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INTRODUCTION

1.1 Background

1.1.1 Wetting

In everyday life, we are constantly in contact with liquids, of which water makes the
largest part. Liquids are not only abundant around ourselves, but our body itself
depends on their properties to function properly. One of the most important properties
that determine how liquids interact with their environment is wettability, which is
the ability of a liquid to maintain contact with a solid surface, resulting from the
intermolecular interaction between the two substances. A famous example of how
wettability plays a crucial role in nature is the lotus effect, where water droplets on
a lotus leaf do not adhere to it, but retain their round shape and collect any dirt
particles in their proximity, thus performing a cleaning function.?** At the other end of
the wettability spectrum, several types of pitcher plants use highly wettable surfaces
to make insects slip into their traps more easily.” The importance of wettability is in
no way limited to plant life: for example, it has been reported that wettability highly
influences gecko adhesion to wet surfaces.*

An early and groundbreaking work on wettability was done by Young in 1805,
where he formulated that the contact angle of a droplet is determined by the horizon-
tal force balance among interfacial tensions at the three-phase interface. Especially
recently, wettability has come to play an increasing role in various industrial processes,
such as quenching oils,” oil recovery,” coating,® lubrication,” printing™” and semicon-
ductor manufacturing.™t A typical example where wettability plays a crucial role is
recent industrial printing technology, in which the required resolution has reached up
to nanometer scale in high-speed relief or gravure printing processes. Another exam-

ple is the semiconductor industry, where mass production of 14 nm-scale transistors is
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scheduled to start in year 2014, and cleaning and rinsing with liquids at this scale is
still needed. For those processes, profound understanding of the wettability behavior
of a liquid with a solid surface at a micro- or nano-scale might provide new insights to

help control and maintain the resulting quality.

1.1.2 Young’s equation and wettability in the micro-scale

It has been argued that the relation put forth by Young is not enough to be used at
micro-scale, and proposals, such as the introduction of a microscopic contact angle,*2

adding an additional line tension for the three-phase interface3"14

and taking precursor
films into account,™® have been put forward, but experimental validation has so far been
difficult as the evaluation of solid-liquid and solid-vapor interfacial tensions is a non-
trivial task. 1047

On the other hand, computer simulation proved to be a valuable tool in this field.
Already in year 1949, Kirkwood and Buff published a paper which provided a relation
of the surface tension to the intermolecular potential and molecular distribution func-
tions,*® which formed the basis of the methods used in Monte Carlo simulations to
evaluate interfacial tension. In 1990, Nijmeijer devised microscopic expressions for the
surface and line tensions,™ which enabled direct calculation of these interfacial tensions
from the pressure distribution profiles, that could be readily evaluated by molecular
dynamics (MD) simulations. In the same year, Nijmeijer followed up with his own MD
simulation of a mono-atomic Lennard-Jones (L-J) liquid film on a solid surface, and
demonstrated that even at nano-scale the Young’s relation is applicable.?? The validity
of Young’s relations has also been confirmed for a phase-separated binary mixture of
L-J fluids by Das and Binder by using Monte Carlo simulations.?!' Savano et al.?2 have
carried out MD simulations mimicking a macro-scale experiment, where they immersed
a rod of nano-scale size into an L-J liquid, and concluded that Young’s relation is appli-
cable to this case as well. A number of research has gone beyond of just validating the
Young’s relation and studies on the wetting of L-J system have also been carried out
e.g. for molecular-level roughness of the surface,?? effect of the potential well depth of
the interatomic solid-liquid interaction,?* wetting of spherical particulates,? or sessile
droplet.?% Nishida et al.# of our research group succeeded at in situ extraction of the

pressure distribution of an L-J droplet on a solid surface, and provided insight into the

transition layers at various droplet interfaces.
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1.1.3 Wetting in water-alcohol mixture systems

Adding minute amounts of alcohol is a well-known way in various industrial fields to
radically change the wetting behavior of water, and it has also been experimentally
confirmed that there is a considerable decrease in liquid-vapor interfacial tensions.“
Up until now, empirical data and statistical mechanics have been used to create ex-
pressions capable of predicting the surface tension of mixtures, and while some success
has been met, 2?31 4 quantitatively precise and universal expression has not been de-
rived yet. Unfortunately, as can be seen from the discussion up to this point, most
extensive simulation research concerning wettability has been done on either single-
phase or separate-phase mono-atomic L-J liquids. Because both water and alcohol
molecules have a three-dimensional structure and are highly polar, i.e. strongly gov-
erned by Coulomb interactions, the results obtained from mono-atomic L-J liquid sys-
tems cannot be applied to water-alcohol mixtures in a straightforward manner. There
is a need to conduct simulations with systems closer to the real world alcohol-mixture
systems.

