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2.2.1.1 _—WHEETL

- S
B 2T
d
—(agpgug) =M, (2-1)
dz
d
—(a,pu)=—M, (2-2)
dz

ZIT. ag  RMEARA REC), a, cWBHERA REC)., p,  KAEEE(kg/m?), p, :
R E (kg/m?), u,; : KAEHE(m/S), u, : WHEEEms), M, : SAHEOE &R

(kg/m3s) &3,
EEE LR

d dP
Z(aGpGuGz)"‘aGZ:_FLG —Fye + Myu, —azpcg (2- 3)



d dP
Z(“LpLuLz)“' ap Z:FLG —Fy, —Myu, —a,p, g (2-4)

ZZTC. P ENHPa). F : RIREES) RS EN/mM), F,, o <H-BEE EEE
A EN/m?), F,, : 7B A ES) Sk & (N/m?) 2 K7,

HE Rl
Ao R
a. +a, =10 (2-5)
SARAERE
4.
MB — qw (2. 6)
D-H,,

ZZT. gy BERBYERG&W/m?), D : FRm). H,; : ER(kJ/ke)EET,
. YT = VBB O KK RICOWTIRE TS b D LT 5,

b
Ry

(2-7)

ST, F,  [EEOREHAINMD, F,,,  FEERINmMIEZEL, i
ZRMTFORAE NS,

SKEMOFEHI TR 7 MEEZFA LU ToRXZ g, @12

B CD|CD|{O!G0!L (P, —pg)—o Fye + aGFWL}

= (2-8)
e VoslVes]

®=(1-Coagug - Coa,u, (2-9)

ZIT Cyt KU T N7 5y AMBRICE T 50 ERC). V,, RS
FHRY 7 ke ER L, A ERRORE AR TS 2%k % 519,
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C, =max (0.3,C,) (2-10)

C, =(1.2—O.2 PelP. ){l—exp(—ISOtG)} (2-11)

2
V,, = P (2-12)

0.35{M}0'5 (>0.3)

fa(2o0nd* s

o,

ZZT, g BmEIMEE(kg/ms?), o REIEIN/mMERT,

RABE B 1T FISRT Drew@Oo X 2 v 5,

d d
Fone =66 %"' <, ;,IZL (2-13)
S =a60,Cry {uG + (K = 2)(ug _UL)} (2-14)
S, =a6PyCry {_ ug +(1-x)(u, _”} (2-15)

ZZ T, po. CvM, kIZOWTIELLFIZRT Lahey@ D€ T L& 5,

Po=P, (2- 16)
C,, =0.5 (2-17)
K=2 (2-18)

{E — B i ] S5 3 i ok

2
pu
Fp =275 (2- 19)
A=0.3164Re > (2- 20)
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D
Re, = 2L1™ (2- 21)

Vi

TIT A BEEBREEG). Re, ARV A A, v, L BARERE LR R (M)

P

SRURH — B [ ] 32 8 i 105

Fyo =0 (2- 22)

2.2.1.2 =WEETL
bk

- S
E &Rl

d
—(agpgus)=M, (2- 23)

dz

d
d—(anFuF):—MB—ME+MD (2- 24)

z

d
—(agpgug)=M; - M, (2- 25)

dz

ZIZT. pp o REEE(kg/m3), p, : KIEEE(kg/m3), u, : EEEHE(m/S), u,
R E (m/s), M,  REOE &4 E(kg/m3s) . M, : K OE &4 FE(kg/m3s)
2RT,

B B R

G

d dP
—(agpsg)+ag b ~Fpg = Fpg + Mgy —acpg (2- 26)
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d dP
Z(anFu;)-'_aF Z:FFG ~Foyp —Fyp +Mpuy —(My+ M u, —a.p.g

(2-27)

d dP
Z(QE/OE”)ZE)"'O‘E Z: Fop+ Fpg=Mpup + Mpup —apppg (2-28)

ZITC. Fp o RAE-IRIEE R ED Sk & (N/m3), Fp, o SR - e Bk &
(N/m3) | Fp, - R A E ) Sk & (N/m3) | F, - RIE-BE i S B) S & (N/m3)
ZFERT,

- iR
B D B R R
4
My =—m, (2- 29)

ZZTmy, KR ERKgmM2)EEKT, my oW THRET 550 LT 5,

i OB B A R

4
M, :B(””E + M) (2- 30)

Do Tm,  EEEH D OWEERASR (kghm?e). m,, : MENC X 2P b
9 e A R (kg/m28) 2 R Ty myy R FOREND, Fio. m, oW TIEH
B H0LT 5,

fonf
Mg, :(Ljexp{— g rTwr | Pr }C (2- 31)

Hi6P6 (/uG /B )2'6630”F
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TS — 7% 5 P S T i 105

FFG :FDFG + FVMFG (2- 32)

S I CF, W RO RE SN, F, . : 00— 2 O AR B
(NmI&HE L., ZhENL FORE A5,

i — 75 o Fs bt

Fppe = ApgTre (2- 33)
An;=£; I-a; (2- 34)
Tm=aﬂG%prG—uEf (2- 35)

fre =0.079Re > (1+300¢,. /D) (2- 36)
Re, = Pl ;:F|DFG . Dy =D\1-a, (2- 37)

t, =D - Ja, +a, )2 (2- 38)
ZIT. pg o KARREERRE(Pa-s) 2 F T,

i — AR R E OB E RS

du du
F = G 4 £ (2- 39)
vre = Sar e Sr =
Sor = PoCry {“G + (K_ 2)(”0 —Up )} (2- 40)
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(2-
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22Ty pos Chy v K IZHOWTIZBAIFIZART RELAP OE 7 /1104 Fun 5,

Po=CcPs T ApPr

Coy =a, (3-2a,)/Qay)

k=1

R — 75 5 ] T ook

FEG =FDEG +FVMEG

CITF,,, i AR ORET NI, Fyy ¢ 0 — RO

(Nm3)&E#EL, TNETNLUTOXNEH NS,
R R L T E AW
Free = ApeTrc

Ay =1.5a, /D,

1
T = kg EpG (ug - uE)2

__oWe

Dy (g —u;)*

G

kEG — 24Re;1 + 3.1Re;).313+ 0.42(4.25 > 104 Rezcl.lé

_ pE|uG _uE|DE
Hg

Re,
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ZIT AR (Pas) 2 R T,

i — AR R E OB E &S

du .
dz

d
Fovee = §GE %‘*‘ §E
Sor = PoCry {”G + (K—Z)(uG —Ug )}

Se =z P Cry {_ Ug + (1 - K)(”G —Ug )}
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R — 9052 e 3 T i 105
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RIBBEBL ST T LV OREHRLOE L TINETUTOLI RETANPREIN TV D,
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KAt & Martinelli® 19 DR FE 347 12 5D X KJABERL =7 7 — VEZ RO T\ 5, IaBE
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o> FR AP 1 2R BRI 1E Martinelli O 1R 53 A7 OBE i &l |28 < 71 Rl = oo i AP IR
FTaeExLND,

Ahmad @2V TN RIS BT 2 BMR R A BN TEHE 2 5 2 L1I2 X0 KUuBEL SV~

7 —IVEEZRDTND, KA R LA DR A RRIXH 7 7 — Vg iERkIc B 2 =31
X NRF U ARICESTEHLTWD, L LR b, (RIS S T 0RO E S
TORY v THOHEZ FITRERTEEERELZAHLTWD,

