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Chapter 1

Introduction

The present thesis is concerned with the large time behavior of solutions to the Cauchy
problem with small initial data for second order nonlinear hyperbolc systems of Klein-
Gordon type:

(O 4+ mHu; = Fy(u,0u,0Vu), (t,) € (0,00) x R*, 1 <3< N, (1.0.1)
(ui,atui)[,:o = (Efi,&'gi), T & Rn, 1 S 7 S N (102)
Here O = 02 — A, 8 = (0p,01,- - ,00) = (0, V), V = (), ,0z,), € > 0 is a
small parameter, m; > 0 is a constant, f;, g; are real valued functions which belong to
Ce(R™), u; is a unknown function and u = (uy, -+ ,un). Throughout this thesis, the
nonlinear term F = (Fy,---, Fy) is supposed to be a smooth function of (u,du,dVu) in

.its argument. We also assume that F' vanishes to p-th order near the origin with some
integer p > 2 in the sense that there exist some constants C and ¢ > 0 such that

N
Z |Fi(u,v,w)| < C(|uff + v’ +|wlP) i |ul+]v]+|w]| <5,
i=1

where the variables

V= (Uaj) 0<a<n € R(1+n)XN and w= (’U)m;J) 0<a<n € R(l+n)anN
1<j<N 1€iSn1<jEN
correspond to
(aan) 0<a<n and (8aain) 0<a<gn y
1<;<N 1€i<nm1<jEN

2
the abbreviation
F(u,8u,0Vu) = O(|ulf + [0ulf + |0VulP)

if there is no confusion. To ensure the system (1.0.1) being quasilinear and hyperbolic,

we further assume that F' = (F},-- -, Fy) admits the following decomposition:
(u, v, w) ZZ MJ (U, V)Wasj +F(S)(u v)  (1.0.3)
a=0 =1
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with some

Fi(w,v) = O(lulfP~ + [vfP™") and  F{(u,0) = O(luf’ + [of)
for each j € {1,---,N}. In other words, each F; is independent of 8Vu; (k # j) and
affine with respect to 0Vu,.

First of all, let us consider the case where F = 0 (we refer to this as “free” in what
follows). In this case, it is well known that the the energy of the solution stays bounded
for all time and that pointwise decay rate is O(t~™"/?) as t — oco. Next, let us assume
these properties are still valid in the nonlinear case. Then we will obtain

/ 1 (u, 0u)|| g2dt < / (14Dt < oo
0 0

when n(p — 1)/2 > 1. Also, when (u,0u) is small enough, it is natural to expect the
operator

at2 - Z (5jk + Fj(l?l) (u, au))ajak - 2 Fél?l) (u, 3U)5t5’k + 'm,l2

7k=1 k=1

is close to 87 — A, + m? in a suitable sense. These observations suggest (1.0.1) should be
regarded as a perturbation of the free Klein-Gordon equations when p > 1+2/n and when
the initial data is sufficiently small. According to the earlier results due to Klainerman—
Ponce [20], Shatah [27], [28], Klainerman [18], etc., the above heuristic argument leads
to correct prediction for (1.0.1)—(1.0.2). More precisely, when p > 1 + 2/n, the Cauchy
problem (1.0.1)—(1.0.2) have a unique global classical solution which tends to the free
solution as ¢ — oo for sufficiently small €. So, of our main interest is the case where
p < 1+2/n e, (n,p) = (2,2), (1,3) or (1,2). In this case, the situation becomes
more delicate. From the heuristic point of view the nonlinear term decays no faster than
O(t™1) in the sense of L?, hence the nonlinearity should be considered as a long range
perturbation. Over the last two decades, a great deal of effort has been put into this case.
For the scalar case (N = 1), several results have been already obtained ([11}, [21], [9],
[29], [26], [24], [25], [14], [10], [16], [2], [3], etc.), whereas, quite little is known about the
coupled case (N > 2). .

The purpose of the present thesis is to develop the understanding for coupled systems
of critical nonlinear Klein-Gordon equations with possibly different masses. The main
goal is to reveal the influence of the combinations of masses and the nonlinearity on the
large time behavior of solutions to (1.0.1)—(1.0.2) in the case where p=1+2/n, N > 2.
The organization is as follows. In Chapter 2, we will study a sufficient conditon under
which a unique classical solution exists globally in time and it tends to the solution of the
corresponding free Klein-Gordon equations. We will call it the nonresonance condition.
Chapter 3 and 4 will be devoted to the study of the resonant case. We will construct
some examples of resonant, critical nonlinear Klein-Gordon systems whose solutions do



Chapter 1. Introduction 3

not behave like free solutions in the large time. Finally, two examples on small data
blow-up will be exhibited in Chapter 5. This thesis is based on the author’s works [30],
[31], [32], [33] with some revisions.

Before closing this introductory chapter, we make an observation which will be the
point which we start from. Put

T'={(t,z) € (0,00) x R" | ¢* — |z|* > 1},
H =0l = {(t,z) € (0,00) x R* | t* - [z]* =1}

and let us consider

{ @+ mu =, (t,z) €T (1.0.4)

with a suitable function A(t,z) and p = 1 + 2/n. We associate (¢,z) € I with (7,w) €
(1,00) X H by

Then it follows that

where
Ag = Z(-’L‘jat + taj)z - Z(xjak - xkaj)2a
7=1 i<k ’

which is the Laplace-Beltrami operator on the hyperboloid H with respect to the metric
—dt? + |dz|?. Next, we put

Calr) = e (14 ) (Pl (),
b(r,y) = e ™7 (1 + ;1;5(27_—) (T"/Qv(nu(y)))

with

= 1 y .
v (x/l—lyIQ’\/l—lyI“‘)’ vi<t
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Then, for (t,z) € T', we can write the solution u(t,z) of (1.0.4) in terms of a(7,y), that
is,

1 .
u(t,z) = 7 Re [a(r,z/t)e™]. (1.0.5)
Also we have
aa e——im-r 82 0
= — - n/2
or (7. ) im (872 tm ) (T u)
e—imr
~ _%_7,1’1/2([] —+ m2)u
e—imf

n P

Substituting the relation

(,/_n/2,0)1’ _ (Re(beiwr‘))p _ }_ i p ei(p—2k)m' bp—k z k
B o k

into (1.0.6), we have

(b(r, )" (6(7,9)) ", (1.0.7)

where

Yk ! (i), G = (p—2k)p—m.

~ »im
Now, suppose that lim,_,. a(7,y) exists in a suitable sense. Then it follows from
(1.0.5) that

1 : _|g[2)1/2
u(t,z) =~ WRe [A(a:/t)ezm(t2 |=1)/ ] . (tz)el
with

Aly) = (1= )™ lim a(r,y),

which implies u behaves like a free solution in the large time. We can see that this
corresponds to the case where

m# (p—2k)u foreach ke {0,1,---,[p/2]},

when we remember (1.0.7) and the fact that

oo (T
/ ET—-dT < oo ifandonlyif ¢#0.
1
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On the other hand, if a(r,y) grows or oscillates when 7 — oo, then some nonlinear
character will appear. This corresponds to the case where

m = (p—2k)u forsome ke{0,1,---,[p/2]}.

The above heuristics will naturally leads to the notion of resonance, which is the key
word of this thesis.
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Chapter 2

Nonresonance and global existence
of small solution with free profile

2.1 Introduction

This chapter is taken from the author’s work [30] with a few improvement. The pur-
pose of this chapter is to study a sufficient condition under which the Cauchy problem
(1.0.1)-(1.0.2) have a unique global classical solution which tends to the corresponding
free solution as ¢t — oo even in the critical ronlinear case where p = 1+ 2/n.

As we have observed in the preceding chapter, the oscillating structure caused by
masses is expected to play the key role in the critical case So we are led to the following
condition. In order to state it precisely, let us define Z; ®) {1,--- ,N}? by

P
Ii(p) — {(J&; ety dp) ’ m; # Z’\kmjk for all A € {:J:l}}
k=1

fori € {1,---,N}, p € N and given (m;)i<j<n.

Definition 2.1.1 We say that the system (1.0.1) satisfies the nonresonance condition if
the following holds true:
(1) When (n,p) = (1,3), the nonlinear term F = (F})1<i<n admits the decomposition

Fi(u,0u,0Vu) = Y Gijlu,du,0Vu) + H;(u, u,8Vu)
Gk Her®

for each i € {1,--- N}, where
H;(u, du, dVu) = O(|ul* + |0ul* + |0Vul*)

and

Gijkl(u, 811,, BVu) = Z z]kl ’LLJ (aﬁuk)(mw)

aﬁv
le],8l,|v|<2

7
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with real constants Cg;l.
(2) When (n,p) = (2,2), the nonlinear term F = (F;)i1<;<n can be written as

Fi(u,0u,0Vu) = Z Gijk(u, Ou, dVu) + H;(u, Ou, 0Vu)

(2
Gk)ez®

for eachi € {1,---, N}, where H; vanishes of third order near the origin and Gyji, consists
of a linear combination of (0%u;)(0Pux) with |, |B| < 2.

Remark. Roughly speaking, this condition allows us to get rid of the characteristic oscil-
lations in the nonlinear terms of (1.0.1) (we should keep the observation of the preceding
chapter in mind). This is the reason why we call it the nonresonance condition. Note
that any cubic (resp. quadratic) nonlinear terms (F;)1<;<y can be written as

Fi(u,0u,dVu) = Z Gijri(u, 0u, 0Vu) + H;(u, du, 0Vu),

7.k,l=1

where Gjx; and H; are as above (resp.

N
Fi(u,0u,0Vu) = Z Gije(u, Ou) + Hi(u, Ou, 0Vu),

Jik=1

where Gijx and H; are as above) by using the Taylor expansion.

Now, we are going to state the main result in this chapter. This asserts that the non-
resonance condition introcuced above is a sufficient condition which ensures the solution
exists globally and behaves like the free solution as ¢ — oo. More precisely, we will prove
the following:

Theorem 2.1.1 Let p = 1+ 2/n. Suppose that the system (1.0.1) satisfies the nonres-
onance condition and the hyperbolicity assumption (1.0.3). Then there erists a unique
global classical solution to the Cauchy problem (1.0.1)-(1.0.2) for suﬂiczently small €.

Furthermore, we have
N

lim 3™ () 47 (8)lmy = 0
—>C0 =1

for some free solution ut = (v )i<i<n, t.e. the function satisfying (O + m?)uf = 0.

Notation. Throughout this thesis, we will use the notation

1/2
()| Bm) = (/Rn[f}td)(t, x)y"’ +|Vo(t, z)|2 +m2]¢(t,x)|2dx>
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for smooth function ¢(t,z) and m > 0. Note that || - ||g(m) is equivalent to || - ||pa) as a
norm for any m > 0, so we will sometimes write || - ||z instesd of || - || g(m)-

As a consequence of Theorem 2.1.1, we can see the following example: Let m, u be
positive constants with (m — 3u)(m — u)(3m — p) # 0 . Consider the Cauchy problem

(O+ m?)u = F(v,0v)
{ (O+ p?)v = G(u, du)

in R, x R, where F' and G are arbitrary smooth functions of degree 3 in their arguments.
If the initial data is small and smooth, the solution exists globally and it behaves like
the free solution as ¢t — +o0o. We emphasize that in this case we need not any structual
restrictions, such as the null condition, on F' and G except they depend only on (v, 0v)
and (u, Ou) respectively. It seems to be a remarkable contrast with the scalar one dimen-
sional Klein-Gordon equation with cubic nonlinearity since some structual restriction is
necessary for the scalar equation (see [3], [10], [14], [16], [24] etc.).

This result should also be compared with that for coupled nonlinear systems of wave
equations with multiple speeds

(0% — A u; = Fy(u,0u,0Vu), i=1,---,N.

