<table>
<thead>
<tr>
<th>Title</th>
<th>Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>有田，陽</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>none</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/50486</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>氏名 Name</td>
<td>有田 陽</td>
</tr>
<tr>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>論文題名 Title</td>
<td>Myocardium-derived angiopoietin-1 is essential for coronary vein formation in the developing heart. (心筋由来のアンジオポイエチン1は心臓発生における冠静脈形成に必須である)</td>
</tr>
</tbody>
</table>

論文内容の要旨

目的(Purpose)

生活習慣の欧米化により本邦でも虚血性心疾患は増加傾向で、特に心不全を合併する心筋梗塞症例が増加している。その予防を遂行するためには、梗塞後も冠血管新生を効率的に進める新規治療法の開発が必要で、そのためには冠血管の形成過程とその制御機構の詳細な解明が必要である。アンジオポイエチン1(Ang1)は増殖因子の一つで心筋細胞、壁細胞などから分泌され、血管形成化と心臓形成に必須であることが知られている。当管内皮の発生を起こす1つの役割とされる静脈球(Sinus venosus)から心臓への冠内皮細胞を送り、形成させる分子機構はこれまで不明であった。そこで我々は心筋から分泌されるAng1の冠血管形成における役割を解明し、冠動脈・冠静脈の特異化に焦点をあてて新規の冠血管新生治療法の開発に道を拓くことを目的として研究を行った。

方法ならびに成績(Methods/Results)

Ang1/foxマウスを作製し、α-MHC-Creトランスジェニック(TG)マウスと交配して、心筋特異的Ang1欠損(Ang1/fox)α-MHC-Cre-TG; Ang1/foxKO)マウスを作製した。Ang1/foxKOマウスはE12.5～E14.5で胎生死を呈した。Ang1/foxKOマウスは内皮細胞マーカーのCD31で免疫染色を行うと、胎生期心臓で見られる2層の冠血管のうち心室表面直下を走行するCD31陽性内皮が欠損して、胎生期のCD31陽性内皮が野生型と同様に検出された。その欠損するCD31陽性血管内皮が動脈・静脈内皮の何れかを明かにするため、静脈マーカーのEphB4陽性細胞でlacZを発現するEphB4-lacZノックスインマウスと交配したところEphB4陽性冠静脈がAng1/foxKOマウスでは欠損していた。もう一つの静脈マーカーのAPIで免疫染色を行うとAPI陽性冠静脈がAng1/foxKOマウスでは欠損していた。逆に動脈マーカーであるEphrinB2陽性細胞でlacZを発現するEphrinB2-lacZノックスインマウスと交配したところ、EphrinB2陽性冠動脈内皮は野生型と同様に検出されて異常はなかった。冠血管造影でも両者に差はなかった。Ang1/foxKOマウスで欠損する冠静脈の起源を検討するために、Organ culture実験を行った。E10.5で胎静脈+心房をTie2-lacZノックスインマウスから取り出し、一方で同じE10.5の野生型あるいはAng1/foxKOマウスの心室+心房を取り出して接合させてから3日間培養培養すると、野生型と心室内は1層の内皮細胞が進入していたが、Ang1/foxKOマウス心室にはその進入は見られなかった。静脈側は胎生期のみに認められ、下大腸管と右心房の間にある管状の血管組織であるが、従来は分化した静脈内皮細胞のみで構成されると考えられてきたがAPIに着目すると、静脈側内皮はコントロール（野生型）でもAng1/foxKOマウスでも両者ともにAPI陽性細胞とAPI陰性細胞の不均一な細胞集団で構成されることが判明した。また、冠静脈の逆走過程で常にAPI陰性細胞が先行して心室、心室内に進入することが明らかとなった。さらに、心室内に進入した血管内皮細胞の新規な内皮を抗リン酸化ヒストンH3抗体(pH3)の免疫染色により検討すると、コントロールと比較してAng1/foxKOでは低値を示していた。以上より、Ang1が静脈分化、未分化内皮の逆走に関与することが示唆されたため、分化したES細胞由来Fkl1陽性内皮前駆細胞による実験を行った。この実験はVEGFCaAMP添加で動脈内皮化することが示唆されるが、この条件にAng1を添加すると、動脈化は抑制され逆に静脈化に関与する転写因子COUP-TFI、APIの発現が誘導された。

総括(Conclusion)

Ang1/foxKOマウスは冠静脈の形成不全を認めるが冠動脈は形成されている。また静脈側には未分化な血管内皮細胞が存在し、心室のAng1は静脈側よりも未分化な血管内皮細胞を心室内に遊走させ増殖を促進するかは静脈化を促進させることが明らかになった。以上より心筋由来のAng1は心臓発生における冠静脈形成に必須の因子であることが明らかになった。この研究から、冠動脈と冠静脈のそれぞれの形成過程でのAng1の役割が詳細に解明され、将来にはAng1経路の制御による心筋梗塞後の冠血管新生療法の開発への発展も期待できる。
論文審査の結果の要旨及び担当者

<table>
<thead>
<tr>
<th>職</th>
<th>氏名</th>
</tr>
</thead>
<tbody>
<tr>
<td>主査</td>
<td>大阪大学教授 坂田 厚史</td>
</tr>
<tr>
<td>副査</td>
<td>大阪大学教授 遥鳥 成二</td>
</tr>
<tr>
<td>副査</td>
<td>大阪大学教授 熊 信治</td>
</tr>
</tbody>
</table>

論文審査の結果の要旨

冠動脈新生を効率的に進める新規治療法の開発には冠動脈の形成過程を制御する機構の解明が重要である。これまで冠動脈については、血管内皮成長因子（Vascular Endothelial Growth Factor: VEGF）の作用により心内膜が発芽して形成されることが報告されているが、冠静脈形成のメカニズムは明らかではなかった。今回、申請者らは血管内皮成長因子の1つであるangiopoietin-1 (Ang1)を、心内膜と心壁に欠損するマウスを作成したところ、このマウスの冠動脈の形成は正常で、冠動脈が特異的に欠損して胎生期に胎生期のマウスの心臓に障接する静脈洞（Sinus venosus）と静脈として分化した内皮細胞のみが存在すると考えられていたが、申請者らは静脈洞には分化した静脈内皮細胞と未分化内皮細胞の2種類の細胞が存在していることを見出した。またさらに、特に静脈洞の未分化内皮細胞がAng1の作用で心房・心室へ進み・遊走し、心筋の欠損するAng1の作用で静脈内皮に分化・増殖することで冠静脈形成されるとき、胎生期のマウスの心臓の血管を供養を実験およびマウスES細胞を用いた分化誘導実験により明らかにした。このことから、胎生期の心臓では冠静脈は冠動脈と全く異なる起源とメカニズムで形成されることが初めて明らかとなった。

これまで既に解明されていた胎生期の心臓での冠動脈の形成メカニズムに加えて、本研究により冠静脈の形成メカニズムが明らかとなったことで、今後、これらのメカニズムを応用することにより成体の虚血性心疾患に対する新しい血管新生療法の開発に寄与することが期待される。本研究結果の医学・医療における社会的意義は大きく学術的授与に値すると考えられる。