Saha-Zuber@ 22X VA BEMNL S 1F 2R ENEIZ 31T DR L BEHER DN T L A ZEES < B
BIRF L LA ) NZADT Fr P —IZES KR L WS ZHODRFTEDOL, b
ZEER TIPS 2 2 LI LV IRWEIFHIZ T - Th HRREEORSEE T TR R/ BT L
Lo TWnWA,

I OETNOEAMZHERT 572D 2.1 #i Tik~7= Thompson-Macbeth O 7 — & <
—ZADHIBLERAZ VT 4 D/ SNT—4 T b DNB & Bbhbs 7T —4 1> b
IR L CHEET V&AW CRIaBER S 250l L 7=, ZORBER. WIho®T L RERIZEL
ToXosREmMETR L, Thbb, &) 77— L& CIEA D CRICKIEEED
FUEEMIZLTWDTr—A, @Y7 7 =GBV CUIE N O T K[IaBER S 4 1 72
EhWr—2ARNR b7, ERSITEAD TIIKEM, FHOTA=0T7 7 8 (Z0OBEA
[TDNB) L W) HDOTHY, KB SITE OB FICHEET DT T THH0E, Rk fH
RS 7 7 — LStk TR RTEBEN R 2 @RI BB FRIL, @Y7 7 — AR ETIER
VB S 2 BRI TR PR 2@ A DD EE XD, TE, KT — A5 HETIE
LIABENL A B RN R TR, @Y7 7 — VS IR R T B A 3 < T 2 e
WhdEbEZD, ZOLI RBEMAEMET 57OIIHERT 7 7 — VG TILR BN %
BOEDL, @77 — S TIRRIEEENZ 59 5 X O [IaBEli T T VA fIET 205
Wb, 2T, AFFETIE LR OKIERER AT T L0 5 b RUBREN ARG Y7 7 — L

D BAE G TE5ET /L E LT Staub OETVIZEHRH L, ZHEUTO LI
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HHIE L 7=,
Staub DE T /T W TIE, BEERRIGIZME < BEH WO S O/NT o AZHSE LLTOS
i 7= KA BER A & LT B,

”'d;'(pf_pg)'g_'_ﬂ'dgzz_

; (2- 59)
12 4

7-dy-o-f(B)=

TIT. dy BEVEE S LA R E AR (), 7, ¢ BEE AT )
(N/m2) . f(B) : Km0 BsO % %7,

(2-59) ROEDFRERNC L DRFF, BIOE-HITFN, 0% I zE£L
TW5,

JFAR TN O DEBRT — % L OHEIZ LY £(8)=0.02~0.03 BHEE STV 5,
LALARS, AIRO@Y 2o+ Y Ao f(B) %2 & DNB 4fC o ki i
ND, FATITERZ, (2-59) KXo NOHEZERN -6 O LLITO Fritz's O34 ik
T52L12E0 £(B)=0.015~0.17 LV ERELNZ LR BR TN,

d (o, =p.) g _(6Y" d
; :(J (0.119- 5) (2- 60)

2.0 P
(20 <p <70 deg.)

T2 TP =20~70deg. iT7— VI EBROBEIC LV EOLNIMETH D, AWFFETHE &
LTV S iENLIRGIHAIIE TH D720 Z0famz T O E WM T2 Z L IITRMER H 5
A, f(B)RIBHAIC L 0 KE BT D2 LITHRTE 5, AFETHRE LTV
DNB ZfRIZ3W Tk, B el B O BUK ) S XR RIS & ZEMIFIC SO THHMECTH
V) B S OHEfib A 2 B USRS 5 2 &3O THREECTH DAY, BERKUEE L OIRE Sy
iz BET D & RB[ITITHEIC R E RIBEARE AT 2587 7 — VS CrisEfif
PSRN N S IRIRE AR A AT 58T 7 7 — VR TIEEMADRE N EEZ X
BB, Thbb, @Y7 7 —AFETE (B IFINEL &Y T 7 —AFMETIE £(B)1F
KRERDEEBEZBND, 2T, AWFETIE £(B) 7 0.015~0.17 DHEFAN TH 7 27 — L
FEZIS T2t 5 & 5 Fig. 2 1ICRT X2 R T f(B) £ 5% % X 9 Staub DEF L% (E
EL,

2.2.2.2 77— )ViklgERO 7 e —27 U T 4
Y77 — Vg RE D 7 10— + U T 4 12O\ TlE, Zuber, Staub, Bijwaard (X%
profile-fit @202 F-S3< L F XA HW -,
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X,
X, —X, exp % -1
X, = @ (2-61)
X
I-X, ex <]
dp p(Xdp }
IIT X, B DT () X, s RIREEBL RIS BT DT 4 U T 1 ()
ERY

2.2.2.3 77— )VihpgiEkO KK E R
W77 — VSR CIIEE BT R O — SR ARRAERICF G L, R BNRMEOo = 2 v
(2-6) K TITAEKREE M 2B KFMET 2 Z L7 b, 16> T,

HICHET D720,

at T (2-61) RUTHESL 7+ VT 4Bl L DBEEMELZEE LY 7 7 — LibEHEK DK

KRELEEZLTOXTE T,
(2- 62)

ax
M,=G
dz

2.2.3 BRIREFIELTT L
— R IRENMR R OER LM & L CIIRIE WA O RFE TR O Btk TF b S 7= i sk =k
EAHWLILDEN, ZIXFFHRREBICESEIER SN DO TH D, —FH. AIFZE T
. TRAVDIRIEED F F RIS E I LT 5
ZHEAS LU T O TERIRE

G LTWD XD BRENBIEIKROSGE
CWIHRMTH A, 2T, 2 2 ClLLsmb i Eh R O EEx (2-23)]

BIMEB R 5 2T,
=0.63-0.022In(P/P,) (2- 63)
BREE AR A KRG, P BREI(Pa) KT,

tran

D BRI
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(Y
[
K
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23 KSAF79LETIL
2.3.1 fiE#rET L

NI4T0 MIBREZRERICS W T EOBEATEET 5285 THY . TFET
F=RERET AV EZHWTRITEIZ RZ7 4T 7 M2 TPRIT 2 FEORBEIEL TS, =ik
BRET N TIIZ L O A L LEEE L, ITEEIZ 2o OEGUTIREFET 2, R, K
TWREFRL LM ERE 5 2 DRIE =TT V&2 W CCHF 2 Tl B0k
HEELEHRATHY ., INETEEZ OMERADBREIN TN H@).@20.229, Lzl
WH, ZNHOMBAREEWNCHET 5 L, SHARIC IR IO RITERNKRE
@20 ZOBRRUITEEZET D, 2. ZEKETALZHNTTRISND R4 7T b
X IR AR LR E BOZEOESE TR E D720, HFHARS TR &R
NENDOREDOH LT, TOMEELEELRD, £ 2T, A TILibE KRR 1F
DRITAT U bR E U THEBRLHEOK - KR OERT —F N—R(THESN
THERK S 4L, IR AR LIRFEMEROMEEE TR I AT U Mk 2@ HMES R S
TWA LI TIZ/RT Sugawara@d D a Hu iz,