Let us mention the case where N = 2 and F}, = F; = (Ou;)(0su2) in three space dimen-
sions, which is a typical case of Kovalyov’s work [22]. He has proved that if ¢; # cg, the
system possesses a unique global smooth solution, whereas the solution of this system
blows up in finite time if ¢; = ¢, (cf. [13]). Similar results have been proved for more
general cases (See e.g., [23] for recent development in this direction).

Remark. The nonresonance condition is certainly not a necessary condition. Indeed,
according to [24], [14], [3], there are some classes of scalar cubic nonlinear Klein-Godon
equations in one space dimension which have a unique global classical solution which be-
haves like the free solution, although any scalar cubic nonlinear Klein-Godon equations do
not satisfy our condition. (In contrast, scalar quadratic nonlinear Klein-Gordon equations
are always nonresonant because m # A\ym + Ao for any A, A2 € {£1}, m > 0.) We will
discuss some relations between the results of [24], [14], [3] and ours in Section 2.5.

2.2  Preliminaries
To begin with, we introduce several notations which are used throughout this chapter.
We put xo = “ta z = (xly"' ,SEn), aO - 8t: aj - a/893] (1 S] S TL), Qab = xaab - xbaa

(0 < a,b < n), and introduce the Klainerman vector fields

Z=(Zy, ,Zxk,) = (s, W;0<a<n0<b<c<n), K,=(n+1)(n+2)/2.
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Note that the following commutation relations hold:

[C+m? Z;] =0, (2.2.1)
[Qaba ac] = nbcaa - ncaaba (2.2.2)
[Qas, Qea] = 1adbe + M6cQad — NacSa — Td$2ac, (2.2.3)

form e R, 1 <7 <K, 0<a,b,<n. Here [,,:] denotes the commutator of linear
operators and (7es)o<ap<n = diag(—1,1,---,1). For a smooth function ¢(t,z) and for a

n
non-negative integer s, we define

6, 2)ls == Y 12°6(t, )|

la<s
and
8@l = D 12°6(t, )l z2@ny.
fe<s
where a = (aq, -+, ak,) is a multi-index, Z* = Z{* --- ZZ% and |o| = a1 + -+ - + ak, .
Next, we introduce the following quadratic forms
Qab(0, %) = (0:9)(0s¥) — (069)(0u¥) (0L a,b < ), (2.2.4)
Qo(8, %) = (8:6)(8) = (V29) - (Va¥) = = D Mas(8a9) (B6)- (2.2.5)

a,b=0

They are often called the null forms, which have a certain compatibility with O (see e.g.
[19]). Note that Qs is also compatible with ({1 + m?), but Qg is sometimes not so (see
[7]). Here we state well known properties of Qg

Lemma 2.2.1
C

(1+t+|x|)(

with some constant C > 0 independent of (t,z), and

Z°Qu(d,¥) = >, Y. CiQu(2°¢,27y)

|Qas (9, ¥)| < |911109] + 10¢]1%11)

for any multi-indices o with appropriate constants Cg‘f,.

Proof: Simple calculation yields

2:Qab(#, V) = (ea®) (061) — (Re69)(0e®) + (8:8) (Q2abh),
0:Qab(¢, %) = Qus (0.9, ¥) + Quv (9, 8c¥),
QcaQab(8,¥) = Qup(Qeadp, V) + Qan(9; Leat))
+ Nac@ba (S, V) + M6aQac(® ¥) — 16aQbc(D, ¥) — MeQar (9, ).
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The lemma follows immediately from them. 1

2.3 Decomposition of nonlinear terms

This section is devoted to the following important lemma. Similar approach can be found
in the previous works by Kosecki [21], Katayama [14], Y. Tsutsumi [34], etc. and they
are closely related to Shatah’s method of normal forms [28] (see also [24], [25], [26], etc.).

Lemma 2.3.1 Suppose that the system (1.0.1) satisfy the nonresonance condition and
let u(t,z) be a solution of it. Then F;(u,du,dVu) is decomposed into

Fi(u,0u,0Vu) = (D +m))®; + ¥; + R;,

where ®;, V; and R; satisfy the following:
(1) When (n,p) = (1,3),

8, = 0(|(0°Ww<s), R = O(/(8°W)ms]?)

and
U; consists of a linear combination of (0%u;)Qo1(8°uk, 8" w;)

with IO[’, I/Blv ]7! < 3: j,k,l € {17" o N}
(2) When (77” p)' = (272);

®; = O(|(8°Wja<s*),  Ri = O(|(0°Wja<sl’)

and
U, consists of a linear combination of Qqp(0%u;, Pug)

with e, |B] <3, j,ke€{l,---,N},0<a,b<2.
This lemma is an immediate consequence of the following lemma.

Lemma 2.3.2 Let m; be positive constants, v; be smooth functions of (t,z) € R™*™", and
put h; = (O + m?)v; fori=1,2,3.
(1) If m € R satusfy

m # Mmy+ domg + Asms  for all Ay, Mg, A3 € {£1}, (2.3.1)

then we have

vy = (O+m?)® + T + R, (2.3.2)
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where
® us a homogeneous polynomial of degree 3 with respect to (0%v;)i=1,2,3]al<1
and

W consists of a linear combination of (8%v;)Qas(8%v;, 0wy, (2.3.3)
R consists of a linear combination of v;h;hy or (8%v;)(8%v;)(07hs), (2.3.4)

with |, |8],|v] <1, a,b € {0,--- ,n}, 1,5,k € {1,2,3}.
(2) If m € R satisfy

m# my + Aomy  for all  Ap, Ay € {£1},
then we have
v1vy = (O +m?)®+ T + R, (2.3.5)
where
® is a homogeneous polynomial of degree 2 with respect to (0%v;)i=1,2;ja<1
and

U consists of a linear combination of Qq(0°v;,"vy), 3.
R consists of a linear combination of h;hy or (8%v;)(0°h;), (2.3.7)

with |a],|6] <1, a,b € {0,--- ,n}, 4,7 € {1,2,3}.

Proof of Lemma 2.3.1:  In this proof, we denote by ¥ (resp. R) the terms satisfying
(2.3.3) (resp. (2.3.4)), which may be different line by line.
We put

—v1Q0o(v2, v3) by = —v2Q0(v3, 11) bs = —v3Q0(v1, v2)

mMoms3 mam mims

where (g is defined by (2.2.5). Noting that

¢o 1= V1V2V3, P1 =

-0O= Z nabaaaba

a,b=0
we have
— Oo = (M2 +m2 +m3)¢o + 2momad; + 2mamy by + 2mimads + R, (2.3.8
- D¢1 = 2m2m3¢0 + (m% —+ mg + m§)¢1 + 2m1m2¢2 =+ 2m3m1¢3 + U+ R, (239

— Od¢y = 2msmydg + 2mimedy + (mf + m% + m%)(ﬁz + 2momads + ¥ + R, (2310
— Oz = 2mymogg + 2mamy ¢y + 2momsdy + (mf +mi4+migs+T+ R (2311

e N N N
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Indeed, simple calculation leads to

—O(v1v2v3) = —(Ovy)vous — v1 (Owg vz — v109(0vs)
— 2v1Q0 (v, v3) — 209Q0 (v3, v1) — 203Q0(v1, v2)
=(m? +mj + m3)vivovs
— 201Q0 (v2, v3) — 202Q0(v3, V1) — 2v3Q0(v1, v2)
— h1Vou3 — havsvy — havivs.

We have (2.3.8) from this. Concerning (2.3.9), simple calculation shows that
(UlQo(Uz,Us)) = (Ov1)Qo(v2, v3) + v1Qo(Ova, v3) + v1Q0o(v2, Dug)

—2 Z Uab{ (8a1) Qo 31)1)2,?)3) + v1Q0(0av2, Oyv3) + (5bvl)Qo(U2,3aU3)}-

a,b=0

We also note the following identities:

- Z UabQo(aawl, ab'w2) = (le)(Dwz) + Z nabnchcb(aawla 3dw2),

a,b=0 a,b,c,d=0
- Z Nab(Gaw1) Qo (Fswe, ws) = (Cws)Qo(ws, wr) + Z NabTed (Oaws3) Qac(wr, Opwz)-
a,b=0 a,b,c,d=0

These identities combined with the relation —Ov; = m?v; — h; yield (2.3.9). We obtain
(2.3.10) and (2.3.11) in the same way.
From (2.3.8)—(2.3.11), it follows that

3 3
> bigj=O+m)(D) a;¢) +¥+R
§=0

=0

for any a; € R (j =0,1,2,3), where

bo Qg
by _ P PR a;
b2 P2 P1 ao ’
b3 as
P - m? —m2 — m2 — m2 —2myms
1= 2 2 2 2 2 H
- m2m3 m- — ml _ m2 - m3

P, = —2m3m1 -—2m1m2
27\ =2mims —2mam, |-
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Note that

P P
det(P; Pj ) :det(P1+P2)det(P1—P2)

= H (m - Aimy — Agmg — )\3m3),
A1,A2,A3€{£1}

which implies (2.3.1) and det ( Ao B

# 0 are equivalent. Therefore, one can choose
B P
o =32 ,a;¢; with

ag .
aq _ P1 P2
as - P2 P1

a3

OO O

so that (2.3.2) holds. This completes the proof of (1).
The proof of (2) is analogous. The key identity corresponding to (2.3.8)—(2.3.11) is

2 2 2
— m-—mi—m —2mims — =
(D+m2)¢=( —2m1m2 i mz—m%—m§>¢+q]+ﬁ’

where
_>

¢ = t(UWz, —Qo(v1>v2)/m1m2)>

and E), F consist of a linear combination of the terms like (2.3.6), (2.3.7) respectively. y

2.4 Proof of Theorem 2.1.1

Now, we are ready to prove Theorem 2.1.1. Since the local existence is well known (see
[17], [12] etc.), what we have to do is to get some a priori estimate. We prove only the
one-dimensional, cubic nonlinear case since the other one follows in the same way. From
now on, we suppose that the system (1.0.1) satisfy the nonresonance condition and let
u = (u;)i=1. v be a solution to the Cauchy problem (1.0.1)—(1.0.2) for ¢ € [0,T[. We
define

E,(T;w) = sup | (1+1)7(|lult, )l + 1u(t, )],) (2.4.1)

0<t<T

om0t Vs sup{ (2 2+ o) P2t )loms} ]

where s > 27 and p €]0,1/2[. Note that |lu(z, )|, + |[Ou(t, -)||s is equivalent to

SN lzew(t)le

lel<a i=1
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because of the commutation relations (2.2.2) and (2.2.3). In order to prove the global
existence, it suffices to show the following.

Proposition 2.4.1 For any € and § €]0,1],
Ey(T;u) <6 implies E(T;u) < Cile + 6%,

where C, 15 a positive constant depending on s, but independent of €,6 €]0,1] and T(> 0).

Once we have this proposition, we can obtain global existence in the following way. If
we choose 4 and ; so that

Ci62<1/4, Cieo<6/4 and E,(0;u) <6,

then it follows that E,(T;u) < 6 implies E,(T;u) < /2 for any ¢ €]0,e0]. Then, by
the continuity arguments, we can show that Fy(¢;u) < § holds as long as the solution
exists, provided that ¢ €)0, o). The global existence is an immediate consequence of this
estimate and the local existence theorem.

Remark. In the case where (n,p) = (2,2), it suffices to control the quantity

sup | (1+6)7([fu(t, )lls + 19ut,)].)

0<t<T
+HM@JM4+¢WMLNMA+2£{U+t+hﬂmﬁwﬂkm}}

for s > 29, p €]0, 1], instead of (2.4.1).

Proof of Proposition 2.4.1: In what follows, we denote by C, various positive con-
stants which are independent of €, 0 and T, and may change line by line.

