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CHAPTER 1: INTRODUCTION 

 

1.1 LITERATURE REVIEW 

 

The study of propeller-hull and propeller-hull-rudder interaction is important to 

predict the efficiency of the propeller as well as its influences on the resistance of the 

ship hull. By the Computational Fluid Dynamics (CFD) method, the viscous flow 

computation of the ship hull is normally coupled with some propeller programs either 

by viscous method or by potential method.  In the viscous model, the propeller, hull and 

rudder geometries are all resolved directly in the RANS grid in which the solid bodies 

are considered as no-slip faces and all of these become parts of the viscous flow solution.  

This method gives very detailed information about the stern and propeller flows, but the 

grid generation is considerably complicated and unsteady flow simulation is required.  

For some applications, the high level of details about the propeller flow itself is not 

required, so the inviscid approach can be applied.  In this approach, both hull and 

rudder are still modeled geometrically in the RANS grid, but a parameter so called 

body-force field, which reflects the time-averaged influence of the propeller on the fluid 

in the propeller region, substitutes for the propeller geometry. The applied body-force 

fields are usually calculated by means of potential theory-based propeller models, but 

depending on how the individual propeller models are coupled with the RANS solver, 

they can be divided into prescribed and interactive models.  In the prescribed model, 

the body-force field is calculated only once and then inserted into the RANS solver. 

Usually, the model is based on very few input parameters and simple equations.  These 

will give a crude body-force distribution, but based on the nominal flow, the model 
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cannot account for the mutual interaction between the propeller and the hull/rudder 

flows but this model is still widely used for some specific purposes. In the interactive 

model, the propeller and RANS codes are run in turn to iterate towards a solution, 

which takes the effective propeller inflow into account.  The propeller models applied 

in connection with the interactive approach range from relatively simple models such as 

lifting line type model to vortex lattice or even surface singularity potential flow models.  

Currently, the interactive model developed by Kyushu University which is known as 

Yamazaki Model is well known and is widely used over the world. 

 

1.2 RESEARCH HISTORIES 

 

Stern (et al., 1988a) presented a comprehensive viscous method for the computation 

of propeller-hull interaction in which a numerical method for calculating the viscous 

flow over and in the wake of a ship is coupled with a propeller-performance program in 

an interactive and iterative manner to predict the combined flow field which is 

completed by Stern (et al., 1988b) in the validation of the method.  There also had 

axisymmetric body-force propeller model of Hough and Ordway (Stern et al., 1991) in 

which the thrust and torque of the propeller is prescribed and the propeller performance 

program gives the body-force to give the propulsive force for the ship. In 1990, Kim and 

Stern developed a “complete” viscous-solution method for rotating propeller blades to 

treat the complex blade-to-blade flow.  After the publication of Stern (et al., 1988a), a 

number of researchers have pursued essentially the same approach to propeller-hull 

interaction (Piquet et al., 1987, Yang et al., 1990, Dai et al., 1991, Zhang et al., 1991). 

 Simonsen (et al., 2005) presented a model that interactively determines 
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propeller-hull interaction with a simplified potential theory-based infinite-bladed 

propeller model coupled with RANS code CFDSHIP-IOWA.  Takada and El Moctar (et 

al., 2000), Kawamura (et al., 1997), Chou (et al., 2000), Tahara and Ando (et al., 2000), 

and Simonsen and Cross-Whiter (et al., 2002) have presented different propeller models 

ranging from prescribed models to interactive panel models in the calculation of 

body-force field for the case of propeller behind the ship without rudder.  In 

Abdel-Maksoud (et al., 2000), a propeller behind a ship is modeled by its real geometry. 

 

1.3 OBJECTIVES AND SCOPES OF THE WORK 

 

Many researchers have presented several kinds of different propeller models and 

proved the advantage of each method.  This research will present the traditional 

propeller-hull interaction problem but in different approach with simplicity.  A simple 

body-force distribution model has been developed in the author’s laboratory of Osaka 

University and the propeller model has proved its capability in the open water 

computation and its characteristics got good agreements with experiment.  The very 

first idea was proved by using the polar type grid for the body-force computation 

(Kuroda et al., 2012).  After that, the research has been extended by using the 

Cartesian rectangular grid type to show that the method can be applied in any types of 

grid (Yokota et al., 2013) and consequently, other improvements such as the simulations 

in several immersions to learn the free surface effect on the propeller by this method 

(Emel et al., 2014). All of these open water computations give very good agreement with 

the corresponding experiment data. However, the capability and application of the 

model will still need to prove in the complicated wake field behind the ship to convince 
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whether it can predict the propulsive identities reasonably or not.  This brings the 

current research into the author’s hand and this thesis will mainly discuss about the 

propeller-hull interaction and propeller-hull-rudder interaction by coupling the 

proposed propeller model with the RANS code and the flow behaviors as well as the 

propulsive quantities will be analyzed in details.  In general the objectives of the 

research are 

(1) To prove that the proposed simple body-force distribution model is working well 

in the wake field of ship 

(2) To study the Propeller-Hull and Propeller-Hull-Rudder interaction using the 

proposed propeller model and validate with experimental results as well as to 

point out the advantages of this new proposal over the other methods 

(3) To study the importance of the inclusion of the rotational effect of hub in the 

computation of propeller force 

For the current research, the Series 60 CB=0.6 hull form (which will be abbreviated as 

S60 throughout this thesis) is selected as a representative fine hull form.  It is 

conceived to provide systematic information on the design of lines for single-screw 

merchant ships. A full account of the original methodical series is provided by Todd (et 

al., 1963) and the parent form was designed based on considerations of then successful 

ship designs.  The propeller is the MAU methodical series with 5 blades and located 

with the shaft immersion ratio, 0.88. Moreover, the research is extended to the second 

variant of Korean tanker known as KVLCC2 which was designed at the Korea Research 

Institute for Ships and Ocean Engineering around 1997 to be used as a test case for 

CFD predictions. Not only in CFD, but several extensive research activities are also 

being carried out by EFD method. Ranging from nominal wake measurements to 
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seakeeping predictions, the ship model is largely employed by many institutes.  In this 

thesis, the propeller-hull-rudder interaction will be the study case by using KVLCC2 

hull.   

The thesis will cover four main parts of study cases; the propeller-hull interaction 

without-hub condition of S60 ship, with-hub condition of S60 ship, the without-rudder 

computation and with-rudder computation of KVLCC2 model.  In general overview of 

the thesis, in Chapter 2, the computational background, the governing equations, 

turbulence models will be explained in the mathematical way. The chapter will also 

include the explanations on the mesh generation of the overset grid type by using 

PointWise Gridgen software and the theoretical description of the proposed propeller 

model.   

The background of computation, the result and discussion of the results with 

Experimental Fluid Dynamics (EFD) data for S60 hull are discussed thoroughly in 

Chapter 3 and 4.  The propeller-hull and propeller-hull-rudder interaction case for 

KVLCC2 ship is explained and discussed in Chapter 5. The study of coordinate systems 

is explained in Chapter 6 as the proposed propeller model is intended for the 

self-propulsion test in inertial coordinate system.  But, due to the lack of time, these 

parts are out of scope and marked as future plan so that only the coordinate analysis is 

studied.  The conclusion section in Chapter 7 includes the summary of the research 

and points out the necessary works that need to be carried out in the future. 
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CHAPTER 2: CFD METHODS 

 

2.1 OVERVIEW OF CFDSHIP-IOWA VERSION 4 

 

  CFDSHIP-Iowa v4.0 (Carrica et al., 2010) is used for the CFD computations. It is 

an unsteady single-phase level-set solver with dynamic overset grids designed for ship 

applications using either absolute or relative inertial non-orthogonal curvilinear 

coordinate system for arbitrary moving but non-deforming control volumes.  It solves 

the continuity and unsteady incompressible RANS equation using a Menter’s blended 

𝜅 − 𝜀  / 𝜅 − 𝜔 model for turbulence with wall-function option and with capabilities for 

detached eddy simulation (DES) turbulence modeling. A multi-block dynamic overset 

grid approach is used to allow relative motions between the grids for 6DoF ship motions. 

Captive, semi-captive, and full 6DoF capabilities for multi-objects with parent/child 

hierarchy are available but 6DoF function is deleted out in the present work and only 

the static overset grid system is used. The computation is performed for the ship-fixed 

case parallelization with MPI-based domain decomposition wherein each grid block is 

partitioned into sub-blocks by the user by specifying the number of times the grid needs 

to be split in I, J and K directions. The code provides propeller modeling using 

simplified body-force or direct discretization and has a proportional-integral-differential 

(PID) controller to allow self-propulsion or auto-piloted simulations. 

   The governing equations are discretized using finite difference schemes on 

body-fitted curvilinear grids. In the turbulence and momentum equations, the time 

derivatives are discretized using second order finite Euler backward difference, the 

convection terms are discretized with higher order upwind formula, and viscous terms 
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are computed by second order central difference scheme. Projection method, a two-stage 

fractional step scheme, is employed to couple pressure and velocity field effectively 

using the PETSc toolkit (Krylov subspace method; BCGSL, Stabilized version of 

BiConjuate Gradient Squared method). In order to solve the system of the discretized 

governing equations, between three and five inner iterations are run in each time step 

and solutions are considered to be converged once the error for velocities, pressure, and 

level-set reach to less than 10-5, 10-8, and 10-5 respectively.  

 

2.2 MATHEMATICAL MODEL OF THE CODE 

 

  The information of the mathematical background of the computation code 

CFDSHIP-Iowa v4.0 is summarized and provided in this section.  All variables and 

properties are non-dimensionalized with the reference velocity 0U which is ship speed 

and length between fore and aft perpendiculars PPL  , water density  and viscosity  .  

The Reynolds number and Froude number are defined as in equation (1) and (2). 

𝑅𝑒 =
𝜌𝑈0𝐿𝑃𝑃

𝜇
                                                                           (1) 

𝐹𝑟 =
𝑈0

√𝑔𝐿𝑃𝑃

                                                                            (2) 

 

2.2.1 Governing Equations 

 

  In Cartesian coordinates, the incompressible continuity and momentum equations in 

non-dimensional form with the body-force term are expressed as in equation (3) and (4) 

with piezometric pressure described in equation (5).  
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𝜕𝑈𝑖

𝜕𝑋𝑖
= 0                                                                                               (3) 

𝜕𝑈𝑖

𝜕𝑡
+ 𝑈𝑗

𝜕𝑈𝑖

𝜕𝑋𝑗
= −

𝜕𝑝̂

𝜕𝑋𝑖
+

1

𝑅𝑒

𝜕2𝑈𝑖

𝜕𝑋𝑗𝜕𝑋𝑗
−

𝜕

𝜕𝑋𝑗
𝑈𝑖

′𝑈𝑗
′̅̅ ̅̅ ̅̅ + 𝑓𝑏𝑖

                              (4) 

𝑝̂ =
𝑝 − 𝑝𝑎

(𝜌𝑈0
2)

+
𝑍

𝐹𝑟2
                                                                        (5) 

The Reynolds stresses in equation (4) which is related to the mean rate of strain 

through an isotropic eddy viscosity is calculated as: 

−𝑈𝑖
′𝑈𝑗

′̅̅ ̅̅ ̅̅ = 𝜈𝑡 [
𝜕𝑈𝑖

𝜕𝑋𝑗
+

𝜕𝑈𝑗

𝜕𝑋𝑖
] −

2

3
𝛿𝑖𝑗𝑘                                                      (6) 

   For the computation, the governing equations are transformed by applying the chain 

rule for partial derivatives from the physical domain in Cartesian coordinates (𝑋, 𝑌, 𝑍, 𝑡) 

into the computational domain in non-orthogonal curvilinear coordinates (𝜉, 𝜂, 𝜁, 𝜏) 

where all cells are cubes with unit sides.  A partial transformation is used in which 

only the independent variables are transformed, leaving the velocity components in the 

base coordinates. 

 

2.2.2 Turbulence Model 

  

  A number of turbulence models are available such as 𝜅 − 𝜀  / 𝜅 − 𝜔based isotropic or 

anisotropic RANS and DES approach with near-wall and wall functions. In this study, 

Menter’s blended 𝜅 − 𝜀  / 𝜅 − 𝜔 without wall function is used (Menter et al., 1994).  It 

is also known as the shear-stress transport (SST) model which effectively blend the 

robust and accurate formulation of the 𝜅 − 𝜔 model in the near-wall region with the 

free-stream independence of the 𝜅 − 𝜀  model in the far field. To achieve this, the 𝜅 − 𝜀   

model is converted into a 𝜅 − 𝜔 formulation. The SST 𝜅 − 𝜔 model is similar to the 

standard 𝜅 − 𝜔 model, but includes some refinements in which the standard 𝜅 − 𝜔 
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model and the transformed 𝜅 − 𝜀 model are both multiplied by a blending function and 

both models are added together. The blending function is designed to be one in the 

near-wall region, which activates the standard 𝜅 − 𝜔 model, and zero away from the 

surface, which activates the transformed 𝜅 − 𝜀   model. It incorporates a damped 

cross-diffusion derivative term in the  𝜔  equation. The definition of the turbulent 

viscosity is modified to account for the transport of the turbulent shear stress. And the 

modeling constants are different. These features make the SST 𝜅 − 𝜔 model more 

accurate and reliable for a wider class of flows (e.g., adverse pressure gradient flows, 

airfoils, etc.) than the standard 𝜅 − 𝜔 model. Other modifications include the addition 

of a cross-diffusion term in the 𝜔 equation and a blending function to ensure that the 

model equations behave appropriately in both the near-wall and far-field zones. 