< A
my =k,C (2- 64)
C 0.5
kD=90x104V¢[——J Re? Pr (2- 65)
Pac
C=p, % (2- 66)
ag +og
< R A R
0.4
my =1.075E\ P\ o AV, (2- 67)
6 \Pg
an, =15 (2- 68)
“ " kg{2.13610g,,(Re, ) - 9.68}
ky =0.57t, +21.73x10°¢; —38.8x10°¢; +55.68x10°¢} (2- 69)
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7 4 VT 4 T LR BAFIC CHF 2 FHITE CWAH DK L &7 + U T 1 &
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FVELDEVIADN=ZALELITRRDATI=ALTHELTNDENS ZE, BLUOZED
BERN7 VT 4 015~02BEDL ZAIZHDHILERLTND,
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DIRABITETET VL TIRR EHEAFAZEZIED 2 LIZXDRDOTVD

ZOEIZ, WTFRLOET IV HYHEBLICE L TEERIICHEESNTZET L TH Y
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554%( o, }+ {G—ahd}

r@r{ 1- )(— ﬂzx/_ltpjak}
72y

2
R e A R
' v (2- 74)

] R-rlU
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Table 2-1 Thompson-Macbeth CHF database

Data Set P D L G Ahin Xexit No.
(MPa) (mm) (m) (10°kg/m’s) (kJ/kg) (=)
1 01 ~ 01 1016 ~ 23876 0025 ~0860 0010 ~ 5.750 0.00 ~ 35355 0.007 ~ 1.001 107
2 07 ~ 0.7 4572 ~ 4572 0.239 ~0.239 0.013 ~ 0.092 93.04 ~ 579.41 0.693 ~ 1.030 20
3 1.7 ~ 21 1143 ~ 3048 0.114 ~0.152 0.054 ~ 15.732 744 ~ 778.05 -0.034 ~ 0.779 56
4 34 ~ 45 3048 ~ 10770 0076 ~1.727 0.038 ~ 10.606 0.00 ~ 94180 -0.154 ~ 1.032 468
5 47 ~ 52 4572 ~ 5588 0.295 ~1.727 1004 ~ 8.124 0.00 ~ 364.25 0.004 ~ 0.898 37
6 6.6 ~ 73 3.048 ~ 37465 0.076 ~3.658 0.027 ~ 18580 0.00 ~1100.43 -0.243 ~ 1.577 933
7 88 ~ 91 5740 ~ 11455 0.625 ~1524 1.017 ~ 4.069 7513 ~ 426.59 0.068 ~ 0.524 19
8 102 ~112 1905 ~ 19812 0.152 ~1524 0028 ~ 9.873 80.48 ~1319.07 -0.208 ~ 1.222 269
9 121 ~128 1905 ~ 19812 0.152 ~0914 0.079 ~ 4109 117.23 ~139397 -0.079 ~ 0.399 63
10 138 ~138 1905 ~ 11.074 0076 ~1829 0.031 ~ 10.565 0.00 ~1456.31 -0.820 ~ 1.069 649
11 155 ~155 1905 ~ 1905 0.152 ~0.696 2034 ~ 3879 420.54 ~151585 -0.122 ~ 0.011 30
12 172 ~172 1905 ~ 1905 0.152 ~0696 1939 ~ 3.662 46148 ~158540 -0.199 ~ -0.005 30
13 183 ~183 2997 ~ 2997 0035 ~0.150 0.793 ~ 2902 48.61 ~ 397.05 -0.127 ~ -0.013 10
14 190 ~190 1905 ~ 1905 0.152 ~0.696 1.844 ~ 3.784 500.56 ~1658.90 -0.393 ~ -0.069 30
15 02 ~ 41 3937 ~ 10033 0599 ~3.119 0.144 ~ 2410 80.71 ~ 921.56 0.198 ~ 1.054 1576
16 01 ~207 2997 ~ 5740 0076 ~0.625 0.050 ~ 6.849 4187 ~ 99460 -1.152 ~ 0.128 10
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Table 2-2 Predicted CHF for different o, ., values

P D L G Ah, ~ Xeexit  CHF(Exp.) Oy crit CHF(Calc.)
(MPa)  (mm) (m) (kg/m’s) (kl/kg) (-) (kW/m?) (-) (kW/m?)
0.75 9596
CASE A 14 4.75 0.3175 3784 1197 -0.45 9969 0.80 9617
085 9639
0.75 4450
CASEB 14 4.75 0.3175 7025 207 -0.018 4921 0.80 4477
0.85 4505

Table 2-3 Database used in verifying DNB model
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p D L G Ah

in

(MPa) (mm) (m) (kg/m?s) (kl/kg)
7 3.63-37.46 0.076 - 1.972 958.9 - 18580.4 69.5 - 801.5 201
14 1.9-728 0.076 - 0.696 689.0 - 10565.0 181.7 - 1456.3 197
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Table 2-4 Statistical results of the ratio CHF(Exp.)/CHF(Calc.)

___CHF(Exp,) / CHF(Calc.)
Cw,crit Average R.M.S
_____ 075 1023 0124
_____ 080 1017 0125
0.85 1.011 0.127

Table 2-5 Statistical results of the ratio CHF(EXP.)/CHF(CALC.)

CHF Model
Data Set No. dryout DNB dryout & DNB
: 1.19 6.49 1.29
0.69 11.65 0.90
4 0.79 2.16 0.82
0.26 1.07 0.32
6 0.85 1.57 1.03
0.22 0.74 0.20
8 0.75 1.14 1.05
0.25 0.27 0.23
10 0.74 1.14 1.09
0.24 0.21 0.19
15 1.04 3.00 1.04
0.13 1.46 0.13

upper : average value
lower : standard deviation
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Fig. 2-1 Correlation between f(B) and subcooling
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Fig. 2-2 Comparison between experimental data and prediction of CHF based on

dryout model for Data Set 6.
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Fig. 2-3 Ratio of the experimental to the calculated CHF versus (a) experimental exit

quality and (b) calculated exit quality based on dryout model for Data Set 6.
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Fig. 2-4 Comparison of the calculated and experimental void fraction distribution
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Fig. 2-7 Ratio of the experimental to the calculated CHF versus (a) experimental exit

quality and (b) calculated exit quality based on DNB model for Data Set 6.
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Fig. 2-8 Examples of iterative process for predicting CHF in low quality condition
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Fig. 2-9 Examples of iterative process for predicting CHF in high quality condition
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Fig. 2-10 Comparison between experimental data and prediction of CHF based on
dryout & DNB model for Data Set 6.
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Fig. 2-12 Ratio of the experimental to the calculated CHF versus experimental exit
quality based on dryout model, DNB model, and dryout & DNB model for
(a)Data Set 1, (b)Data Set 4, (c)Data Set 8, (d)Data Set 10, and (e)Data Set 15.
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Fig. 2-12 (continued)
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Fig. 2-12 (continued)
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Fig. 2-12 (continued)
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fEranEnd tEx NS, £7-, Fig. 3-29 & Fig. 3-31 # b+ 25 L, e—4HAIDKE
W Fig. 3-31 O A BRHBAIT/ NS WZ LR TE 5, B —Z HARKEWTE BRI
WL AIERMEIIRE S, ZODHEERERDDACEENICE D IATIESRR S & — 2 )
MREWVIZERE SR @IRAKOEGEN R 2V RFHENDN/NSLSRDbDEEZ BLND,
ZDZ LI Fig. 3-32 B L' Fig. 3-33 I2BW T L WA IR &N D, Fig. 3-32 B L O Fig.
333 ITENEFh e —XH M 4.4kW/m2 38 L O 8.8kW/m2 DI DR 4 72 FEZIIZ 351 % K
BENERESHZRL TS, ZHIHOMIZ XKV ERAKDSERRE & HIAKEERNITERT D8
FBEOE —=Z HABENTTNZ DIGHEE N RO Z & RN HERTE 5,
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(2) ZH St