We assume that Es(T;u) < 6. From Lemma 2.3.1 and the commutation relation
(2.2.1), we have

(O +md)Z%(wi — ®:) = Z%(¥i + Ri) (2.4.2)

for t € [0,T] and for any multi-index . Note that it follows from Lemma 2.2.1 that
(7 Ca 2 5
| Z9%;(t, z)| < m|u|ﬂa|/21+4(|u“al+3 + | u[|a1+3) (2.4.3)

Also we have

« 3
|Z°Ri(t, z)| < Ca}(aﬁu)|g|§5][|a'/2]](3%);,4;155][&,
< ca|u|‘[”lal s (¥l aiea + 10Ul jagsa). (2.4.4)
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Here we denote by [o] the largest integer which does not exceed o.

Now, we recall the following L®-L? estimate due to Georgiev [8] (see also Chapter 7
of Hérmander [12]):

Lemma 2.4.1 Let m > 0 be a constant.and w(t,z) be a solution of the inhomogeneous
linear Klein-Gordon equation (J+ m?)w =h fort >0, z € R*, n = 1,2. Then we have

1+t + |z])"?|w(t, )]

<y Y s oM+ 7+ D277y

7=0 |m< (n/2)+3 TEL0A

L0 X D) 27w, o),

J=0 |8|<[n/2]+4

if the norms in the right-hand side are finite. Here {¢; j2p isa Lit'tlewood—Payley partition
of unity, t.e.,

o0
Z‘Pk(’f) =1 (7120); ¢;€CPR), @; >0 forj > 0;

supp @; C [2771, 2711 for 5 > 1, supp ¢o N R4+ C [0,2].

Applying this estimate with w = Z%(u; — ®;), |a] < s — 11, we have
(L+t+ |2))2 2% (us — @) (¢, 2)]

<Ce+C, Z > suwp (| + 7+ NZP{Wilr, ) + Ril )} -

=0 |B|<s— 8T€[0t
Using (2.4.3) and (2.4.4), we have

@ +7+]-DZ°{Wi(r,) + Ri(r, )}

(lulle—s + 10ulcs)  sup (1 + 0+ WD ulo )]y gyapes)

Sl (o,y)€[0,7[xR
b ot 100l (1 0+ 1l ] yas)
( )1/2 (oy)e[0,7[xR [(s—8)/2]+5

< C3(1 4 1)7V2
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for |8] < s — 8. Here we have used [(s — 8)/2] +5 < s — 11 for s > 23. So we have
()20 (s~ ) (8, )|

< C, (5+632 sup o;(7 )(1+T)-1/2>

=0 T€[0,t}

<C (5+53(1+Zl+271 1/2)>
< Cs(e + 6). i

Since @ is a homogeneous polynomial of degree 3 with respect to (8%u;)i=1,.- vy8/<3. the
Sobolev embedding implies ’

|®:(¢, 2)]s-11 < Clu(t, I)][Q(s 11)/2)+31 (% T)s—s
< Cilu(t, o)1 llu(t, )lls—
< Co(l+t+ |z])716%.

Summing up, we obtain
1+ ¢+ |z)?[u(t, 2)|s-11 < Csle +6°) (2.4.5)
for t € [0,T7].

Next, let |o] < s — 4 in (2.4.2). Applying the standard energy estimate for O + m?,
we obtain

12% (ui — @) (8, )22 + [[02%(us — 5)(2, )| 2
<0+ [0l o+ IR,
Using (2.4.3) and (2.4.4) again, we have |
¥ o+ IR

C 2

ulls—1 + [|Oul]s- sup 1+ 0+ [y)"*|ulo, )]
< el +10ulees)  sup (14 0+ D2l 0y
C 3

+ ——=(||ulls + ||Ou sup 1+0o+ Z/])UQ u(o, ) |,
i (= 10ul)  swp (1 D (o))

< C8*(1+7)77%% € L}(0,00)

since p—3/2 < —1 and [(s — 4)/2] +5 < s —11 for s > 27. Also, it follows from
q)z' =0 ([(aau)[a|53|3) that
1242, Yls—e + 110D3(2, Wis—s < Cilult, 2)|Fsmay/zpes (ult, Moz + 0, )lls-2)
< C,6%(1 +¢)P! (2.4.6)
< Cy6°.
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Thus we have
[ut, Mo—s + 18u(t, ) ls—s < Cyle + 6%) (2.47)
fort € [0,T1.

Finally, let |o| < s. We rewrite (1.0.1) as

1
(D + m? Z F9(u, u)a al)Z"uz- = Z°F®(u,0u) + Z [Za Fl9(q, 3u)8a81] Us

(2.4.8)

a=0

Using the commutation relations, we can estimate the L?-norm of the right hand side of
(2.4.8) by C8%(1 + ¢)P~1 for ¢t € [0, T[. Therefore, we deduce from the energy estimate for
the perturbed Klein-Gorodn operators (see § 2.5) that

< Cile + 63)(10+ t)? (2.4.9)

Jutt, s + 8u(t, s < C, ( vo 1 Ty—ldT)

fort € [0, T
From (2.4.5), (2.4.7) and (2.4.9), we have

E (T;u) < C(e + 6%,

which completes the proof of Proposition 2.4.1.

Now we prove the existence of a free profile. It follows from Lemma 2.3.1 that
O +mi)(uw; — &;) = ¥; + Ri.
Also, since E;(oo;u) < 4, we can show as in the proof of Proposition 2.4.1 that
It ) + Rilt, )|z < G (1 +1)77%% € L0, 00).

Note that 0 < p < 1/2. Therefore, by the standard argument as in [14], [24], [26], u; — ®;
has a free profile, i.e., there exists (¢;, ;) € H}(R) x L?(R) such that

1((wi = i) = uf) (2] 5gmsy = O
as t — oo, where u] is a solution of the free Klein—Gordon equation
O+muf =0 t>0, z€R

with the initial data

uf (0,z) = ¢;(z), O (0,2) = ¥i(x).
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Since we can see from (2.4.6) that
19 ()l zmey < CIilt, Mz + 18832, )[|z2) < C6*(1+1)77 =0
as t — oo, we obtain
(s = u") ()]l £mey = O

as t — oo. This completes the proof of Theorem 2.1.1. 1

2.5 Notes

(1) Energy estimate for the perturbed Klein-Gordon operators.

Here we state the energy estimate for the perturbed Klein-Gordon operators which we
have made use of in the proof of Proposition 2.4.1. Let us consider

(87 — Ay +mP)v + Z Zgak(t, 1)0,0,v = h(t, ) (2.5.1)

a=0 k=1

n (t,z) € [0, T[xR", where g € B%([0,T[xR?) and h € C([0,T[; L*(R")). We assume
that there exist positive constants c¢; and ¢, such that

alel? < Y Gt 2)66 < cal€l?
k=1
for any (¢,z) €]0,T[xR? and any ¢ € R", where
gjk(twr): jk+gjk(tam)7 j,k=17 y T

and d;; is the Kronecker symbol. We define the norm || - ||z, as follows:

| oW zm = /Rn (8:0)" + S Giu(t,2)(8;8) (Bg) + mP¢Pde.

Jk=1

Note that || - || is equivalent to || - [|g(m) as a norm. Under these notations and
assumptions, we have the following enrgy estimate, whose proof can be found in [17], [12],
etc..

Proposition 2.5.1 Suppose that v(t,z) satisfy (2.5.1) in (t,z) € [0,T[xR". Then we
have

Zo) 20y < © (max 1890t Mo ) (0 gy + G, Vi,

where C' a positive constant.
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In the author’s original paper [30], only the semilinear case has been treated. However,
as is pointed out in [34] and [4], one can easily extend the result of [30] to the quasilinear
case without any essential difficulty if one impose the hyperbolicity assumption (1.0.3).
Only a difference is the energy estimate just mentioned above. This is the reason why
we have treated the quasilinear case in this chapter revising the argument of [30]. It is
worth noting that the Maxwell-Higgs equation studied in [34], which can be regarded as
a system of nolinear Klein-Godon equations with several masses under a suitable gauge
condition, does not satisfy (1.0.3).

(2) Remarks on scalar cubic nonlinear Klein-Gordon equations in one space
dimension.

As we have mentioned at the end of Section 2.1, the nonresonance condition considered
in this chapter is not optimal because of the results due to Moriyama [24], Katayama [14],
Delort [3] concerning scalar nonlinear Klein-Gordon equations in one space dimension.
Here we would like to discuss some relations between their results and ours.
Let us consider scalar Klein-Gordon equations with cubic nonlinearity in one space
dimension:
(O+ 1u= F(u,0u,d0u), (t,z)€ Ry xR;

F(u,v,w) = O(Jul® + |v[> + lw]®).

It is obvious they do not satisfy our condition since 1 =141 — 1. Nevertheless, the same
conclusion as Theorem 2.1.1 holds true for some classes of cubic nonlinearity. In fact,
Moriyama [24] showed global existence of small data solution and its convergence to some
free solution as t — oo if F is written as a linear combination of the following F()-F(®):

FW = 3uu? — 3un2 — o3,

F@ = 3ulu, — v — 3uu, + bunuy,
F(3) = Ulglzg — '(,(,2'1,1,1c + ufuz + 2UlU Uy
F® = (u?2 — w2 — u?)ug, — 2ud,

FO® = (4?2 — 42 — u?)upy — 2utsly,
FO =43 — 3020, — 3uu; — Buugus,,
FO = uu? 4+ uuyze + 2uuqUss.

Later, Katayama [14] considered another sufficient condition. The class of nonlinear terms
he found is the following: F admits the decomposition

10 o
F(u,0u,00:u) = »_ C;G(u,0u, 08;u) + N (u, u, 00,u) + H (u, Ou, 88,u),

J=1
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where C; € R (j =1,---,10) and
(i) GYW (1 < j < 10) are given by
G = u(—u® + 3u? — 3ui),
G(2) = ut(——3u2 + ’U,tz - ui) + 2U(Utuzx - uxut:z:)a
G(s) — ut(—ug -+ 'U,? — ui) -+ 2u(ututz - uxuzl‘))
G(4) = u3 — Quzuzz — 3’U/U/? + QU?U@;’; - QUtUzUtI - U(U?x - ui&:)’
G® = (—u? + u? — u2)uy — 2uususy,
G(ﬁ) — —’u,’u,i -+ 2ux(ututz - uzuzz‘) + u(ufx - ui‘z)’

7 _ 2,2 3 2 2
G = 3uPu; — Butsg, — up — 3ug(u?, — u2),

8) _ 2 2 2 2
G® = vy, — 2uusug, — 2uupug, — Up Uy — Uy (UL, — ULy )s
9) _ 2 2 2
G® = —2uu uy — upuy + ue(ug, — us,),
10) _ .3 2 2
G( ) = Uy + 3u1‘(utz - uxz)’

(ii) N is of the form
N(u, 0u, 00, u) =(ustity — Uglyy + uty )Py (u, Ou, 80, u)
+ (Uplzy — UgUsz) Po(u, Ou, 00, u)
+ (u, — u2, + uugg) Ps(u, Ou, 08,u),
with some P; = O(|u| + |0u| +160,ul) (j = 1,2,3),
(iii) H(u, 0u, 80,u) = O(Jul* + [0ul* + |08,ul*).