∂𝑘

𝜕𝑡
+ 𝑈𝑙

𝜕𝑘

𝜕𝑋𝑙
= −𝑈𝑙

′𝑈𝑚
′

𝜕𝑈𝑙

𝜕𝑋𝑚
+

𝜕

𝜕𝑋𝑙
{

𝑣𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑋𝑚
+

1

𝑅𝑒

𝜕𝑘

𝜕𝑋𝑚
} − 𝛽∗𝑘𝜔                  (7) 

∂𝜔

𝜕𝑡
+ 𝑈𝑙

𝜕𝜔

𝜕𝑋𝑙
=

𝜕

𝜕𝑋𝑚
{

𝑣𝑡

𝜎𝜔

𝜕𝜔

𝜕𝑋𝑚
+

1

𝑅𝑒

𝜕𝜔

𝜕𝑋𝑚
} − 𝛼

𝜔

𝑘
𝑈𝑙

′𝑈𝑚
′

𝜕𝑢𝑙

𝜕𝑋𝑚
− 𝛽𝑘𝜔2                    

+2(1 − 𝐹1)𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑋𝑚

𝜕𝜔

𝜕𝑋𝑙
                                                    (8) 

Where, 

𝑣𝑡 =
𝑎1𝑘

max (𝑎1𝜔, Ω𝐹2)
,   𝑎1 = 0.31,    Ω = |Ω𝑙𝑚|, |Ω𝑙𝑚| = √2Ω𝑙𝑚Ω𝑙𝑚, Ω𝑙𝑚 =

1

2
(

𝜕𝑈𝑙

𝜕𝑋𝑚
+

𝜕𝑈𝑚

𝜕𝑋𝑙
) 

𝐹2 = tanh(𝑎𝑟𝑔2
2) , 𝑎𝑟𝑔2 = 𝑚𝑎𝑥 [2

√𝑘

0.09𝜔𝛿
,
500𝜈

𝑦2𝜔
] 

𝐹1 = tanh(𝑎𝑟𝑔1
4) , 𝑎𝑟𝑔1 = 𝑚𝑖𝑛 [𝑚𝑎𝑥 [2

√𝑘

0.09𝜔𝛿
,
500𝜈

𝛿2𝜔
] ,

4𝜌𝜎𝜔2𝑘

𝐶𝐷𝑘𝜔𝛿2
] 

𝐶𝐷𝑘𝜔 = 𝑚𝑎𝑥 [2𝜌𝜎𝜔2

1

𝜔

𝜕𝑘

𝜕𝑋𝑚

𝜕𝜔

𝜕𝑋𝑙
, 10−20] 

  Where 𝛿  is the distance to the wall, 𝛽∗ = 0.09, 𝜎𝜔2 = 0.856, 𝜅 = 0.41 are model 

constants and 𝜎𝑘 , 𝜎𝜔, 𝛽 𝑎𝑛𝑑 𝛼 =
𝛽

𝛽∗ − 𝜎𝜔𝜅2/√𝛽∗ are calculated by weight averaging 
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the 𝜅 −  𝜔 and standard 𝜅 − 𝜀   models with the weight coefficient 𝐹1which is 1 near wall 

region and 0 at outer place. 

 

2.2.3 Single Phase Level-Set Free Surface Model 

 

  The free surface detection is computed by the level set method. The standard level set 

method for incompressible free surface viscous flows is originated about 1995 which is 

well known as two-phase level set method in which the solution is obtained in both 

fluids.  In this computation, only one phase will be taken into account to get the 

solution known as single phase level set method. The 3D level set function ∅ is defined 

in the whole domain with its value related to the distance to the interface.  The sign of 

∅ is arbitrarily set to negative in air and positive in water and the iso-surface ∅ = 0 

represents the free surface.  Since the free surface is considered a material interface, 

then the equation for the level set function is:  

𝜕∅

𝜕𝑡
+

𝜕(∅𝑈𝑖)

𝜕𝑋𝑖
= 0                                                                        (9) 

And from the level set function, the normal can be computed as 

𝒏 = −
∇∅

|∇∅|
                                                                           (10) 

The boundary conditions for the velocity at the interface is  

∇𝑼. 𝒏 = 0                                                                               (11) 

In addition, a zero normal gradient for both 𝑘 and 𝜔 is used at the free surface as 

∇𝒌. 𝒏 = 0                                                                             (12) 

∇𝝎. 𝒏 = 0                                                                             (13) 

Details of the level set method used in CFDSHIP-Iowa including re-initialization 
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techniques are described in Carrica et al. (2007a). 

 

2.3 GRIDS, COMPUTATIONAL DOMAIN AND BOUNDARY CONDITIONS  

 

2.3.1 S60 Case 

  

  The whole computational grid domain is constructed by totally five blocks for 

without-hub computation namely boundary layer (BL) grids (Port & Starboard), 

propeller grid, wake refinement grid and background grid, and by seven blocks for 

with-hub condition with additional hub grids (Port & Starboard).  As no wall-function 

is utilized, the BL grids are generated around the solid hull surface with the 

non-dimensional minimum grid spacing 6101  from the surface. The propeller grid is 

also generated by adequate grid size in order to compute the propeller force. The wake 

refinement grid is added near the stern region that covers the propeller in order to 

capture the complicated wake field injected from the rotating propeller.  The 

background grid is the outermost part of the domain with the finer grid spacing near 

the free surface with non-dimensional minimum grid spacing in order of 510 .  In the 

with-hub case, the hub grids for port and starboard side are generated with the 

non-dimensional minimum grid spacing 6101   which overlaps on the ship hull solid 

surface. H-O grid typology is applied in the mesh generation with H-type for wake 

refinement and background grid while O-type is for BL grids and propeller grid.  

   Meshes are generated by PointWise Grid generation software and the necessary 

boundary conditions are set in the software. The overset interpolation information 

between each block is determined by SUGGAR which is originally developed by IIHR, 
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the University of Iowa. Some solid surface interpolation points will be cut-out by 

SUGGAR and those that will not be in the computation are defined as ghost cells and 

Panel Weights Programs are used to determine the ghost cell size for the whole domain. 

Totally, 6.8 million grids is used for without-hub condition and 8.3 million is used for the 

with-hub case which are listed in Table 2-1 and 2-2 with grid topology. 

 

Table 2-1 Details of Grids for without-hub condition (S60) 

 Topology I J K Total 

Boundary Layer Starboard O 154 50 143 1101100 

Boundary Layer Port O 154 50 143 1101100 

Propeller block O 25 63 101 159075 

Wake Refinement H 201 51 51 522801 

Background H 216 121 151 3946536 

 

Table 2-2 Details of Grids for with-hub condition (S60) 

 Topology I J K Total 

Boundary Layer Starboard O 170 51 137 1187790 

Boundary Layer Port O 170 51 137 1187790 

Hub Starboard O 31 49 25 37975 

Hub Port O 31 49 25 37975 

Propeller block O 27 115 101 313605 

Wake Refinement H 251 81 81 1646811 

Background H 216 121 151 3946536 

 

  The whole grid domain with boundary conditions is shown in Figure 2-1.  The free 



 27 

surface is located at Z = 0 and 0.22Lpp height above the free surface with 1LPP depth is 

generated.  The boundary layer grid is shown to the starboard part only for the clear 

vision of the hull solid surface where no-slip boundary condition is applied.  The 

information for the detailed boundary condition is listed in Table 2-3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-1 Overset grid system, seven blocks (five for without-hub case): 

boundary layer, hub, propeller, background and refinement and overset view in 

the stern part 
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Table 2-3 Boundary conditions for both S60 and KVLCC2 models 

 Inlet Exit Bottom Top Sides 

𝑝 𝜕𝑝

𝜕𝑛
= 0 

𝜕𝑝

𝜕𝑛
= 0 

𝑝 = 0 
𝜕𝑝

𝜕𝑛
= 0 

𝜕𝑝

𝜕𝑛
= 0 

𝑘 𝑘𝑓𝑠 =
9 × 10−3

𝑅𝑒
 

𝜕𝑘

𝜕𝑛
= 0 

𝜕𝑘

𝜕𝑛
= 0 

𝜕𝑘

𝜕𝑛
= 0 

𝜕𝑘

𝜕𝑛
= 0 

𝜔 𝜔𝑓𝑠 = 9 
𝜕𝜔

𝜕𝑛
= 0 

𝜕𝜔

𝜕𝑛
= 0 

𝜕𝜔

𝜕𝑛
= 0 

𝜕𝜔

𝜕𝑛
= 0 

U 𝑈 = 𝑈0 
𝜕2𝑈

𝜕𝑛2
= 0 

𝜕𝑈

𝜕𝑛
= 0 

𝜕𝑈

𝜕𝑛
= 0 

𝜕𝑈

𝜕𝑛
= 0 

V 𝑉 = 0 
𝜕2𝑉

𝜕𝑛2
= 0 

𝜕𝑉

𝜕𝑛
= 0 

𝜕𝑉

𝜕𝑛
= 0 

𝜕𝑉

𝜕𝑛
= 0 

W 𝑊 = 0 
𝜕2𝑊

𝜕𝑛2
= 0 

𝜕𝑊

𝜕𝑛
= 0 

𝜕𝑊

𝜕𝑛
= 0 

𝜕𝑊

𝜕𝑛
= 0 

 

2.3.2 KVLCC2 Case 

 

  In KVLCC2 case, the two cases are studied; one is propeller-hull interaction and the 

other is propeller-hull-rudder interaction.  In the first case, the wake field produced 

from the propeller model is easy to observe and the analyses can be carried out easily. 

As the rudder part is not included, the capability of the proposed propeller model can be 

studied clearly. The latter case includes the rudder to understand the effect of rudder on 

the propeller and hull.  The total computational domain is comprised of 9 blocks for 

without-rudder case (12.9 million grids) and 11 blocks for with-rudder case (13.1 million 

grids). All the grid generation process and overset method is similar to S60 case and the 

total grid sizes for both cases are listed in Table 2-5 and 2-6.  The computational 

domain and geometry of the ship without-rudder and with-rudder cases are shown in 

Figure 2-2.  The boundary conditions are similar to S60 case and Table 2-3 can be 

referred. 
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Table 2-4 KVLCC2 geometry data 

 

 

  In this case, as the stern part is as not simple as S60, finer port and starboard blocks 

known as the tail blocks are generated just for the stern part and they overlap the 

original boundary layer blocks.  Then, the hub blocks overlap the tail blocks and 

Main Particulars Full Scale Osaka University Model 

Scale 1 1/100 

𝐿𝑃𝑃 (m) 320.0 

 

3.2 

𝐿𝑤𝑙 (m) 325.5 3.255 

𝐵𝑤𝑙 (m) 58 0.58 

Depth(m) 30 0.3 

Draft (m) 20.8 0.208 (for even keel) 

Displacement (m3) 312622 0.313 

S w/o rudder (m2) 27194 2.71 

CB 0.8098 0.8098 

CM 0.9980 0.9980 

LCB (%), fwd + 3.48 3.48 

Propeller 

Type FP FP 

No. of blades 4 4 

Diameter (m) 9.86 0.0986 

P/D (0.7R) 0.721 0.721 

Ae/A0 0.431 0.431 

Rotation Right hand Right hand 

Hub ratio 0.155 0.155 

Rudder 

Type Horn Horn 

S of rudder (m2) 273.3 0.02733 

Lat. Area (m2) 136.7 0.01367 

Service speed 

𝑈0 (m/s, full scale: kn) 15.5 0.795 

𝐹𝑟 0.142 0.142 



 30 

SUGGAR is used to determine the overset structure and Panel weight program is used 

for ghost cells. The general dimension of KVLCC2 used in this thesis is listed in Table 

2-4. 

Table 2-5 Details of Grids for without-rudder condition (KVLCC2) 

 Topology I J K Total 

Boundary Layer Starboard O 154 50 144 1108800 

Boundary Layer Port O 154 50 144 1108800 

Tail part (Starboard) O 55 50 40 110000 

Tail part (Port) O 55 50 40 110000 

Hub (Starboard) O 55 50 40 110000 

Hub (Port) O 55 50 40 110000 

Propeller block O 27 126 101 343602 

Wake Refinement H 281 141 151 5982771 

Background H 216 121 151 3946536 

 

Table 2-6 Details of Grids for with-rudder condition (KVLCC2) 

 Topology I J K Total 

Boundary Layer Starboard O 154 50 144 1108800 

Boundary Layer Port O 154 50 144 1108800 

Tail part Starboard O 55 50 40 110000 

Tail part Port O 55 50 40 110000 

Hub Starboard O 55 50 40 110000 

Hub Port O 55 50 40 110000 

Propeller block O 27 126 101 343602 

Rudder Starboard O 44 43 70 132440 

Rudder Port O 44 43 70 132440 

Wake Refinement H 281 141 151 5982771 

Background H 216 121 151 3946536 
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Figure 2-2 Overset grid systems, nine blocks for without-rudder case and 

eleven blocks for with-rudder case: boundary layer, stern, hub, propeller, 

rudder, wake refinement and background and overset view in the stern part 
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2.4 PROPELLER MODEL 

 

The propeller model is treated as the infinite-bladed model with a simplified 

quasi-steady blade element theory with consideration of time averaged propeller 

induced velocity field.  The propeller blade has airfoil shape and twist distribution and 

the blade element uses these geometrical properties to determine the forces exerted by a 

propeller on the flow field. The propeller blade which has radius 𝑅 is split radially into 

each piece forming airfoil control volume with the radial distance 𝑟 from the center of 

the propeller.  

The blade element theory for thrust and torque calculation for one blade element is 

illustrated in Figure 2-3. The drag and lift forces are computed on each segment and the 

time averaged body force components can be calculated by equation (28) approximately 

at any point for 𝑅 < 𝑟 < 𝑅𝐵 where 𝑅𝐵  is hub radius.  The integration of forces inside 

the propeller radius gives thrust (T) and torque (Q) of the propeller. When the propeller 

is rotating, with effective inflow velocity, there will be an induced velocity by the 

propeller and the RANS computation with body force distribution can give the resultant 

axial velocity component and the propeller model is running based on this value.  

Based on Figure 2-3, the resultant velocity 𝑉𝑅 is calculated as in equation (14) and 

hydrodynamic pitch angle 𝜑  is computed in equation (15) using the axial and 

tangential velocity components.  Here, 𝑈𝑡 is the total axial velocity component at the 

propeller plane. 𝑉𝜃 is the tangential velocity with the induced velocity which can be 

calculated as in equation (16) by the cross-flow components V and W at the propeller 

plane. The formulations in equation (17) and (18) show geometrical computation on the 

grid at propeller plane with respect to the shaft center position and terms with 
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subscript SC refer to positions at shaft center.  