E— X O LV E I ST < & BRI O IR F- 3R UK IR
(100°C) IZET D, ZOHA . FHEGEIKO KL L KR AR SBR S b, &
— 2% 17.8 kW/m2, 35.5 kW/m2, 71 kW/m2 D —kEHE L LIZHA DR RN R~
T v RV OEE S AEBENLEICB T DIREL(LE ZNZE 1 Fig. 3-34~Fig. 3-36 |27~
ER

TRTOT —AZB W TR O AKRIT2EICHFHA LiSICELBENREZ > Tnd
N, UhREBHIAT: b RBGVER T LIV THOMEK CITRWEEDOEE THD Z L R TE
Do TRDOOLRBEEGERO LT CIRERBENERINTND, BEKIEIC K DO DI
RIT L <BAT 272 OREGEIRIZHS WO COKIRITIZIE —BHRICafRE & 72 5 — T, HEL
FEI T L 0 FHOMEBICEW CURIZIFREDOE L TH A2, #BEE2 LY M A Rk
ZftF IR\ Tidi e TR 2R IR R SR S AL 5 .

T 2T, B AR O BRI O CIT ARG & 1T R 0 IR R OB R 1T
FEENGEIL T s O IRgfE] & 2D L PO T HICBEIT 2, Fig. 3-34~Fig. 3-36 [Z”" T & 912,
FEENGEI TG L 0 N HICH 2 BVERHLE TOARKRDSHICEEFIREIC ER T 5F®HR R
b, TAUL, SRR O FEI SRR & IS HS BRI L 0 RO ISR L, R BRI T i &
D TFHICHLREMIBEICETEEL TSI AR LTS, FZ, Fig. 3-34~TFig. 3-36
132 OEFIRE IR OILREE N L~V OB E RIS R o TV H T AR LT
%

VL R O A Es K OB SIS D IER BRI W i, Fig. 3-37 ICBW T L B3
IR END, Fig. 3-37 13t —# H 7 35.5 kW/m2 B 48 B 2t Stk T TRk~ 72X
BT AEEFARESMMiE 70y LD Th D, fAfRE & =il & v ) e CTHE
RBERBATER SN TND Z &, B X OaFRE & IR OS5 F i AR & 4RI B GE K
THE Y THICBE L TV AR TE 5,

Z OB S T CORERSESE S E OBENIIE I L FR S i &
STHELULIREDNRAESIND DO THS LB X HHG22323) ) Fig. 3-38 ORI R T &
DT, R ARTEIC K 2 FEHRI IR BE B S A R A TS AR K S IRIRK DA RE L. 2
AT X0 IR R B S LR B TR L 0 b T OIEREGEE TRET 5, Z 0BG
IR EERCE % 1 5 BhlEF A BRI ORR D THRHEN 2 BLG T 5,

T R BE SR 1R O RS B E 1 FEBRAICAS O AL 7 R BB S B R (T 1 A B b - 7 e
v hTHZ LIV ELNS, Fig. 3-35 10T L 912, AHFIE CIIBEXMIE BT DK
IR725 50°C % L[Bl- 7o) % 1R EE B 55 5 i 23 & O & 2 @il L 72K & L CER LT,
THUCEESE | KEF M5 OF A FTekk & 7o b — & ) 44 T iR B Rl 5
N LB OBRE 72 v b Lz D% Fig. 3-39 (27~57, Fig. 3-39 X v | EEERKESE R
OBENEE (Fig. 3-39 D71 v DX D) 1ZHOWTIIAFEH B 50 DG ED R
BT L AL E= 2 EHH N EBRWHERANRH L Z L AR TE 5, £ 2T, Fig. 3-39
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LV REREENHOBEREL R L Nt -2 EHHAICH L TT ey FLIZHD
% Fig. 3-40 (Z7~7, Fig. 3-40 LV | {RERE SR E OBEEE T b — & FEH T & BV
Mod b, UTFToRTRT Lo =2 FEHNTHT 5 kA TEBTE 52 L2
TE D,

V. =0.00826g,, +0.009125 (3- 48)

ZIZT. VIZRESERESEREOBEEE (mm/s) | g, 13Tt —% FEHHS kKWm2) %

BRI T 5 LI L < 72 0 £ < OKIANFAE LIRS RS 5 R & & TR L
HEIICRB T AR MEESN D, 207, (3-48)UTREND L 9 ICIREE R EEE R
T OB ENEEE 1 TBGR o & T 5 L EZ BN D,

AEF N KRN oA O&M: (Zhehbe—4% 17 35.5kW/m? : §&fh 7 B L'k —
Z 7 T1.0kW/m?2 : & 9) 128 2K FEENOEMEIZR T HIREELE T €4 Fig.
341%;@Fg342:fﬁo:n%mﬂzﬁénéiﬁm\ﬁ%ﬁ@ﬁ%ﬂﬁﬁi@kﬁ
EWNEOIRE TR & 2 ER LT 5,

%%ﬁ;mﬁﬁﬁmwﬁa\ T 2N OIREE IXINEL & 2 FREERER 23 7= & fafniR B
IZBET D, 20k, D LEBIVCOKEENTORE bEMREICEL T <, ZORHE
MR RGD» DBEN MBI ERE L 8D, BHRSEHOSE L RIS, ERAEHRNO
BRI £ 0 K TEENICIEBRIE SRR S v, 2 OFEBRIEIC & 0 SRR 2N ACEE NI fiik
ENTNDEBZDBND, ZD7d, HEREHRDDIEIDDHI1EEmBKBEET 5 DIk
M2 UIRE EAICKMENNSEL D EEZOND, ERIEITREES ZRET 5 &3t

CHARREOE ) & b 725 Z LD Fig. 3-28 |8 SN A BesNEN I AR SR 056
X HREL, 20D, KEENIIER SN A TERTEOMBEIXHEMARFEOHE LD b
MR REWVWEBZZ BND, ZODAKFEENOEEXNE BT HIRE ER OREME
PITHMARSEOHAE LY /NS o TWnD, 72, Fig. 3-41 £ Fig. 3-42 2 b3 5 & |
BGRR AR E W REEREEIVT NS o TWnD, BUiRNKEIWIZ EWEAHM L 72D
WIERIAN 2 D12 DBRBANMENRKE L 2D | ZOTOAKFEENITIR S D IEER D
Tl bR E L R0 BRBN NS ozt BEZ DD,