Actually, Katayama’s class is wider than Moriyama’s one because we can verify by
straightforard calculations that

FO = G(l),
F = (3G(3) —3G® _ G(lo))/Q,
FO = (GO - 36® — G194,
F4 = (G(l) +GW 4 G(G))/2,
FO = G(5),
F® = (3G@ 4 G + 3G9 /2,
FO = (_G(2) —gM_ 30(9))/2.
Also, using the relation Ou = —u + F', we see that
N(u,0u,00;u) = Qu (u, Oou) Py + Qo1(u, d1u)Pe — Qo1(0ou, O1u) P + ug F Py + ug FP3
and that each G (j =1,---,10) satisfies

269 — (O +1)29 = 0(16°ul}s).
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where

W =43, 0@ =ty ¥ =1y, W =uu? O =uuu,,

O = w2, M =43 O® =uly,, O =yu?, 1V =4l
Therefore, we have the following:

Proposition 2.5.2 If a cubic nonlinear term F satisfy Moriyama’s or Katayama’s con-
dition, then it can be rewritten as :

F(u,0u,00,u) = (0+ 1) + ¥ + R, (2.5.2)

where @, U, R are as in Lemma 2.5.1.

Finally, we would like to mention the works of Delort [2]-[3]. He considered another
criterion from a different viewpoint. His approach is based on a certain asymptotic analy-
sis. Here we do not state his result precisely but only point out the fact that if a nonlinear
term F is written of the form (2.5.2), then one can check that it satisfy his condition.
We close this section mentioning that he also succeeded in finding some class of nonlinear
terms which admits a global solution which does not behave like the free solution.



Chapter 3

Large time asymptotics of solutions
in the resonant case

3.1 Introduction

In the previous chapter, it has been shown that the Cauchy problem (1.0.1)—(1.0.2) admits
a unique global smooth solution which tends to a free solution as ¢ — oo under the
nonresonance condition.

From now on, we turn our attentions to the opposite direction. We raise the following
question: How does the solution behave as t — oo in the resonant case? In this chapter,
we restrict ourselves to the simplest example

(O+m2)us =0 (3.1.1)
(O + m2)us = ujusy

in two space dimensions under the assumption
ms = )\17711 + /\2m2 with some /\1, )\2 S {:':1} (312)

Following the author’s paper [31], we will show that the large time behavior of u; is quite
different from that of the free solution. More precisely, we will construct a solution whose
energy grows like O(logt) as t — co. The main result in this chapter is the following:

Theorem 3.1.1 Suppose masses satisfy (3.1.2). Then the Cauchy problem for (3.1.1)
possesses a solution which satisfy

Cilogt > ||lus(t)||g > Cologt  for t>T

when the initial data is appropriately chosen in S(R?). Here T > 1 and C; > Cy > 0. are
constants which depend on the initial data.

23
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Remark. As we will see in the proof, it suffices to choose the Cauchy data so that

/uj((),a:)da: #0 and /Btuj(O,a:)dx =0 (j=1,2)
to obtain the above assertion.

Remark. If uz had a free profile in the sense of Theorem 2.1.1, the energy should stay
bounded, i.e., ||uz(t)/|g < C for any ¢t > 0 with some positive constant C. So us does not
have a free profile in the usual sense when ms = Aym; + Aamy for some A, Ay € {£1}.
The asymptotic profile of uz will be obtained in § 3.4 (see Theorem 3.4.1 below).

Remark. On the other hand, when mg3 # Aimi + Aams for any Aq, Ay € {1}, uz has a
free profile in the sense of Theorem 2.1.1 since the nonresonance condition is satisfied.

Remark. We can obtain the similar result in the same way for the system

(O +mu =0
(D + m%)uz =0
(D + m%)us. =0
(O + m?)ug = urusu

in one space dimension when my = A\;my + Aomg + A3my for some Ap, Az, A3 € {£1}.

The rest part of this chapter is devoted to the proof of Theorem 3.1.1. The proof
is divided into 4 steps. In the first step, we will consider large time asymptotics of the
solutions to free Klein-Gordon equations using the result from §7.2 of [12]. In the next
step, we will prepare some lemma related to the normal form argument (cf. §2.1 of [2]).
In the third step, we will obtain the asymptotic profile for us in the system (3.1.1), and
we will reach the desired conclusion in the final step. Since we are interested in the large
time behavior, we always suppose that ¢ > 1 in what follows.

3.2 Large time asymptotics of the free solution

We first investigate the asymptotics as ¢ — oo of the oscillatory integral
I(t,) = [ On(e)as

where h € S(R®), z € R™ and (£) = (1 + [(])¥2. The following lemma is due to
Hoérmander [12], though we state a slightly modified version here.
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Lemma 3.2.1 If h € S(R"), then the oscillatory integral 1(t,z) can be written in the
form

ete(t,z)

I(t,z) = A(t,z) + R(t, z)

$n/2

where A, R € C®(]1,00[xR"™) and o(t,z) = (t? — ‘33‘2)1/2 The function A has the
asymptotic expansion

where a; € C*(R™,C), j =0,1,2,---, satisfy

10505 (y)] < Can (1~ lyl*) (3.2.1)
with some positive constant Cjo N for any multi-indices oo and N € N. In particular, the
leading term ay is given by

im /4

(%)7/5(1 - IyIQ)_("”)Mh(\/——l——_i———ly—lQ) if lyl <1,

0 if lyl 21

ao(y) = '

Concerning the function R, for any multi-indices o and N € N, there ezists a positive
constant Co n such that

|8,§’,‘IR(t,x)| < Con(t+]z)™N.
Remark. In the above statement, we have used the notation ~ in the following sense:

We write
p(t,z) ~ > pi(t z)
§>0

if for any multi-indices o and NV € N there exists a positive constant C, v such that

< Con(t+12) 77

oe.{plt, =) - Jipj (t,2)}

The proof of Lemma 3.2.1 can be found in Section 7.2 of [12] except the estimate
(3.2.1), so we shall only check it. According to Hormander’s original argument, a;(y) is
given of the form

aj<y>={ n(oAs) i i<t

0 if [yl 21
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with appropriate b; € S(R™). So it is easy to see that
la;(y)| < Cion(1— Y)Y
Here we note that 1 — |y|? = (£)~2 when & = —y/+/1 — |y|2. Also, da;/Oy; can be written
day ) _ { (b, )(\/“T'LW) iy <1,
0 if |yl >1
with

f)Z 0wt + &) = f
I=1

Since ©xb; € S(R™), we have

max |87 a; (y)] < Ciav (1 - Iyf")Y.
By induction we obtain (3.2.1). '

Now, we put

h(E) = (2m) (ﬂo - %)) |

where fstands for the Fourier transform of f. Since the solution v of the Cauchy problem
(O+Dv=0, v(0,z) = f(z), Ow(0,z) =g(x) (3.2.2)
is given by
3 X [etmeno(fe) a8 i — e | [ esemomigya]
/\G{:tl}

we can apply Lemma 3.2.1 to obtain

ei‘P(trT)
v(t,m):Re[ — A(t,z)+R(t,x)]

eto(t:z) ip(t.z)
e[

E (z/t)] + Re[ o t{A(t,x) - ao(x/t)} + R(t,w)],

where A, R, ag are as in Lemma 3.2.1 with above h. Summing up, we have the following:

Corollary 3.2.1 For the solution v of (3.2.2), we have

[v(t,2)| < O {E20 = |o/tP)Y: + (¢ + =)™}
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and

1 eiAcp(t,x) T
I N[z
v(t, 1) 5 Z 7 a <t>

re{£1}

< Oy {17201 = o /tP)N + (¢ + Jal) ™

with some constant C, n, for any N1, N, € N. Here a® : R* — C is given by a*V(y) =
ag(y) and a1V (y) = ao(y).

3.3 Key lemma

The goal of the second step is to show the following:

Lemma 3.3.1 Let a(y) be a C-valued smooth function supported in the unit ball {y €
R”| |y| < 1}, and m, p be real constants. Also let p(t,z) = (t* — |:c|2)£r/2. Then we have

eiﬂﬂo(tﬂ;) (x eiﬂ‘/’(taz) (x

Sra(5) - 0 | e (5)] € Pt oo )

if [m| # |ul, while

ereta) i x o\ [€X™PE2) Jog ¢ T|N\2 [z . 2/mom
$1+n/2 a’(?) - (D+m ) [ 2iAmin2 (1 - ‘?l )+ a(;)] €L (l,OO,L (R ))

if m = Ap, A€ {£1}.

Remark. For non-trivial @ € L*(R"), e#¢(t2)¢~vq(x/t) belongs to L!(1,00; L2(R™)) if
and only if v > 1 4+ n/2 because

gihe(t) . 1  12dz ) Y? .-
()| = { G F) = als

L3

Lemma 3.3.1 is a consequence of the following lemma, which appears in [2] in somewhat
different form.
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Lemma 3.3.2 Let m, u, @ be as in the Lemma 3.3.1 and let A be a C-valued smooth
function of (s,y) €]0, c0[xR™ which vanishes when |y| > 1. Then, for v € R, we have

9 eil“p(tsz) _:E
(O + m*) [ ” A(logt, t>

etre(t,z)

= —(m? - /ﬂ)A(logt,%)

ethe(t,z)

+ —Wziu[(l - }yyz);”?(% + g - I/)A:I (1og't, fg-)

ei”‘p(tyx) T
+ tv+2 (P”A) (log 1 ?)7 '

where

0 - 0 0 “ 0

Remark. The auxiliary variable s = logt in this lemma is often called the slow fime,
which is often used in the theory of blowup for nonlinear hyperbolic equations (see [1]).

Proof of Lemma 3.3.1 via Lemma 3.3.2: When we choose A(s,y) = (m?— p?)"ta(y)
and v =1+ n/2 in Lemma 3.3.2, we have

etue(t,z) ) etue(tz)
Wa(x/t) - (04 m*) (= M)tHn/Qa(x/t)var

Qi}ieiuw(t’z) oy —1/2 eiu(p(t,(b‘)
B (m? — p?)t2+n/2 (1= lz/4 )+ a(z/t) - (m2 — p2)t3+nl? (P,,a) (z/t)

if |m| # |p|. Since both (1 — Iylz)ll/za(y) and (P,a)(y) are smooth functions with their
support in the unit ball if a(y) is so, we obtain the first half of Lemma 3.3.1. When
m = Au, A € {£1}, we have

eimp(t,z) 5 ei/\mtp(t,z) 10gt n1/2
a(x/t)—(D +m ) W(l - Il‘/tl )+ a(x/t)

iAmep(t,)

t1+n/2

e
Sy (P,A4)(logt,z/t)

by choosing A(s,y) = (2tu)~'s(1 — |y|2):_/2a(y) and v = n/2 in Lemma 3.3.2. Since
(P,A)(s,y) is majorized by (1 + s)b(y) with appropriate b € L?(R™), we have

1 +logt
—zmar (PvA) (logt, - /1) (Lt og?)

(
ST

I18]]zz € L'(1,00),
L3
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which yields the latter half of Lemma 3.3.1. 1

Proof of Lemma 3.3.2: First we note that we may assume |z| < t since both left and
right hand sides vanish when |z| > .
Let us introduce

0 - 0
X, = — — N
0s ;yjayj g

so that
0

5 [%;A(logt, :c/t)} = Z,i—l(XuA) (logt,z/1).

Then it follows that

etk (t,z)

(O +m?) [ A(logt, x/t)]
:e:‘p {m2 - ,ﬁ[(atgaf - lvxgoﬂ }A(logt, z/t)
t

e ZiM[(atcp)X,, — (Vap) - Vy + i(Dw)}A(Iog t,a:l/t)

_|_

fr+1
gtnw

+ o (XX, - A, ) Allogt, /1)

tu+2

Since ¢ satisfies '
(Bi)” = | Va0 = 1,

n
R CRIEDLE
and
PR DR
311)_7' %3 at =Y
we have
t z n 2\ —1/2
(060) X = (Va9) - Ty + 2 (00) = (89) [ X, + T V| + T (1 - [a/4 )+
| (o2,
B (1 {y( )+ (88 v 2) (s,y):(logt,:z:/t)’
which completes the proof. i

3.4 Construction of the asymptotic profile

In this step, we are going to find the large time asymptotic profile for us in the system
(3.1.1). The goal is Theorem 3.4.1 below.
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First, we put v;(t, ) = u;(t/m;,z/m;) and

iAm;(t,x)

e T

it z) = u;(t,x) - E = ag-’\)(-i-)
Ae{£1} m;

for u; in the system (3.1.1) so that (O + 1)v; = 0, v;(0,z) = u;(0,z/m;), (8v;)(0,z) =
m;* (8eu;) (0, z/m;) and
ei(p(t’,x’) !