𝑉𝑅 = √𝑈𝑡
2 + (2𝜋𝑛𝑟𝑒𝑣𝑟 − 𝑉𝜃)2                                                         (14) 

𝜑 = 𝑡𝑎𝑛−1 (
𝑈𝑡

2𝜋𝑛𝑟𝑒𝑣𝑟 − 𝑉𝜃
)                                                           (15) 

𝑉𝜃 = 𝑉 sin 𝜃 − 𝑊 cos 𝜃                                                              (16) 

 

 

 

 

 

 

 

 

 

 

 

 

cos 𝜃 =
(𝑌 − 𝑌𝑆𝐶)

√(𝑌 − 𝑌𝑆𝐶)2 + (𝑍 − 𝑍𝑆𝐶)2
=

(𝑌 − 𝑌𝑆𝐶)

𝑟
                      (17) 

sin 𝜃 =
(𝑍 − 𝑍𝑆𝐶)

√(𝑌 − 𝑌𝑆𝐶)2 + (𝑍 − 𝑍𝑆𝐶)2
=

(𝑍 − 𝑍𝑆𝐶)

𝑟
                     (18) 

The drag coefficient DC  is assumed to be 0.02 which has been determined by several 

experiments and the lift coefficient is calculated by equation (19) as a function of inflow 

angle of attack.  The formulation for inflow angle of attack is shown in equation 

(20~22) based on the geometric pitch (H) and effective pitch (He=1.08H for S60 and 

He=1.1H for KVLCC2) of the propeller.  The variable 𝑘1 in equation (19) represents the 

 

 

 

  

 

 

Figure 2-3 Blade element theory 
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blade-to-blade interaction effect calculating based on the maximum chord length of the 

blade which is at 𝑟 = 0.7𝑅 of the blade for the current propeller and is computed by 

equation (22).   

𝐶𝑙 = 2𝜋𝑘1 sin(𝛼0 + 𝛼𝑔1)                                                         (19) 

𝛼0 = tan−1 (
𝐻

2𝜋𝑟
) − 𝜑                                                             (20) 

𝛼𝑔1 = tan−1 (
𝐻𝑒

2𝜋𝑟
) − tan−1 (

𝐻

2𝜋𝑟
)                                       (21) 

𝑘1 = 1.07 − 1.05 (
𝑐0.7𝑅

𝑅
) + 0.375 (

𝑐0.7𝑅

𝑅
)

2

                      (22) 

The segmental lift and drag forces are calculated by equation (23~24) where, c is the 

chord length of each segment.  The blade has a suction surface and pressure surface, 

and the vortices shed from the blade tips into the slip stream on the induced velocity 

field that can create multiple helical structures in the wake and play a major role in the 

induced velocity distribution.  For this deficiency, Prandtl’s tip correction factor is used 

in the computation as shown in equation (25). 

𝑑𝐿 = 0.5𝐶𝑙𝑉𝑅
2𝑐                                                                   (23) 

𝑑𝐷 = 0.5𝐶𝐷𝑉𝑅
2𝑐                                                                 (24) 

𝐹 =
2

𝜋
cos−1 𝑒−𝑓𝑡𝑖𝑝 , 𝑓𝑡𝑖𝑝 =

𝑁

2

𝑅 − 𝑟

𝑟 sin 𝜑
                                                (25) 

𝑑𝑇 = (𝑑𝐿 cos 𝜑 − 𝑑𝐷 sin 𝜑)𝐹                                                  (26) 

𝑑𝑄 = (𝑑𝐿 sin 𝜑 + 𝑑𝐷 cos 𝜑)𝑟𝐹                                                (27) 

𝑓𝑏𝑋 =
𝑑𝑇

∆𝑋

𝑁

2𝜋𝑟
, 𝑓𝑏𝜃 =

𝑑𝑄

∆𝑋

𝑁

2𝜋𝑟2
                                            (28) 

𝑓𝑏𝑌 = 𝑓𝑏𝜃 sin 𝜃 , 𝑓𝑏𝑍 = −𝑓𝑏𝜃 cos 𝜃                                               (29) 

𝑇 = ∫ ∫ 𝑓𝑏𝑋𝑟∆𝑋𝑑𝜃𝑑𝑟
2𝜋

0

𝑅

𝑟𝐵

, 𝑄 = ∫ ∫ 𝑓𝑏𝜃𝑟2∆𝑋𝑑𝜃𝑑𝑟
2𝜋

0

𝑅

𝑟𝐵

                             (30) 

𝐾𝑇 =
𝑇

𝑛𝑟𝑒𝑣
2𝐷𝑖𝑎4

,          𝐾𝑄 =
𝑄

𝑛𝑟𝑒𝑣
2𝐷𝑖𝑎5

                                                (31) 
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The segmental thrust and torque forces are computed as in equation (26) to (27) with 

tip loss correction factor. The axial and tangential body-force terms are calculated as in 

equation (28) in time-averaged manner which is implemented in equation (4), where 

∆𝑋 represents grid spacing at the propeller plane in X1 direction and Y and Z 

components of body-force are computed in equation (29) (Yokota et. al., 2013). The 

integration of the segmental thrust and torque forces from the hub to the tip gives the 

total thrust and torque forces (equation (30)) and the corresponding thrust and torque 

coefficients are calculated in equation (31). 

It is obvious that the proposed method is very simple and a comparison can be made 

with another simple infinite propeller model, which is proposed by Kyushu University 

and the model is known as Yamazaki model.  In Yamazaki model, the effective wake at 

the propeller plane is extracted from the inflow total velocity components of the CFD 

solution and these are used to calculate the thrust and torque distribution by potential 

flow theory. This current method is an equivalent method in viscous flow code with 

Kyushu University method but no extraction step is required for effective wake. Within 

this theory, the inflow velocity components, including induced velocity effect by time 

averaged infinite bladed vortex system shed by propeller blade, to the propeller are 

determined by CFD code and thrust and torque distributions are calculated by blade 

element theory with some modification similar to the potential flow theory. Therefore, 

the potential flow code is not required in the proposed method which is simplifier.  

The propeller for S60 is fixed pitch and KVLCC2 propeller is variable pitch.  The 

detailed dimensions for S60 propeller is described in section 2.5 and for KVLCC2 

propeller is listed in Table 2-4. For the computation, all variables are 

non-dimensionalized and the chord length distribution for S60 is shown in Figure 2-4 
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and the pitch and chord length distribution for KVLCC2 is shown in Figure2-5 and 2-6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 Chord length distribution of S60 propeller 

Figure 2-5 Chord length distribution of KVLCC2 propeller 

Figure 2-6 Pitch distribution of KVLCC2 propeller 
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2.5 EFD BACKGROUNDS 

 

2.5.1 S60 case 

 

  Extensive experimental data is obtained for the Series 60 model at the Osaka 

University towing tank as a cooperative study with the Iowa Institute of Hydraulic 

Research (Toda et al., 1990). The tank is 100 m long, 7.8 m wide and 4.35 m deep. It is 

equipped with a drive carriage and also equipped with plunger-type wave maker 

generating regular and irregular waves up to 500 mm wave height and wave length of 

0.5 to 15m. The wave absorber is a small fixed gridiron beach at the basin's end, with 

movable beaches along its sides.  

   Mean-velocity and pressure field measurements are made for both the without and 

with-propeller conditions for Series 60 CB = 0.6 hull form at numerous stations 

upstream and downstream of the propeller and in the near wake region. Surface 

pressure distributions and wave profiles are measured for both conditions.  Resistance 

and self-propulsion tests are also conducted. 

  Two 4 m long models are constructed for the experiments: a wooden model is used for 

the mean-velocity and pressure field measurements; and a fiber-reinforced-plexiglass 

model with pressure taps is used for the surface-pressure measurements.  In order to 

induce turbulent flow, a row of trapezoidal studs with 1.5 mm height, 1.5 mm length 

and 2 mm front width and 1 mm back width, are fitted at 10 mm spacing on both models 

at X=0.05.  Single- and duplex-balance rod-deflection type dynamometers are used for 

the resistance and propeller open-water tests, respectively.  These same dynamometers 

are also used for the self-propulsion tests. The propeller is a conventional stock 
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propeller designed based on the MAU methodical series (Tsuchida et al., 1958) with 

145.64 mm diameter, constant pitch, zero skew, 6 degree rake, 5 blades, and MAU n=25 

sections. For each experiment, the voltage output from the transducers is sampled, 

digitized, recorded, and analyzed by a microcomputer on the carriage.  The 

measurements are monitored with a multi-pen recorder during each carriage run.  

Froude number for S60 is 0.16 and Reynolds number is 3.96 × 106. 

 

2.5.2 KVLCC2 Case 

 

  The PIV measurement for KVLCC2 ship model with 1/100 scale ratio has been tested 

in the same towing tank in 2013 in different seasons (one in summer and one in winter).  

The principle dimensions of the model and the propeller is listed in Table 2-4.  The ship 

model, the coordinate system applied, the propeller models (right handed and left 

handed models) and the rudder model is shown in Figure 2-7. The experimental set up 

of PIV system is shown in Figure 2-8. The experiments include the open water propeller 

test, the bare hull test, the test without propeller and the test with different kinds of 

rudder ranging from normal rudder to the ones fitted with energy saving devices.  The 

Reynolds number for KVLCC2 is 2.05 × 106. 

   The open water propeller test is carried out first. There are two propeller models for 

right handed and left handed and both of which are designed with same pitch 

distribution. Both propellers are tested and the open water characteristic curve for each 

is evaluated separately.  The two results are almost similar which are illustrated in 

Figure A-2 of Appendix. The ship model is tested for bare hull resistance test and the 

self-propulsion point is found out and PIV measurement is carried out for the nominal 
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wake field.  For the wake field measurement, the propeller revolution rate is set at 16.5 

rps which is for self-propulsion point and 11.1 rps for ship point.  As the laser 

measurement can be read only one side of the ship, the experiments are carried out with 

left-handed propeller and right handed propeller separately and the port side data and 

starboard data are superposed finally.  The tests are carried out without rudder and 

with different rudder types including normal rudder to special types fitted with energy 

saving devices. The purpose is not only to understand the flow field of the tanker but 

also the advantages of the energy saving devices.  The experimental results until the 

test with normal-rudder will be using in this thesis for the comparison with the 

computation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2-7 KVLCC2 ship model, propeller models (left handed and right 

handed), rudder model and coordinate system 
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Figure 2-8 Experimental set up for PIV measurement 
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CHAPTER 3: WITHOUT-HUB COMPUTATION OF S60 

 

3.1 BARE HULL COMPUTATION 

 

  Most CFD users deal the computations with special care not to get a numerical 

divergence. Coupling the propeller performance program together with the ship hull in 

the undisturbed fluid domain might lead to numerical divergence as the propeller has to 

work harder in nominal wake.  The computation conditions have been explained in 

Chapter 2. In this study, the bare hull case and the propeller computation will be 

carried out separately.  So, before coupling of the propeller model to the RANS code, 

the computation of the bare hull will be carried out first until the residuals approach 3rd 

or 4th order accuracy. The nominal wake flow and the bare hull resistance can be 

analyzed from the converged solution which could be validated with the experimental 

data (Toda et al., 1990).  

  The flow field in the stern region especially at the propeller section is analyzed 

thoroughly and compared with the experiment to ensure the RANS result is good 

enough.  The essential feature of the mean flow is required to predict with considerable 

accuracy, including the pressure, the boundary-layer thickness and the mean-velocity 

field at the stern. The computation is performed for many time steps to achieve the 

converged solution as it will be used as the initial flow field when the propeller model is 

turned on.  The axial velocity contour of the computation at each section (X=0.8, 0.9, 

0.95, 0.975) along the hull are shown in Figure 3-1 to Figure 3-4 with a comparison to 

the EFD flow field.  The boundary layer shapes and thickness at these stations are 

much close to the experimental results so that the computation result is convinced in 
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the converged state.   

  The axial velocity contour and cross-flow vector comparison is made at the propeller 

plane (X=0.9875) to understand the nature of wake which is shown in Figure 3-5 and 

3-6. The circle marks as the propeller disc with the small white circle for the hub section 

in EFD case and flow field inside is mainly observed. The wake field at the propeller 

section is essentially needed to analyze to confirm that the nominal wake inflow is 

reliable to work with a propeller model and is important as the thrust and torque of the 

propeller will be calculated based on it.  Due to the lack of hub, the flow field near the 

center line of the computation is distinctly different to the one in EFD.  In the 

cross-flow vector field, the experimental vector is a bit longer than that of CFD because 

the effect of stern tube displacement and modification of the cursor stern shape in EFD 

makes the cross-flow fields higher.  So, the velocity fields and pressure coefficient at 

X=0.9875 is extracted for each vertical position (Z = -0.01, -0.015, -0.02, -0.025, -0.03, 

-0.035, -0.04, -0.045, -0.05) and the comparison is plotted with EFD data to see the 

difference which are shown in Figure 3-7 to Figure 3-10.  Even though the axial 

velocity field and the pressure coefficients have good agreements with EFD, the 

cross-flow components (V and W) have deflected shapes near the center line (Y=0) which 

is consistent with the longer cross-flow vectors of EFD in Figure 3-6. However, in 

general sense, the computation gives much good agreements with EFD and the 

computation code is convinced to couple with propeller model. 

  Moreover, the surface-pressure distribution for bare-hull computation is extracted to 

make a comparison with the case of with-propeller conditions to observe the effect of 

propeller which will be explained in Section 3.2.  The bare hull resistance which is the 

combination of the components of friction, pressure and wave is also computed and the 
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non-dimensional data shows 0.343 × 10−3 which is a bit lower than the experimental 

data, 0.344 × 10−3  and the comparison is illustrated in Figure 3-39. It shows the 

present computation shows good agreement with experimental data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-1 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=0.8 section 

(a) 

(b) 

(a) 
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Figure 3-2 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=0.9 section 

 

Figure 3-3 Comparison of axial velocity profiles between CFD (a) and EFD (b) at 

X=0.95 section 

 

(b) 

(a) 

(b) 
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Figure 3-4 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=0.975 section 

 

(a) 

(b) 

(a) 



 46 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-5 Comparison of axial velocity profiles between CFD (a) and EFD (b) at 

X=0.9875 section 

 

Figure 3-6 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=0.9875 section 

 

(b) 

(a) 

(b) 
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Figure 3-7 Comparison of U at X=0.9875 for each Z section 

Figure 3-8 Comparison of V at X=0.9875 for each Z section 
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Figure 3-9 Comparison of W at X=0.9875 for each Z section 

 

Figure 3-10 Comparison of 𝐶𝑃 at X=0.9875 for each Z section 
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3.2 COUPLED COMPUTATION OF SHIP HULL AND PROPELLER 

 

3.2.1 Convergence history and propulsive quantities 

 

  After the converged solution of the ship hull itself is obtained, it should be easy to 

couple with propeller performance program numerically. In order to prove the capability 

of the proposed propeller model, the primary concern is set to get good agreement with 

EFD data at its self-propulsion point.  In that sense, the propeller revolution rate is 

fixed at model point 𝑛𝑟𝑒𝑣=7.8 rps with advance coefficient of 𝐽𝑠 = 0.88 throughout the 

computation. In the computation, the propeller program is called for every time step 

and there are 3 to 5 internal iterations in each time step. For the prevention of 

computational divergence, the amount of body-force which is treated in momentum 

equation is controlled by means of relaxation factor which is given by a small amount of 

0.1 at the beginning and when the thrust and torque coefficient is converged in the 

specific time-steps, it is increased by an interval 0.1 and the procedure continues until 

the relaxation factor becomes 1. The computation at full relaxation factor is continued 

until the thrust and torque coefficients are converged. 