Fig. 3-43 B X ' Fig. 3-44 1322 b — & 7143 35.5kW/m2 5 L O 71.0kW/m2 D FRED
B & TR REA f6m¥£WmVAﬁ%bewéo:h%@ﬂ’i@ KB N DK
XA D SN DH1E SRV, B & 3R EF Lo TRTEE N AR D i i B i
CICETEHRTAZENHERETED, £, HIJJ/i‘ DIV B HRE DK EZ WVIT EKIEENDIR
JE EROERFENEREN T E DR TE D,

EEEONMEARFEFICBNT 2 v FL— FEEEPICRBRERENEIE LA, B
BRI IV LDANOREIX LRI 5, ElRofER, mummmfiﬂﬁ%%éﬁﬁmﬁ
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BLEN % P> CRIRMIELE OMAMRE NS EH 352 L 2R LTS, bbb, &l
HIBLE OHMAMIRE B 2 A L TR ITIXF LN ORNE & HRREHN T2 LR TEX 5
TLAERLTWD, FONREDOCREG (BRI 708 K0 ERITTWRMETRE
A7 R A2 LR T 5 Z L2 L0 ERAEE IR & AF O PRI & O B VR EE T X Ui,
2 v RL— FIEERR S AR ERERE N AL L 7235 A0S, TEER B VRIS U Cl gl 22 i
9 5 ETOmMD THMRER L5 2 ERHIFTE 5,

81



3.2.2 SBO I H SATIE BRIBHE TR

2011 FOHALH G R FEAEMHUE I L 2R R+ IR EFTFSIL, KHEICME S X8
FR M0 BE B % (i s e | 2 2 2 ZMERFEIRHE A d L OV U L A FE IR O FE R Ot |
EHIMICh- 52 EREL (Station Black Out, SBO) Z[a v . FLIERL, KFBIEBEIE., K
SHEE DR EHU & ) fiieh THE KRNI E - 72 (3:27.328,329,3:30,33D, Z LLIKE, 53¢
BAT CIXTEBIEIC 72 > T SBO 234k L2 L o5 U EIR O, B L OREEIR 2 e
THETOMICBWTHEREZET L Z &R FLERRIZHAT 2 FBOME & i %
HDTET,

IEABF 4R DA, SBO RHIIIAK R AR CRAE LI AKEE ) & LTEaET 5
Z— VBB KR U I L 0 R AR ORRKEMGE T 5 Z LR TE D, ZTOM,
JE IR HRARNC BN TIE AR I AR L DRV L v BARIEBRI AR S, ZOBEK
TEER VI K 0 JF O ENDSEGE S 4y 25 @82, 833, 330, Z IR, B SRIBER it D it &I 338 O 5|
TEBR IR & X THD TN S W2, Fig. 83-45 1R T & 9 ICR IR A SR O TEERITIE B 2R 18
BRI OUREN S KX T ER O WA S E Y R S IIRBE L 720 L Wb W B IREERE & Rk
5 ETRIIHG5 886 330, Z DL 9 IRAE CARIAERIC K D2 mH A ke LR A
RAFOPIR « WIEAHED D & | W TR IF A g THE O iR fek CRUE#hig 23 4 TR 47
K FEICATHANERT 280035 5, —H, R FFRSRIETICAKHEIER T 5 &%
D% OWIR « BEERENEE L 25720, Rk Z — v BB KIC & 2 6B HEZ 3R
IR BRI ARG 70 1R BE 8 TR S e WRREE O B e i HISE TR AT 2 Z E R E L
I/\

ZOXDRBLENS . RIS TIIME AR 47 O JF IR i H R e 2 1 L 7= 5
BRAEIE 22 HIV N C B RIE BRI EY O BUK IR, FRIIREE RS DR R & RHICAE B L 7o st 2
TV, Z— v ihifiBhiaKIC K 2 mAEBEZ @I EMT 5 ECOoRRARMREZEL Z &

FHHIET D,

3.2.2.1 FEBRIEE

AR TR U 72 B E O 2 Fig. 3-46~TFig. 3-48 |Z7-¢, FEBRAEE IR Y h—R
x— MUOHER A, B, L — T EREB LOERRE D OERENTEY . £
ZHINEARBEFIF ORI g, KRR I A, R FIFEREIRL— 7 %2 L T D, FE
BRITREESM T CikE AW CE L7z, £7o, BARMRRS X ORERE ORI
A=) TN R AR T DI 3 ODRL DA XD EBRIEBR A AW, 22T
FENEN TRAEERE | (Fig. 3-46, 5H : Fig. 3-49) | [HAEE ) (Fig. 3-47, 5H :
Fig. 3-50) . [/VRU%EE ] (Fig. 3-48) M 200 L35, ZNENOEEDER Fas
DY A X (EXBEATXES) I ZLLFD#ED,

FRAVEERE © 400mm X 400mm X 600mm
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FALERE - 300mm X 300mm X 900mm
/NRIEEE © 120mm X 120mm X 555mm

D DRI Z NN BN OB 7 R EE oA 2 B E T 5 72912 10~15fE 0
BB A BB O LR EICERE L T D, 2D OBERHT L0 R8N ORERE 2 1 E
TE D, BN OKZFTE DRI E TMEAT 5728, HEOIEIZIZZNZENHT) 6kW (K
RUMERE) | 4kW (FFRLEE) | 0.5kW (NMEDEE) OFBR b — BB IN TN D,

L ER RS L CO BB OR S IXT T 7T12mm (KAEEE) | 636mm (FF
BUALE) | 500mm (NUELE) ThDH, BUSHEARICITER 8mm OHE & =4 ARIZL T
BAL, ZhicmiEk OkEAK) 2T Eickor—7REOKEGBHT S, Z 2T,
B WREE T 572010, Bia B L OSE TN ENOHADBREZHE Lz, £/,
JL— T ELE C O B AREBR it R L ARG B CHIE L7s, BRI ERHES COMKA L 15mm,
TERIC BT A EEEE 1L Imm/s DOFSE T 0m/s~1m/s OFFH CHIE S /-, Fio, KA
EICBWTIE, Rz b5 2 L1 X 0 AKCEEE O b & & E A 2 1 E LT,

