-selective and (R)-configured azetidines 34 were obtained in good to excellent yields with high enantioselectivities (83-92% ee) irrespective of the electronic nature of substituent groups on the aromatic ring. Single recrystallization of azetidine 34g afforded optically pure azetidine (> 99% ee). Using benzyl-ester allenolate (CO₂Bn) delivers azetidine in 71% chemical yield and 90% ee, however, it came accompanied by formation of byproduct 38 in 18% yield. Absolute configuration was indirectly deduced by comparison with a literature reported compound (see supplementary section).

Scheme 4.- Synthetic transformations of azetidine (R)-34.
To demonstrate the synthetic utility of highly functionalized azetidines 34, various transformations were performed (Scheme 4). Allyl alcohol 39 was obtained by DIBAL-H reduction of 34d. β-Lactam 40 was synthesized in 96% yield by oxidation with O3. Subsequently, treatment of lactam 40 with Mg/MeOH cleaved the amide bond to provide acyclic α,α-disubstituted amino acid derivative 41 in good yield. Finally, 34e could react with phenylboronic acid via Suzuki-Miyaura cross-coupling to quantitatively give biphenyl compound 42.

Scheme 5.- Our proposed reaction mechanism.

Scheme 6.- Formal [2+2] cycloaddition of 12d with 26a using methyl capped β-ICD.
The proposed mechanism of [2+2] cycloaddition is shown in scheme 5. Addition of β-ICD to allenoate 26 affords the resonance-stabilized zwitterionic intermediate I, which could react with ketimine 12 according to two different pathways. Addition of the γ-carbanion to 12 would yield intermediate II, which upon 4-exo-trig cyclization would give intermediate III. To avoid steric interactions between the aryl substituent of ketimine and the quinoline backbone in the catalyst, the reaction using β-ICD would favor product with (R)-configuration. Finally, azetidine 34 is formed upon fragmentation of III, with concurrent regeneration of catalyst. In contrast, formation of aza-MBH compound 35 through the addition of the α-carbanion Ib to ketimine is not supported probably because of the steric hindrance in the ketimine. To gain insights into the enantioselective induction step, an additional experiment with modified catalyst was performed (Scheme 6). By using a methyl capped β-ICD organocatalyst resulted in low activity and low enantioselectivity, implying the important role of hydroxyl unit in the catalyst. Based on this result, we hypothesized that the oxygen on the sulfonyl group in the ketimine would be activated by OH group in β-ICD through hydrogen bond. Although, coordination with the oxygen in the carbonyl group on the ketimine cannot be ruled out. Further calculations studies using computational chemistry are necessary to better understand the transition state involved in the present mechanism.
References


Chapter 4
Formal [4+2] cycloaddition reaction of ketimines

Functionalized tetrahydropyridines represent an important motif largely found in many pharmaceuticals and natural products (Figure 1). Among the different approaches reported in literature, [4+2] cycloaddition reaction constitutes the more straightforward method for their construction. Since the pioneering report in 2003 by Prof. Kwon and her

**Figure 1.-** Biologically active tetrahydropyridine-containing compounds.

Scheme 1.- Formal [4+2] cycloaddition of aldimines with allenoates.
co-workers on the preparation of tetrahydropyridine from aldimines and allenoates promoted by PBu₃, Lewis base (LB) organocatalysis was recognized as an important route to synthesize this family of heterocycles (Scheme 1a).[3] The corresponding asymmetric transformation was later developed by using a binaphthyl-based C₂-symmetric mono-phosphine and an amino acid-based bifunctional phosphine by Fu and by Zhao’s groups, respectively (Scheme 1b).[4] However, despite of the importance of tetrahydropyridines bearing a tetrasubstituted stereogenic carbon center in areas such as medicinal chemistry,[1] the asymmetric preparation of these systems remained elusive for long time. In 2012, Ye’s group described the synthesis of these systems.