   The interactive procedure between the RANS solution and propeller-performance 

program is unnecessary for this model and the convergence history of the thrust and 

torque is shown in Figure 3-11.  When the propeller starts working in the undisturbed 

wake, the thrust and torque coefficients are quite high and then decrease gradually as it 

runs more continuously because the propeller works harder in the undisturbed nominal 

wake field than in the effective wake. The final converged thrust and torque coefficients 

are 0.238 and 0.0416, both of which over-predict a little bit. 
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  Table 3-1 Comparison with EFD and other propeller models 

Propeller Model 
Thrust 

Coefficient 
Torque 

Coefficient 

KT 10KQ 

EFD 0.234 0.411 

Vortex Lattice Method (Stern) 0.231 0.399 

Kyushu University Model (Simonsen) 0.257 0.435 

Blade Element Theory (Present work) 0.238 0.416 

 

  The results are compared with not only the EFD data as well as the other two models 

of the Vortex Lattice Model by Stern (et al., 1994) and Yamazaki model by Simonsen (et 

al., 2005) at the same advanced coefficient to understand the performance capability of 

the proposed propeller model more and these are summarized in Table 3-1. It shows 

that the closer results are obtained for both KT and KQ than Yamazaki Model.  For 

comparing with Vortex Lattice Model, the similar results are obtained.  In the present 

case and other two previous models, the original bare hull is used instead of the 

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4

K
T
 a

n
d
 1

0
K

Q
 

Propeller Relaxation Factor 

Kt, Computation

10Kq, Computation

Kt, Experiment

10Kq, Experiment

1      1     1      1  

KT, CFD 

10KQ, CFD 

KT, EFD 

10KQ, EFD 

Figure 3-11 Convergence history of thrust and torque 
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modified hull with stern tube and the dummy hub, so more detailed discussion is not 

shown here. 

  The effective wake factor is calculated as in equation (32), where 𝑤 is the wake 

fraction, on the basis of a thrust identity and 𝐽𝑎  is defined as 𝐽𝑎 =
𝑈𝑎

𝑛𝐷𝑖𝑎
 which is 

obtained from the open water characteristics curve of the same propeller by Togkoz (et 

al., 2013) and the propeller open water test result is shown in Figure A-1 of Appendix. 𝐽𝑠 

is corresponding to the thrust measured when the propeller is running behind the ship 

with the ship speed defined as 𝐽𝑠 =
𝑈0

𝑛𝐷𝑖𝑎
.   

                  (1 − 𝑤) =
𝐽𝑎

𝐽𝑠
                                                                         (32) 

  The effective wake factor of the current work is 0.73 which is a little bit lower than 

EFD which shows 0.75 and this under-prediction would make sense as the thrust is 

over-predicted. More discussions on wake fraction and the thrust deduction factor which 

is related to the resistance forces and thrust are described in the section 3.2.3 based on 

various propeller loadings to understand the nature of the propeller better.    

 

3.2.2 Analysis of wake field behind the rotating propeller 

 

 The flow field in the wake region which is the combination of potential, viscous and 

the wave wake is much complicated to manipulate and the propulsive performance of 

the propeller is much dependable on the nature of the wake.  The propeller will not 

give right amount of thrust in the incorrect wake field and it is important to use a 

propeller model, which is located in the wake, to give right amount of suction on the 

upstream as well as right velocity distribution to the downstream for the rudder. The 

nominal wake field has been validated with experimental result and for proving the 
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proposed propeller model is working well, the wake field including the velocity 

components fields 𝑈, 𝑉, 𝑊 as well as pressure coefficient 𝐶𝑃  when the ship and 

propeller are coupled together is needed to analyze in detail not only on the upstream of 

the propeller but also on the downstream and should get close agreement with the 

experimental result.   

 In the current case, the propeller is located at 𝑋 = 0.9875 and the main interest is the 

flow field of the upstream region at 𝑋 = 0.98125  and the downstream region at 𝑋 = 1.  

However, as the downstream region is mostly influenced by the effect of the presence of 

propeller, the flow nature at far downstream sections are chosen to study at X=1.01875 

and X=1.05. The axial velocity contour and cross-flow vectors comparison with EFD is 

plotted for each location as shown in Figure 3-12 to Figure 3-21. In the upstream region, 

the velocity contour as well as the cross-flow vector shape shows good agreement with 

EFD though there is no stern tube in the computation. Analyzing the downstream part 

will give clear understanding of the flow nature of the propeller. At this section, the 

maximum axial velocity shape of 1.2 (Figure 3-14) is much close to the experimental 

result and it shows better result than that of Vortex Lattice Model by Stern (et al., 1994) 

and Yamazaki Model by Simonsen (et al., 2005) where the maximum axial velocity 

space is lower and narrower than EFD.  The cross-flow vector field for the downstream 

part is also plotted and compared with EFD and the good agreement is achieved.   

 The difference of the axial velocity layouts between CFD and EFD become enlarged in 

the far downstream regions.  In Figure 3-16 for the station X=1.01875, the highest 

velocity contour from the experiment is observed as 1.3 with large area wherein CFD 

gives maximum level 1.29 with very small area. In Figure 3-18 for the station X=1.05, 

the similar trend is observed.  Moreover, in Figure 3-20, the gap becomes larger as the 
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CFD maximum level is only 1.26 while EFD becomes stronger. This dissipation behavior 

might be raised not only from the lack of hub and stern tube but also from the grid 

spacing.  In the grid topology, the boundary layer grids are very fine near the hull body 

and exponentially expanded in the far region. The background grid is coarse and its 

purpose is to solve the free surface and to implement boundary conditions. So, for 

capturing the wake field coming out of the propeller injection, a wake refinement grid is 

inserted to adapt the fine propeller block and coarse background and boundary layer 

blocks. The refinement grid is very fine with minimum grid spacing 6.22 × 10−4 and the 

block ends at X=1.10875. In that place, the background and boundary layer blocks will 

have in the order of 10−3 grid spacing making the spacing difference 10 times between 

each block.  Actually, this overset topology has been judged by the SUGGAR which 

automatically determines the coarse parts to cut it out as ghost cell.  Although the 

overset part has passed the SUGGAR step successfully, logically, the interpolation 

between each block might have some problems. This fact should be taken into account 

on the dissipation of the computation in the far more downstream part in addition to the 

turbulence model or other numerical error. 

 It is not enough to judge by looking at the wake field trend pattern because it will be 

too general.  So, the detailed flow field analyses are plotted comparatively with EFD 

data at section X=0.98125, 1.0 and 1.1, ranging −0.05 ≤ 𝑍 ≤ −0.01 shown in Figure 

3-22 to Figure 3-33. The axial-velocity fields give good agreement generally but, for 

cross-flow velocity components in downstream, large cross-plane velocity components of 

EFD results are observed near the center plane due to the lack of strong hub vortex in 

CFD because the hub and boss cap are neglected i.e. V and W components are lower 

than experiment. In the experiment, when the propeller is rotating, the boss is also 



 54 

rotating at the same revolution rate and this swirling effect will make V and W 

components stronger than the computation where the rotating hub is not included. The 

pressure field of the computation also gives lower near the center line because of the 

lack of the stern tube. This weak point will be re-computed by using the modified hull 

offset similar to experiment and the hub rotating with propeller in Chapter 4.  

However, apart from the weaker cross-flow components and corresponding pressure 

coefficient, the computation results are relatively reasonable with the better estimate 

than the other propeller models.    

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-12 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=0.98125 section 

(a) 

(b) 
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Figure 3-13 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=0.98125 section 

 

(a) 

(b) 

(a) 
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Figure 3-14 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=1 section 

 

Figure 3-15 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=1 section 

 

(b) 

(a) 

(b) 
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Figure 3-16 Comparison of axial velocity profiles between CFD (a) and EFD 

(b) at X=1.01875 section 

 

(a) 

(b) 

(a) 
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Figure 3-18 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=1.05 section 

 

Figure 3-17 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=1.01875 section 

 

(b) 

(a) 

(b) 
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Figure 3-19 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=1.05 section 

 

(a) 

(b) 

(a) 
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Figure 3-21 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=1.1 section 

 

(b) 

(a) 

(b) 

Figure 3-20 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=1.1 section 
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Figure 3-22 Comparison of U at X=0.98125 for each Z section 

Figure 3-23 Comparison of V at X=0.98125 for each Z section 
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Figure 3-24 Comparison of W at X=0.98125 for each Z section 

 

Figure 3-25 Comparison of 𝐶𝑃 at X=0.98125 for each Z section 
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Figure 3-26 Comparison of U at X=1 for each Z section 

 

Figure 3-27 Comparison of V at X=1 for each Z section 
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Figure 3-28 Comparison of W at X=1 for each Z section 

 

Figure 3-29 Comparison of 𝐶𝑃 at X=1 for each Z section 
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Figure 3-30 Comparison of U at X=1.1 for each Z section 

 

Figure 3-31 Comparison of V at X=1.1 for each Z section 
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Figure 3-32 Comparison of W at X=1.1 for each Z section 

 

Figure 3-33 Comparison of 𝐶𝑃 at X=1.1 for each Z section 
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3.2.3 Propeller hull interaction 

 

 Figure 3-34 and Figure 3-35 show the difference in axial-velocity contours ∆𝑈  

between the with- and without-propeller conditions for regions upstream at X =0.98125 

and downstream of the propeller at X =1.  The axial-velocity difference shows the 

velocity changes because of the effect of propeller so that it is important to study its 

behavior. For upstream part, ∆𝑈 is larger near the center plane of the hull in regions of 

low momentum fluid where the flow undergoes largest axial acceleration. For 

downstream part, ∆𝑈 has the effect of propeller body force and large ∆𝑈 is observed 

because of the accelerated flow behind the propeller and the largest is near the hull 

center plane. ∆𝑈 is generally large in the starboard side than the port side due to the 

tangential component of the hull wake. ∆𝑈 is studied for each Z section with EFD data.  

At 𝑍 = −0.02, as it is still near the hull, the boundary layer is thick and ∆𝑈 shape is 

broad whereas for 𝑍 = −0.045, the boundary layer is thin and ∆𝑈 is narrow, peaked.   

Generally, most of the data trends are similar to the EFD data with a bit lower∆𝑈 near 

the center plane.  

  When the ship is towed without propeller, the pressure field is high near the stern 

region, making an additional forward force which is consequently reduced the 

resistance. So the surface-pressure contour near the stern is an interest to know the 

effect of propeller.  This behavior is clearly shown in Figure 3-36. The high pressure 

contour level in without-propeller condition becomes somewhat lower in with-propeller 

case.  As there is no stern tube on the hull, the pressure contour at the end of the stern 

is different with EFD where the negative pressure occurs in the above and positive 

pressure in the below of the stern tube due to the boundary layer effect which is shown 
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in Figure 3-37. The pressure difference is computed by subtracting the with-propeller 

from the without-propeller and that explains the propeller effect on the hull.  In order 

to see the propeller effect more clearly, the surface pressure is plotted at each 𝑍 section 

along the hull at the stern region in Figure 3-38, comparing the data between with- and 

without-propeller conditions and the propeller effect is distinctly clear to see.  The 

surface pressure of the port and starboard side are similar so that only port side data 

are illustrated. 
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Figure 3-34 Axial-velocity difference ∆𝑈 between the with- and 

without-propeller conditions for upstream of propeller 
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Figure 3-35 Axial-velocity difference ∆𝑈 between the with- and without-propeller 

conditions for downstream of propeller 
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Figure 3-37 Surface-pressure distributions: pressure contours (EFD) 

 

Figure 3-36 Surface-pressure distributions: pressure contours (CFD) 
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3.3 COMPUTATION OF LOAD-VARYING TEST 

 

  The propeller model has been computed for fixed number of revolution and the 

propulsion quantities as well as the flow field has been studied in comparison with EFD 

data with the validation in good agreement.  The proposed propeller model becomes an 

interesting tool to use for load varying test which is mostly treated in present by the 

axisymmetric prescribed body-force method based on the Hough and Ordway circulation 

distribution.  To check this capability, the propeller is necessary to rotate on various 

numbers of revolutions from low loading to higher loadings continuously with the 

precise configuration of the thrust and torque force. 
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Figure 3-38 Surface-pressure distributions: stream-wise variation (a) Z=-0.008 (b) 

Z=-0.016 (c) Z=-0.023 (d) Z=-0.031 (e) Z=-0.038 (f) Z=-0.046 



 72 

  In the current work, the advanced coefficients based on ship speed 𝐽𝑆 are set at 1.05 

(6.5 rps), 1.02 (6.7 rps), 0.93 (7.4 rps), 0.88 (7.8 rps) and 0.87 (7.9 rps) of which 0.88 case 

has been computed and proved in the above sections.  So, the other four cases will be 

computed similarly starting from the converged nominal solution of bare hull and using 

the body-force relaxation factor as a control function and the computation is performed 

until the thrust and torque coefficients are converged. This is known as the load varying 

test and these results are plotted in Figure 3-39 and the comparison of the result is 

shown in Table 3-2. 