3.2.2.2 FEBRAER

(1) IREERE DA AL

Fig. 3-51 3 L U Fig. 3-52 (TR E T I 1T 5 FasIRE S ORI Z{b 2 ~d, 2 b
DEBRTIE, KTHOIC e —ZIZ LY EZRNOKIEZFIHIREE 10°C 5 80C (Fig. 3-51)
BELUB0C (Fig. 3-52) £ THENL, ZD% b — X INEVE 1L USRS IZ L D H A2 B
th L7, Fig. 3-51 BL O Fig. 3-52 1T R END L 91T, b —FIZ X HMBBFIC B\ TIT AR
NOKIBIZIZIE—FRIC ER L e — 2 MBS LT 5 & BEe) b OB L0 2 I2KIRIE
ETLTWD, BVRHESRIC K 2GHZRIGT 5 & REeN & BUIHEBRN E OIREZEICE Y B
SREER ISR S, — ERFMRRZ e TIIRGNR TE (Ch.l) OIRENZMIZIKT
L. 5l&#ix Ch.2 225 Ch.6 £ CIEFICAMREEK T2 RL WD, AMICRENMET
L72#%1% Ch.l 705 Ch6 £ CIHIZIEHRICIRENMET LTV D, —J, AEESEIREL Y
EFH D Ch7 55 Ch.9 OREICHOWTITRAMARRER FIXA LT, MBS X DEEKT
MAOENDDHTHD, ZNHDOFRERND, BUSHEIRIZ L0 A S KA BRI
T 52 LICE VRS LD IRIREIII A TE 6R 2 I EFITIRB > T, 20
FRIZIB W CTIRIRAEIR & SR GER & OMICIIARREERSFE L. Z OBRBHER Sz
5 EFICBE LACEE DIGERE TRET D L0 ) Z LR TE 5, BT, [KIREK L &
IR OBE T UIACEE I L 0 ERICIEIBET 5 2 Lidke <, KEERIEHLLY EHO
AKIBIZHEZ B L CHOICREARE L7EZ CTHLEIBOEETHD Z ENHERTE D,
N5 OO % Fig. 3-55 (27, Fig. 3-55 £ 0, HARTEERIC X 2 HICIIAmME/RIR
FERRE DR S VK TEE IR L 0 B OF S EEEBIIGHITE RN RSN D,
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A O B3 A s X OVIVREEE IR W C B R T& 5, Fig. 3-53 3 X (' Fig. 3-54
IZENZRHAREERE R L OV NIEEE 2 VW EROM AR, 22T, FREER LV
/NIRRT D BVEXMLE T Z TN Fig. 3-47 B X' Fig. 348 II/RENbH LBV ThH
%o HAALE 5 L OVNEEE IC W CIE EAERIEE DN S W ORER T ISR 2 2 L
TV b0, KEEEBEOLE L RIFICEFNICHR2IRERE SR S, Fa EHo
BEIIHRHI SN NE WS T LR TX 5,

Fig. 3-56 775 Fig. 3-58 [T E AV E AV RAEEE | AL E 35 L OVIVIELE 1235 1T 5 B RTEER
EORFEZEEZ R, 2 2T, FERNIMAIB A OB RER], HE IXERITREFHC LY
PIE S NT-ER 16mm O OFEYHEZ LR L, TILEI, BesWNiRE 4 50CRE £ T
L TOhomAIZRABL TS, ZUHDORED, WOy —22BWTH HARMEERTT
IR OFE L LB T L TWD 2 ENMHERTE D, JHUTRFH ORRE & A 3RN &
BOZHERN & OB OREZEN/ NS 720 BARTEEROBE IPMET LTS Z LItk a0
Thd, BREERREIZBRBEREE /L NV— T EEONRT UV ATREL LD TH D720,
AREBRIEE CIIEGTHGT OR S, B L BT O s L _X— 9 V2B LUV
—THEDOERICE-THRELI LD TH D, TOME., BARMERKREIIRAIEE CRH K
L MNEEB TR B/NSIL 2o TVD,

RAVEB ICB W CIEASR ETICER L COW DA EERNOFfinE /b5 2 ik -
HWESMEZRE L, KEEOTEHEIVA 7 2FEAL, BEAERBLIOEAEL 2 BOE
BERE L, 2O EHT 52 L1280 BRIGERM EIRE OB 7 A A & B L7z,
Fig. 3-59 124 7 FEABE#KB L EAR 2HOFEO—fFlZ7d, ZOXLHICZLTHELI
TR IT MR EE 3 A & Fig. 3-60 12”9, 22T, BFMNLE Omm (XEOFLEERL, Fils
IV EFEE, THEAELELTWD, £, BEFRICOWTIIRGNLEI DD FH %
E. FemlZmnnd iz L LTWnb, Fig. 3-60 IREN5 K 9 I HARIERGEIF KW
TKFEEND EF TIEEERDDIEI N DLW, FIESEE CIEAERITMD O F o
AL TVDLZENHERTE D, ZhiT, KFENIZEWTHEEL LOIREIZOWTRUEL
WIS TWNWDHIEERLTWVD, /2, ZOLHICLTELNEEFREESANLE
L7z BAAESRIRITEMTEFC LV HE SN iE s K<~ LT,

ARFERIZE VGO ER L OEENEEO 242 iR T 570, BRI BT
HENT U AZFM LT, RERTIE, BSBBHANREL LB ARERKE, 260
WCEHEKRHADBRERB LOGBHKBEZHEL TV D, 262X ) BSHRERIZ I 28
RHERIILL T O X D ICHT& 5,

HCXP = pPCprp (Tpout _Tpin) (3' 49)

H,c=p:CpcOc (TC()ut - TCin) (3- 50)
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IIT, H BIOH, ., ThThr—7 ik L CBHKAIOBSH ST (W) | p, B
L0 pold, ERZRL—T B LOBERMOPEE (kgm?) | Cp, BEVCp, 1t
TN —TE LOGRERBO TR J/kgK) o O, BLVQ I, TN AR
it (m¥s) BLOWAKEE (m%s) . T, T, BL0T,, T, & ThThr—
THF L OWREIK Bl O A RIRE (C) 2R,

Fig. 3-61 3 L U'Fig. 3-62 (C TN KRAAEE 2 31F 5 /L — 7 A AR I X O HIK
M A TR E ORI Z b 277, ZAb0RIE Y | FEFERE & 3R H R L L — T3
FOGHHKM OB A BEZIT/NS L 725 2 E 3R TE 5, Fig. 3-61 83X Fig. 3-62
D7 —2 %R (3-49) BLOK (3-50) IZRATHZ LICKVELNTA—T Ml X0
HAKM OB Ha=R % Fig. 3-63 (2”7, Fig. 3-63 LW HIET —# L EH S hizv—7 &
MEKMOBZHFII L —H L THY, KERIZIVEONTZRET —F BEART
OWNT-AHRAET — 2 ThHhD I LR TE 5, TRIEE L JOVNMUERE 2>\ T
FARD FIEIC XV ET — & OB T o 2251l L2 R % i Fig. 3-64 38 LU Fig.
3-65 (277, Fig. 3-64 B LU Fig. 3-65 L 0 AAERE I L OVVAEE 2B W TH/r— 7l
EWHKMOBAZWRIZI I MELTEBY, ZRHDT—XIZONTHLERT U ZADE
SHHEPRMET — X ThDH I ENHERTE 5,

(2) IREERLIE D fFH

3.2.1.3(2)TE L 0 KIEIC X 0 #Fil SN DI TIEE R E R R ORRRA ICH S LSRR
EREERHET DL EZBND, £ 2T, Fig. 366 127 & 5 ICAMIELIC /) XL EffA
L., ZHIZEREZEVIADZ SICE YV RiIaERESE, TOROREEXBHZRTE L, 2
ZC, AV 2mm, 2V IATZER O EIE 50cm3/min, 100cm3/min & L. BEDF
NEIZ X VIREERRE DS AR SN T-t%, BREEVIAAT, FRENIREEL 80°CE TMELL 7235
B, B0 CE THE L 725512 >\ T O EBRIER 2 2 4 Fig. 3-67, Fig. 3-68 1”7, W
PTHOr—2A B 28R4 %V IARKRIANRAE LZERICARETOKENMET, 72bbiR
FERENEE S TEHEY . [ L5 MEREDRERBRIEICRESFELTNDL 2 L
NHERTES, T, EVIADLEROBICHOWTITAEIER L-&GHICB Ok 2%
/e < D7pniiiE (50em3/min) T b RIAARERL ITIRERE D RE S T b,