![Scheme 2](image)

**Scheme 2.** Achiral formal [4+2] cycloaddition of ketimines with allenoates.

Table 1.- Catalyst screening for formal [4+2] cycloaddition of ketimines with allenoates.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Chiral phosphate</th>
<th>t (h)</th>
<th>T (°C)</th>
<th>Ratio 47:47'[a]</th>
<th>Total yield[b]</th>
<th>ee of 47 (%)</th>
<th>ee of 47' (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(S)-BINAP</td>
<td>24</td>
<td>reflux</td>
<td>--</td>
<td>no reaction</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>(R)-QUINAP</td>
<td>24</td>
<td>reflux</td>
<td>--</td>
<td>no reaction</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>(R)-MeO-MOP,</td>
<td>24</td>
<td>reflux</td>
<td>--</td>
<td>no reaction</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>(R)-7, (S)-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>(R, R)-DIOP</td>
<td>24</td>
<td>reflux</td>
<td>1:3:1</td>
<td>35</td>
<td>55</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>(S, R)-BPPFA</td>
<td>24</td>
<td>reflux</td>
<td>1:2:1</td>
<td>34</td>
<td>70</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>(S, R)-BPPFOH</td>
<td>24</td>
<td>reflux</td>
<td>1:2.8</td>
<td>23</td>
<td>84</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>(R)-SITCP</td>
<td>3</td>
<td>25</td>
<td>5:1</td>
<td>83</td>
<td>86</td>
<td>8</td>
</tr>
<tr>
<td>8[e]</td>
<td>(R)-SITCP</td>
<td>3</td>
<td>25</td>
<td>&gt; 20:1</td>
<td>88</td>
<td>90</td>
<td>--</td>
</tr>
<tr>
<td>9[e]</td>
<td>(S)-48</td>
<td>3</td>
<td>25</td>
<td>&gt; 20:1</td>
<td>81</td>
<td>80</td>
<td>--</td>
</tr>
</tbody>
</table>

[a] Determined by 'H-NMR. [b] 'H-NMR (1,3,5-trimethoxybenzene as internal standard). [c] MS 4Å was added.
of tetrahydropyridines bearing a tetrasubstituted carbon center by using a saccharin-derived cyclic ketimines and catalyzed by an electron-deficient triaryl phosphine (Scheme 2). They were able to obtain in moderate to excellent selectivity the thermodynamically favored β'-adduct in good yields (55-75%). Towards the development of an enantioselective process, formal [4+2] cycloaddition of ketimines was initially explored with different phosphines (Table 1). Triaryl phosphines (BINAP, QUINAP, (R)-Me-MOP, catalyst (R)-7 and (S)-9) were found to be inactive in the present transformation (entries 1-3). Shifting to a monomethyl or/and ferrocenyl-containing phosphines, a stimulating enantioselectivity value was observed (55-84% ee), although in low yield and low regioselectivity (entries 4-6). Interestingly, spiro-type organocatalyst (R)-SITCP7 was found to promote with high enantioselectivity and modest regioselectivity the formal [4+2] cycloaddition reaction (entry 7). Further optimization revealed the use of MS 4 Å to have a markedly effect as additive to deliver exclusively the formation of the γ-adduct in 88% yield and 90% ee (entry 8). Evaluation of the corresponding binaphthyl-type monophosphine provided the desired compound in similar regioselectivity but slightly lower yield and enantioselectivity (entry 9). Decreasing the catalyst loading affected both regioselectivity and enantioselectivity (supplementary section). The substrate scope was then evaluated under the obtained optimized reaction conditions (Scheme 3). High regioselectivity and high enantioselectivity was observed independently of the electronic nature of the substituted groups on the aromatic ring (entries 47a-h). Bulky 2-naphthyl group was also tolerated (47i). 2-pyridin ring and an ester group were also successfully introduced, although with lower enantioselectivity (entries 47j and 47k). The reaction of alkyl-substituted ketimine 32l did not afford any cycloadduct; however it resulted in the recovery of the starting material even at increased reaction temperatures and prolonged reaction times. The absolute configuration was determined by
Scheme 3.- Substrate scope catalyzed by (R)-SITCP.

Single X-ray crystallographic analysis of tetrahydropyridine 47c (Figure 2).[9] Absolute configuration of 47a-b and 47d-k was tentatively assigned by comparison of their optical rotation.

Based on the observed results and related literature reports,[3,4,5b] the reaction mechanism is believed to proceed as illustrated in Scheme 4. The addition of phosphine organocatalyst to α-methyl allenolate 43 triggers the generation of reactive zwitterionic species I. Electronrich and nucleophilic monoaryl-phosphine leads to formation of kinetically
favored γ-addition to ketimine 32 through intermediate Ia. Once intermediate II is generated, intramolecular cyclization affords the tetrahydropyridine 47 with concomitant regeneration of the catalyst. To avoid steric interactions between the R substituent in the ketimines and phenyl substituent on the catalyst, the present system using (R)-SITCP favor the formation of (R)-tetrahydropyridine 47a-i or (S)-47j-k. Proton source from H2O or 2-naphthol10 could assist the generation of Ib, and consequently the formation of β'-tetrahydropyridine 47'.