1 /T
na) = [te) -3 3 a0 ()] .
Ae{£1} 'z )=(m;t,m;zx)

Here j = 1,2 and ag-'\) is given by

mzeiﬂ/éi
o\t (y) =

1~ —m;Yy
4] ‘7871'3 (1 - |y|2)+1uj (07 2 )

m,ei37r/4 o —TT
_ Yy 1 — |y[2 ;1/2 Bou m__i ’
{773 ( [y1°) ( )( W)

a; V() =5 ().
Then it follows from Corollary 3.2.1 that
Jus(t, 2)] < Crpe {71 = 2/t + (¢ + [af) ™ }

and
Iri(t @) < O {87201 = fo /DY + (¢ + o)™ }

for j = 1,2 and any N;, N, € N with some positive constant Cy,,n,. Thus, putting
Ry :=ujug — (uy — 1) (ug — 12),
we have
|R1 (¢, 2)| < |uallra] + |ua||ri| + |raf|ra|
< o {E2 = /DY + (¢ + )™
for any Ni,N, € N with some positive constant Cly y,. In particular we have R; €

LY(1, 00; L*(R?)).
Next, let us introduce

A+ = {(/\1, )\2) € {:i:l}z )\1m1 -+ /\2m2 = mg},

A= {()\laA?) € {il}z )\1777,1 + )\gmz = —m3}’

Ay = {()\1, o) € {112 | [Muma + gmg| m3}
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and
w+(t .'L') — w<1_ !El?)l/Q Z a()xl)(_"{:_)a()\z) (E)
’ 8im1m2m3t t + 1 t 2 t)’
(AL, A2)€A 4
w_(t,7) = e—lnitsw(t,x) logt <1 _ fl2>1/2 Z ag'\l) (E)ag,\z) (E)
_8zm1m2m3t t + uaen. t t
o (t x) _ Z ei()\lml-i-)\zmz)tp(t,x) agh) (E) aé)\z) (E) |
O omen, dmima{m3 — (my + dama)? 2\t t

Then it follows from Lemma 3.3.1 that
etdimi+iemz)o(t,z)

— ()‘1)< ) (>‘2)< )
t,z) = E L z
Ry(t, z) s ar\7)% 3

(Ar,x2)e{£1}?

— (O+md) [w+(t, 2) +w_(t,z) + wo(t, x)] € LY(1,00; L2(R?)).

Now, we put wy(t,z) = wy (¢, 2) + w-(t,z) = 2Refw,(¢,)]. Since
R1 + R2 = U1Ug — (D + mg)(wo + wl),

we have
(O 4 m3)(us — wo — w1) = R + Ry € L*(1, 00; L*(R?)).

Therefore there exists a solution wy(t, z) of the free Klein-Gordon equation (O+m?2)w = 0
such that

[{us(®) = wo(t) = wi(®)} = wa(®)]] gy =0 35 £ = 00.

Furthermore, since
|wo(t)|lE(ms) = 0 as t— oo,

w3 = Ug — W; — Wy has the same decay property. Summing up, we obtain the following
decomposition:

Theorem 3.4.1 For uj in the system (3.1.1), we have

u3=w1+w2+w3,

where mao(t)
egimap(t,z T
with
. Q-wP¥ > VW) i Ac#D,
Aly) = { Hmmy (At do)ehs
0 Zf A+ = @a

wy 45 a solution of the free Klein-Gordon equation (O + m2)w = 0 and w; satisfies
llws () || B(ms) = 0 as t = oo.
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3.5 The end of the proof

Now, we are in position to finish the proof of Theorem 3.1.1. Since the upper bound
follows immediately from Theorem 3.4.1, we omit the proof of it and we prove the lower
bound here.

By Theorem 3.4.1, we have

l[ua (B zms) 2 Nwr ()] Ems) = lw2(t) | 2ims) — lws(E)l|pems)

and ||wa(t)||E(ms) = const., ||ws(t)||gms) — 0 as t = co. Also, since

Bewr (t, ) = ms(8pp(t, 7)) 1(% Im [eimﬁ‘“’(t’x)A(x/t)}

1+logt
+t20g Re [ezmscp tz (l‘/t)}
logt imao(t.z
t2 e [e 3<P(t, )(y . VyA) y:m/t]
and
t2
|8sp(t, 7)|* = o >1 for |z| <t
we have
Iogt logt

|3t'w1(t 113)‘2 > m

gt 111 [emoeten) g /m' _ oY g2

with some smooth function B(y) which vanishes when |y| > 1. Thus, we have

s ()2 > / Bwn (1, 2 + 2w (8, ) P

> m3 (81 [ 1aerypas - (ogt) EEL [ 1Bo/tids
(logt)

2
= (uAuLzmslogt) — 220 B|3.
Therefore we can choose T > 1 such that

1
lus(t) || E(ms) = §“AHL2m3 logt for t>T,

provided that ||Al|z2 is strictly positive. In order that ||A||z2 be strictly positive, it is
sufficient to choose the initial data so that

/uj(O,x)dx #0 and /(Btuj)(o,a:)da: =0
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for j = 1,2. Indeed we can choose § €]0,1] so that |A(y)| > |A(0)|/2 > 0 for |y| < ¢ since
A(0) = cu;(0,0)u2(0,0) with some ¢ € C\{0} then. Therefore we have

1/2
1Al > { / JA(0)/4 dy} — 577 A(0)]/2 > 0,

y|<s

which completes the proof. 1

3.6 A remark on the subcritical case

In one space dimensional quadratic nonlinear case, we can prove a result similar to Theo-
rem 3.1.1 when O(log t) is replaced by O(t'/2). More generally, we can obtain the following
result:

Proposition 3.6.1 Let us consider
( (04 me®)ue =0,
(D -+ m12)ul = ’U,OQ,
{ O+ ma?)us = ui?, (3.6.1)

2

. (D + mN2)uN = Uy,
in (t,z) € Ry x R with the initial condition
Uj(O,x) =fj($), atUj(O,:r) :gj(x), j=0,1,---,N.

Suppose that m; = 2m;_y for each j € {1,---, N} and that fo or go does not identically
vanish. Then there exist positive constants C; > Cy > 0 and T > 0 such that

Cut® V2 > ||u; () | ) > Cot@ D2 (3.6.2)
foranyt>T, j€{0,1,--- N}
The above result allows us to obtain some small data blow-up examples for systems

of nolinear Klein-Gordon equations, which will be mentioned in Chapter 5 (see also the
author’s forthcoming paper [33] for more detail).
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Chapter 4

Large time asymptotics of solutions
in the resonant case, continued

4.1 Introduction

In this chapter, we continue to study the resonant case following the author’s work [32].
The examples considered in the preceding chapter are decoupled and we can use the
explicit representations of the solutions. In the next chapter, we will obtain the similar
result for some coupled nonlinear systems which can be regarded as a perturbation of the
system like (3.1.1) instead of that of the free equations. '

Although several generalizations are possible, we mainly treat the following very simple
example so that the essential idea becomes most clear. Let us consider

O+ m?)u = ar?,

O+ p?)v = pu?,

(u, Byu, v, 0v) |,_,= (euo, £us, £vo, €v1), z € R,

t>0, z €R, (4.1.1)

where o, € R, € > 0 is a small parameter, and ug, uy, vg, v1 € C(R). We will
show that, as ¢ — oo, the amplitude of v is modulated by the long range interaction
when g = m or u = 3m, whereas, when y # m, p # 3m, the influence of nonlinearity
disappears eventually and v behaves like a free solution in the large time. More precisely,
we will prove the following:

Theorem 4.1.1 For any ug, u1, vy, v1 € CP(R), there exists g > 0 such that (4.1.1)
admits a unique global classical solution if € €]0,e0). Moreover, the following asymptotics
18 valid as t — oo, uniformly with respect to z € R : '

im(t2—|z[2)}
u(t,z) = Re [—e——?\/%———a(x/t)] +O(t™19),
gt ~lal?))?
o(t,2) = Re [T{A(x/t) g1+ 8(af2)}| + 0(),

35
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Here (-); stands for max{-,0}, i = /=1, 6 is an arbitrary small positive number, a(y),
b(y) are C-valued smooth functions which vanish when |y| > 1, and A(y) is given by

(=Y i p=sm,

A= z;is( W) law)laly) i p=m,

{ 0 if p#3m,u#Em.

Remark. It is worth comparing this result with the corresponding one to the scalar case

O+Nw=pw*, t>0 z€R (4.1.2)
This has been studied by Delort 2} in much more general situations including quasi-linear
case. According to his result, w has the following asymptotics:

w(t, z) = Re —};e"“*-'xf%i”wL«o(z/ﬂ Relg(z/t)| + O(I*0), t— o0

with 38

o(y) = = (1= W) la(w)l
Roughly speaking, this shows that the long range character of nonlinearity appears at the
level of the phase of oscillation of the solution for the scalar equation (4.1.2), while the
above result claims that the long range character appears at the level of the amplitude of
the solution for the system (4.1.1).

The same proof is available for a bit more general systems, such as

(O + m?)u; = Fi(u,0u),

(D -+ m2) F2 (u7 au))
(O +m2)us = Fy(u, 0u), t>0, z €R, (4.1.3)
(O + m2)uy = yuyugusz + Fy(u, Ou),
with the initial data
(uj, Bpuj) |,_,= (Euojreuyy), j=1,2,3,4 (4.1.4)

Here u = (u;)1<j<4, 7 € R and Fj(u, 0u) = O(|ul* + [8ul*). When we put
A= {()\1, )\2, Ag) € {:tl}a l my = /\1m1 + )\2m2 + )\37’)’1;3},

the corresponding result to Theorem 4.1.1 is stated as follows:
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Theorem 4.1.2 For any ugj, u1; € C§°(R), there exists €g > 0 such that (4.1.8)~(4.1.4)
admits o unique global C* solution if € €]0,e0]. Moreover, the following asymptotics is
valid as t — oo, uniformly with respect to x € R -

. 1/2
imy (t2—|z|2) Y

mj\/f
6im‘;(tz—lz|2)_1'_/2

u4(t,z) = Re lW{A(x/t) logt + a;;(x/t)}} +0 (t—1+6) :

u;(t,z) = Re [e aj(x/t)} + O (t‘““s) , j=1,23,

Here, 6 is an arbitrary small positive number, a; (j = 1,2,3) are C-valued smooth func-
tions which vanish when |y| > 1, and A(y) is given by

7 1 2 .
(=P Y VWP WP i A#,
A(y) = B (A1,A2,A3)€A

0 if A=0,

where a§+1>(y) = a;(y), a§’1)(y) = a;(y).

4.2 Reduction of the problem

In this section, we perform some reduction following the idea developed by [3], [4], [5] (see
also [16]). In what follows, we fix B > 0 so that

supp(uo, u1,v0,v1) C {z €R | |z| < B}.