TOXHT, BERBAERSN T IHICKEEEV AL L, KiICkvFHiRsnD
W L0 IREPREA STRERENRE SN D &0 ) 2 EPHRTE T,

—FH. PEOKWTH->ThH, TRV FERINLMPIBERBEHEICHENTHD &
WO ZEnD, Fig. 3-69 12T L 912, BARXHIRIC & 2SI T b 15 sl e iR L2 %
ThdELE#HIND, £ZC, AIEO PRI LV IBERBIER S NTZ%, B —2
BBtA L BN 2 A S, TOBROREZEEZNE Lz, RasNEEZ 80CE M
LT — A TIRERBNER SN-%ICe — 1) 4kW THEMB L7256, e —%H
77 2kW CTHREMZ L 25E 12OV T O ERERZ £ Fig. 3-70, Fig. 3-71 I[Z7-7,
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Fig. 3-70 L 0, b —% 77 4kW THEINEN L 7235813 B AAXHRIC L 0 BREsEENRS S s
MHRE ERHLTEY, ZoBBRCRERBIIEESNTND, T72bb, Faefke L
TIHRE EA L T2 23, BARXIIZ X DIRAEIC LD Bl O S IREROIRE X RS
ROBE LRI CIBEICETIR T LTS Z LR TE 5, —JF., Fig. 371 Lh, ve—#
77 2kW CTHEINEL L 7235513 B AARHRIC £ B IRE ORI S < FEINEVE © IR EE i 23 fig
HENDZENRNWT ENHRTE 5,

FEIROF AW TIE ¥ — B U BIBIEKIC L 2B AT L L CIXRERIC X 2 M H 5
DT, EBROL I ICe —ZMEAR D DIREO F NEEEMFITENLEE XD, 2T, B
PWIREZ 80°CE TMENL 7214, b — X Z U1 O FITHAIZBRLG L, £ OREZEE) 2 H1IE L7,
t—2HH% 3kW & LTHEILI-5E. E—Z % 2kW & LTAHIL7ZHEI1ConT
DERRFER 22N Fig. 3-72. Fig. 3-73 12777, Fig. 3-72 L0, v —%H 7 3kW D
AIXBRIIC LV BREEPREG SRR LERBRICLVBHIS L TRY, ZTOMEE
RERBENER SN D Z LR FaBEWPHHA SN WD Z L3R Tc& 5, —F. Fig.
3-73 L0, b —Z 1) 2kW OHEIL B RRHRIC X 2IREGOBFEI/ NS IRERE DR S
NTNDZ EPERTE S,

FRO XS e =2 HNC X DIREREOAERK - MMEREOMHIEIL, BARRICE D
DR L ARIEBRIM B OMHXIBERIETFET 2L B2 6Nn5, T7hbh, BARMMIZL HH
DFREEFARIHI /N S WIFEIEL, WX EARBRITORNICE > TLEW, RADRDELS
B OKEER LY BJ7) IZRIERWV, BIRRHRIC X 2O TRE DRI R E WEGEE
X, BRI OTN T & IXBRR BRE L. RERAICES EICE TRADRL K
ATNDEHLDOEEZ LD,

EEOFRFIFICB W CIEMERIFNEEY N 5 5 - O R EREREZOE AT 2
LiETERWE DO, SBO KR — B EIffiBIFE/KIC K 2 R0 - BUE#AELZ FEhi 4 5 BRI
ARG BR it B 4 s U0 LS AR UL PN O BARKHIRIC X D IRA VR LTAEIIC E TF
0. R FREBIEICEEKZRYETZ L HOBREOBRHARTIF LR EZHAITE
HZLETRBETLHERTHLET XD,
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33 EE

RIEIZ XV FHE SN DRI AERE O RE X R BLA e RIa 28 & R — 7l & o
HERIZX VBTN b0 THDZ Enb, A TIEE O YR 2228 % F 9
HIDDETNE L TCRIAERET VAEAT LI ENAHNTHDL Z &R LTz, T
b, KIATEREEEUNCE 2D Z LIk D ERSE 2 AHACHBETX 52 & 2R
L7z, 22T, KUEIEBAREIIRIEIC K T S IRPUREBCIRIB O E ARl A BT b D Th 5
728, RIATEARE A EYIC S 2 5 720X I b EO THUICE X 20BN H 5,
—H. 2y F— T ERRER R B RE RS SR 2R J0 KON SBO IR B SRTE BR v HEL 52
BRI W TIERIEIC K VU FFE S 2 &K0R AR Eh S L 0 5 Al 52 57 i 0 B B <01 BE Bl Jeg
DFFETHE &\ o T 6D TR 2 BB BLR STz, 200D OTREE R B 5 i O B 8ol B
R JE OFEHEIC OV CRIREZ L & LTl THEEFICHEALD L O TH Y AFZECTHEA L T
72RO Rffi G 72 FBEE CHL A ICHERRER b D Th D, £/, NI I—R*X— %
FERLZEBECTHD Z LM ORERCIRIBEEORE S +7ICRETH D, - T, Kl
T & % 1R Al 55 AU O B Eh-OIR B AR OIEEIC O W T ERT — 2 25 - BHE L, -
NOERT — 2 2/ 5 &5 ety Lk o RIaitBee 7 v 2 VT figfric &
0 —_a L) e RIAIEHUR S O 52 Fa BT Z ENAETH H L EX D, HIZ,
ZOX I L THELNIEKIATEEGRE Z W THEFLSEE (RSt SpiR) 254
LT A S L, K0 ERAMRFHEEZIT ) 2 EBAREE BEX HiLD,
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34 KEDFEED
AKRETOME/RIITRRO L IICEHNTE D,

(1)

(2)

(3)

RIAIZ KV FHE S D KK I IR 22 KIa 28 & R — e lintgs & o
HEERACLVHFEESToND bOTH D, ELET L TH D _filkET v
ZAWTZ O L7e2@ 2t 256, #aGlE L TRYEitEceE 7 v 2 mEdlic
252 ENEETHD, KJJAEHET VI OWTIHA RETADRRESN
THHN, WTIRbRIEICEH <IN ORE S ZRIAIC LV FHRE I N DM
LN ORRE LB T 72T v E o TN D, AFETIE. [RIEICE VW FHE X
NDMEHOFLNORRE 2 KJABE (R4 FFR) | [ypoRE s (WmfE) |
RIRFERHERE . 3 X OV O EE A & BEfH I, 2 & KIBIEEE 7 W IC K
BLSE 2 Z LIC KD RIEBIZ LV FHRE ST DRI HiiEhZ G EMICHE TX 5
e EfER L,

BRI BV T LN RIR AR EN DR e 2 Z L NEE L R D FEH L
LT, AR TITIEARREFFICBIT 5 I v F— 7 EiRRERE R B e
KER X OV EIRE AR B ARERMEAREOF LNIREI 235 L L, 2 b0%H
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Table 3-1 Experimental conditions of heat fluxes