At the point of writing, few computational simulation works have been published
dealing with the wettability of water-alcohol mixtures. Wilson and Pohorille inves-
tigated the adsorption of a single methanol or ethanol molecule on the liquid-vapor
interface of water.32 They calculated the free energy profiles and found that there
was a deep minimum at the interface, pointing to substantial surface excess concen-
trations. The concentrations calculated from the Gibbs adsorption isotherm showed
a good agreement with experimental results. Later publications directly investigated
the liquid-vapor interfaces of water-alcohol mixture systems, where they discovered a
strong tendency for alcohols to gather at the liquid-vapor interface and found the inter-

3354 55 earlier

facial tensions to be consistent with what was observed experimentally,
predicted by Wilson and Pohorille. There is even less work done in dealing with the
wettability of water-alcohol mixture droplets. Lundgren et al.®® performed simula-
tions of water-ethanol mixture droplets on a graphite surface and noted that ethanol
molecules gather not only at the liquid-vapor, but also at the solid-liquid interface.
They also noted that the decrease in the contact angle was significant compared to
a pure water droplet, which was in accordance with experimentally observed results.
Unfortunately, they did not conduct more detailed investigation on the interfaces, such
as calculating the interfacial tensions. It is apparent that currently there are only some

works done on the liquid-vapor interfaces and their interfacial tensions, which puts us

in the same predicament as faced by experiments: because of the lack of information on
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solid-liquid and solid-vapor interfaces, we cannot consistently evaluate the wettability
of water-alcohol mixture systems. This study aims to remedy this by providing detailed

analysis of the interfaces and the interfacial tensions occurring there.
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1.2 Objectives

The objective of this work is to investigate the effect of alcohol additives on droplet
wettability, where methanol and IPA are chosen as the alcohol components because of
their wide industrial use, abundance of experimental data and ease of implementation.
By employing molecular dynamics, not only a direct observation of molecule structure
and movement is possible, but interfacial tensions can also be directly calculated, which
is a non-trivial task to do experimentally. This will enable direct observation of change
inside droplets and their interfaces, allowing to precisely determine the main factors
causing wettability change.

Another primary objective of this work is to validate if the wetting theory used in
macro-scale is still applicable to nano-scale mixture droplets. It is important to note
that molecular-scale phenomena, such as the composition of the three-phase interface,
are not pursued thoroughly in this work. Rather, droplets are treated using the macro-
scopic wetting theory, where an idealized model of interfaces with zero thickness is
applied, although the actual interfaces have transition layers of finite thickness.

A secondary objective is to evaluate the validity of the methods used to obtain these

interfacial tensions.

1.3 Paper Outline

This study deals with droplet systems and systems containing planar interfaces using
MD simulation. The main focus is on two-phase solid-liquid and liquid-vapor interfaces,
where their compositions and interfacial tension are investigated.

Chapter 2] describes the outline and theory of molecular dynamics method as well as
non-trivial analysis methods used in this research. Specifically, the handling of pressure
and interfacial tensions in MD is described.

Chapter [3] deals with the creation and analysis of water-methanol and water-IPA
mixture droplets on a solid surface. The density distribution profiles as well as the
Laplace pressure in the droplets are calculated and droplet wettability is evaluated
using the contact angle.

Chapter [4] contains the quasi-one-dimensional water-alcohol systems. Systems with
either planar solid-liquid and liquid-vapor or only solid-vapor interfaces are created and
the interfacial tensions are directly calculated. Molecular orientations at solid-liquid

and liquid-vapor interfaces are also investigated.
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Chapter [5| has another type of quasi-one-dimensional systems to be used for thermo-
dynamic integration, which provides an alternative way to obtain solid-liquid interfacial
tensions.

Chapter [6] summarizes the data obtained in the previous chapters to confirm if the
macro-scale wettability model, i.e. the Young’s equation, is also valid for the droplets
constructed in Chapter [3] Afterwards, the validity of the method used to obtain solid-

liquid and liquid-vapor interfacial tensions in Chapter [4]is investigated.



