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The purpose of this note is to improve in the case of odd space dimension the
result in [1] associated to the Neumann problem of linear elasticity in the exterior
of a strictly convex body. Let O C R", n > 2, be a strictly convex obstacle with C*°-
smooth boundary T" and denote = R™\O. Consider in Q the elasticity operator
L defined by

Lv = poAv + (Ao + po) V(V - v),
v="Yvy,...,v,), Ao, o being the Lamé constants assumed to satisfy
to > 0, nAg + 2p0 > 0.
Denote by —Lg the self-adjoint realization of —L on the Hilbert space Hy =
L?(R™;C"), and by —Lp (resp. —Ly) the Dirichlet (resp. Neumann) realization

of —L on H = L?(2;C™). Recall that the Neumann boundary conditions in this
case are of the form Bv = 0 on I, where

n
(Bv)i=20ij(v)l/j, i=1,...,n,
Jj=1

0i;(v) = XV -v 6;;+ po(dv; /0x; +0v; /Ox;) is the stress tensor, and v = (v1,...,Vy)
is the unit outer normal to I'. Then the scattering phase s;(\) associated to —L;,
j =D, N, is defined by

de

L) = @m0, 55(0) =0,

where () is the Fourier transform of the distribution u;(t) € S’(R) defined by

Uj(t) = try, (eQUj(t)T‘Q — Uo(t)),

*Partially supported by CNPq (Brazil).
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where Uj(t) is the wave group associated to —L;, j = D, N,0, and eq denotes the
extension by 0 outside 2 and rq denotes the restriction to Q. It was proved in [9]
that dsp()\)/dA admits a complete asymptotics, and as a consequence

n—1
(1) sp(A) =Y axA"F +anlogh+0(1), A — +oo,
k=0

for all n > 2, where ag = 7,,((n — 1)e7 ™ + ¢ ") Vol(O), 1, = (2rr) " Vol{z € R"™ :
|| < 1}. Here ¢; = /g and c; = v/Ag + 240 are the speeds of propagation of the
elastic waves.

The strictly convex obstacles, however, are no longer nontrapping for —Ly
because of the existence of a characteristic variety & = {¢ € T*T : ||¢|| = ¢z}
for the parametrix of the Neumann operator in the elliptic region £ = {( € T*T":
lI¢]| > ¢} (e.g. see [15], [16]). This fact is interpreted as existence of Rayleigh
waves on the boundary I' moving with a speed cg < c¢;. It was shown in [15],
[16], [20] that for odd n the Rayleigh waves generate infinitely many resonances
(poles of the meromorphic continuation of the cutoff resolvent x(Lx + A%)~1x,
x € C5°(R™), x =1 near I') converging rapidly to the real axis. On the other hand,
it was proved in [13] that if n # 4 the counting function N(X) = #{\; : Im}; <
1,0 < Re\; < A} of Rayleigh resonances satisfies

() N(A) = Tpo1cg" T Vol(D)A™ ™ + O(A"72), A — +oo.

So, it is not natural to expect that the scattering phase sy () associated to —Ly
admits an asymptotic similar to (1). However, we showed in [1] that

3) sN(A) = apA™ + ) A"t +1r(\), A — +oo,

where 7(A\) = O(log ) if n = 2, 7(A) = O(A\"~2) if n > 2. Note that the second
terms in (1) and (3) are of the form b;Vol(I'), j = D, N, where b; depend only on
the Lamé constants and n but in a very complicated way. The purpose of this work
is to prove the following

Theorem If O is strictly convex with C*-smooth boundary and if n > 3 is
odd, then there exists a function of the form

n—1

g(A) =Y bpA"F 4 by log A,
k=0

where by = ag, such that for every p > 1,0 < § < 1, we have

(4) NA=27P) = 0ps(1) = O(X°) < sn(A) —g(A) < N(A+A7P) + Op(1),
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Moreover, if O is of analytic boundary, then (4) holds with A\~ replaced by e=(V=)*
Sfor some v > 0 and any 0 < € < 1, and O,(1) replaced by O.(1).

REMARK. Clearly, in the case of odd n, the asymptotics (3) follows from (4)
and (2). The advantage of this approach is that it allows to extend the result to more
general obstacles for which the relations (6) and (7) bellow hold (see [4]).