 

Table 3-2 Propulsive quantities at various loadings 

JS 
CFD EFD 

KT 10KQ KT 10KQ 

1.05 0.189 0.358 0.182 0.345 

1.03 0.196 0.367 0.189 0.350 

0.93 0.225 0.401 0.215 0.394 

0.88 0.238 0.416 0.234 0.411 

0.87 0.242 0.420 0.233 0.421 
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Figure 3-39 Thrust and torque coefficients of load varying test 
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In load-varying test, the propeller is turned on at low number of revolution which is 

then increased to higher loading gradually and the computation is required to be able to 

handle the case with accurate estimation of the thrust and torque while the loading is 
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Figure 3-40 Total resistance comparison of bare hull and with-propeller case 

Figure 3-41 Wake fractions with respect to the loading coefficients 
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increased.  So, firstly, the propeller is set to run at 𝐽𝑆 = 1.05 until converged, then, the 

number of revolution is increased gradually in each time step in a small interval and 

computed until 𝐽𝑆 = 0.85  and the result is represented by line illustration in Figure 

3-39. Surprisingly, the line passes all dotted points that mean the propeller can predict 

the right thrust and torque while the loading is increasing gradually. So, the proposed 

propeller model has a capability to work for various propeller loadings even with the 

side forces by the inflow velocity components of V and W that is restricted in the 

axisymmetric body-force model which is widely used for load varying test these days. 

Figure 3-40 shows the total resistance on various propeller loadings comparing with 

the experiment. The bare hull resistances of CFD and EFD are plotted at T = 0 with 

good agreement.  In EFD, the resistance forces are a bit higher than the bare hull 

resistance that is the effect of the propeller which makes the pressure in the stern 

region lower and increase the total resistance. The higher the loadings are, the higher 

the total resistance is.  In CFD, the similar slope is observed where the value is lower 

than EFD.  It is reasonable to explain this feature as hub and cap are neglected in the 

computation that means there is blank region in the hub and some of the flow passes 

through this place while the propeller is working and that phenomenon reduces the 

total resistance.  Because of this effect, the thrust deduction factor is a bit hard to 

compute. But, the two slopes of resistance forces are similar and the propeller is evident 

at its good working ability.  Moreover, the computation is carried out at fixed condition 

and experiment is carried out at free condition so that the detail comparison error is not 

valid to account. The wake fraction based on loading coefficient, 𝐶𝑇 =
2𝑇

𝜋2 is shown in 

Figure 3-41 and all values are lower than EFD data as the propeller over-predicts at all 

cases as shown in Table 3-2. 
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CHAPTER 4: WITH-HUB COMPUTATION OF S60 

 

4.1 OVERVIEW OF COMPUTATIONAL CONDITION 

 

  In Chapter 3, the computation of without-hub case has been studied and some weak 

facts have been pointed out.  In this chapter, in order to know the effectiveness of the 

proposed propeller model, S60 ship hull will be modified in the stern to fit the hub grid 

and the computation will be carried out in with-hub condition.  The hull form is 

modified in the stern with the stern tube similar to the experiment and the grid is 

generated based on this offset. The hub grid is generated as separate blocks and the hub 

surface mesh is brought to overlap on the ship hull surface.  The overlapping part is 

finished by using SUGGAR which is run by Dr. Ping-Chen Wu as it is the confidential 

computing code owned by IIHR.  The detailed information of the overset grid and its 

size can be referred to Chapter 2.  All the boundary conditions mentioned in Table 3-1 

are applied with the additional rotating boundary condition of the hub surface.  When 

the propeller is working, the hub rotates with the same rate and this boundary 

condition type is not included in CFDSHIP-Iowa so that the condition is implemented 

manually in the code. The boundary condition is implemented to the hub surface at the 

same revolution rate of propeller and the illustration of the rotational vectors on the 

hub surface is shown in Figure 4-1.  

  The computational procedure is the same as Chapter 3 where the computation for the 

bare hull itself is carried out with sufficient time steps to get a converged solution to 

solve the nominal wake field which is important to be in proper condition for the 

propeller model and the propeller model will be coupled with the converged bare hull 
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solution.  All the steps of the analyses of the flow field as in Chapter 3 will be repeated 

again and the details of the comparison not only between with- and without-hub but 

also between with-hub and EFD will be presented in the following sections. 

 

 

 

 

 

 

 

 

 

    

4.2 PROPULSIVE QUANTITIES AND FLOW FIELD ANALYSES 

 

  The analysis of the flow field especially in the wake region is presented in this section. 

At first, the result of the converged solution of the bare hull will be discussed and 

compared with EFD flow field at the propeller plane which is shown in Figure 4-2.  The 

axial velocity distribution is extracted after the converged solution is obtained and the 

circle marks the propeller disc area with the small white circle inside that represents 

the hub. The wake inside the circle is mainly analyzed as the propeller quantities will 

be computed inside that disc area and good agreement with EFD is achieved especially 

at the center line where such pattern could not be observed in the computation in 

Chapter 3.  

Figure 4-1 Rotational boundary condition on the hub surface 
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  After the bare hull result is validated, the propeller model is turned on and coupled 

with converged RANS solution. The computation with the propeller is carried out using 

the grid shown in Figure 2-1 with the hub at the propeller number of revolution of 7.8 

rps when using 4m model and 0.14564m diameter propeller. The no-slip rotational 

boundary condition as shown in Figure 4-1 is applied to the hub with the same number 

of revolution.  

Figure 4-2 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=0.9875 section 

(a) 

(b) 
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  The body-force is calculated on the propeller block at the propeller plane X = 0.9875 

and it is distributed in X direction throughout the propeller block covering the propeller 

blades positions.  These body force values are inserted in the momentum equation and 

the coupling process is carried out with the RANS code.  For the prevention of 

numerical divergence, the body-force relaxation factor is used by setting small value at 

the beginning of the time step and increasing it gradually to the full relaxation factor.  

The computation is continued until the thrust and torque coefficients are converged.  

The converged thrust coefficient is 0.240 and torque coefficient is 0.042 which is a bit 

higher than without-hub computation.   

  The effective wake factor is calculated as in equation (32) and the definition has been 

explained in Chapter 3. The effective wake factor of the current work is 0.727 which is a 

little bit lower than EFD which shows 0.75 as well as than previous computation, 0.73 

as the thrust and torque are over predicted.  The thrust deduction factor, which 

expresses the effect of the suction of the propeller on the hull, is defined by equation (33) 

where 𝑅𝑇0 is the bare hull resistance, 𝑅𝑇 is the resistance with propeller and T is the 

thrust of the propeller. The thrust deduction factor (1 − 𝑡′) of the computation gives as 

0.873 which is very close to EFD, 0.86.  The further discussion for self-propulsion 

coefficient is skipped here, because the resistance and propulsion tests were done for 

sinkage and trim free condition and velocity measurement and computation were done 

for fixed even keel condition. 

𝑡′ =
𝑅𝑇 − 𝑅𝑇0

𝑇
                                                                (33)  

  For the flow field analyses, many stations will not be chosen to study like the 

procedure in Chapter 3. As the downstream part at X=1 is the outflow of the propeller, it 

is important to analyze to know whether the propeller model could give right injection 
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or not and this station will be mainly discussed here. So, the computed flow field is 

extracted at X= 1 and the result is compared not only with the EFD data but also with 

the previous solution where the computation is without hub and without stern tube to 

understand the effect of the hub.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4-3 Comparison of axial velocity profiles between CFD (a) and EFD (b) 

at X=1 section 

 

(a) 

(b) 
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  In Figure 4-3 and Figure 4-4, the comparison of the axial velocity field and cross-flow 

components at X= 1 is illustrated. By comparing with the previous computation, the 

condition with hub gives closer agreement in contour pattern.  For example, by 

comparing to Figure 3-14(a), the contour level 1.1 of Figure 4-3 (a) is much closer to 

Figure 4-4 Comparison of cross-flow components between CFD (a) and EFD (b) 

at X=1 section 

 

(a) 

(b) 
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EFD and the pattern near the shaft axis shows the effect of presence of the hub clearly 

which could not be observed in the previous computation.  The other regions do not 

have much difference and show good agreement.  For the cross-flow components, the 

vector lengths are almost same on the propeller region but near the shaft axis, the 

computation shows a bit shorter shape that is caused by the dissipation in numerical 

computation.  But, the vectors in Figure 4-4 (a) seem longer than Figure 3-15 (a) so 

that Figure 4-5 is drawn to see the effect of hub in the computation.  In Figure 4-5, the 

cross-flow vectors are drawn with the red color for without-hub computation and black 

arrow for present case. It is distinct that the black vectors are longer than the red 

especially near the shaft axis that shows the effect of the vortex by the rotating hub. 

Generally, the computation with hub gives much stronger cross-flow velocity fields than 

without-hub but it is still weaker than EFD.  The reason of this dissipation may be 

raised from the turbulence model or the overset grid part. 

   

 

 

 

 

 

 

 

 

 

 
Figure 4-5 Comparison of cross-flow components of the computation between 

with-hub and without-hub conditions at X=1 section 
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Figure 4-4 Comparison of 

Cross-flow vectors 

between CFD (a) and 

EFD (b) at X = 1 

 

Figure 4-6 Comparison of U at X=1 for each Z section 
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Figure 4-7 Comparison of V at X=1 for each Z section 
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Figure 4-9 Comparison of 𝐶𝑃 at X=1 for each Z section 
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Figure 4-8 Comparison of W at X=1 for each Z section 
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  The detailed comparison of the flow field is plotted in Figure 4-6 to Figure 4-9 

between the computation with-hub, without-hub and EFD for with-propeller condition. 

The results of the present computation are almost same with the previous computation 

but the effect of hub could be observed especially in cross-flow component V.  In Figure 

4-7, the red dotted line shows closer to EFD at 𝑍 =  −0.03 and -0.035 which is around 

the hub.  At  𝑍 =  −0.025, the current computation shows better agreement.  The 

major difference could not be observed for component W except a better agreement 

at  𝑍 =  −0.025 .  There are also some better results of pressure coefficient 𝐶𝑃  at 

𝑍 =  −0.025 and -0.035 in Fig.12 and axial velocity U at 𝑍 =  −0.02 section in Figure 

4-6 and but for axial velocity comparison, it shows with-hub condition less agreement 

though the peak values are still same with EFD.  This might be caused by the thick 

boundary layer effect of the rotating hub and the turbulence model to deal with these 

effects.  Also in Figure 4-3, the axial velocity is very low at the shaft center position too.  

As the wake field is much complicated and the rotating effect is also included in this 

work, some other turbulence models will need to be switched to find reasonable 

agreement. 

    The surface-pressure distribution for this case is shown in Figure 4-10 which can be 

compared with the experimental distribution in Figure 3-37. The high pressure region 

near the stern of the hull without propeller is reduced by the interaction of propeller 

behind the ship.  The high pressure contour level in without-propeller condition 

becomes somewhat lower in with-propeller case. In with-propeller case, the negative 

pressure could be observed at upper part of the stern tube which is closer to experiment.  

This pattern could not be observed in the previous computation. But, the shape of 

pressure contribution between CFD and EFD is a bit different that might also relate to 
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the turbulence model. The pressure difference which is computed by subtracting the 

with-propeller from the without-propeller explains the propeller effect on the hull and 

good agreement is observed between CFD and EFD. The surface pressure of the port 

and starboard side are similar so that only port side data are illustrated. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

. 

  As this chapter is extended to see whether the propeller model is working well with 

the hub or not and the changes that can be raised from the hub.  So, the detailed 

analyses of every topic as in Chapter 3 will not be discussed here.  All the explanations 

and discussions in Chapter 3 and Chapter 4 can convince that the proposed model is 

quite effective. 

Figure 4-10 Surface pressure distribution of CFD results 
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CHAPTER 5: COMPUTATION OF KVLCC2 MODEL 

 

5.1 OVERVIEW OF COMPUTATION 

 

   After the general merchant ship hull form S60 has been studied with the proposed 

propeller model, it is essential to understand the capability of the model in other types 

of hull form, too.  Another test case is carried out using the tanker model known as 

KVLCC2.  The ship was originally designed by Korea Research Institute for Ships and 

Ocean Engineering to be used as a test case for CFD predictions.  The ship offset has 

been once re-modified at the stern contour of the ship slightly by Professor Hino (Hino 

et al., 2005) and the modified hull form is known as KVLCC2M.  In this thesis, the 

original hull form KVLCC2 will be employed.  

  The real ship is not constructed for KVLCC2 and the detailed principle dimensions 

and information are described in Table 2-4.  Several research institutes (INSEAN, 

NMRI, etc.) employ the model as the study case with different scale ratios.  The model 

used in Osaka University Towing tank is with 1/100 scale ratio and the computation 

will be carried out based on this model.  The flow field of nominal wake and effective 

wake will be mainly studied in bare hull computation and with propeller case.  In the 

experiment carried out in Osaka University, different types of rudder including normal 

rudder and special types fitted with energy saving devices are used.  However, the 

computation could be carried out only for the normal rudder case only due to the time 

consumption for the grid generation around the complex geometry with special typed 

rudders and these will be left as the future work and will be excluded in this thesis.  

  The computation parameters are set according to the setting of experiments. The 
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Froude number is 0.142 and the carriage speed is set at 0.795 𝑚𝑠−1  so that the 

Reynolds number is 2.05 × 106. The experiment is carried out at the full load condition 

for sinkage and trim condition. The non-dimensionalized forward trim is 𝑧𝑎 / 𝐿𝑃𝑃 =

000344191 and aft trim is 𝑧𝑓 / 𝐿𝑃𝑃 = −0.00192805.  The trim condition illustration is 

shown in Figure 5-1 which shows the trim by bow with trim angle, 0.13 degree.  All the 

grid blocks except the background and wake refinement blocks are constructed 

according to this trim condition. 

 

 

 

 

 

 

 

 

 

 

 

  The propeller model is explained in section 2.4.  The same procedure is carried out 

similar to S60 model where the bare hull computation is carried out to get the converged 

nominal wake solution and then, the propeller model is switched on and the body-force 

magnitude is controlled by means of body-force relaxation factor from 0.01 to 1 

gradually. At the relaxation factor 1, after the thrust and torque coefficients are 

converged to some specific value, the solution is believed to converge and the 

Figure 5-1 Trim position of KVLCC2 model experiment 
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computation is stopped.  The comparison of thrust and torque coefficients between 

CFD and EFD is listed in Table 5-1. In this case, the torque coefficient of the experiment 

is said to be something strange and the thrust coefficients will be mainly compared.  A 

very good agreement can be observed in both with-rudder and without-rudder cases. 

The thrust deduction factor is computed for the with-rudder case only which is 0.794. As 

KVLCC2 is tanker shape and the wake field is wide so that the effective wake factor is 

lower and it gives 0.5428.  EFD data are not available yet currently. 