MOLECULAR DYNAMICS
METHOD AND THEORY

2.1 Equations of Motion

The molecular dynamics (MD) method calculates the time evolution of a system by
solving discretized equations of motion for every particle. Particles are basically as-
sumed to consist of a single mass point or a set of mass sites with relative positions
fixed. For most of the simulations particles are assumed to behave according to clas-
sical Newtonian mechanics as well as Eulerian mechanics in case of rotational motion.
However, in several cases Newton’s equations for translational motion are modified to
produce isothermal-isobaric systems, although rotational motion always follows Euler’s
equations. For multiple site particles, their movement is implemented as a rigid body

motion.

2.1.1 Translational motion

Translational movement of the center of particle’s mass is expressed by Newton’s second
law of motion

— =F, (2.1)

where m and 7 denote total mass and positional vector of the center of mass of a particle,
respectively, and ¢ designates time. The total force Fin right-hand side of Equation
is a sum of outside forces, such as gravity, and forces due to interactions with other

particles working on interaction sites situated on the particle. Suppose there are N

particles and each particle consists of n; (i = 1,---, N) interaction sites with their po-
sitions 7!, -+ , 7" and the potential energy function ® (7, , 7", -+ 7N, -+, 7NY)
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only depends on interaction site positions, then the total force F, being applied to
particle ¢ due to the potential interaction can be derived by partial differentiation
o~ 0D

= arz?

1

while the position of center of mass 7 is written as
el R A (2.3)

The equation of motion of the center of mass with a total mass m; thus becomes

27 4

To make numerical integration possible, velocity ¥; is introduced as an independent

variable and Equation is rewritten into two equations as

a7

i g, 25
7 =0 (2.5)
dv; -

i— = F;. 2.6

mi g (2.6)

By numerically integrating Equations and the velocity and position can be

obtained.

2.1.2 Rotational motion

Most simulations in this research are done with particles assumed to be rigid bodies.
In a body-fixed frame with axes set along the principal axes of a particle and its origin

at the center of mass, the rotational motion of a rigid body follows Euler’s equations
120 — bt (];’y — Ii’z> =Tb,
1P b — Wb (fgz - Igw) — 7, (2.7)
(B 1) =10
where the dot denotes time derivative and I, T and w are components of principal
moment of inertia I, principal torque T and principal angular velocity &, respectively.

The superscript letter “b” indicates the body-fixed frame and the subscript letters

indicate the direction in the frame.



2.1 Equations of Motion

Regarding the position of points in a particle, body orientation in a laboratory
frame relative to the body frame can be expressed by three Euler angles («, 8,7) in the
laboratory frame. By using the rotation matrix

€Oos v cos -y — sin v cos (B sin vy sinacosy + cosacosBsiny  sinfsiny
R = | —cosasiny —sinacosScosy —sinasiny+ cosacosfcosy sinfcosy |,

sin asin 8 —cosasin 3 cos 3
(2.8)

the relation between position vectors in laboratory and body frames in expressed by
e=RT-e"+7 (2.9)

where € and € denote the position of a point in the laboratory and body-fixed frames,
respectively, while 7 is the position vector of the center of mass in the laboratory
frame. Furthermore, the following relation stands between Euler angles («, 3,7) in the

laboratory frame and principal angular velocities:

wg = dsinﬁsiny—i—ﬁcosv,
W,Z = &sin Bsiny — B cos, (2.10)
w? = cos B+ 4.

The solution of Equation for (&, 8, ) is

&= 1 (wb siny + w? cos*y)
sinf8 \"* Y ’
3 :wzcosv—wzsin’y, (2.11)
. b COSﬂ b - b
V=W, — sin 3 (wxmn'y—i—wycosv) .

However, it is clear from Equation that & and 4 become singular for 5 = 0. To
avoid this singularity, quaternion ¢ = (qo, q1,q2,q3)" has been used instead to express

the body orientation:

. .Y«
= sin — sin
q0 2 9
. V-«
q1 = sin — cos ,
2 2
3 +“ta (2.12)
Q2 = cos — sin ,
2 2
B rto
q3 = COS — COS .

