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The purpose of this note is to improve in the case of odd space dimension the
result in [1] associated to the Neumann problem of linear elasticity in the exterior

of a strictly convex body. Let O c Rn, n > 2, be a strictly convex obstacle with C°°-
smooth boundary Γ and denote Ω = Rn\Cλ Consider in Ω the elasticity operator

L defined by

Lv = μ0Av + (λ0 + μo)V(V - v),

v = t(Vl, . . . , vn), λ0, μo being the Lame constants assumed to satisfy

μ0 > 0, nλ0 + 2μ0 > 0.

Denote by — LΌ the self-adjoint realization of — L on the Hubert space H0 =

I/2(Rn;Cn), and by — LD (resp. — LN) the Dirichlet (resp. Neumann) realization
of — L on H = L2(Ω;Cn). Recall that the Neumann boundary conditions in this
case are of the form Bv = 0 on Γ, where

(Bv)ι =

σij(υ) = λ0V ^ δij+μo(dvj/dxi + dvi/dxj) is the stress tensor, and v — (z/i, . . . , z/n)
is the unit outer normal to Γ. Then the scattering phase Sj(X) associated to —Lj,

j = D, N, is defined by

x/o .

^(λ) = (2π)-1«J (λ), βj (0)=0,

where ώj(λ) is the Fourier transform of the distribution Uj(t) G ̂ '(R) defined by

Uj(t) = trHo(entfi(*)rn - U0(t)),

* Partially supported by CNPq (Brazil).



398 F. CARDOSO AND G. VODEV

where Uj(t) is the wave group associated to —Lj, j = D,N, 0, and e$ι denotes the
extension by 0 outside Ω and rΩ denotes the restriction to Ω. It was proved in [9]
that dsD(\}/d\ admits a complete asymptotics, and as a consequence

n-l

(1) sD(λ) = α*λn-fc + αn logλ + 0(l), λ -> +00,

for all n > 2, where α0 = rn((n - l)cp + ap)Vol(O), rn = (2π)-nVol{x G Rn :
x\ < 1}. Here c\ = ^/μo and C2 = \/λo + 2μo are the speeds of propagation of the

elastic waves.
The strictly convex obstacles, however, are no longer nontrapping for — LN

because of the existence of a characteristic variety Σ = {ζ G Γ*Γ : \\ζ\\ = c^1}
for the parametrix of the Neumann operator in the elliptic region £ = {ζ G T*Γ :

I I C I I > cϊ1} (e g see [15], [16]). This fact is interpreted as existence of Rayleigh
waves on the boundary Γ moving with a speed CR < c\. It was shown in [15],
[16], [20] that for odd n the Rayleigh waves generate infinitely many resonances
(poles of the meromorphic continuation of the cutoff resolvent χ(Lχ -f λ2)-1χ,
X G Co°(Rn), x = 1 near Γ) converging rapidly to the real axis. On the other hand,
it was proved in [13] that if n ^ 4 the counting function N(X) — #{λj : Imλj <
1,0 < Reλj < λ} of Rayleigh resonances satisfies

(2) 7V(λ) = r^c-^VolCOA"-1 + 0(λn~2), λ -* +00.

So, it is not natural to expect that the scattering phase sN(λ) associated to —L^
admits an asymptotic similar to (1). However, we showed in [1] that

(3) SN(\) = a0X
n + a(Xn-1 + r(λ), λ -> +00,

where r(λ) = O(logλ) if n = 2, r(λ) = O(λn~2) if n > 2. Note that the second
terms in (1) and (3) are of the form 6jVol(Γ), j — D, TV, where bj depend only on
the Lame constants and n but in a very complicated way. The purpose of this work
is to prove the following

Theorem If Ό is strictly convex with C°° -smooth boundary and ίfn>3 is
odd, then there exists a function of the form

n-l

k=0

where b0 = aϋ, such that for every p » 1,0 < δ <C 1, we have

(4) N(\ - A-*) - Op>β(l) - 0 ( X S ) < SN(\) - g(X) < N(λ +
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Moreover, ίfO is of analytic boundary, then (4) holds with λ~p replaced by e~^Ί~ε^x

for some 7 > 0 and any 0 < ε <C 1, and Op(l) replaced by Oε(l).