**Scheme 4**. Proposed reaction mechanism.
References


[7] (R) or (S)-SITCP is commercially available from Sigma-Aldrich and Strem.


[9] CCDC No. 964567 ((R)-47c) contains the supplementary crystallographic data. This data can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

[10] An addition of Brønsted acid such as 2-naphthol (20 mol%) led to drastically dropping of reaction rate and stereoselectivities; after 24 h, 50% total yield of products 47a and 47a’ (47a:47a’ = 1:1.2) were obtained in 19% ee for 47a and 11% ee for 47a’, respectively.
Chapter 5
Synthesis of cyclobutane by formal [2+2] cycloaddition reaction of tetrasubstituted alkenes

Figure 1.- Cyclobutane-containing biologically active compounds.

Four-membered rings are important structural motifs frequently present in bioactive natural products and pharmaceutical agents.\textsuperscript{[1]} This interesting constraint ring has also been recently studied in the field of catalysis. Murakami\textsuperscript{[2]} and Cramer\textsuperscript{[3]} have presented a variety

\textbf{Iminium}

\begin{equation}
\text{R}^1\text{CHO} \xrightarrow{\text{R}^*\text{NH}_2, \text{HX}} \text{R}^1\text{N}^+\text{H}^+ \xrightarrow{\text{iminium ion}} \text{R}^2\text{R}^3\text{R}^4\text{R}^5\text{CHO}
\end{equation}

\textup{up to 95\% ee, \textit{dr} > 20:1}

\textbf{Dienamine}

\begin{equation}
\text{R}^1\text{R}^2\xrightarrow{\text{NO}_2} \xrightarrow{\text{DEA, H}_2\text{O, DCM, RT}} \text{R}^1\text{R}^2\text{R}^3\text{R}^4
\end{equation}

\textup{up to 99\% ee, \textit{dr} > 20:1}

\textbf{Scheme 1.-} Organocatalytic formal [2+2] cycloaddition reaction.
of synthetic applications by making use of the high reactivity on the C-C bond. However, most of the existing methods only give access to racemic cyclobutanes, and only a few reports of asymmetric metal-catalyzed reactions have been documented. Organocatalysis, particularly aminocatalysis, has shown their potential by a couple of reports on the asymmetric synthesis. Ishihara and co-workers reported an enantioselective [2+2] cycloaddition of unactivated alkenes 50 and α-acyloxyacroleins 49 under iminium catalysis (Scheme 1a).[5] Blackmond,[6a,b] and Seebach, Hayashi and their co-workers,[6c] contributed on the study of Michael addition of aldehydes and nitroalkenes for the identification by NMR of the formation of an unexpected cyclobutane intermediate derived from a formal [2+2] cycloaddition. Inspired by these precedents reports, Jørgensen and co-workers[7] designed a novel bifunctional catalyst 55 for the remote activation of α,β-unsaturated aldehydes 52 and nitroalkenes 53 under the concept of dienamine activation (Scheme 1b).

Table 1.- Catalyst screening for formal [2+2] cycloaddition reaction of 56a with 26a.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Organocatalyst</th>
<th>Yield %</th>
<th>dr %[^a]</th>
<th>ee %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DMAP</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2</td>
<td>DABCO</td>
<td>65</td>
<td>&gt; 20:1</td>
<td>--</td>
</tr>
<tr>
<td>3</td>
<td>DBU</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>4</td>
<td>TMG</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>5[^b]</td>
<td>β-ICD</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>6[^b]</td>
<td>cinchonine</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>7[^b]</td>
<td>quinidine</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>8[^b]</td>
<td>(S)-58</td>
<td>0</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

[^a] Determined by 1H-NMR. [^b] Stirred for 24 h under reflux. TMG = 1,1,3,3-tetramethylguanidine.

![Diagram of catalyst screening](image-url)
With the aim of expanding the allenoate chemistry by using organocatalysis, enantioselective synthesis of cyclobutane was studied. Formal [2+2] cycloaddition was explored with an electron-deficient tetrasubstituted alkene 56a in presence of different organocatalysts (Table 1). The initial exploration of achiral Lewis base shown DMAP, DBU, and TMG to be inactive on the cycloaddition (entrie 1,3,4). Satisfyingly, the reaction in presence of DABCO afforded formation of the 4-member ring system in moderate yield and high diastereoselectivity (entry 2). Next, chiral organocatalysts were evaluated. Surprisingly, reaction in presence of alkaloid-type, including β-ICD, or BINOL-based organocatalysts, did not promote formal [2+2] cycloaddition even under reflux reaction conditions (entries 5-8), probably due to a steric hindrance.