2 2

To compensate for an extra degree of freedom, the following constraint must also be in
place as

7| =q6 +at + a5 +q3 =1 (2.13)
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Rotation matrix in Equation [2.8| can now be written as

—@B+E-B+3E 2(q293 — qoq) 2 (q192 — q0q3)
R = 2 (192 — qo0g3) - -6+4d 2(q193 — 9092) . (2.14)
2(qq2 — q0q3)  —2(qq1 — ©2a3) —@ — ¢+ ¢ + 2

By introducing the following matrix Q

—q2 —q3 q1
1 43 —q2 —qo
= _ 2.15
Q 2 90 @ g |’ (2.15)
—q1 qo —q2

Equation [2.11]is equivalently written as
I I
i=5Q3" (2.16)

without any singularity. There is also an additional benefit of eliminating trigonometric

functions.

10
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2.2 Potential Functions

In this research, SPC/E=" potential model is used for water molecules and OPLS-UAB%:8
potential model is used for methanol and IPA molecules. Both models cover intermolec-
ular interactions and OPLS-UA additionally has intramolecular potentials to represent
internal rotations. All molecular models are represented as a group of interaction
sites and treated as rigid bodies. An interaction site can be a point charge subject to
Coulomb interaction as well as van der Waals interaction expressed by Lennard-Jones
(L-J) potential.

Coulomb potential between two interaction sites ¢+ and j with a distance 7;; is as

follows
g 4iq5 1
oY = 2 2.17
C 4 €0 Tij ( )
where €9 denotes vacuum permittivity and ¢; and g; are the charges of sites ¢ and j. In

the case of L-J, the potential between two interaction sites is

@Z] g 4 .. 77/‘] J— 71‘] 2.18
LJ €ij { (Tz'j rij ) ( )

where o;; and ¢;; are the distance at which inter-site potential becomes zero and the
potential well depth, respectively. Values for the interaction sites are provided later
in this chapter, while those between different sites are given by the Lorentz-Berthelot

mixing rules as
Oq + 0p

2 (2.19)
Eab = V/Eafb-

While these mixing rules are simple and widely used, they are very general and cannot

Oab =

accurately reproduce mixture properties that are observed experimentally, although
the general tendencies are retained and that is deemed enough for this work. In case of
only rigid bodies, the whole potential of a system is simply the sum of L.-J and Coulomb
potentials over every combination of N particles with n; (I = 1,---, N) interaction sites

for each particle and without intra-combination:

ny Nm

N N
o = %Z SN (e el ). (2.20)

I=1 m=1i=1 j=1
m#l

2.2.1 Water model

The extended simple point charge model, SPC/EBY for water (Ho0) molecule, is a rigid
isosceles triangle, with charges on each of the three atoms, shown in Fig. The bond

11



2. MOLECULAR DYNAMICS METHOD AND THEORY

length of both O—H bonds is 0.1 nm, with a bond angle of 109.47 degrees. In addition to
Coulomb interactions due to the charges, van der Waals interactions are implemented

by an L-J site, situated on the oxygen atom. Coulomb, L-J and mass parameters are
shown in Table 2.1]

109.47°

Figure 2.1: SPC/E water model.

Table 2.1: Potential and mass parameters of SPC/E water model.

oo (nm) €0 (nm) qo (e) mo (kg)
0.3166  1.079 x 10721 —0.8476 2.658 x 1026
op (nm) en (nm) qu (e) my (kg)

- - 0.4238 1.674 x 1027

2.2.2 Alcohol model

The optimized potentials for liquid simulations (OPLS) force field was developed for
the simulation of organic liquids, which reproduce many bulk properties at room tem-
perature. In this research, OPLS-UA (united atom) flavor of the model is used. In the
united atom version, carbon atoms and any neighboring hydrogen atoms are treated as
a single interaction site, thus saving computing time. Geometric parameters, i.e. bond
lengths and angles between bonds, are provided based on neighboring atoms.

Based on OPLS-UA, models for methanol (CH3OH) and isopropyl alcohol (IPA,
(CH3)2CHOH) are created. Methanol has no internal degrees of freedom as shown in
Fig. and can be handled as a rigid body. In the case of IPA however, according to
the original model shown in Fig. there is one rotational degree of freedom around
the CH-O bond, and a rotational potential is given in the original paper.®® There exist
three distinct conformers at local minimums of the rotational potential as shown in
Fig. Instead of handling rotation and intramolecular interaction, a simplified TPA
model is created as a mixture of three rigid conformer molecules with the approximate
mixing ratios taken from the original reference.”® Intermolecular potential and mass
parameters for methanol and IPA are shown in Tables and

12



2.2 Potential Functions

0.143 nm

Figure 2.2: OPLS-UA methanol model. 3738

Figure 2.3: Original OPLS-UA model of IPA 578

(a) Two gauche conformers (b) Trans conformer

Figure 2.4: Three conformers of the IPA molecule.