Condition 9 Central 16 Peripheral
heaters heaters
1 4.4kw/m? 4.4kw/m?
2 4.4kw/m? 0 kW/m?
3 8.8kw/m?2 8.8kw/m?
4 8.8kw/m?2 0 kW/m?
5 17.8kw/m? 17.8kw/m2
6 17.8kw/m? 0 kW/m?
7 35.5kw/m?2 35.5kw/m?
8 35.5kw/m?2 0 kW/m?
9 71kw/m?2 71kw/m?2
10 71kw/m?2 0 kW/m?
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Fig. 3-1 Bubble induced two-phase natural convection in a cylindrical tank
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Fig. 3-2 Schematic diagram of staggered mesh
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Fig. 3-3 Void fraction distribution (inlet bubble diameter:2mm, inlet gas velocity:0.3m/s)
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Fig. 3-17 Experimental apparatus
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Fig. 3-18 Experimental apparatus (photograph)
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Fig. 3-19 Thermocouple locations
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Fig. 3-20 Temperature variation in vessel under single phase natural convection
at heat flux 4.4 kw/m?
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Fig. 3-21 Temperature variation in vessel under single phase natural convection at
heat flux 8.8 kw/m?
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Fig. 3-22 Comparison between measured and calculated temperature variation

below the bottom of heated section at heat flux 4.4 kw/m?
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Fig. 3-23 Comparison between measured and calculated temperature variation

below the bottom of heated section at heat flux 8.8 kw/m?
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Fig. 3-24 Spatial temperature distributions in vessel under single phase natural

convection at heat flux 4.4 kw/m?2
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Fig. 3-25 Spatial temperature distributions in vessel under single phase natural

convection at heat flux 8.8 kw/m?2
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Fig. 3-26 Temperature variation in vessel under single phase natural convection at

heat flux 4.4 kw/m? at central heater and 0 kw/m? at peripheral heaters

123



Temporal Temp. Variation
in Vessel,Center Peak 4.4kW/m 2
35
30 »
25 ——Center
Subchannel
8 20 ——Peripheral
g’- Subchannel
; 15
10 : -
V4 Vertical Position
95mm
5
0 T T T I )
0.0 500.0 1000.0 1500.0 2000.0 2500.0
Time (s)

Fig. 3-27 Comparison of temperature variations between center subchannel and
peripheral subchannel at heat flux 4.4 kw/m? at central heater and 0

kw/m? at peripheral heaters
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Fig. 3-28 Natural convection in the region of above heated section
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Fig. 3-29 Temperature variation in pipe section under single phase natural

convection at heat flux 4.4 kw/m?2
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Fig. 3-30 Temperature variation in pipe section under single phase natural
convection at heat flux 4.4 kw/m? at central heater and 0 kw/m? at

peripheral heaters
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Fig. 3-31 Temperature variation in pipe section under single phase natural

convection at heat flux 8.8 kw/m?2
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Fig. 3-32 Spatial temperature distributions in pipe section under single phase

natural convection at heat flux 4.4 kw/m?2
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Fig. 3-33 Spatial temperature distributions in pipe section under single phase

natural convection at heat flux 8.8 kw/m?2
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Fig. 3-34 Temperature variation in vessel under two-phase natural convection at
heat flux 17.8 kw/m?2
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Fig. 3-35 Temperature variation in vessel under two-phase natural convection at
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Fig. 3-36 Temperature variation in vessel under two-phase natural convection at
heat flux 71 kw/m?

133



Spatial Temp. Distribution
in Vessel 35.5kW/m?

120
100 S
80
) —250s
o i e ¥
& 60 —500s
5 \ —750s
i —1000s
— 12505
? / |
4 —
0 T 1 T | 1
-300 200 -100 0 100 200

Vertical Position from Bottom of Heated Section (m)

Fig. 3-37 Spatial temperature distributions in vessel under two-phase natural

convection at heat flux 35.5 kw/m?
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Fig. 3-38 Mixing of hot and cold waters by bubble induced eddy and movement of

interface of thermal stratification
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Fig. 3-41 Temperature variation in pipe section under boiling two-phase natural

convection at heat flux 35.5 kw/m?
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Fig. 3-42 Temperature variation in pipe section under boiling two-phase natural

convection at heat flux 71 kw/m?2

139



Spatial Temp. Distribution
in Pipe 35.5kW/m?

120

100 ﬁ

80
) —250s
s 60 —500s
E —1750s

40 — ——1000s

~——1250s
20
0 T 1 1 1 1
0 50 100 150 200 250
Horizontal Position from Exit of Vessel (m)

Fig. 3-43 Spatial temperature distributions in pipe section under boiling two-phase

natural convection at heat flux 35.5 kw/m?
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Fig. 3-44 Spatial temperature distributions in pipe section under boiling two-phase

natural convection at heat flux 71 kw/m?
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Fig. 3-49 Photograph of large facility

Fig. 3-50 Photograph of medium facility
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Fig. 3-51 Temperature distribution in vessel in large facility (Maximum Temperature:
80 deg.C)
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Fig. 3-52 Temperature distribution in vessel in large facility (Maximum Temperature:
50 deg.C)
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Fig. 3-53 Temperature distribution in vessel in medium facility (Maximum

Temperature: 50 deg.C)
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Fig. 3-54 Temperature distribution in vessel in small facility (Maximum Temperature:
70 deg.C)
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Fig. 3-55 Thermal stratification in natural circulation in large facility
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Fig. 3-56 Natural circulation velocity in large facility (Maximum Temperature: 50

deg.C)
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Fig. 3-57 Natural circulation velocity in medium facility (Maximum Temperature: 50
deg.C)
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Fig. 3-58 Natural circulation velocity in small facility (Maximum Temperature: 55
deg.C)
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Fig. 3-59 Flow visualization in horizontal pipe in large facility (Maximum temperature
60 deg.C)

153



Velocity Distribution

ELS
E \
E 10
3 =
o -
D | L ¥} | | |
g-d-o 30 -20 -10 i} 10 20 Jo

Radial Position (mm)

Fig. 3-60 Radial velocity distribution in horizontal pipe in large facility (Maximum

temperature 60 deg.C)
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Time Variation of Inlet and Outlet
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Fig. 3-61 Inlet and outlet temperatures of heat exchanger in large facility (Maximum
temperature 50 deg.C)
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Time Variation of Inlet and Outlet Temp. of
Cooling Water (Maximum Temp. 50 deg. C)
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Fig. 3-62 Inlet and outlet temperatures of cooling water in large facility (Maximum
temperature 50 deg.C)
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Time Variation of Heat Exchange Rate
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Fig. 3-63 Heat exchange rate in large facility (Maximum temperature 50 deg.C)
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Time Variation of Heat Exchange Rate
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Fig. 3-64 Heat exchange rate in medium facility (Maximum temperature 60 deg.C)
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Time Variation of Heat Exchange Rate
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Fig. 3-65 Heat exchange rate in small facility (Maximum temperature 66 deg.C)
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Fig. 3-66 Mixing of high temperature region by bubble induced flow
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Fig. 3-67 Temperature distribution in vessel under mixing of thermal stratification by

bubble (Maximum Temperature 80 deg.C)
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Fig. 3-68 Temperature distribution in vessel under mixing of thermal stratification by

bubble (Maximum Temperature 50 deg.C)

162



Heater

Fig. 3-69 Mixing of high temperature region by natural convection
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Fig. 3-71 Mixing of high temperature region by natural convection for maximum

temperature 80 deg.C with heater power of 2 kW
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Fig. 3-73 Temperature distribution in vessel with cooling and heating for maximum

temperature 80 deg.C with heater power of 2 kW
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