Scheme 2.- Thiourea co-catalyst asymmetric cyclobutane synthesis.

Asymmetric induction by using achiral Lewis base and co-catalyst chiral thiourea has been reported by different groups. Formal [2+2] cycloaddition was thus explored in a co-catalytic system of DABCO and chiral thioureas (Scheme 2). Bis-thiourea and thiourea
59-61 delivers formation of cyclobutane in similar moderate yields, however enantioselective induction was not observed, affording compound 57 in racemic form. Developed by our group, a more rigid SPIRO-derived bisthiourea 62 showed moderated enantioselective induction on cyclobutane synthesis, up to 40% ee.

With the promising results observed by using co-catalyzed DABCO and spiro-based bisthiourea 62, we are currently trying to improve the above results. It is believed that a modification on the spiro compound, perhaps introducing a bulky substituent, may increase the enantioselectivity on the cyclobutane compound.
References


Supplementary section

Chapter 2.

Preparation of ketimines 12

A solution of the corresponding keto ester (1.25 eq), \( p \)-toluenesulfonamide (1.0 eq.), and triethylamine (1.0 eq) in \( \text{CH}_2\text{Cl}_2 \) was cooled to 0 \(^\circ\)C. To this mixture was added a solution of \( \text{TiCl}_4 \) (1.0 eq.) in \( \text{CH}_2\text{Cl}_2 \) under \( \text{N}_2 \). The mixture was stirred at 0 \(^\circ\)C for 30 min. and then warmed to ambient temperature and stirred for 1 h. The mixture was then quenched with sat. \( \text{NaHCO}_3 \) and extracted three times with DCM. The combined organic phases were washed with brine, dried over \( \text{Na}_2\text{SO}_4 \), and concentrated. The resulting residue was purified by \( \text{SiO}_2 \) column chromatography (15% \( \text{EtOAc/hexane} \)) or GPC (\( \text{CHCl}_3 \) only) to afford 12.

**REPRESENTATIVE DATA**

12c: yellow oil (58%); \(^1\text{H-NMR (CDCl}_3\)) \( \delta \) 7.91 (d, 2H, \( J = 8.2 \) Hz), 7.39 (d, 1H, \( J = 1.4 \) Hz), 7.35-7.32 (m, 3H), 6.83 (d, 1H, \( J = 8.2 \) Hz), 6.06 (s, 2H), 4.55 (q, 2H, \( J = 7.3 \) Hz), 2.43 (s, 3H), 1.47 (t, 3H, \( J = 7.3 \) Hz); \(^{13}\text{C-NMR (CDCl}_3\)) \( \delta \) 166.2, 164.9, 153.7, 148.6, 144.5, 136.0, 129.7, 127.8, 127.9, 125.8, 108.5, 102.4, 63.2, 21.7, 14.0; HRMS (ESI) calcd for \( \text{C}_{18}\text{H}_{17}\text{NO}_6\text{Na} \); m/z = 398.0674 [(M+Na\(^+\)], found m/z = 398.0670; IR (KBr): \( \nu \) 3086, 2987, 1743, 1600, 1318, 1248, 1155 cm\(^{-1}\).

12d: yellow solid (65%); \(^1\text{H-NMR (CDCl}_3\)) \( \delta \) 7.90 (d, 2H, \( J = 8.2 \) Hz), 7.77 (d, 2H, \( J = 7.3 \) Hz), 7.57 (t, 1H, \( J = 7.3 \) Hz), 7.52 (d, 1H, \( J = 2.3 \) Hz), 7.50 (d, 1H, \( J = 1.4 \) Hz), 7.44-7.37 (m, 5H), 7.31 (d, 2H, \( J = 8.2 \) Hz), 5.52 (s, 2H), 2.43 (s, 3H); \(^{13}\text{C-NMR (CDCl}_3\)) \( \delta \) 166.8, 164.7, 144.8, 135.5, 134.8, 134.2, 131.3, 129.9, 129.7, 129.1, 129.0, 128.9, 128.7, 128.2, 68.9, 21.7; HRMS (ESI) calcd for \( \text{C}_{22}\text{H}_{19}\text{NO}_4\text{Na} \); m/z = 416.0932 [(M+Na\(^+\)], found m/z = 416.0927; IR (KBr): \( \nu \) 3061, 2952, 1741, 1594, 1332, 1158 cm\(^{-1}\).
General procedure for enantioselective aza-MBH reaction of 11 and 12.