13



2. MOLECULAR DYNAMICS METHOD AND THEORY

Table 2.2: Potential and mass parameters of OPLS-UA methanol.

0o (nm) eo (J) qo (e) mo (kg)
0.307 1.181 x 1021 —0.7  2.658 x 10726

ocH; (nm) ecH; (J) qous (€)  mcns, (kg)
0.377 1.438 x 10721 0.265  2.497 x 1026

oy (nm) eg (J) qu (e) my (kg)

- - 0.435  1.674 x 10727

Table 2.3: Potential and mass parameters of OPLS-UA model of TPA.

ocu (nm) ecu (J) qcu (e) mcu (kg)
0.385 5.559 x 10722 0.265  2.162 x 10726
ocH; (nm) ecHs (J) qcHs (€)  mcn, (kg)
0.391 1.112 x 10721 0.0 2.497 x 1026
oo (nm) eo (J) qo (e) mo (kg)
0.307 1.181 x 1021 —0.7  2.657 x 1026
o (nm) en (J) qu (e) my (kg)

- - 0.435  1.674 x 10727

14



2.2 Potential Functions

2.2.3 Solid surface potential

Solid surface is made up of three layers of atoms creating an fcc (111) surface. Each
atom is assumed as a site that has no Coulomb interaction and interacts with only non-
surface particles. The interaction between surface atoms is expressed by a harmonic
potential for nearest neighbors

(I)H(Tij) = g (Tij — T0)2 s (2.21)

where k and rg are the spring constant and equilibrium distance of nearest neighboring
particles, respectively. Values of platinum crystal are adopted for the mass, lattice
constant, Young’s modulus and van der Waals radius, from which rg, owan and k
are derived, and the L-J potential parameter ey, is empirically set to provide an
approximate contact angle of 90 degrees for SPC/E water droplets. The potential and
mass parameter are shown in Table

Table 2.4: Potential and mass parameters of solid surface.

Owall (NM) Ewall (J) gwall (€)  Myan (kg) £k (N/m) 7o (nm)
0.35 1.447 x 10721 0 3.239 x 1072° 46.8 0.277

15



2. MOLECULAR DYNAMICS METHOD AND THEORY

2.2.4 Potential wall

A one-dimensional wall potential is also created to mimic the mean potential field
of a single layer of the solid surface described in the previous section. This is done
by assuming the solid surface atoms to be distributed uniformly inside a layer and

integrating Equation [2.18| over the whole area to produce the gross potential
[e.e]
(I)W (d) = / pW(I)LJ (R) 27TTdT, (2.22)
0

where pw denotes the area number density of the surface particles, and other variables

are illustrated in Fig. Integrating Equation produces

2 s 12 s 6
Dy (d;;) = 2me;; () - (22 d?. 2.2
widiy) m]pw{5 (dij) (dij) } 7 (2.23)

where d;; denotes the distance between site ¢ and plane j. The surface particle density

pw depends on the crystal orientation and lattice spacing, and for fcc (111) is ﬁ The
0

same L-J parameters are used as for the solid surface shown in Table By placing

three potential walls with %ro interval, one-dimensional solid surface potential field

is reproduced. These walls only interact with fluid particles.

particle

Figure 2.5: Integration for obtaining one-dimensional wall potential.

16



2.3 Temperature

2.3 Temperature

Water, methanol and IPA molecules in this study are rigid bodies whose motion can
be separated into translational and rotational motions. Except for molecules with a
linear structure, rigid molecules have 3 degrees of freedom for translational motion and
3 degrees of freedom for rotational motion, making 6 degrees of freedom in total.

The kinetic energy of a system composed of rigid molecules can be divided into

translational and rotational components
E=FE+FE,. (2.24)

In case of N rigid molecules, letting ¢’ be the relative velocity to the system’s center of

mass, the internal kinetic energy E} coming from the translational motion is
1L
E; = 3 ; m;U; - Ui, (2.25)
and the internal kinetic energy E, coming from the rotational motion is

N
1 b\ -
Br=5. (Iﬁ? : wf) b, (2.26)

i=1
From this, the system temperature can be defined by

2 2

T = E=
koN;~ kg

(Be+E,), (2.27)

where kj is the Boltzmann constant and Ny is the number of degrees of freedom that

is equal to 6N — 3 in a system without stationary frame of reference.