Proof. We are going to take advantage of the Poisson formula proved in [6],
[14] for compactly supported perturbations of the Laplacian but it is clear from the
proof that it extends to perturbations of L as well. So, we have

Stethi, >0,
(5) un(t) = =
Yeithi, t<o0,

where {);}22, are the resonances of Ly repeated according to multiplicity.
According to the result in [15] (see also [4]), {A\;}32; = Ay U Ay, where A; is
the set of Rayleigh resonances which satisfy

6) 0<Im); < Cph|ReX;|™™, Vm>1,
and A, is a set of resonances satisfying

(7) ImA; > mlog|)j| — C},, Vm > 1.

m

Define the distributions ux(t) € S’(R), k = 1,2, as follows

0 _ oo
(ko) = 3 (/ e p(t)dt + / e”*fp(t)dt), pe C°(R),
A €Ak —00 0

and define si(A) by

ds .
E\E()\) = (2r) Lak(N), sk(0) = 0.
Lemma 1. For A > 1 we have
(8) N =A7P) = 0p5(1) — O(N?) < s1(N) < N(A+A7P) + 0, (1),
for every p > 1, 0<é< 1.

Proof. It is easy to see that

A olm s
s1(A) = Z (2#)_1/ lail_—)j\jjlgda.

A;EA 0
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Since, in view of (6),

A A
2Im \; 2Im A;
S o)t [ 2 g < 3 2—1/——l—d
(2m) / EEPVE S A T W L

AjE€A1,Re N; <0 Aj€A1,Re A; <0

2Im A;
< L <! M|l o
sEIRP ST s

we have, using (6) again,

s= ¥ ot/

2
T 1
A;€A;,Re \;>0 —ReA;/Im A, +

(A=ReX)/Im; 94
< NO+AP) + T (2m)~! / 2974 0(1)
oo T4 +1
A;EALRe ;> A+AP

()\—Rez\j)/lm)\j 2d
T +0(1)

—Cp It g
< —P -1
SNA+AP)+ ) (27) /_w 7 toW
)\_‘,‘EAl
©) SNA+AP)+C Y [N +0(1).
Similarly,
(A—ReX;)/Im \; 2T
s > (2t | 2T
—ReX;/Imx; To+1

A;EALLA<ReA;<A—A—P
=NA-=X"P) =N

B Z (27r)_1 /—Re)\j/ImAj ﬂ N /+oo ﬂ
—oo 7241 " J(a—ReA;)/ImA, T2 +1

A €A <Re A ;<A—A-P
>N —A"P)—O0\(m~)

B Z (27r)_1 /—C;I:|/\j|n+1 2d—7. +/+oo 2d—7'
—00 T2 41 C A+ T2 41

XAEAL A <Re A <A—A—P .6
(10) > NA—=AP)—ONCD) = Cp s S N7,

Now (8) follows from (9) and (10).
Lemma 2. We have u; € C°(R\ 0) and for every integer k > 0,
(11) |0Fua ()] < Cre™ M, [t > 1,

with some constants Cy,C > 0.
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Proof. We have in the sense of distributions for ¢ > 0,

Shuslt) = 3 (iA)e™,

/\jEAz

where, in view of (7), the series is upper bounded by

Z I)\jlke—tlm)\j _<_eC'"t Z I/\jlk——mt

AjEA2 AjEA2

for every m > 1. Since the counting function of {A;} is O(A") (e.g. see [19]), it
suffices to choose m > (k —n — 1)/t in order that the series above be absolutely
convergent. Hence uy € C°°(0,400). The case of t < 0 is treated similarly. Let now
t > 1 and choose m above equal to 1. We clearly have, for any q > 0,

BFua®)] < D ylReTtm N et N
AjE€A2,|N;1<q Aj€A2,|Xj|>g

< Aqe—A;t + et(c'—log q)+(k+n+1)logq Z |)\j|—n—1,

where Aq,A; > 0. Choosing now g so that C’ — logqg = —1, we obtain (11) for
t > 1. Clearly, the case of ¢t « —1 is similar. O

Let ¢(t) € C°(R), #(t) =1 in a neighbourhood of ¢ = 0.

Lemma 3. For A > 1 we have

(12) s3(\) — 52 % d(A) = O(1).

Proof.  For any integer k > 1 we have

(i (2 -

dEst * ‘2’(”) = Fioa (0F{(1 = 8(1)ua(t)}) -
By Lemma 2, 8F{(1 — ¢(t))uz(t)} € L*(R) for every integer k > 0, and hence

d82 d82 X

22 - Z2x0) = 0 ).