To a solution of organocatalyst (S<sub>p</sub>)-15 (10-20 mol%), N-tosylketimine 12 (0.040 mmol) in MTBE (0.2 mL) was added enone (0.12 mmol, 3.0 eq.). The reaction mixture was stirred at 5-10°C, and was stirred until the reaction reached completion determined by TLC analysis. After purification via column chromatography, product 13 was obtained.

13c: pale yellow oil (86%); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 7.50 (d, 2H, J = 8.2 Hz), 7.28 (d, 1H, J = 2.3, 1.8 Hz), 7.20 (d, 2H, J = 7.8 Hz), 7.15 (d, 1H, J = 1.8 Hz), 6.79 (d, 1H, J = 8.2 Hz), 6.45 (s, 1H), 6.41 (s, 1H), 6.33 (s, 1H), 5.97 (d, 1H, J = 1.8 Hz), 5.96 (d, 1H, J = 1.4 Hz), 4.07 (qd, 1H, J = 12.4, 7.3 Hz), 4.04 (qd, 1H, J = 12.4, 7.3 Hz), 2.39 (s, 3H), 1.74 (s, 3H), 1.10 (t, 3H, J = 7.3 Hz); <sup>13</sup>C-NMR (CDCl<sub>3</sub>) δ 196.8, 170.4, 147.6, 147.2, 144.2, 142.9, 138.5, 135.6, 130.5, 129.0, 127.8, 122.9, 109.4, 107.4, 101.4, 67.3, 62.6, 24.6, 21.4, 13.7; HRMS (ESI) calcd for C<sub>22</sub>H<sub>23</sub>NO<sub>7</sub>SNa, m/z = 468.1092 [(M+Na)<sup>+</sup>], found m/z = 468.1080; enantiomeric excess: 41%, determined by HPLC (Chiralcel OD-H, hexane/2-propanol = 10/1, flow rate 1.0 ml/min, 25°C, 230 nm) minor peak: t<sub>R</sub> = 32.2 min, major peak: t<sub>R</sub> = 22.4 min; [α]<sup>21</sup><sub>D</sub> = +47.6 (c 0.21, CHCl<sub>3</sub>); IR (KBr): ν 3328, 1733, 1680, 1503, 1393, 1228, 1161 cm<sup>-1</sup>.

13d: pale yellow oil (98%); <sup>1</sup>H-NMR (CDCl<sub>3</sub>) δ 7.73-7.71 (m, 2H), 7.50 (d, 2H, J = 8.4 Hz), 7.35-7.33 (m, 3H), 7.27-7.26 (m, 3H), 7.20 (d, 2H, J = 8.8 Hz), 7.07-7.05 (m, 2H), 6.53 (s, 1H), 6.39 (s, 1H), 6.28 (s, 1H), 5.00 (d, 1H, J = 12.4 Hz), 4.96 (d, 1H, J = 11.9 Hz), 2.39 (s, 3H), 1.70 (s, 3H); <sup>13</sup>C-NMR (CDCl<sub>3</sub>) δ 197.0, 170.4, 144.1, 142.9, 138.6, 136.6, 135.7, 134.6, 129.1, 128.9, 128.4, 128.3, 128.2, 127.8, 127.8, 68.3, 67.6, 24.5, 21.4; HRMS (APCI) calcd for C<sub>26</sub>H<sub>25</sub>NO<sub>5</sub>SH, m/z = 464.1531 [(M+H)<sup>+</sup>], found m/z = 464.1529; enantiomeric excess: 41%, determined by HPLC (Chiralpak AS-H, hexane/2-propanol = 65/35, flow rate 0.5 ml/min, 25°C, 219 nm) minor peak: t<sub>R</sub> = 28.9 min, major peak: t<sub>R</sub> = 19.0 min; [α]<sup>21</sup><sub>D</sub> = +3.1 (c 3.2, CHCl<sub>3</sub>); IR (KBr): ν 3289, 1737, 1681, 1448, 1330, 1225, 1164 cm<sup>-1</sup>.
Chapter 3.