2.3.1 Simple velocity scaling

The velocity scaling method is the simplest way of temperature control, suitable only
when the energy flux as well as a precise description of the system are not important.
In this method, for a desired control temperature Ty velocities of all molecules are
simultaneously scaled by a same factor

Tset
T .

Aset = (2.28)

For rigid bodies velocities of the centers of mass and angular velocities are modified in

the following way for every molecule in the system

- —(old)

Vi = v Aset

~b _ —b(old) (2.:29)
W = &, Aset -

17
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2.3.2 Stochastic velocity scaling

When direct velocity scaling is unavoidable and a precise description of a system is
necessary, a stochastic velocity scaling scheme that is known to sample the NV'T' en-
semble is used."? In this scheme, the particle translational velocities are scaled so that

the rate of change of the kinetic energy FE is expressed by a differential equation

dt EFEg . dW
dE = (Fget — F) — 4+ 2 — 2.30
( set ) r + Nf \/7_—T7 ( )
where 7p, dW and FEgx = %kbN tTset are thermostat relaxation time, Wiener noise

and control kinetic energy, respectively. When considering only the first term of the
right-hand side of Equation the solution is simply

t
E (t) = [E (0) - Eset] €Xp <_TT> + Eset; (231)
where E (0) is the initial kinetic energy. The velocity scaling ratio Aget = % after
a calculation step h can be derived by using the first-order Taylor approximation
E, h E, h (T,
A2 _ 1— set e set ~1 s set -1 2.32
set ( 20U %) T B0 T T ’ (2:32)

which produces the widely used Berendsen’s thermostat.“? Unfortunately Berendsen’s

thermostat does not produce a proper NVT ensemble. This is solved by adding random

noise, as shown in Equation and the solution is given in the original paper®? as

Nf

h Flaet h :
A2 = - AL ) - X? § X2
set eXp< TT>+NfE R 1+i:2 i

h Eset h
2 - 1- —— ) ix
e (g - ()}

where X; denotes an independent random number from a Gaussian distribution with

(2.33)

unity variance. The velocity scaling ratio Aget is used to scale translational and angular

velocities in the same manner as described in the previous section by Equation [2.29

2.3.3 Langevin method

For most systems with a solid surface, the Langevin method is used to maintain the
surface temperature.*!' The solid atoms subject to the Langevin temperature control
are considered to be attached to a heat bath and the whole system is maintained at a
constant temperature. Because there is no direct tampering with liquid molecules, this

is a preferred method for observing an equilibrium system at a constant temperature.

18



2.3 Temperature

The solid surface consisting of three layers is shown Fig. The temperature
control is applied through phantom particles positioned in the second layer. Each

phantom particle is connected to a damper with a damping coefficient of

7 kpAde
Qdamp = mg b hd b’ (234)

where m, Ager, and h are the mass of solid atom, Debye temperature and reduced
Planck constant, respectively. The Debye temperature is set to Agep = 240 K using the
value of platinum in this study and thus giving the damping coefficient aqamp = 5.33 X
10713 kg/s. The damping is independently applied to the three velocity components.
In addition to this, each phantom particle is excited by a random force having

Gaussian distribution with standard deviation

/2 ky T,
op = adam; b set7 (235)

where h denotes the time step. When the system is at the control temperature Ty, the
amount of energy lost through dampers and gained through random forces is exactly

the same, producing a thermal equilibrium.

Real
molecules

Phantom
molecules

F
Fixed
molecules

Figure 2.6: Temperature control of solid surface with Langevin method.
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2.4 Pressure

Pressure is one of the most fundamental properties of liquids and gasses. However,
the definition of pressure in molecular dynamics is not as straightforward as in macro-
scopic continuum-based fluid dynamics or thermodynamics since it is a property of the
whole system, in other words, pressure does not directly work on the particles as the
interatomic potential does in microscopic scale molecular dynamics. In this section,

the microscopic concept of pressure is described.

Figure 2.7: Liquid molecules inside a container.