Also we fix 79 > max{1,2B}. We begin with the fact that without loss of generality we
may treat the problem as if the Cauchy data is given on the upper branch of the hyperbola

{(t,z) e R"™" | (t+2B)*—|z]* =7, t >0}

and it is sufficiently small, smooth, and compactly supported. (This is a consequence of
the classical local existence theorem and the finite speed of propagation. See [3, Proposi-
tion 1.4], [4], [5] and [18], [12, Chapter 7] for detail. ) Next, as in [3], [18], we introduce
the hyperbolic coordinates (7, z) in the interior of the light cone, i.e.,

t+2B =r7coshz, x =7sinhz, for |z|<t+2B

so that

d; = (cosh 2)d, — %(sinh 2)8;,
8, = —(sinh 2)8, + £(cosh z)0.,
o2 10 , 1 072

O+m?==—+-—"—+m? - —=—
872+'r(97 72 922
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and

= /(t+2B?2- |z, z=tanh™ [ ——_}.
T \/(+ )2 — |z]?, z =tanh <t+23>

We also introduce the new unknowns (%, %) as follows:

(7, z)
712 cosh k2’

(T, 2)

ult,xr) = _
(t,2) 71/2 cosh Kz

v(t,z) =

where k > 0 is a parameter which is determined later. Roughly speaking, x measures the
decay of the solution outside the light cone because (cosh x2)~* = (1~ |z/t]), +1/¢) ~2,
Now, let us derive the equations which (%, ) satisfies when (u,v) is a solution of (4.1.1).

Since

v* = 77%(cosh k2) ~*5*
and
(0 + m?)u = 7 Y(cosh k2) (3 + m?),
we have. _ , o .
@O+ ma = WU
where

5o ? 1 82 2ntanhnz_(?_ 1 (1

2 2
5%~ 552 =5, 7= 717K (1 — 2(tanh xz) ))
In the same way, we see that ¥ satisfies

= ovs s -3
C+wl)o= 7(coshkz)?

Summing up, the original problem (4.1.1) is reduced to the following Cauchy problem:

= o
(D + m2)'& = _3__.______,54
/2 3
~ 2 T (ﬂcosh KZ) r >, z€R (42.1)
D N o= —_—— 4]
C+u)e T(COShIiZ)2u ’
with the initial data
(117 a‘I'ﬂ),'r='r0 = (51’20,5’&,1)
{ (6’87'6),7:&) = (5770,5’171). (422)

Our strategy is to prove global exitence and uniqueness of the solution to (4.2.1)—(4.2.2)
(see Proposition 4.2.1 below), find the asymptotics for (%, %) as 7 — oo (see (4.4.2), (4.4.3)
in § 4.4), and finally return to the solution of the original problem.

In the next section we shall prove the following proposition. In what follows, we denote
by H*(R) the standard Sobolev space for s € Ny = NU {0}.
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Proposition 4.2.1 Let k > 0 and let o be an integer larger than 1 + 4. For any
(g, @1), (Do, 71) € H?*(R,) x H*~Y(R,), there exists g > 0 such that the Cauchy problem
(4.2.1)-(4.2.2) admits a unique global solution

(@, 5) € [ C?(r0,00; H¥I(R,)) x (| €% (70, 00; H 7 (R,))

J=0 7=0
if € €]0,&0]. Moreover, we have
168 3+ 4i(r, )| o r) < CTE¥E,
||3£16g+£21~)(7', ')HH"(R,) < 07_(5-}-{;-{-62

foreach0 < 3 <0o—-1,0< ¥4+ 4 <1, and for arbitaray small 6 > 0. Here C is a
positive constant independent of T.

Remark. Consequently, we have

la(r, ) |lge(r.) < C, (4.2.3)
15(7, M e @,y < CT° (4.2.4)

for any 7 > 7.

4.3 Proof of Proposition 4.2.1

This section is devoted to the proof of the Proposition 4.2.1. The proof is done by means
of the contraction mapping principle. In order to do so, we prepare a version of the energy
estimate for (O + M?), which is essentially due to Delort-Fang-Xue [4] (see also [5]). We
state and prove it here with a minor modification.

Let us define

1/2
l6llasn = ([ 10:6tm P + 000,01 + MPlotr, )P

for smooth function ¢ and positive constant M. We begin with the following basic esti-
mates.

Lemma 4.3.1 For k >0, M > 0, s € Ny and for smooth function ¢(t, z), we have

d S
—l828(mllean) < —Ila e(M)+—ZH3’ (T leany

+cna: (T)lleqany|| 023 + M2)g(r) (4.3.1)

”L2(Rz)
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and

a‘iTHaS s < %25 8262 0r) + CO2D(T) lean |85 @ + M) e

(4.3.2)

provided that the Tight hand side is finite. Here C is a positive constant depending only
onk, M, s.

Proof: In what follows, we denote by C various positive constants which might be
different line by line. We first show the case where s = 0. As in the standard energy
integral method, we start from the following calculations

d

160) By =2 [ (0:0)(628) + 75(0.6)(0,0.8) + M0(0,) — —l0.0Pdz
<2 [ (0.6) (220~ Zioto+ 1% ) dz
:Z/R 2m:,ranh/iz(a $)(5.9)

- —1—{1 + k% — 2k*(tanh nz)2}¢(37¢) + (8:4) (0 + M?)¢dz

72 U4

4 C _
S;g—/ 10-¢]|10.¢|dz + §H¢(7’)H§(M) + Cllo(T) e || (O + M?)¢|| ..
R

The inequalities (4.3.1);—0 and (4.3.2);— follow from the fact that the first term in the
right hand side is dominated by

2 2 1
2ol and 25 (16000 + 5700 Ean )

respectively. Next, we consider the case where s > 1. Using (4.3.1),=¢ with ¢ replaced by
05 ¢, we have

%na:()ne(m —-nasunem %ua:mn?mwnawv e85 (3 + M2)(7)|| .
+ CllO5S() leqan || (D + M?), 82] (7)) ..

On the other hand, we have the following commutation relation:
- 1 < )
2 s1 _
[B+x%8) = 5 ZO ¥i,s(2)0 (4.3.3)
]:

with appropriate coefficients v, ;(2) satisfying ||v;s||zee < o0, from which it follows that

S

1B+ 32,8160z < 5 O Il 28 ze < Z 18267} ltan

§=0



§4.3 Proof of Proposition 4.2.1 41

Summing up, we obtain (4.3.1). In the same way (4.3.2) follows. 1

Next, we show the following energy inequality, which is the main tool for the proof of
Proposition 4.2.1.

Proposition 4.3.1 Let ¢ be a smooth function of (7,z) € [10,00[XR, and let & > 0,
M>0,v2>0, 51,50 € Ng. If 51 > 4k, we have

sup (Z Z 7-_(‘/+j1/4) Hazl-i-jz(b(T)He(M)) SC<”¢(7-O)||HSI+S2+1 =+ \|87¢(7'0)]le1+52)

T>To j1=0 j2=0

W03y / ~(+31/9| 502 (B 4 M) ()| [ 2y,

J1=0 j2=0

provided that the right hand side is finite. Here C is a positive constant independent of
v, Tp-

Proof: We first note that we can choose some constant C; >'1 so that

7)< 3T |[83 (7] < Coil)
§=0

holds, where
(ZT @uti/2) || 5i () He(M)l/Q.

Straightforward calculation yields

d = — (v 14 A
d_Tgﬁ (T)z — Zj 0 { (2v+j/2) & H H — (v +7/2)7 —~(2v+5/2)— 1”33 )”z(M)}
= ~@v+i/2) & d & = (2v+s1/2) d i ae 2
< ZT “ Jo(T He(M E.'Haz ¢(T)He(M)

— (2 + 51 /2)r D g g ()|
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Using Lemma 4.3.1 and the relation —(2v + s1/2) < —2k, we have
d
dr

s1—1 J+l1
SZT—WM{ Qzuaf zary + ClloZg(r >ue<M>H8£<D+M2>¢HLz}
3=0

Es, (7)2

+ @) { 16261 + =5 D 105607y + ClE% 61 e |22 (B + M2>¢HL2}
£=0
= 2kr /27|90 () |2

{Z 3 Bk (r) By + 30 o <T>n2M>}

=0 £=0 £=0

+C Z 7= 02(7) lean (|03 + M)
3
=: Il + 12.
To estimate I;, we note the following relation:

s1—1 j+1 s1—1 j+1

—{(2v i+i-¢ (@
S 3 ot (r) [y = 72 3 SO o)
=0 £=0 7=0 £=0
S1
STI/ZSlZT_(%HmHaf (M12a)
£=0
= 5,728, (1)2.

This relation gives

C
I]_ S ;5{817’1/2831(7')2 +551(7')2} S m(gsl(T)Q.

As for I, the Cauchy-Schwarz inequality implies

$1 /2 ¢ 5 1/2
h<C {zT-@w'muazwn;m} {Zr‘<2”+j/2’)16£(ﬁ + M2>¢<T>n;}

Jj=0 Jj=0
< CE, (1) 7wt 89(3 + M?)o(7)|| -
Jj=0
Summing up, we obtain

d€s C N s
(1) < g (r) + O D9 B + M) ()

3/2
-
=0

Iz
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which implies
_ S1/2 51 T L o~
Es(7) S eC/THCINTE (r) + C Y / e~ CITHCIN p=i19)| 053 + M?)¢(p) |2 dp-
j=0 7T

Using the fact that 1 < eC/™* < /0" < ¢C for any 7 > 7o > 1, we obtain the
desired inequality with s; = 0. Concerning the case of s, > 1, we have only to use the
commutation relation (4.3.3) and the Gronwall inequality. 1

Now, let us introduce the function space
Y7 :={$ = (é1,92) € C°(r0, 00; H¥(R; R%)) N C (o, 00 H¥ L (R; R?)) |
0<"j<20~-1,3C; >0s.t.

16761 (7)lemy < Cyrit=o+, 18762(7)|lequy < Cj7'6+%(j—a)+}
equipped with the norm
-1l o
| @llyes = f‘i‘i Z Z (7-—71/4Hag1+J2¢1 (7')”e(m) + 7“(5+31/4)“6;1+Jz¢2(7')He(u)) .
=70 j1=0 j2=0

Here, ¢ €]0,1/10] and o > 1 + 4k. We denote by Y?4(r) the closed ball in Y% of radius
r centered at the origin, i.e.,

Y?(r) = {¢ €Y | |ly-s <7}.
For ¢ = (1, ¢2) € Y*°, let S(¢) be the solution % = (¢1,1)2) to the Cauchy problem

(04

~ - T
Q4 mTe = 73/2(cosh kz)3 %2

_ \ 8 X T>Ty, 2€R,
O+ ) = Tleosh k22 1
(¢17¢278T1/}1)6T¢2) |T=7’o= (51*2'())660)5617861)7 z € R.

We shall show that S becomes a contraction mapping on Y%%(r) when we choose g, r
appropriately. Then we can apply the fixed point theorem to obtain Proposition 4.2.1.
Let ¢ = (¢1, ¢2) € YO(r). It follows from Proposition 4.3.1 that

1S(@)llyes < Ce+C / G(r)dr,
T0

where

c

o—1
G(r) = Z Z (r‘(5+1+j1/4> ||3§1+j2{¢1(7)3}”m(m) L (3/2431/9) “ag‘1+1'2{¢2(7)4}|]L2(Rz))

71=0j2=0
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Since [(j1+72)/2]+1 < [0 —1/2]+1 = o, the Leibniz formula and the Sobolev imbedding
yield

J1+72

102472 {1(7)° } || 12 < CligL (N 3yi61 4522300 Z 18501 ()2

J1+32

< Clign(3ge > rratia+

¢=0
< Cri3ri/4,
Here [-] stands for the integer part. Similarly we have
L J1+72
182492 {63(7)*} || 12 < Cliga(r)}re D, rrétiatt=sos

£=0
< CT47'46+'71/4.

Therefore we obtain

2.9
IS(@)llyes < CetC [ 13rt9) . rir=ra-s0gy
0

<Ce+Cl+r)r / =19 dr

To

< Ce+C1+r)r/s.