![Figure S3. ORTEP drawing of racemic 34e.](image)

Table S3. Indirect determination of absolute configuration on azetidine 34.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Reaction</th>
<th>Yield (%)</th>
<th>ee (%)</th>
<th>Optical Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>34d</td>
<td>TsN</td>
<td>67%</td>
<td>58%</td>
<td>$\alpha\odot^{19} = +8.5$</td>
</tr>
<tr>
<td>34d-1</td>
<td>H$_2$, Pd/C</td>
<td>94%</td>
<td>73%</td>
<td>$\alpha\odot^{19} = +8.5$</td>
</tr>
<tr>
<td>34d-2</td>
<td>TFAA (excess)</td>
<td>DCM, RT, 30 min.</td>
<td>67%, 58% ee</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>known compound</td>
<td>(c 0.2, CHCl$_3$)</td>
<td>$\alpha\odot^{25} = +4.88$</td>
<td></td>
</tr>
</tbody>
</table>

Compound 100 is a reported compound:

General procedure for enantioselective formal [2+2] cycloaddition of ketimines with allenoates

To a solution of β-ICD (20 mol%), N-tosylketimine 12 (0.060 mmol) and powdered molecular sieves 3A (20 mg) in 0.3 mL of THF/1,4-dioxane mixture (1:2) at -5 °C, allenate 26 (0.12 mmol, 3.0 equiv) was added under nitrogen atmosphere. The reaction mixture was stirred at -5 °C until the reaction reached completion determined by TLC analysis. The crude product was filtered with EtOAc in a short column of silica and purified via column chromatography (hexane/EtOAc) to obtain the corresponding compound 34.

34a: pale yellow oil (82%); ¹H-NMR (CDCl₃) δ 7.45-7.32 (m, 7H), 7.17 (d, 2H, J = 8.2 Hz), 5.69 (t, 1H, J = 1.8 Hz), 4.34 (qd, 1H, J = 11.0, 7.3 Hz), 4.29 (qd, 1H, J = 11.0, 7.3 Hz), 4.14 (q, 2H, J = 7.3 Hz), 3.68 (d, 2H, J = 1.8 Hz), 2.39 (s, 3H), 1.31 (t, 3H, J = 7.3 Hz), 1.27 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 169.4, 167.2, 156.2, 144.5, 135.9, 134.7, 129.4, 129.2, 128.6, 127.5, 127.2, 93.4, 77.6, 62.6, 59.8, 41.6, 21.6, 14.4, 14.0; HRMS (ESI) calcd for C₂₃H₂₅NO₆SNa, m/z = 466.1295 [(M+Na)+], found m/z = 466.1297; IR (KBr): ν 2925, 1739, 1708, 1656, 1366, 1167, 1088 cm⁻¹; enantiomeric excess: 87%, determined by HPLC (Chiralpak AD, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 260 nm) minor peak: tᵣ = 11.5 min, major peak: tᵣ = 25.9 min; [α]DCF̿ = +26.0 (c 0.6, CHCl₃).

34d: pale yellow oil (83%); ¹H-NMR (CDCl₃) δ 7.41 (d, 2H, J = 8.2 Hz), 7.38-7.29 (m, 10H), 7.13 (d, 2H, J = 8.2 Hz), 5.69 (t, 1H, J = 1.8 Hz), 5.30 (d, 1H, J = 12.4 Hz), 5.25 (d, 1H, J = 12.4 Hz), 4.13 (q, 2H, J = 7.3 Hz), 3.69 (dd, 1H, J = 16.5, 1.8 Hz), 3.64 (dd, 1H, J = 16.5, 1.8 Hz), 2.38 (s, 3H), 1.26 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 169.3, 167.1, 156.0, 144.5, 135.8, 134.8, 134.6, 129.4, 129.2, 128.61, 128.5, 128.5, 128.3, 127.5, 127.2, 93.6, 77.6, 68.0, 59.8, 41.5, 21.6, 14.4; HRMS (ESI) calcd for C₂₄H₂₇NO₆SNa, m/z = 528.1451 [(M+Na)+], found m/z = 528.1451; IR (KBr): ν 2926, 1741, 1708, 1657, 1366, 1167, 1090 cm⁻¹; enantiomeric excess: 83%, determined by HPLC (Chiralpak AD, hexane/2-propanol = 9/1, flow rate 1.0 mL/min, 25 °C, 260 nm) minor peak: tᵣ = 26.5 min, major peak: tᵣ = 51.3 min; [α]DCF̿ = +19.0 (c 0.3, CHCl₃).
Chapter 4.