2.4.1 System pressure

In order to define the system pressure, a container of volume V with a number of
particles inside is considered as shown in Fig. Forces working upon particle 7 can
be separated into ones from interaction with particles inside the container and ones

from the container walls

mit; = F* + FE (2.36)

Take note that for molecules with several interaction sites F represents the net force
working on the center of mass at position vector 7;. The following equation is obtained

by taking the inner product of 7; for both sides of Equation [2.36] summing over all

20



2.4 Pressure

particles inside the container and taking the time average

S (i) = S0 (m E) 430 (7 B (2.37)
The left side of Equation term is transformed through a partial integration

1 t .
m; <7_‘; rl> = lim mz/ 7 - dT
t—oo 2t —t
. 1 L5t 1 b ERN
= tliglo <2tmi [ri . m} I vill /—t T - ndT) =—-m; <ri . r¢> :

With this, Equation can be rewritten as

> m <ﬁﬂ>+z<ﬁ--ﬁ“>=—Z<ﬂ--1§e’“>. (2.39)

The right side of Equation is due to the outside forces from the container walls

(2.38)

working on the particles inside. If it is assumed that the right side is a result of
isotropic pressure P being applied to the surface of volume V at the container walls, it

is equivalently expressed using pressure P

-3 <n fot / / _PA)dA=P / / 7 fidA. (2.40)

Take note that 7 is outward unit normal vector of the surface volume V. By using the

divergence theorem, Equation becomes

_Z< FeXt // - AdA = P/// VidV = 3PV. (2.41)

By substituting the right side of Equation [2.39 with Equation the system pressure

is expressed by velocity and interactive forces as

1 /. =
Zml BB+ o <ri - F;n>. (2.42)
This is the so-called virial pressure. Because all interactions can be expressed as sym-

metric site-site interactions in this study, the force component can be rewritten in the

following more convenient form
1 L
P = Y mi (35 Z Z:< > (2.43)
1 j z

Take note that 75; = 7; — 7 and F}j is force acting on particle ¢ due to interaction
with particle j. Through similar procedure the pressure tensor can also be derived that

results in the following equation

pos = %Zm (veol ) + %Z< SFD). (2.44)

1<j
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Note that the following relation holds between isotropic pressure and the diagonal

components of the pressure tensor

3

1 (6707
P= > pee, (2.45)

a=1
Up to here, a closed container with particles inside was assumed. During our cal-
culations where system pressure is needed, periodic boundary conditions are imposed
upon the system. Surprisingly, system pressure tensor is correctly provided by the same
Equation [2.44] even though explicit external forces no longer exit. Instead, “external”
pressure is considered to come from inter-molecular interactions that cross the periodic

boundaries.*#

2.4.2 Local pressure

To investigate interfaces and calculate their surface tensions, a way to calculate local
pressure tensor is needed. In this work, the system is divided into several slabs as shown
in Fig. The aim is to find the pressure tensor in each slab. In Equation it is
clear that the calculation of the velocity component is very simple: only the velocity of
particles inside the slab needs to be considered. On the other hand, it is not as straight-
forward for the force component because the force vector ﬁij may pass over multiple
slabs. This inconvenience can be compensated by redefining the force component in
Equation Firstly the z-direction pressure applied onto the surface perpendicular
to the z-axis is investigated. According to the Irving-Kirkwood convention,* if the
line between the centers of mass of two particles crosses a surface element, then the
intermolecular force between the two particles contributes to the pressure of the surface
element by the force component of ﬁij perpendicular to the surface. From this, an

equation can be derived: consider a surface element with an area A%, the pressure

sb»
contribution P} from intermolecular force Fz-j acting on particle ¢ due to particle j

passing through the surface element is determined by

Pi= AzZZFU AZZ

sl i j(>0) i§(>1)

| (2.46)
»

r; ij

ij

where 77* is the unit vector to +z-direction, and F; % and 7‘ . denote z-components

of force vector FZ] from j to i and relative position vector r;;, respectively. Through

multiplying by | | not only the absolute value of the perpendicular force is gained, but
repulsive and attractive forces are also distinguished in Equation [2.46] i.e. these forces

respectively correspond to positive and negative pressures exerted onto the surface
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area. Force is assumed to uniformly act on a straight line. Therefore the contribution
of particle interaction to pressure can be defined by averaging over all surface areas
contained in a slab k

Pi = Llsz Pidz = Z Z Ff, " e = 72 Z Firg;

z
slab & slab k v T %

(2.47)
where V; and L% are the volume and height of the slab in the z-direction, respectively,

while L7 .. is the z-component length of the part of the relative vector r;; in slab k.