Note that 1+ < 3/2 — 4 since § < 1/10. When we take ¢ := 7/2C and choose r > 0
so small that C(1 +r)r? < §/2, we have

1S(@)llyes <,

provided that e €]0, &o).
Next, we put ¥ = S(¢) — S(¢') for ¢ = (¢1,82), 0" = (¢,,85) € Y°(r). Then
P = (1/)1,102) satisfies

— P a 4 14
~ 73/2(cosh kz)3 3(%2 = ¢),

O+ 12 = ——5 (42— ¢

7(cosh Kz)?

with the initial data _ 3 B .
Y=y = O,y = 67-'%[)2 =0

at 7 = 1. Using Proposition 4.3.1 again, we have

[9]lyes < C Z Z GM

F1=0 j2=0
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where

Gj1j2(T) =T—(6+1+j1/4) \l621+j2{¢1<7)3 _ ¢/1(7_)3}HL2(R2)
+ 7-—(3/2+j1/4) |j8ﬁ1+j2{¢2(7)4 _ ¢12(T)4}HL2(R;) .

In the same way as before, we have

itz
G (r) SCrer=CH2 19 % T 61(7) = ¢1(D)} 1o
=0
. Ji+J2
+ Crdr—(3/2-38+51/4) Z Haﬁ{(ﬁz(r) — ¢'2(7‘)}HL2
=0
Jjit+32
<Cr = (1+6) Z Ti{—j1+(£—j2)+}”¢ - @' |lyes
=0
Ji+72
1+ Crér=B/2-4) N7 plnt e g - gy
=0

<C(1+7)r2 =19 — @' [|yos.

Therefore, if 7 is chosen so small that o(c + 1)C(1 + r)r? < §/2 holds, then we have

0 *°
1S() = S(¢")|lyes < 3 (/ T (1+6)dr> | — ¢'||yes
. 70
1 ’
< §H¢ = @'|ly=s.
This completes the proof of Proposition 4.2.1. 1

4.4 Proof of Theorem 4.1.1

In what follows, we only treat the case where u = 3m. The other cases can be treated in
the same manner.

First, we rewrite (4.2.1) as

- 1
(672. + mz)u = le,
2, 2\~ B 3 1
P L — R 7
('87 T 7(cosh fcz)2u + T2-6- 2
where 1
— o _5~\4 . .
Bi= oy 0+ am s Ba=17L
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with
L =782 — 0O) = 8% — 2x(tanh k2)d, — % — k% + 2k*(tanh kz)2.
It follows from (4.2.3), (4.2.4) and the Sobolev imbedding that

sup (1B (7, | zoe ey + 1 Ba(, Yz geay ) < oo

T2>70

Next, we put

dxr = ™ (m F i0,),

by = €T (1 T i8,)4.

Note that @ and by satisfy

O-ax = FieT™ (02 + m?) i = ﬂ}%
TUx — T - i73/2—45 1
and
5 5 _ ie?iurﬂ e+im7a+ + e—imra_ 3 . ie:FiMTR
T T ir(cosh kz)? 2m 728

3 . .

+3 3\ e{B-20mzu}r 3t~ g +eFinT

~ i8m3(cosh £z)? Z < 14 > __;—(GJF) (6-)"+ _z"/—'—Q—‘—g—RZ' (44.1)
£=0

We are going to find the asymptotics of a., by as 7 — oo. It is easy to do it for a..
Indeed, since

/ |08+ (p, 2)| dp < C / p¥HH g < O/,

we have
61 (7, 2) = @3 (2) + O(r /344, (4.4.2)

where

a2 (2) = ™™ {miig(z) F1ta(z)} + w-ﬂR (p,2)dp
=\ 0 1 ipafe—as P :
0

To get the asymptotics of b, we use the following lemma.

Lemma 4.4.1 Let v € R and let 9j(,2) (j =1,2,--- ,N) be smooth functions which
satisfy
)77[)]'(7—7 Z)‘ < CO, \67'41}3'(7-7 z)l < Cor™"
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for some constant Cy > 0 . Then we have

N

zw"' ij T, z {::: Hwi (7- Z)} -0 (7.— min{2,1+y})

Jj=

for w € R\{0}, while

N
—H%Tz {logTH TZ}—I—O( ~logT).

Proof is quite simple. Indeed, using the relation

zw‘r ‘LLIJT N 1&)7’ 8 1 N
H% {zw'rl—[ll/}j} iw Or (;1—:1 >

we have
eiw’r

N gt
_T——H 7 8’7'{7,(.07'ij}

Jj=1

Sy 2H|wj|+ Z;a el [ 151

J#k
cy  No¥

ol T

The other one follows similarly from the relation

szj { (log7) sz]} (log7)=— (ij)

Applying the above lemma to (4.4.1), we obtain

e

O, (by — @) = U, + 3

R2a

where

@, (1,2) = (log7) _B{a+(7-’ z)}

i8m3(cosh kz)2 +0(77), 2_(p,2) = D4(7,2),

and

U, (1,2) = O(r7%** ¥ logr), W_(7,2) = U (T, 2).
From this it follows that

R2 (pa Z)
p2--6

be(r2) = Bs(r2) = 82(2)| < [ Va2 4|

dp S CT—1/2+5(5

47
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where
~ ) ~ o o0 L TP
bE (2) = €™ { uig(2) F i01(2) } — Du(ro,2) + / ylp,2) + T%J—RKP, z)dp.
70
Therefore we obtain

bs(r,2) = £(logT) isfngiﬁii)f)iz)?

+ bP(2) + O(r~Y/2+58) (4.4.3)
as 7 — o0, uniformly with respect to z € R.

Now, we return to the original variables. Remember that

€™ Gy (7,2) + ™ a_ (1, 2)
_ 2m7Y2coshkz
e*Tb,(1,2) + e *b_(7,2)

2utl/2 cosh kz

u(t,z) =

7

v(t,z) =

)

— 2_ |z2. 2 =tanh~! [ —2
7=+/(t+2B)? - |z[2, =z =tanh (t+2B)

and t > 1, |z] <t + 2B. Using the relations 3% = @, b® = E and
TV Ct™ <t+ 23)”

<
coshkz — (coshz)®

=Ct™(1 - |z/(t+2B)[*)""

T

<Ct™
for k > v > 0, we have
eim7(ie) 1z 1+46
_ - - 4.4
u(t,z) =Re [m t+2Bg(tanh (t+23)>] + 0 (71, (4.4.4)
g7 (:2) B ;T 3 log 7(t,z) 1,z }
_ - ’ tanh
u(t,z) =Re L\/t+2B{i8m3 {g_(tanh (t+2B))} cosh z(t, ) +b( on (t+2B)>
+ 0 (£, (4.4.5)
where
_ (cosh )% (2) _ (cosh 2)Y/26%(2)
a2) = coshkz ' bz) = coshkz
Next, we put

i2Bm~/1~-|y|? -1 :
s = ¢ atanh™ () if ] <1,
0 iyl >1,
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Aly) = 2

= 251 = W),

by) =4 €V h(tanh ™M) + Ay) log VI TyP it Jyl <1,
0 if |yl > 1.

Note that the following estimates are valid (cf. [3, p.58-59]):
Ba(y)| < C( - )3,

la(z/(t +2B)) — a(z/t)| < Ct™H{(1 — |z/t])+ + 1/t}~/>75/,
eIl @2BIP _ gimtn/1=1a/tP| < 0y1((1 = |z /1)), + 1/t} V2.

These relations give us

eimt\/l—-]z/(t+2B)|2 ( T ) eim\/t2—|m]2 (I)
a —

Lizi<t

Vi+2B t+ 2B i \%
< sl )+ g - 71l 6
b o TR _ g/ 7)|

< Gt P{(1 = [a/t]) s + 1/8}¥/27314 + O3 (1 — [/t >
+ Ct732{(1 — |z /t]) 4 + 1/} 21412
< Ct32,

provided that x > 5/2. Summing up, we have

eim'r(t,:z:) ( i ( z ) ) eimt1 /1—|z/(t+2B)|? ( T >
a

————q/| tanh
myt+ 2B

t+ 28 myvt+ 2B t+ 2B
B eimﬁﬂ—l:b[z(}(f) O(t-3/2)
= m\/% : .

Substituting it for the first term of the right hand side of (4.4.4), we obtain the asymptotic
formula of u. In the same way, the first term of the right hand side of (4.4.5) can be written
as

pVt

which yields the asymptotic formula of v. This completes the proof of Theorem 4.1.1. 4

Re [em e {A(%) log t + b(%) ” +O(t™% 2 logt),
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4.5 Remarks

(1) We can prove the analogous result for two-dimensional case, such as

t>0, z€R? (4.5.1)

(O +m?)v; = o,
(D + MZ),U2 - ﬁ’U%,

where o, 5 € R, or

(O + mHu, = Fi(u,0u),
(O + mu, = Fr(u, du), t>0, r€R? (4.5.2)
(O + mduz = yuyus + F3(u, du),

where u = (u;)1<j<3, 0 = (01, 0s,,05,), 7 € R and Fj(u, 0u) = O(|ul® + |dul®). For the
solution v of (4.5.1) (resp. us of (4.5.2)), the long range effect as in Theorem 4.1.1 (resp.
Theorem 4.1.2) is observed if and only if u = 2m (resp. mz = Aymq + Aom; for some
A1, A2 € {£1}). See also [6] for related result.

(2) It is likely that a result similar to Theorem 4.1.1 holds true for one-dimensional cubic
homogeneous case, such as

{ (O+m?u = an®, (45.3)

(B +p*)v = Bu?,

but it seems still open so far. The main reason is that the method of this chapter does
not work well without some growth with respect to ¢ or loss of derivaives.



Chapter 5
Examples on small data blow-up

In this chapter, we will construct two examples concerning nonexistence of global classical
solutions. The first one is taken from [30], which is a system version of Yordanov’s
example, and the second one comes from the author’s work [33].

5.1 Example (1)

Let us consider the Cauchy problem

{ (84 m)u; = Fy(u, Ou), (5.1.1)
(uj, Oruj)li=o = (¢fj,€95), 1<j<N -
in one space dimension. We assume there exist jo, ko € {1, -, N} such that the following

(i)-(iii) hold:
(i) (amujo)Fko ('LL, au) + (a’ruko)Eio (u’ au) 2 é {(al‘ujo)z(atuko)2 + (aﬂcuko)2 (8tuj0)2}

for some constant § > 0,

(i) K=/mm%M+mm%mw>a
and
(111) mjo = mko.

We also assume that the Cauchy data is compactly-supported, say,
(iv) filz) =gj(z)=0 for |z|>r, je{l,---,N}

Proposition 5.1.1 Under the assumptions (i)-(iv), the lifespan T, of the classical solu-
tion of (5.1.1) must be finite for any € > 0. More precisely, we have

4
T. <rexp (W) )

ol
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Proof: We first note a simple fact on ODE: If I € C*([0,T]) satisfies the differential
inequality

dI 1
= — () > c(t+1)7 I%(t) for tel0,T] (5.1.2)

with I(0) > 0, then

1(0)
IT) 21— cI(0) log(T + 1)

We also note the identity

gt{(atuj)(a ug) + (8tuk)(azuj)}

0
= { miusu — (Bey) (Bun) — (0rus) (Bue) |
= (mi - mj)ujf?xuk + Fjazuk =+ Fkazu]‘. (5.1.3)
Now, we put I(t) := [(8rujy)(Opuky) + (Osur,)(Ozus,)dr and we shall see that I(t)
satisfies (5.1.2). From (5 1.3) and the assumption (iii), we have
t / o OzUio + Fo Orujodx > 0

and I(0) = 2K > 0 by the assumption (ii). On the other hand, since u(¢,z) vanishes
when |z| > ¢ + r by the assumption (iv) and the finite speed of propagation, it follows
from the Cauchy-Schwarz inequality and the assumption (i) that

I < 4t 1) [ Oz (Grue)? + (Buue, ) (Orus o

< %(t +7) /Fjoaxuko + Fy Oz ujodz
4 dl

< -

<denZo.