Table S1. Optimization for the enantioselective organocatalyzed formal [4+2] cycloaddition of ketimines.

<table>
<thead>
<tr>
<th>Entry</th>
<th>Solvent</th>
<th>( T ) (°C)</th>
<th>X</th>
<th>Additive</th>
<th>t (h)</th>
<th>Ratio of 47a:47a'</th>
<th>Yield of 47a (%)</th>
<th>ee of 47a (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>toluene</td>
<td>25</td>
<td>20</td>
<td>No</td>
<td>24</td>
<td>2.2:1</td>
<td>47</td>
<td>61</td>
</tr>
<tr>
<td>2</td>
<td>THF</td>
<td>25</td>
<td>20</td>
<td>No</td>
<td>24</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3</td>
<td>( t )-BuOMe</td>
<td>25</td>
<td>20</td>
<td>No</td>
<td>24</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4</td>
<td>CHCl₃</td>
<td>25</td>
<td>20</td>
<td>No</td>
<td>24</td>
<td>3.5:1</td>
<td>60</td>
<td>73</td>
</tr>
<tr>
<td>5</td>
<td>DCM</td>
<td>25</td>
<td>20</td>
<td>No</td>
<td>3</td>
<td>5:1</td>
<td>69</td>
<td>86</td>
</tr>
<tr>
<td>6</td>
<td>DCM</td>
<td>35</td>
<td>20</td>
<td>No</td>
<td>3</td>
<td>10:1</td>
<td>79</td>
<td>87</td>
</tr>
<tr>
<td>7</td>
<td>DCM</td>
<td>15</td>
<td>20</td>
<td>No</td>
<td>24</td>
<td>8.3:1</td>
<td>79</td>
<td>89</td>
</tr>
<tr>
<td>8</td>
<td>DCM</td>
<td>25</td>
<td>20</td>
<td>MS 4A</td>
<td>3</td>
<td>&gt;20:1</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>DCM</td>
<td>25</td>
<td>20</td>
<td>2-naphthol (20 mol%)</td>
<td>24</td>
<td>1:1.2</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>10</td>
<td>DCM</td>
<td>25</td>
<td>10</td>
<td>MS 4A</td>
<td>3</td>
<td>14.3:1</td>
<td>82</td>
<td>84</td>
</tr>
</tbody>
</table>
General procedure for enantioselective formal [4+2] cycloaddition of 32 with 43.

To a solution of spiro monophosphine catalyst (R)-SITCP (20 mol%), cyclic ketimine 32 (0.02 g, 0.060 mmol) and powdered molecular sieves 4A (20 mg) in 0.3 mL of anhydrous DCM at 25 °C, allenoate 43 (2.0 equiv) was added under nitrogen atmosphere. The reaction mixture was stirred at 25 °C until the reaction reached completion determined by TLC analysis. The crude product was filtered with EtOAc through a short column of silica gel and purified via column chromatography (hexane/EtOAc) to obtain the corresponding compound 47.

**47a**: 88% yield; colorless oil; ¹H-NMR (CDCl₃) δ 7.89-7.87 (m, 1H), 7.55-7.52 (m, 2H), 7.40-7.31 (m, 5H), 7.21-7.19 (m, 1H), 7.10-7.07 (m, 1H), 4.56 (m, 1H), 4.17 (qd, 1H, J = 10.1, 7.3 Hz), 4.15 (qd, 1H, J = 10.1, 7.3 Hz), 3.62-3.53 (m, 1H), 3.46 (ddd, 1H, J = 18.3, 6.4, 2.3 Hz), 2.75-2.66 (m, 1H), 1.27 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 164.3, 143.4, 137.8, 135.1, 133.2, 132.3, 129.3, 129.1, 128.6, 127.5, 126.9, 123.9, 121.6, 63.4, 61.0, 35.7, 32.9, 14.1; HRMS (ESI) calcd for C₂₀H₁₉NO₄SNa, m/z = 392.0927 [(M+Na)+], found m/z = 392.0928; IR (KBr): ν 2982, 1710, 1658, 1492, 1295, 1267, 738, 575 cm⁻¹; enantiomeric excess: 90%, determined by HPLC (Chiralpak IA, hexane/2-propanol = 4/1, flow rate 1.0 mL/min, 25 °C, 220 nm) minor peak: tᵣ = 11.4 min, major peak: tᵣ = 14.7 min; [α]D²⁵ = -278.7 (c 0.7, CHCl₃, 90% ee).