REMARK. Clearly, in the case of odd n, the asymptotics (3) follows from (4)
and (2). The advantage of this approach is that it allows to extend the result to more
general obstacles for which the relations (6) and (7) bellow hold (see [4]).

Proof. We are going to take advantage of the Poisson formula proved in [6],
[14] for compactly supported perturbations of the Laplacian but it is clear from the
proof that it extends to perturbations of L as well. So, we have

(5) uN(t) =

where {λj}JLl are the resonances of LN repeated according to multiplicity.
According to the result in [15] (see also [4]), {λj}^ = ΛI U Λ2, where ΛI is
the set of Rayleigh resonances which satisfy

(6) 0 < Imλj < Cm|Reλ j|-
m, Vm > 1,

and Λ2 is a set of resonances satisfying

(7) Imλj > mlog |A j | - C'm, Vm > 1.

Define the distributions Uk(t) G 57(R), fc = 1, 2, as follows

o

and define Sfc(λ) by

^(λ) = (27r)-1ufe(λ), S f c(0)=0.

Lemma 1. For \^> I we have

(8) AΓ(λ - \-p) - Op,δ(l) ~ 0(\δ) < 5l(λ) < AΓ(λ +

/or every p > 1, 0 < δ < 1.

Proof. It is easy to see that

v/eΛ!



400 F. CARDOSO AND G. VODEV

Since, in view of (6),

, v — > , , -1 f 2Inι λ9

we have, using (6) again,

-ReλjO/Imλj o j

β l (A)=
λ.eΛt.Reλ^O ^-R

,(λ-Reλ. j)/Imλ. j 2,

-1 _
,

(27Γ)- 1 /

'+λ"p)+λΣ(2-)- ιy_00 ^τϊ+0(l}

(9) <JV(λ + λ-p) + σPΣlλjΓn~1+0(1)

Similarly,

-Reλ./Imλ, T -(- 1

= 7V(λ - λ-p) - JV(λβ)

Γ1 ί' ΓReXj/lmλi 2dτ / +0°

V-» ^ + X + λ - R e λ I m λ ^

> 7V(λ - λ-p)

, _ ! / /-cp'λίln 2dτ +°° 2dτ
Γ

do) > τv(λ - χ-p) - o(\-1 - cpιδ

Now (8) follows from (9) and (10). D

Lemma 2. We have u^ G C°°(R \ 0) and for every integer k > 0,

(Π) \d*u2(t)\<Cke~cW, | t |»l,

constants C^, C > 0.
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Proof. We have in the sense of distributions for t > 0,

where, in view of (7), the series is upper bounded by

λj €Λ2 λj £Λ2

for every ra ^> 1. Since the counting function of {λj} is O(λn) (e.g. see [19]), it

suffices to choose ra > (k — n — l)/t in order that the series above be absolutely

convergent. Hence u<2 G C°°(0, +00). The case of t < 0 is treated similarly. Let now

t ^> 1 and choose m above equal to 1. We clearly have, for any q > 0,

< ̂ e- A'qt + et(C'-log q) + (fc+n+l) log g ̂  |̂ | -n- 1 j

where A q ,Ag > 0. Choosing now q so that C1 — logg = —1, we obtain (11) for

t > 1. Clearly, the case of t <C — 1 is similar. Π

Let </>(t) 6 Cg°(R),<£(ί) = 1 in a neighbourhood of ί = 0.

Lemma 3. For \^> 1 we have

(12)

Proof. For any integer k >• 1 we have

By Lemma 2, d£{(l - φ(t))u2(t)} 6 L^R) for every integer k > 0, and hence

Clearly, this implies (12) at once. Π

In view of (5), UN(t) — u\(t) — u^(t) is a distribution supported at t = 0, and

hence SN(\) — sι(λ) — S2(λ) is a polynomial. Therefore, by (8) and (12) we get

(13) N(X - λ~p) - Opιδ(l) < sN(X) - SN * <^(λ) -h
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On the other hand, an analogue of Ivrii's result [3] for the elasticity system yields

(14) (*N

where α0 — nao> This can be proved by the methods developed in [7] or [2], or
[11], [12], [17], [18]. So, to prove (4) it suffices to show that