Clearly, this implies (12) at once. O

In view of (5), un(t) — u1(t) — uz2(t) is a distribution supported at ¢ = 0, and
hence sy (A) — s1(A) — s2(A) is a polynomial. Therefore, by (8) and (12) we get
(13) NA=A7P) = 0,5(1) < sny(A) — sy *B(N) + N *p(N)

< N(A+A7P) + 0,(1).
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On the other hand, an analogue of Ivrii’s result [3] for the elasticity system yields
(14) (sN * @) (A Za A

where ap = nap. This can be proved by the methods developed in [7] or [2], or
[11], [12], [17], [18]. So, to prove (4) it suffices to show that

n—2

(15) Nxp(A) = BA" 771+ Bu_ylog A+ O(1).

7j=0

It is proven in [13] that modulo a constant, N(\) is equal to the number ]V()\) of
the nonpositive eigenvalues of a matrix-valued self-adjoint A — DO, P(}), with
a principal symbol having n — 1 strictly positive eigenvalues and one eigenvalue
vanishing on ¥, negative in {¢ € T*T': |¢| < c;'} and positive in {¢ € T*T || >
ch} Hence, it suffices to prove (15) with N replaced by N. It follows from the
analysis in [13] that
A
N(\) = (2mi)~'tr lim (P(a —ie)P(0 — i)~} — P(o +ie)P(o + is)'l) do.
0

e—0+t

where P()\) = dP()\)/d\. Hence,

d ~ -
(16) SR

= (27rz')_1tr lim (P(a —1€)P(oc — is)_l

e—0*t J_

—P(0 +1ie)P(o + ie)_l) S\ —o)do.

As in [2], one can deduce from (16) that
(17) LR xd)) = i AnT2
dA - - ’7] I

which clearly implies (15). O

The analytic case is treated similarly using that in this case, according to the
results in [20], the resonances in A; satisfy

0 < Im\; < Ce VRNl

for some constants C,~y > 0.
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Addentum

The purpose of this addentum is to derive (17) from the semi-classical asymp-
totics in [2]. Let p € C§°(R), p(t) = 1 for |t| < 1, and set gy (t) = p(A%%),0 < § < 1.
Denoting the LHS of (16) by {(\), we have
(A1) ¢(N) = Mtr(2mi)~? lim, (POA1 =z —ie))P(A(1 — z — i) !

—P(A(1 4 z +i€))P(A\(1 + z + ie)) Hpa(z)d(Az)dz + O(A™).
On the other hand, given any integer m > 1, for z € C, |2| < CA\~%, we have
. m——l ~
(A.2) P(\(1 - 2)) = P(\) = AzP(\) + > 2FTu(A) + O(A~*™),

k=2

where Tj(A) are A — ¥DO’s of class LO (T"), independent of z. Here and in what
follows O()\ ém) denotes a A — Y DO of class Lgo m(T). Since P(A) is elliptic (of
class L%71(T')), (A.2) can be rewritten in the form

(A3) P11 —2)) = (Qm(\ 2) — 2)Rn (A, 2),
where Q. (A, 2) is a A — ¥ DO, depending analyticaly on a parameter z, of the form
(A.4) Qm(A, 2) = Gm(A) + O(A~0™)

with a A — ¥DO, G,,,(}), of class Lgl’o(l"), independent of z. R,, (), z) is elliptic of
class L%;°(T') uniformly in 2. It follows from the analysis in [13] that (Q, (), 2)—2) !
is analytic in z for Imz # 0, and by Lemma 5.1 of [13], we have

(A.5) 1(@m (X 2) = 2) "Ml eae oy, mery) < {Imszl’

for Im z # 0, with a constant Cs independent of z and A. We also have, in view of
(A.3),

dP(A(1 - 2))

dz
= (14 OO R (1, 2) + (@A, 2) - 2) i)

(A.6) “AP(A\1-2) =

Thus, by (A.1), (A.3) and (A.6), we get

() = tr@ri) ™" lim [ (Qm(A, 2 +1i€) — 2 —ie) ™"

e—0t
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(A7) —(QmA, z —ie) — z + i) "Vpa(2)d(Az)dz + O(AT™).

Let @ be an almost analytic extension of ¢ such that ¢ € C§°(C), p(2) = ¢(z),Vz €
R, and 0;3(z) = O(|[Im 2|V),VN € N. Set $5(z) = $(A°z). By Stokes’ theorem, we
can rewrite (A.7) in the form

A8 () =t [ (@u(h2) =) 9B + OO,

where L(dz) denotes the Lebesgue measure on C. Now, in view of (A.4) and (A.5),
the trace in (A.8) can be treated in precisely the same way as the trace in Theorem
2 of [2] (with h = A~1!) giving asymptotics with error terms O(A~%™) with possibly
a new, smaller § > 0. Since m is arbitrary, this gives an asymptotics of ((A) modulo
O(A™).
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