 

Table 5-1 Comparison of propulsive identities 

 KT KQ 1 − 𝑡′ 1 − 𝑤 

Without Rudder   

EFD 0.19493 0.026604   

CFD 0.1985 0.022096   

With Rudder   

EFD 0.198303 0.022821   

CFD 0.2031 0.02216 0.794 0.5428 

 

  

   

 

 

 

 

 

 

  The experiments were carried out two times in different seasons by the PIV 

Figure 5-2 Positions of the measurements 
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measurements as a captive test.  The propeller revolution rate is set at the 

self-propulsion point of the model with 16.5 rps with full load condition and with 11.1 

rps for the ship point.  In EFD, the laser position to measure the flow field is set at 

several specific locations and the computation flow field is extracted at the same 

sections.  The information of the location where measurement was taken is shown in 

Figure 5-2 in non-dimensional form where the stations in red line will be compared with 

EFD and discussed in this chapter while the stations in dark green will be illustrated in 

Appendix B for references.  According to the measurement of the model, the propeller 

plane is located at X=0.98 and AP is at X=1. The other locations are 12 cm forward of AP, 

7.6 cm forward of AP, 3.5 cm forward of AP and 8 cm aft of AP.  The solutions at these 

sections will be mainly discussed in this chapter.   

 

5.2 NOMINAL WAKE FIELD ANALYSES  

 

   The bare hull computation without propeller is carried out first to understand the 

nominal wake field.  It should be noted that in the experiment, the rudder and 

propeller are not fitted for this case but the dummy boss cap is fitted and the 

computation is carried out in the same condition. The computation of local flow 

predictions for KVLCC2 model has been evaluated by many institutes and the 

evaluation has been carried out from many submitted papers in the Gothenburg 2010 

workshop on CFD in Hydrodynamics.  In this case, the laser measurement is located at 

5.6 cm forward of AP (X=0.9825) and at AP (X=1) and the computational flow field is 

extracted at these stations.  The comparisons between CFD and 1st EFD data are 

shown in Figure 5-3 and Figure 5-4.  
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  By referring to the several results published in the Gothenburg 2010 workshop 

assessment (Lars Larsson et al., 2010) using SHIPFLOW 4.3 by CHALMERS, 

FLUENT6.3.26 by MARIC, SURF by NMRI, NavyFOAM by NSWCCD-ARLUM and 

even using the same computation code CFDSHIP-IOWA V4.0 by IIHR, the current 

computation gives a very good agreement.  For X=0.9825 section, the hook-shape of 

iso-axial velocity contours is well produced which is very similar to other computation 

results.  However, the flow field of EFD is a bit different and it is lower than the 

computation with clear difference at the highest contour level colors. This is because the 

model speed is changed slightly while the experiment is carried out and it is said that 

the current solution can be corrected and the corrected flow field will be like Figure 5-3 

(c).  The corrected flow field has good agreement with the computation. The 

comparison of nominal wakes at AP is shown in Figure 5-4 with original EFD data.  

Here also, the original EFD result is lower than the computation. The issue of EFD 

correction will be discussed in Section 5.6 again.  Although the propeller plane of 

KVLCC2 is considered to be located at X=0.9825, according to the model in Osaka 

University, it is actually located at X=0.98.  The EFD measurement is not available at 

this station but for the computation, the station is important for the propeller model 

and it is illustrated in Figure 5-5. For the upstream part of the propeller, the laser 

measurement at the station X=0.975 is available and the comparison is shown in Figure 

5-6.  In both CFD and EFD, good agreements are achieved in the axial velocity flow 

field as well as cross-flow components.  The patterns of each contour level are quite 

similar to each other and the two vortexes could be observed on each side of the hub in 

both results. As the advantage of CFD, the detailed flow field where the laser could not 

capture in EFD could be revealed clearly. 
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Figure 5-3 Comparison of axial velocity field at X=0.9825 (a) 

CFD (b) Original EFD (c) Corrected EFD 

(a) 

(a) (b) 

Figure 5-4 Comparison of axial velocity field at X=1 

(a) CFD (b) Original EFD 

(b) (c) 
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Figure 5-5 Computational output of the axial velocity layout at X=0.98 

(a) 

(b) 
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5.3 WAKE FIELD ANALYSES AT THE MODEL POINT 

 

5.3.1 Without-rudder case 

 

  For the wake behind the rotating propeller, the rudder is not fitted at first and the 

computation is carried out with propeller only as the wake field is easier to analyze.  

Figure 5-6 Comparison of axial velocity (a) CFD (b) EFD and 

cross-flow components (c) CFD (d) EFD at X=0.9625 section  

(c) 

(d) 



 94 

The propeller model used is explained in section 2.4.  KVLCC2 propeller has variable 

pitch and the pitch distribution is shown in Figure 2-6. The three sections are analyzed 

for this case; 12 cm forward of AP (Figure 5-7), 3.5 cm forward of AP (Figure 5-8) and AP 

(Figure 5-9).   

   In all of these illustrations, the axial velocity field patterns are generally very 

similar to the experimental results.  In EFD, some of the white parts are where the 

laser cannot catch the flow field.  For the section 12 cm forward of AP (X=0.9625) which 

is the upstream part of the propeller, the computation generally gives good agreement.  

The highest contour level 1 below the hull can be seen in the CFD but not in EFD. And 

the contour level 0.9 pattern becomes different in the far more region from the center 

line (Y=0). The comparison of section 3.5 cm forward of AP (X=0.9890625) which is the 

downstream part of the propeller is shown in Figure 5-8. The contour patterns are in 

good agreements between the two solutions but, EFD gives higher velocity fields while 

CFD is low in terms of highest contour level.  EFD has the highest contour level 1.6 

with much wider area and CFD has only level 1.5 with narrower space. Moreover, in 

CFD, the lowest contour level 0 can be observed at the shaft center line (Z=-0.04688) 

which means there is no flow at that region which is not found in EFD. The cross-flow 

vectors are in similar patterns in both solutions.  

  For the flow field far more downstream of the propeller at X=AP, the similar case is 

observed that CFD is lower.  In this case, EFD gives high accelerated contour level 1.6 

for the full region of propeller disc but CFD still gives level 1.5 with lower values near 

the shaft center line.  The cross-flow components got the same feature with similar 

shapes but with weaker vector length in CFD. It is not quite clear of the reason why 

CFD gives dissipated solutions which will be discussed in the next section. 



 95 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

(c) 
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Figure 5-7 Comparison of axial velocity (a) CFD (b) EFD and cross-flow 

components (c) CFD (d) EFD at X=0.975 section for without-rudder case 

(d) 

(a) 

(b) 
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(c) 

(d) 

(a) 

Figure 5-8 Comparison of axial velocity (a) CFD (b) EFD and cross-flow 

components (c) CFD (d) EFD at X=0.9890625 section for without-rudder case 
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Figure 5-9 Comparison of axial velocity (a) CFD (b) EFD and cross-flow 

components (c) CFD (d) EFD at X=1 section for without-rudder case  

 

(b) 

(c) 

(d) 
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5.3.2 With-rudder case 

 

   In this section, the rudder is fitted and the computation is repeated again.  Here, 

only the normal rudder could be generated for the grid domain and the analyses will be 

based on this solution.  The detailed information for the grid of rudder is explained in 

Section 2.3.  As the main purpose of this research is to understand the behavior of the 

propeller theory, the rudder will be set at zero drift angle and no rudder forces will be 

accessed and discussed. For the analysis, totally 5 sections are selected to analyze the 

flow field; 12 cm forward of AP (X=0.9625), 8 cm forward of AP (X=0.975), 3.5 cm 

forward of AP (X=0.9890625), AP (X=1) and 8 cm aft of AP (X=1.025) and are illustrated 

from Figure 5-10 to Figure 5-14 respectively.  

  For the section X=0.9625, the same behavior with Section 5.3.1 is observed that the 

EFD data without correction is somewhat lower than the CFD solution especially for 

the highest contour level.  But for the section X=0.975, the EFD results of the second 

time experimental data is used and good agreements are observed (the experiments are 

carried out two times of which only section 0.975 data are available for the model point 

from the second EFD results and all EFD data for other stations are taken from the 

original data).  The trends of each contour level are quite similar and the cross-flow 

components give same patterns with similar strength.  For the position X=0.9890625 

which is just next the propeller plane on the downstream part, the axial velocity contour 

shapes are much close to each other.  There is some rudder part for this position that 

can be seen as the white part in CFD and the laser cannot measure the data for that 

part in EFD.  Similar to the without-rudder case, the highest contour level of CFD is 

one step lower than EFD and the lowest velocity profile is captured at the shaft center 
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line position in CFD.   

   At the aft perpendicular position (AP), a very good agreement is achieved in terms of 

the shape.  CFD can capture more detailed flow field near the rudder surface and EFD 

cannot capture in that place. The vortex can be seen on the port side of the rudder in 

CFD which makes sense for the right-handed propeller.  The cross-flow components 

structures of the two results are also close enough.  For the complete comparison, 

another far downstream section is selected at X=1.025 where the EFD can give full flow 

field layout.  Again the two solutions give close layout where the vortex can be seen 

and its position which is shifted a bit to the left side of the center line (Y=0) is exactly 

identical in both solutions.  But, the flow field of CFD is lower with weaker 

corresponding cross-flow components than EFD that is the main weak point of the 

computation for this tanker model. 

  For the better understanding, the far downstream section which is the position, 

where the effect of combined flow field from the hull, propeller and rudder can be 

observed, is analyzed at each vertical position (Z=-0.03, -0.035, -0.04, -0.045, -0.05, 

-0.055 and -0.06) and the comparison is made between CFD and EFD and illustrated in 

Figure 5-15.  In each figure from Figure 5-15 (b) to Figure 5-15 (h), the patterns are 

much close between the two solutions with comparatively lower results of CFD.  This 

figure clearly confirms the dissipation of computation.  Up to here, CFD gives much 

lower results in the comparison with the first experiment so that more assessments 

should be needed to compare with the second experiment that will be discussed in 

Section 5.4. 

  The surface pressure distribution is illustrated in Figure 5-16 which clearly shows the 

interaction between ship, propeller and rudder.  The figure is drawn for the 
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computation with rudder.  The high pressure field in without-propeller condition is 

reduced by the suction effect of propeller which is shown by the pressure difference. 
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(d) 

(a) 

(b) 

Figure 5-10 Comparison of Axial Velocity (a) CFD (b) EFD and cross-flow 

vectors (c) CFD (d) EFD at X=0.9625 for with-rudder case 
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Figure 5-11 Comparison of Axial Velocity (a) CFD (b) EFD and 

cross-flow vectors (c) CFD (d) EFD at X=0.97625 for with-rudder case 
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Figure 5-12 Comparison of Axial Velocity (a) CFD (b) EFD and cross-flow 

vectors (c) CFD (d) EFD at X=0.9890625 for with-rudder case 
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Figure 5-13 Comparison of Axial Velocity (a) CFD (b) EFD and 

cross-flow vectors (c) CFD (d) EFD at X=1 for with-rudder case 
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Figure 5-14 Comparison of Axial Velocity (a) CFD (b) EFD and 

cross-flow vectors (c) CFD (d) EFD at X=1.025 for with-rudder case 

 

 

(c) 

(d) 

(a) 

(a) 

(b) 
(c) 

(d) 
(e) 

(g) 

(f) 



 108 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-15 Comparison of axial velocity between CFD and EFD at 

X=1.025 for each vertical position (a) Z=-0.03 (b) Z=-0.035 (c) Z=-0.04 

(d) Z= -0.05 (f) Z=-0.055 (g) Z=-0.06  

 

(b) (c) 

(d) (e) 

(f) (g) 
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5.4 WAKE FIELD ANALYSES AT THE SHIP POINT 

 

    In Section 5.3, the analysis is made for the model point and compared with first 

experiment.  But, much of the flow fields are under predicted by the CFD than EFD.  

Figure 5-16 Surface pressure distribution of KVLCC2 for with-rudder case 
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So, it should be compared with the second EFD data but in the second time, the data are 

almost for the ship point and just for the with-rudder case so that the computation is set 

at lower rps for the ship point at 11.1 rps. And the flow fields are extracted at X=1, 

1.01875, 1.025 and the comparisons are illustrated in Figure 5-17, 5-18, 5-19 and the 

discussions are focused on the results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-17 Comparison of Axial Velocity (a) CFD (b) EFD and cross-flow 

vectors (c) CFD (d) EFD at X=1.0 for with-rudder case at ship point 

 

 

(a) (c) 

(b) (d) 
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  In Figure 5-17, 5-18 and 5-19, similar to Section 5.3, good agreements are obtained in 

both axial velocity profiles and cross-flow components. However, unlike the previous 

comparison, in this case, the highest contour level, 1.1 is same in both CFD and EFD 

result.  The axial velocity profiles show CFD may be a little bit lower than EFD, but 

not as much as than the first experiment.  The detailed comparison is made at X=1.025 

for different Z locations and the good agreements are observed between CFD and EFD.  

So, in overall, it could be concluded that the computations give better agreement to the 

second experimental data. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-18 Comparison of Axial Velocity (a) CFD (b) EFD and cross-flow 

vectors (c) CFD (d) EFD at X=1.01875 for with-rudder case at ship point 
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Figure 5-19 Comparison of Axial Velocity (a) CFD (b) EFD and cross-flow 

vectors (c) CFD (d) EFD at X=1.01875 for with-rudder case at ship point 
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Figure 5-20 Comparison of axial velocity at ship point between CFD 

and EFD at X=1.025 for each vertical position (a) Z=-0.03 (b) Z=-0.035 

(c) Z=-0.04 (d) Z= -0.05 (f) Z=-0.055 (g) Z=-0.06  

 

(c) (d) 

(e) (f) 

(g) 



 114 

5.5 COMPARISON WITH REAL GEOMETRY PROPELLER COMPUTATION AND 

OTHER BODY-FORCE PROPELLER MODELS 

 

  The capability of propeller model has been computed and validated with two sets of 

EFD.  Because of the inconsistent agreements between first and second experiments, 

the computation needs more confirmation to convince the propeller model so that the 

matter becomes to compare with the computational result of real propeller geometry 

and other body-force propeller models using the same CFDSHIP-Iowa RANS code. For 

doing so, the corresponding results for the actual propeller case, axisymmetric model 

and Yamazaki model are provided by IIHR of the University of Iowa. These three 

computations are carried out for the free running and self-propulsion and their RPS are 

different to each other.  As the main purpose is to compare this model with actual 

propeller computation, all the settings are fixed according to the actual propeller one.  