Therefore we have
Jaso (T + o (DIE 2 1(T) 2 LK — o0
70 E o E= T 4-2Kblog(T/r + 1)

as T — rexp(4/e2K5) — r, which completes the proof. .

As a consequence of Theorem 2.1.1 and Proposition 5.1.1, we obtain the following
example: Let us consider the Cauchy problem

{ (O + m?)u = (Gpu)?(d,v) -
(B + p*)v = (8:v)*(Osu)

in RY*! with C{° initial data of size O(e). If (m — 3p)(m — u)(3m — p) # 0, the system
possesses a unique global classical solution which approaches a free solution as t — oo,
whereas if m = u, the solution of this system blows up in finite time of order exp(O(e~2))
under some restriction on the initial data. The case m = 3u or 3m = p seems open so
far.
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5.2 Example (2)

The second example is the following:

(g + mé)uo i 0, )
(SN M @21
(O + m2)uz = uz? + G(uy, Ouy)
in (¢,z) € Ry x R! with
(uj, Osuj)le=o = (efs,€9;), 0< 35 <3, (5.2.2)

where f;, g; € C§(R), m; > 0. We assume that (v) m; = 2m;_, for j = 1,2,
i) G(6,00) > Coll6f* +196P)

with some Cp > 0, and (vii) fo or go does not identically vanish. Then we have the
following:

Proposition 5.2.1 Under the assumptions (v)-(vii), there ezist no global solutions to
(5.2.1) - (5.2.2) for any € > 0.

Remark. Of course, ug, u; and us never blow up in finite time since they are decoupled.
It is only u3 that actually blows up in finite time. Note that the Cauchy problem for the
scalar equation (O + m?)v = v?, which corresponds to the case where G = 0, admits a
unique global classical solution if the data is sufficiently small and smooth.

Proof of Proposition 5.2.1: What is important in the proof is the following lemma,
which is a version of Lemma 2.2 of Keel and Tao [16] (the basic idea goes back to
T.Kato [15]).

Lemma 5.2.1 Let w be a smooth function of (t,2) € Ry x R which satisfy
lw®)lle 2 Cot” (5.2.3)
with some v > 1/2, Cy > 0, and |
w(t,z)=0 i |z]>t+r

with some v > 0. Suppose that f,g € CP(R), m € R and G satisfy (vi). Then there
exists no global solution v of the Cauchy problem
{ O+ m?)v =12+ G(w,0w), t>0, z€R,
(v,80) =0 = (f, 9)-



54 Chapter 5. Small Data Blow-up

Once we obtain this lemma, what remains to do is to check that u, satisfy (5.2.3).
This has been attained in Proposition 3.6.1. As a consequence, Proposition 5.2.1 follows.

The rest of this section is devoted to the proof of Lemma 5.2.1. First, we fix R > r so
that
fl)=g9g(z)=0 if |z|>R.

Then it follws from the finite speed of propagation that
v(t,z) =0 if |z|>t+R.

Next, we put

J(t) = /H<t+Rv(t,:r)dx.

Then, from the equation, we have

£y
)+ mtse) = |

|lz[<t+R

lv(t, z)|*dz +/ G(w, dw)dz.

|z|<t+R
Also, the Cauchy-Schwarz inequality yields
J(t)7 < 2(t+ R) / (v(t, ) Pdz,
lz|<t+R

so we have

d2J 1
a2 (02 =m0+ o
mt 2
> —T(t + R) + Collw(t)||%-

J(t)2+/G(w, ow)dx (5.2.4)

Integrating this estimate twice with respect to ¢, we obtain

4 t
V> E0) - T{+ B - B + / CoCrt?dr
0
CoCy
2 -G+ w1
>0
and
CoCy 9 CoCh
> 3 v+2 > 2v0+2
J(t) 2 —Cat™+ (v +1)(2v +2) =220 +1)2v+ 2)t

for t > T, where C,, C3 > 0, Ty > 1. Using (5.2.4) again, we have

| 4(t+ R) 4(t + R) t+ R)
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whence we obtain

(dJ(t) Tty

2 1 1
> S_Cy>
dt ) = 6( T =Cez

t+ R) (t+ R)

for t > Ty, where Cy > 0, Ty > Tj. Therefore we have

OERE( A \/%(\/Tl TR-VITR)

for t > T;. This implies J(¢) can not be defined globally in time, while it could be if
v(t, z) were a global solution. i



56

Acknowledgements

I would like to express my sincere gratitude to Professors Akitaka Matsumura and
Nakao Hayashi for their valuable advice and continuous encouragement. Thanks are
also due to Professors Shigeo Tarama, Yoshio Tsutsumi, Soichiro Katayama, Hiroyuki
Chihara, Hideo Kubo, Masahito Ohta, Kunio Hidano, Daoyuan Fang and Jean-Marc
Delort for their helpful comments and criticisms on this thesis or the works preceding to
it. Stimulating discussions with them are greatly appreciated.

Finally I wish to thank my wife, Junko, for her cheerful help and encouragement.



Bibliography

1]
2]

[11]

[12]

S. Alinhac, Blowup for nonlinear hyperbolic equations, Birkhauser, Boston, 1995.

J.-M. Delort, Minoration du temps d’ezistence pour I’équation de Klein-Gordon non-
linéaire en dimension 1 d’espace, Ann. Inst. Henri Poincaré (Analyse non linéaire)
16 (1999), 563-591.

J.-M. Delort, Ezistence globale et comportement asymptotique pour l’équation de
Klein-Gordon quast linéaire 4 données petites en dimension 1, Ann. Sci. Ec. Norm.
Sup. 4¢ série 34 (2001), 1-61.

J.-M. Delort, D. Fang, R. Xue, Global existence of small solutions for quadratic
quasilinear Klein-Gordon systems in two space dimensions, Prépublications Mathe-
matiques de I’Université Paris 13, 2002-29.

D. Fang, R. Xue, Global existence of small solutions for cubic quasilinear Klein-
Gordon systems in one space dimension, preprint, 2003.

D. Fang, R. Xue, Global ezistence and asymptotics behavior of solutions for a resonant
Klein-Gordon systems in two space dimensions, preprint, 2003.

V. Georgiev, Global solution of the system of wave and Klein-Gordon equations,
Math. Zeit. 203 (1990), 683-698.

V. Georgiev, Decay estimates for the Klein-Gordon equation, Comm. Partial Differ-
ential Equations 17 (1992), 1111-1139.

V. Georgiev, P. Popivanov, Global solution to the two-dimensional Klein-Gordon
equation, Comm. Partial Differential Equations 16 (1991), 941-995.

V. Georgiev, B. Yordanov, Asymptotic behaviour of the one-dimensional Klein-
Gordon equation with a cubic nonlinearity, preprint, 1996.

L. Hormander, Remarks on the Klein-Gordon equations, Journées equations aux
dérivées partielles Saint-Jean-Montes, Juin 1987, 1-9.

L. Hérmander, Lectures on nonlinear hyperbolic differential equations, Springer Ver-
lag, Berlin, 1997.

57



58 Bibliography

(13] F. John, Blow-up of solutions for quasi-linear wave equations in three space dimen-
sions, Comm. Pure Appl. Math. 34 (1981), 29-51.

[14] S. Katayama, A note on global existence of soluions to nonlinear Klein-Gordon equa-
tions in one space dimension, J. Math. Kyoto Univ. 39 (1999), 203-213.

[15] T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations, Comm. Pure
Appl. Math. 33 (1980), 501-505.

[16] M. Keel, T. Tao, Small data blow-up for semilinear Klein-Gordon equations, Amer.
J. Math. 121 (1999), 629-669.

[17] S. Klainerman, Global ezistence for nonlinear wave equations, Comm. Pure Appl.
Math. 33 (1980), 43-101.

(18] S. Klainerman, Global ezistence of small amplitude solutions to nonlinear Klein-

Gordon equations in four space-time dimensions, Comm. Pure Appl. Math. 38
(1985), 631-641.

[19] S. Klainerman, The null condition and global existence to nonlinear wave equations
wn three spsce dimensions, in “Lectures in Applied Mathematics”, Vol. 23, Amer.
Math. Soc., Providence, R.I., 1986, pp. 293-326.

[20] S. Klainerman, G. Ponce, Global, small amplitude solutions to nonlinear evolution
equations, Comm. Pure Appl. Math. 36 (1983), 133-141.

[21] R. Kosecki, The unit condition and global ezistence for a class of nonlinear Klein-
Gordon equations, J. Differential Equations 100 (1992), 257-268.

[22] M. Kovalyov, Resonance-type behaviour in a system of nonlinear wave equations, J.
Differential Equations 77 (1989), 73-83.

[23] H. Kubo (ed.), On global behavior of solutions for nonlinear hyperbolic systems,
RIMS Kokyiiroku 1331 (2003).

[24] K. Moriyama, Normal forms and global ezistence of solutions to a class of cubic non-
linear Klein-Gordon equations in one space dimension, Differential Integral Equa-
tions 10 (1997), 499-520.

[25] K. Moriyama, S. Tonegawa, Y. Tsutsumi, Almost global ezistence of solutions for
the quadratic semilinear Klein-Gordon equation in one space dimension, Funkcial.
Ekvac. 40 (1997), 313-333.

[26] T. Ozawa, K. Tsutaya, Y. Tsutsumi, Global eristence and asymptotic behavior of
solutions for the Klein-Gordon equations with quadratic nonlinearity in two space
dimensions, Math. Zeit. 222 (1996), 341-362.



Bibliography 59

[27] J. Shatah, Global ezistence of small solutions to nonlinear evolution equations, J.
Differential Equations 38 (1982), 409-425.

[28] J. Shatah, Normal forms and quadratic nonlinear Klein-Gordon equations, Comm.
Pure Appl. Math. 38 (1985), 685-696.

[29] J.C.H. Simon, E. Taflin, The Cauchy problem for non-linear Klien-Gordon euations,
Commun. Math. Phys. 152 (1993) 433-478.

[30] H. Sunagawa, On global small amplitude solutions to systems of cubic nonlinear
Klein-Gordon equations with different mass terms in one space dimension, J. Dif-
ferential Equations 192 (2003), 308-325.

[31] H. Sunagawa, A note on the large time asymptotics for a system of Klein-Gordon
equations, Hokkaido Math. J. (to appear).

[32] H.Sunagawa, Large time asymptotics of solutions to nonlinear Klein-Gordon systems,
Osaka J. Math. (to appear).

[33] H. Sunagawa, A note on large time asymptotics for systems of Klein-Gordon equa-
tions, II: Applications to small data blow-up, preprint, 2003.

[34] Y. Tsutsumi, Stability of constant equilibrium for the Mazwell-Higgs equations,
Funkcial. Ekvac. 46 (2003), 41-62.



60 Bibliography

List of Author’s Papers Cited in This Thesis

(i) On global small amplitude solutions to systems of cubic nonlinear Klein-Gordon
equations with different mass terms in one space dimension, Journal of Differential
Equations 192 (2003) 308-325.

(ii) A note on the large time asymptotics for a system of Klein-Gordon equations, to
appear in Hokkaido Mathematical Journal.

(iii) Large time asymptotics of solutions to nonlinear Klein-Gordon systems, to appear
in Osaka Journal of Mathematics.

(iv) A note on large time asymptotics for systems of Klein-Gordon equations, 1I: Appli-
cations to small data blow-up, submitted to Funkcialaj Ekvacioj.