**47c**: 81% yield; white solid; m.p. 46-48 °C; ¹H-NMR (CDCl₃) δ 7.90-7.88 (m, 1H), 7.58-7.53 (m, 2H), 7.48 (d, 2H, J = 8.2 Hz), 7.25 (d, 2H, J = 8.2 Hz), 7.20-7.17 (m, 1H), 7.08-7.06 (m, 1H), 4.56 (m, 1H), 4.20 (qd, 1H, J = 10.1, 7.3 Hz), 4.16 (qd, 1H, J = 10.1, 7.3 Hz), 3.59-3.53 (m, 1H), 3.40 (ddd, 1H, J = 18.3, 6.4, 2.3 Hz), 2.74-2.67 (m, 1H), 1.28 (t, 3H, J = 7.3 Hz); ¹³C-NMR (CDCl₃) δ 164.2, 142.7, 137.0, 134.7, 133.3, 132.7, 132.3, 129.6, 128.8, 127.7, 123.8, 122.9, 121.7, 63.0, 61.1, 35.7, 32.8, 14.1; HRMS (ESI) calcd for C₂₀H₁₈BrNO₄SNa, m/z = 470.0032 [(M+Na)+], found m/z = 470.0036; IR (KBr): ν 2927, 1714, 1660, 1446, 1291, 1257, 1170, 751 cm⁻¹; enantiomeric excess: 91%, determined by HPLC (Chiralpak AD-H, hexane/2-propanol = 7/1, flow rate 1.0 mL/min, 25 °C, 230 nm) minor peak: tᵣ = 34.4 min, major peak: tᵣ = 39.5 min; [α]D²⁵ = -151.0 (c 0.5, CHCl₃, 91% ee).
Chapter 5.

General procedure for synthesis of cyclobutane by formal [2+2] cycloaddition of tetrasubstituted alkenes
To a solution of DABCO (20 mol%), tetrasubstituted alkene 56 (0.073 mmol) and chiral bisthiourea 62 (20 mol%) in 0.4 mL of THF at -5 °C, allenoate 26a (0.146 mmol, 2.0 equiv) was added under nitrogen atmosphere. The reaction mixture was stirred at -5 °C until the reaction reached completion determined by TLC analysis. The crude product was filtered with EtOAc in a short column of silica and purified via column chromatography (hexane/EtOAc) to obtain the corresponding compound 57.
Conclusions

Several organocatalytic processes were developed. P-chirogenic organocatalyst gives access to multifunctional allylic amines in high enantioselectivity. Alkaloid-type tertiary amine β-ICD afforded four-membered nitrogen-containing azetidines in high yields and high enantioselectivity. A spiro type phosphine was successfully applied on the regio- and enantioselective synthesis of tetrahydropyridine compounds. Finally, a combination of achiral Lewis base and chiral bisthiourea allows access to cyclobutane in moderate enantioselectivity and diastereoselectivity under organocatalytic reaction conditions.

A variety of molecules were prepared in enantioselective manner by using chiral organocatalysis. Synthetically useful compounds bearing a tetrasubstituted stereogenic carbon center were in most cases applied as a chiral building blocks for further elaboration of important compounds such as α,α-disubstituted amino acids derivatives.
List of publications


Related publications

Acknowledgments

I would like to express my greatest gratitude to Prof. Hiroaki Sasai, who has given me the opportunity to study Ph.D. course in his group. He has helped me a lot in both, academic and daily life during my stay in Japan.

I would like to express my sincere gratitude to Assoc. Prof. Shinobu Takizawa, for his constant guidance and encouragement. Thanks to Assoc. Prof. Takeyuki Suzuki and Assist. Prof. Kazuhiro Takenaka for their kind help during my Ph.D. study.

I acknowledge to the group of Prof. Sylvain Jugé and especially to Assist. Prof. Emmanuelle Rémond, for the collaboration in the aza-MBH reaction of ketimines project.

I am thankful to my lab-mates who helped me in some research activities, especially to Yasushi Yoshida and Michitaka Suzuki. I am also thankful to all the others members in Sasai lab.

I would like to thank the technical staff of the Comprehensive Analysis Center of ISIR for their assistance.

Finally, I would like to thank MEXT for the Ph.D. scholarship to support my studies in Japan.