The running conditions and particulars of the real propeller computation are shown in 

Table 5-2 in which they use the combined particulars of INSEAN ship hull, speeds and 

NMRI propeller diameter. The computation is carried out at the same conditions and 

the converged thrust and torque coefficients are summarized in Table 5-3. In 

comparison of the thrust identities between the current model and the actual propeller 

results, close agreements are achieved. 

  For the flow field analysis, the comparison between the four methods are illustrated 

in Figure 5-21 at the aft perpendicular section, X=1. Here, it should be noted that the 

real propeller geometry result is not time-averaged and it is just the solution at one 

instant time while the other models are time-averaged solutions. The highest contour 

level of the axial velocity profiles are set at 1.7 and all solutions can give that amount 
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except the Yamazaki model.  At the first glance, it can be said that the current model is 

lower than the real one but if many solutions for many time steps of the actual propeller 

are made to be time-averaged, it is believed that the current model can predict as much 

similar as the real one.  The reason can be explained as follows. In accordance to the 

self-propulsion in the free running case, the three propeller models RPS are different 

and among these, the axisymmetric model RPS is the highest with 12.275.  If the 

current model is run at that RPS, it is sure it can predict even higher than the 

axisymmetric one.  Moreover, the RPS of Yamazaki is higher than the current propeller, 

but in terms of solution, the current result gives stronger flow field than Yamazaki 

model. That means the current model can predict better than the other models in the 

time-averaged manner and as close as to the actual propeller prediction.  

    In order to understand the vortex structure, the Q criterion with Q=5000 colored by 

the axial velocity contours is illustrated in Figure 5-22 and Figure 5-23 for all four 

models. The mathematical equation of Q-criterion is shown in equation (34). In that 

figure, it is clear that the tip-vortex shedding can be estimated only by the real 

geometry propeller and the other body-force models can give the ring shape only. Among 

the body-force models, the current propeller gives similar trend with the other models 

normally.  But, the rotating hub effect is included and the stronger hub vortex can be 

seen while that behavior is lack in the other models. 

𝑄 =
1

2
(|𝑊𝑖𝑗|

2
− |𝑆𝑖𝑗|

2
)                                                              (34) 

Here, the non-dimensional strain-rate, 𝑆𝑖𝑗  is defined as  

𝑆𝑖𝑗 =
1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑖
+

𝜕𝑈𝑗

𝜕𝑥𝑖
)                                                                     (35) 

and the vorticity tensor is  
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𝑊𝑖𝑗 =
1

2
(

𝜕𝑈𝑖

𝜕𝑥𝑖
−

𝜕𝑈𝑗

𝜕𝑥𝑖
)                                                                     (36) 

Table 5-2 Running conditions of the computations by IIHR 

L
pp

 7 m 

Dia 0.21656 m 

RPS 10.52 

U0 1.179 m/s 

Re 610237.8   

Fr 0.142 

Js 0.5175 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 5-21 Comparison of axial velocity profiles at X=1 (a) Actual Propeller (b) 

Axisymmetric Model (c) Yamazaki Model (d) Current Propeller Model  

 

(a) (b) 

(c) (d) 
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Table 5-3 Comparison for all four propeller models 

Propeller Model Method K
T
 K

Q
 RPS

 

Actual Propeller 

Free 

Running 

0.192 0.0237 10.52 

Axisymmetric Propeller 0.147 0.0188 12.275 

Yamasaki Propeller 0.174 0.0193 11.17 

Current Propeller Captive 0.187 0.0214 10.52 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 

Figure 5-22 Illustration of Q-criterion for Q=5000 colored by the axial velocity 

contours (a) Actual Propeller (b) Axisymmetric Model  
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5.6 DISCUSSION AND SUMMARY 

 

  The computation for without-rudder and with-rudder cases have been carried out and 

compared with two sets of EFD data. In the nominal wake comparison, first EFD data is 

lower and when it is corrected, it becomes similar with CFD.  However, in the effective 

wake in both without-rudder case and with-rudder case, most of CFD results are lower 

than EFD.  If the nominal result of EFD is corrected, it will be far higher in the 

(a) 

(b) 

Figure 5-23 Illustration of Q-criterion for Q=5000 colored by the axial velocity 

contours (a) Yamazaki Model (b) Current Propeller Model  
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effective wake. So, the experimental data is decided not to correct and the reason why 

CFD is under-predicted is analyzed and discussed.  So, the second experimental data is 

used for the comparison with CFD.  But, for this case, only ship point results and 

with-rudder case are available.  The computation is set at the same conditions and the 

comparison is made for the downstream of the propeller.  In the second comparison, the 

close agreement is observed with the conclusion that CFD has better results with 

second EFD data. All the computation conditions are the same but as the agreement 

level is different; it cannot be deniable that the two experiments give different solutions. 

Because of the inconsistent agreements in the comparison with EFD results, the 

computation is carried out to compare with the real propeller geometry computation 

and with other body-force models.  By analyzing and comparison with these solutions, 

the behavior of the current body-force model becomes more understandable and the 

capability of the current model is more convinced. 

  However, it cannot be denied that there is the dissipation problem in the computation. 

One reason might be the turbulence model as the wake field has separations and the 

turbulence model might have some failures to capture the flow field in details and other 

kinds of turbulence models will need to be tested.  One more possibility is the overset 

grid spacing.  SUGGAR is used for the grid overset region which automatically cuts the 

coarser grid if the two grid spacing is reasonably matched.  That means if the grid 

spacing for the two blocks is quite different, SUGGAR will not be executable and the 

computation cannot be carried out.  But, still, in the current case, some grid spacing for 

one block is much larger than the other one which will be hard for the interpolation 

between each block.  As a numbers of blocks are used in the stern part of the ship, this 

grid issue might also be a reason of the under prediction of the flow field. 
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CHAPTER 6: STUDY OF COORDINATE SYSTEMS 

 

6.1 OVERVIEW OF COMPUTATIONAL COORDINATES 

 

  The simple body-force propeller model has been developed and the interaction with 

the ship hulls has been studied. It is strongly believed that the model will be a reliable 

computational tool for the propulsion simulation in the future including from the 

free-running test, self-propulsion test to the seakeeping test. Until now, the proposed 

model is implemented on the polar type of grid and rectangular type of grid but in the 

future, the model will be implemented on any type of grid e.g. the boundary layer grid of 

ship hull so that no special grid treatment will be required for the model. Moreover, 

using this model, the computation will be carried out on earth-fixed inertial coordinates 

system for several kinds of maneuvering motion tests.  

  So, in this thesis, some assessments of coordinate transformation in the computation 

code are introduced briefly as part of the future plans. The coordinates system for the 

computational domain is studied with some mathematical models and some simple 

tests for the support of future work.  Due to the lack of time, the thesis is terminated at 

the assessment of the coordinate study and all the consequent purposes will be left as 

the future work. However, the primary purpose of the thesis which is to introduce the 

new simple propeller model has clearly been presented.  

  The computations in Chapter 3, Chapter 4 and Chapter 5 are based on ship-fixed 

non-inertial coordinates system.  But, the role of CFD will be quite limited if the 

playground for the CFD users is narrow.  It is good enough for studying the wake field 

analysis and propeller performance in ship-fixed coordinate system but it has a great 
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limitation in terms of maneuvering tests in which the ship will be moving in multi 

degrees of freedoms and the desired relative motions of the surrounding fluid is difficult 

to implement as the boundary condition.  In that sense, earth-fixed inertial coordinate 

system is used with its ease for simulating PMM test, CMT test and self-propulsion test 

and the method is also well-known as Computational Towing Tank and the desired 

motions are much easier to implement into the computational code compared to 

non-inertial coordinate system.  

  As the new propeller model has been coupled with the ship hull and the 

corresponding outcomes have been proved with reasonable agreements with EFD, the 

propeller model is desired to use for different types of simulations like several 

maneuvering simulations with captive, semi-captive or free running.  So, some brief 

assessment of the coordinate system is studied and will be presented in this chapter.  

Although CFDSHIP-Iowa has an option to choose desired coordinate system, the 

analysis is carried out for general computational code as the knowledge can be applied 

for any computational code and will be explained in the following sections. 

 

6.2 SHIP GEOMETRY AND GRID GENERATION 

 

  A simple hull form is selected for this study.  The Wigley model which has parabolic 

waterlines and symmetrical shape of aft and bow can be simply developed by the 

equation (37).  In this case, the notations for the coordinate system will be a bit 

different with the previous chapters. Here, (𝑥′, 𝑦′, 𝑧′)  is referred to ship-fixed 

non-inertial coordinates, (𝑋′, 𝑌′, 𝑍′) is referred to earth-fixed inertial coordinates and 

both of these are in non-dimensionalized parameters. In this study, the computation 
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code of the author’s laboratory which is based on non-inertial ship-fixed coordinates 

system is used. According to the computation code, the definition of the coordinate is 

different from previous notation again e.g. 𝑥′ 𝑜𝑟 𝑋′ is defined along the ship length with 

origin at the bow and positive towards the stern, 𝑦′ 𝑜𝑟 𝑌′ is defined along the depth of 

water with positive towards deep water and 𝑧′ 𝑜𝑟 𝑍′ is towards the lateral sides of the 

ship with positive for the starboard side. All the related computations will be based on 

these notations. 

  The governing equation is Navier-Stokes equation and the 12 points Finite Analytic 

Method (FAM) for space discretization and Euler Implicit Scheme for time 

discretization are used along with the PISO algorithm for velocity-pressure coupling. A 

single block domain grid, H-type grid is generated around the ship. The computational 

domain covers from -1 to +4 in 𝑥′-direction, from 0 to +3 in 𝑦′-direction and from -3 to 

+3 in 𝑧′-direction.  The total grid size is (91 × 41 × 51) with the non-dimensional ship 

length, 1.  The standard Wigley dimension is used where the breadth to length ratio 

used is 0.1 and depth to length ratio is 0.125. The generated grid domains with usual 

coordinate systems using in CFD are shown in Figure 6-1.  

𝑧′𝑏 =
1

2
𝐵 {1 − (

2𝑥′

𝐿
)

2

} {1 − (
𝑦′

𝐷
)

2

}                                                         (37) 

  L, B and D referred to length, breadth and depth of the hull and 𝑧′𝑏 is the half 

breadth offset. The grid domains are generated by the grid generation code of the 

Authors’ laboratory by setting small meshes near the body surface for capturing of the 

detailed flow field near the surface. The body part is covered by 41 and 21 grid points in 

𝑥′  and 𝑦′  direction respectively.  The minimum grid spacing is 0.0015 in 

non-dimensional lengths in 𝑦′ and 𝑧′-direction.   The grids generation is checked to 

be more orthogonal by solving the Poisson’s equation. 
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6.3 COORDINATE TRANSFORMATION 

 

  As the purpose of this research is to develop the computation code in inertial frame, 

the relation between the non-inertial and inertial frames is shown in Figure 6-1. In 

non-inertial coordinate (𝑥′, 𝑦′, 𝑧′) which is fixed on the body, every single point on its wet 

surface will have corresponding relative velocity to the surrounding fluid denoted by 𝑽𝒓. 

Therefore, the momentum equation in this frame is written in tensor form in equation 

(38) with body-force term 𝒂𝒓𝒆𝒍 in equation (39) which is a composition of translational 

and rotational movement of the fluid.  The continuity equation in terms of relative 

velocity is written in equation (40). 

𝜕𝑽𝒓

𝜕𝑡
+ 𝑽𝑟 . ∇𝑽𝒓 = −∇(𝑝 + 𝛾. 𝑦′) +

1

𝑅𝑒
∇2𝑽𝒓 − 𝜌𝒂𝒓𝒆𝒍                       (38) 

𝒂𝒓𝒆𝒍 = 𝑹̈ + 2𝛀 × 𝑽𝑟 + 𝛀 × (𝛀 × 𝐫) + 𝛀̇ × 𝒓               (39) 

∇𝑽𝒓 = 0                                                                                  (40) 

Figure 6-1 Grid domain with different coordinate systems definitions 
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  In inertial coordinate(𝑋′, 𝑌′, 𝑍′), the momentum and continuity equations will be 

represented by the absolute velocity of the ship and are written in equation (41) to (43). 

In the momentum equation, the convection term will have to consider the grid velocity 

(equation (43)) in inertial frame which is corresponded to the translating velocity and 

rotational term. The absolute velocity 𝑽 in inertial frame is the resultant of the relative 

velocity 𝑽𝑟 and grid velocity 𝑽𝐺 which is illustrated in figure 6-1. 

𝜕𝑽

𝜕𝑡′′
+ (𝑽 − 𝑽𝐺). ∇𝑽 = −∇(𝑝 + 𝛾. 𝑦′) +

1

𝑅𝑒
∇2𝑽                                (41) 

∇𝑽 = 0                                                                          (42) 

𝑽𝐺 = 𝑹̇ + 𝜴 × 𝒓                                                       (43) 

  The governing equation of the computation in earth-fixed inertial coordinate system 

will be based on equation (41) and it is modified for free movement in 3 DOF of the grid, 

leaving the velocity components in inertial frame. The transformation is performed in 

components form and the moving grid position which is a combination of the 

translational and rotational motion as a function of time are as shown equation (44) to 

equation (47) where (𝑋′0, 𝑌′0, 𝑍′0) is the arbitrary grid position in inertial frame with 

the geometry shown in Figure 6-2 and t is the time represented in non-inertial frame. 

 

 

 

 

 

 

 

 
Figure 6-2 Moving grid geometry 
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    𝑋′ = 𝑋′
0(𝑡) + 𝑥′ cos(Θ(𝑡)) − 𝑧′ sin(Θ(𝑡))                               (44) 

𝑍′ = 𝑍′
0(𝑡) + 𝑥′ sin(Θ(𝑡)) + 𝑧′ cos(Θ(𝑡))                               (45) 

𝑌′ = 𝑌′0(𝑡) = 0                                                                              (46) 

𝑡′′ = 𝑡                                                                                                (47) 

  Using these relations, the momentum equation (equation (41)) is operated 

differentially by each term and then transformed from the physical domain to the 

computational domain in non-orthogonal curvilinear coordinate(𝜉, 𝜂, 𝜁, 𝜏) . A partial 

transformation is used in which only the independent variables are transformed, 

leaving the velocity components in physical domain.  But, all the velocities and 

geometrical coefficients in the transformed equations still belong to the moving 

coordinate.  According to the purpose of this computation, the velocity components are 

defined in the absolute inertial earth-fixed coordinates (𝑋′, 𝑌′, 𝑍′)  so the velocity 

components with corresponding geometrical coefficients must be transformed back into 

inertial coordinates.  Finally, the momentum equations with the velocity components 

in inertial coordinates in the moving non-inertial grids are obtained and the detailed 

mathematical works will be omitted here. 