(15) N

It is proven in [13] that modulo a constant, TV(λ) is equal to the number N(X) of
the nonpositive eigenvalues of a matrix-valued self-adjoint λ — ΦDO, P(λ), with
a principal symbol having n — 1 strictly positive eigenvalues and one eigenvalue
vanishing on Σ, negative in {ζ e Γ*Γ : \ζ\ < c^1} and positive in {ζ G Γ*Γ : \ζ\ >
c^1}. Hence, it suffices to prove (15) with TV replaced by TV. It follows from the
analysis in [13] that

TV(λ) - (2πz)~1tr lim / (P(σ - ίε)P(σ - iε)~l - P(σ + iε)P(σ + iε)'1 } dσ.
e-^0+ JO ^ '

where P(λ) = dP(\)/d\. Hence,

(16) ^_(AΓ*0)(λ)

/

oo
(P(σ-ίε)P(σ-iε)-1

-00 V

-P(σ + ίε)P(σ + iε)~1} φ(X - σ)dσ.

As in [2], one can deduce from (16) that

(17)
j=o

which clearly implies (15). D

The analytic case is treated similarly using that in this case, according to the
results in [20], the resonances in ΛI satisfy

0<Imλ, <Ce~^ReXi\

for some constants C, 7 > 0.
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Addentum

The purpose of this addentum is to derive (17) from the semi-classical asymp-

totics in [2]. Let φ G G£°(R), φ(i) = 1 for \t\ < 1, and set φχ(i] = φ(\δi), 0 < δ < 1.
Denoting the LHS of (16) by C(λ), we have

(A.I) C(λ) - λtr(2πz)-1 lim+ ί(P(X(l -z- iε))P(X(l -z- is))'1

-P(λ(l -f z + iε))P(X(l + z + iε))~l)φx(z)φ(Xz)dz + O(λ~°°).

On the other hand, given any integer ra > 1, for z £ C, \z\ < CX~δ, we have

m-l

(A.2) P(λ(l - z)} = P(λ) - .

where Γ^(λ) are λ - Ψ£>O's of class L°Z

>0(Γ), independent of z. Here and in what

follows O(\-δm} denotes a λ - Ψ£>O of class L^~δrn(Γ). Since P(λ) is elliptic (of

class L^'~1(Γ)), (A.2) can be rewritten in the form

(A.3) P(λ(l - z)) = (Qm(λ, z) - z)Rm(X, z),

where Qm(λ, ̂ ) is a λ — ΦDO, depending analyticaly on a parameter 2:, of the form

(A.4) Qm(λ, z) = Gm(λ)

with a λ — ΦDO, Gm(λ), of class L^°(Γ), independent of z. Rm(X, z) is elliptic of

class L°;°(Γ) uniformly in z. It follows from the analysis in [13] that (Qm(λ, z)—z)~l

is analytic in z for Imz ^ 0, and by Lemma 5.1 of [13], we have

y*"̂

(A.5) ||(Qm(λ,z) - ^)~1|U(^(Γ),^(Γ)) <

for Im z Φ 0, with a constant Cs independent of z and λ. We also have, in view of

(A.3),

(A.6) 77 dz

= (_ι + 0(χ-δrn))Rm(X, z) + (Qm(λ, z)-z)-
dz

Thus, by (A.I), (A.3) and (A.6), we get

C(Λ)-tr(2πi)-1 lim /((Qm(λ, z + fe) - z - ie)~l

ε-^0+ J
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(A.7) -(Qm(λ, z - iε] - z + iε)-l)φ\(z)φ(Xz)dz +

Let <£ be an almost analytic extension of ψ such that ψ G Co°(C), ψ(z) — ψ(z),Vz G

R, and d*φ(z) = O(\Imz\N),VN G N. Set φx(z) = φ(\δz}. By Stokes' theorem, we

can rewrite (A.7) in the form

(A.8) 1 f
Jc

where L(dz) denotes the Lebesgue measure on C. Now, in view of (A.4) and (A. 5),

the trace in (A. 8) can be treated in precisely the same way as the trace in Theorem

2 of [2] (with h = λ"1) giving asymptotics with error terms O(X~δrn) with possibly

a new, smaller δ > 0. Since m is arbitrary, this gives an asymptotics of ζ(X) modulo
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