 

6.4 COMPUTATIONS OF MANEUVERING MOTIONS 

  

   Now, the governing equations are in inertial frame and the computation of 

maneuvering motions is comparatively easier by giving the desired body movement 

velocity to the ship hull. The boundary condition of the computation is shown in 

equation (48) to (51).  In the inertial frame, the velocity components and pressure 

value in the far field could be almost zero.  This condition can make the computation 
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much easier to get the converged solution compared to the computation in non-inertial 

frame. 

Inlet                          : 𝑈 = 𝑉 = 𝑊 = 𝑝 = 0                  (48) 

Far field                     : ∇𝑈 = ∇𝑉 = ∇𝑊 = ∇𝑝 = 0           (49) 

Free surface (i.e., y'=0)    : 𝑉 = 0                                (50) 

On the body surface                      :  𝑈 = 𝑈𝐺 ,   𝑉 = 𝑉𝐺 ,     𝑊 = 𝑊𝐺          (51) 

  In this study, different kinds of motions like static drift, pure sway, pure yaw and 

circular motion test have been computed by giving the velocity components boundary 

condition at the solid surface of ship hull.  The computation process to accomplish such 

complicated motions could be carried out with less effort in inertial code.  The pure yaw 

and circular motion test cases are briefly described here. 

   In the steady movement with 𝑈𝐺 = −1 (minus refers to the direction of ship motion 

towards negative 𝑋’-direction), the hull is given the sway velocity  𝑊𝐺 . The sway 

distance is a sinusoidal sine with a function of frequency as shown in equation (52) 

where A is the amplitude of the motion, 𝜔′ is the frequency, 𝑡 is the time.  In this case, 

amplitude is taken as 0.05; frequency is 2.094 with the three periods ( 𝑇′ ) 

non-dimensionally. The sway velocity is the differentiation of the sway distance with 

respect to time and shown in equation (53).  The value of 𝑉𝐺 is imposed by zero as 

there is no movement in y-direction.  In addition to sway motion, the yaw angle and 

the corresponding yaw rate are imposed as in equation (55) and (56).  

𝑍′0(𝑡) = 𝐴 sin(𝜔′ 𝑡)                                                                  (52) 

𝑊𝐺 = 𝑍′0
̇ (𝑡) = 𝐴𝜔 cos(𝜔′ 𝑡)                                                              (53) 

  𝜔′  =
2𝜋

𝑇′
                                                                                 (54) 

Θ(𝑡) = tan−1 𝑊𝐺

𝑈𝐺
≈

𝑊𝐺

𝑈𝐺
=

𝐴𝜔 cos(𝜔′ 𝑡)

𝑈𝐺
                                                       (55)                                                                            
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Θ̇(𝑡′′) =
𝑍̈0(𝑡)

𝑈𝐺
=

−𝐴𝜔2 sin(𝜔′ 𝑡)

𝑈𝐺
                                                     (56) 

  For the yaw rotation, the referenced point is taken at the center of gravity of the plate 

at (0.5,0)in (𝑋′, 𝑍′)plane. Centered at this point, the ship is rotated in a sinusoidal 

cosine with a function of frequency (equation (54)). The sway and yaw movements are 

ninety-degree phase different. The computation for this case is carried out at zero drift 

angle. To get rid of the non-uniform disturbance, the simulation is carried out up to 

three periods of motion. The pressure force distribution and the shear force distribution 

over a period of motion are shown in Figure 6-4 and Figure 6-5.  The smooth 

hydrodynamics forces in one period show that the computation code is working well.   

 

 

 

 

 

 

 

 

 

 

 

  The circular motion test is important for the maneuvering test of rudder and it is also 

computed using the inertial coordinate code.  The motion algorithm is shown in Figure 

6-3. The whole domain with the ship has to move in the circular path centered at O. In 

this study, the center of rotation is taken reference at (0.5, 3) in (𝑋′, 𝑍′) plane with the 

Figure 6-3 Motion algorithms of CMT test 
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turning radius in inertial frame.  The rate of rotation or frequency 𝜔 (equation (57)) is 

kept constant at 0.2. In order to achieve the circular motion with the centripetal force 

towards the center O, some drift angle is imposed by 4 degree to the inside of the circle.  

The simulation is carried out for two full circles of motion and the surge force 

(𝑥’-direction) and sway force (𝑧’-direction) on the ship hull in non-inertial coordinate is 

shown in Figure 6-6. 

𝜔′  =
𝑑Φ(𝑡)

𝑑𝑡
=

2𝜋

𝑇′
                                                      (57) 
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Figure 6-4 Pressure force distributions on the hull 

 

Figure 6-5 Shear force distributions on the hull 
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6.5 CONCLUSION 

   

  The coordinate analysis has been described briefly in this chapter. It is distinct that 

for the maneuvering computation, the earth fixed coordinate system is much simplifier 

for CFD computation. The proposed propeller model which can work on any coordinate 

system will be an effective tool for future researches in any specific field. Even though 

the self-propulsion test in multi-degree of freedom movement is an interest for future 

work, due to the lack of time, only the assessment of the coordinate study could be 

accomplished in this thesis. All of the corresponding works will be left as the future 

works. 
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CHAPTER 7: SUMMARY AND CONCLUSION  

 

7.1 SUMMARY OF THE THESIS 

 

7.1.1 S60 cases 

 

   The contents of the thesis have been explained in step-by-step ways. The proposed 

body-force propeller model which was successfully simulated for open water 

characteristics is brought to couple with ship hull and the interaction case is analyzed 

in this thesis. Firstly, the simple S60 ship hull without hub in original offset is used and 

validation is carried out with experimental results. A new propeller model with blade 

element theory is coupled with RANS computation code without requiring detailed 

modeling of propeller geometry and unnecessarily required to choose grid type for the 

propeller. Before implementing the propeller model, the flow around the bare hull itself 

is computed and the flow field near the wake regions is observed, discussed and 

validated. The discussion is focused mainly on the experimental model point at 𝑛𝑟𝑒𝑣=7.8 

rps.  A lot of researches are performed by many authors in this case and the 

comparison is made not only with the EFD data but also with some previous models. 

The computation results are interpreted, discussed and some weak facts are discovered 

for avoidance in future research like the lack of hub geometry. The computation results 

on various propeller loadings are also discussed and the capability for free-running test 

with corresponding comparison with the EFD data is proved. The total resistance forces 

and the wake fractions are plotted based on thrust loading coefficients and the behavior 

of the propeller is observed. 
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  Due to the lack of hub surface effect, the S60 ship hull is then modified in the stern 

part to fit with the boss block and the simulation is carried out again as the next 

approach. As the energy saving issue is the priority target in shipping industry in 

present days, many researchers are trying to install energy saving devices on the ship 

hull.  The installation of these devices behind the propeller is mostly popular as they 

could increase the propulsive efficiency more. In that sense, the output flow by the 

rotating propeller blade with the rotating hub is very important as they become the 

inflow to the energy saving device.  Without considering hub effect, the effectiveness of 

these devices could not be observed well.  So, the effect of rotating hub should not be 

neglected especially in the computational field. Based on the fact mentioned above, the 

research has been extended from the computation of the hull S60 in original offset by 

adding the stern tube on the hull and the hub which is similar to the geometry used in 

experiment to prove that the propeller model works properly and the effect of the hub is 

observed which many researchers omitted in their researches.  Even though the hub 

makes the grid generation more complicated, the outputs are better and quite 

impressive. In this thesis, the detailed flow field is analyzed and closer agreement with 

EFD is achieved by the computation with the hub in propeller model with the stronger 

vortex pattern at the downstream part of the propeller caused by the rotating hub.  

The propulsive quantities of the propeller are computed, the wake field region behind 

the propeller is analyzed and the propeller-hull interaction is investigated by plotting 

the surface pressure with the observation of the effect of propeller. In overall, the ability 

of the proposed propeller model has been proved in the computation of with-hub and 

without-hub and both of which give satisfactory outputs with the better results with the 

hub. 
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7.1.2 KVLCC2 case 

  

  After the reasonable results are achieved that the propeller model is working well 

with the simple hull form, then the model is again coupled with the well-known tanker 

model KVLCC2 and the flow field is analyzed with the rudder as well. The ship hull is 

an interesting tool for studying the local fields around the tanker hull form and many 

institutes have already submitted the patterns of these flow fields. The main interest in 

this thesis is to analyze the effective wake field with the current proposed propeller 

model. In this case, the hub block is generated and used throughout the computation. So, 

the cases are divided into with-rudder and without-rudder cases.  The computational 

setting is defined similar as the experimental settings which were carried out two times 

in 2013 at Osaka University towing tank in different seasons. The propeller revolution 

rate is set at the self-propulsion point of the model at 16.5 rps and 11.1 rps for the ship 

point. According to the experiment, the ship hull is in the trim condition by the bow.  

Together with the computational outcomes of the two cases, the discussions are made 

and the validations are carried out with EFD. In this computation, some differences in 

the comparison between CFD and EFD are found which seem to be the errors raised 

from the numerical dissipation or the overset grid spacing.  But, better agreements are 

achieved with the second experimental works than the first one. Even though CFD 

computation gives lower results than EFD, the flow patterns are very similar.  

  In order to convince the propeller model, the computation is compared with actual 

propeller computation and other body-force propeller models (axisymmetric and 

Yamazaki model) using the same RANS code CFD-SHIPIowa.  By comparing the 

results of the four propeller models, the capability of the current propeller model is more 
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convinced. 

  However, it is undeniable that there is some dissipations in the computation.  So, 

several tests by using different turbulence models or different kinds of overset grid are 

needed to carry out to understand the reason of the differences.  However, the propeller 

model has been proved for its effective prediction by some extent and it is believed to be 

working well and the consequence tests will be continued as future research plan.  

 

7.2 OVERALL CONCLUSION 

   

  For the review of the whole thesis, the propeller-hull and propeller-hull-rudder 

interaction computations have been discussed by using the RANS code and simple 

body-force distribution propeller model.  The new proposed simple body-force model, 

which has been proved of its open water characteristics curves by using Polar-grid or 

Cartesian rectangular grid and also, has estimated the effect of free surface on the 

propeller thrust identities, is successfully implemented and proved that it is working 

well in the wake field behind the ship.  

  In this thesis, the propeller model has been computed with two different hull forms 

and the impressive results could be achieved.  The wake field behind the ship is much 

complicated and to predict the fields with the rotating propeller is not an easy job to 

deal with. The correct prediction of interaction between the ship and propeller or rudder 

will not be achieved without a high prediction of the correct flow field by the ship as well 

as a reliable prediction of the propeller model. In this work, the newly proposed 

propeller model is brought to couple with well-known computation code CFDSHIP-Iowa 

and the impressive predictions by the propeller model have been presented and 



 134 

discussed in the previous chapters. The results are agreeable and reasonable with 

experiments and some predictions are even better than the other propeller models.  

Some few weak points are found out and even though the reasons are in the vague 

conditions, some of the opinions are discussed in each chapter. With several expected 

future works, the propeller model has been computed and validated for its predictable 

quality in this thesis. 

  The main purpose of the research, which is to introduce a new technique to predict 

body-force for the propeller effect and to prove its capabilities whether it is working well 

in the complicated wake field and can predict the propulsive quantities with the 

reasonable outputs, is believed to be well presented in this thesis. There are many 

research activities whereas the high quality of the detail flow field around the propeller 

blade is unnecessary in the propulsion field as well as in the seakeeping or maneuvering 

fields and it is so inconvenient to use the real geometry propeller computation for these 

kinds of researches because of complication, time consuming and high cost. Moreover, 

some concepts of using body-force effects are still complicated as there are several steps 

to adjust between the RANS and propeller performance programs because the effective 

wake is required to be extracted from the total velocity fields in order to let the propeller 

model work to get the thrust and torque forces. The current proposed propeller model is 

so simple and just a very short subroutine of the program is enough to compute the 

body-force terms.  It has been commented for the current model that the fact that the 

current propeller model can predict the high quality flow field better than the other 

models is not because of the un-necessity to extract the propeller induced velocity to get 

the effective inflow velocity into the propeller plane but because the current model 

utilizes each blade element as well as on the effective pitch in the theory to get the lift 
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force.  In response to this, the current model is basically similar to other potential 

theory based models and it is true that the concepts are same with these models.  

However, for CFD researchers, the programming step needed to deal with this model is 

much simplifier than the other models.   

  Moreover, this concept could be applied to any types of grid by just searching the grid 

points near the propeller plane for the thrust and torque computation. The simplicity 

and flexibility of the proposed body-force propeller model will be great advantages in the 

future research related to propulsion field like; free-running computation, several kinds 

of maneuvering computations in inertial coordinates and ship-ship interaction case for 

extensive research field by overcoming the restrictions of the propulsion capability in 

the computation field presently. Actually, it is the responsibility of the researcher to 

make the CFD application tool to be easier and more users friendly, it is proud to 

publish this new model. Finally, the current proposed propeller model is believed to be 

useful as an effective tool for all computational propulsive research activities in the 

future. 
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Appendix A – Open Water Characteristics 
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Figure A-1 Open water characteristics curve of S60 propeller provided by Tokgoz 

Figure A-2 Open water characteristics curve of KVLCC2 right- and left-handed 

propellers for 30 rps provided by Akamatsu 
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Appendix B – Computational results at Model Point 

 

 

 

Figure B-1 (a) Axial velocity profiles and (b) cross-flow components at X=0.9 

section for with-rudder condition of KVLCC2 

(a) 

(b) 



 143 

 

 

 

 

 

Figure B-1 (a) Axial velocity profiles and (b) cross-flow components at X=0.925 

section for with-rudder condition of KVLCC2 

 

(a) 

 

(b) 
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Figure B-1 (a) Axial velocity profiles and (b) cross-flow components at X=0.95 

section for with-rudder condition of KVLCC2 

 

(a) 

 

(b) 
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Appendix C– Computational result at ship point 

 

 

 Figure C-1 (a) Axial velocity profiles and (b) cross-flow components of CFD at 

X=0.98125 section at ship point for with-rudder condition of KVLCC2 (EFD data 

unavailable) 

 

(b) 

 

(a) 
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