k,ij
Since the force is constant along the line connecting the two particles, the integration

in Equation@ is solved as a simple product. For example in Fig. ? L3, is L7 and
y A

Liij is L7. In case both particles are in the same slab it is simpl and pressure

contribution exactly matches the one defined in the previous section. By applying a

similar procedure to other directions, the pressure tensor in slab k is derived as follows

PP =% m< % >+ — § gFm iy (2.48)
Vit Vi “ z
i€slab k TZ]

which is an equations Widely used to calculate local pressure in slabs.44 To be specific,

z

Li.
the weighting function pe ‘ is only valid for a system divided into slabs due to triangle
i
similarity. In general, the weighting function is the fraction of a particle-joining line

that lies within the volume of interest.
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Slab 4

Slab 3

Slab 2

Slab 1

Figure 2.8: Example of pressure through slabs.
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2.4.3 Pressure control

1.%9 is used when there is a need to

The pressure control scheme proposed by Bussi et a
keep the system pressure constant and create an NPT ensemble. The calculation cell

volume becomes a variable with its own equation of motion

V =3V, (2.49)

where 7 is proportional to the relative change rate of the volume. The difference between

the actual system pressure P and the control pressure Pyt influences this change rate

%4 (P - Pset) + kaTset

=3
n W )

(2.50)

where W is the so called “inertia of the piston”, which determines how sensitive the
volume change is to the system pressure. In accordance to the original paper, this is
defined as

W = N;kyTer 7P, (2.51)

where 7p is the barostat relaxation time.4? The equation of motion for translational

motion shown in Equation [2:4]is also modified by

o= i+ o 2.52)
. F
m;

and this shows that the rate of change in position is no longer equal to the particle

velocity. Take note that although equations of motion have changed, the derivations in

Sections [2.4.1] and [2.4.2] are still valid, and Equation [2.43| is used to calculate system

pressure. Additionally, this scheme is only valid when using positions and velocities
relative to that of system’s center of mass, and the equation of motion responsible for
rotational motion is left unchanged. In a system governed by these equations of motion,
the intermolecular energy is no longer conserved, and instead a new quantity is defined
by

1% W2
H = E+® — 2Tt log - + PV + 2”
0

where Vy and Hj are the initial values of system volume and the conservation quan-

= Ho, (2.54)

tity. This conservation quantity is almost equivalent to the enthalpy of the systems

(E + ® + PV), thus dubbed “effective enthalpy”, and is a time invariant

dH OH - OH - OH. OH,
== %‘T2+2T@'U’+Wv+%”_o' (2.55)
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This method is devised to control the pressure of a bulk system, and each dimension
of the calculation cell is scaled by {’/% to fulfil system volume’s equation of motion.
The described equations of motions do not strictly produce an N PH ensemble, as the
effective enthalpy slightly deviates from the real enthalpy. This is of no concern however,
as stochastic velocity scaling described in Section [2.3.2]is used in conjunction to produce
a correct NPT ensemble. Because system volume has become a variable, the system
degrees of freedom Ny are increased by one and WT772 is added to the kinetic energy in

Equation while 7 is scaled by the same coefficient as velocities in Equation [2.33

2.4.4 Local one-dimensional pressure control

The pressure control method described previously is modified to provide one-dimensional
pressure control inside a local region while still preserving the conservation of effective
enthalpy H. The basic concept is shown in Fig. 2.9 and the equation of motion is

modified in the following way

i =i+ ry —sgn (rf') - Il (2.56)
o

i = mfll — i, (2.57)

1'7 = VCtrl (Pccgrl _Iif)set) + 2kaset7 (2.58)

"/ctrl = n‘/ctrl- (259)

«
ctr

region to account for the system symmetry. Equations and are only applied

in the pressure control direction of particles inside the control region, and classical

A sign function is used together with the starting position [, of the pressure control

Newtonian equation of motion is used otherwise. The pressure control region is treated

as a single slab and the o component of the local pressure P%

1 18 calculated as described

in Section This provides a system where there is only direct pressure control on
the outermost regions, while the effective enthalpy H is still conserved in its unmodified

form.

26



2.4 Pressure

Periodic B. C.

Unconstrained motion region

f_/H

Vtrl O

Vconst O
I
2 l ctrl
P>

7%

ctrl

@)
—

Wi

Pressure control region

27

Periodic B. C.

Figure 2.9: The concept of a system with one-dimensional pressure control confined to a
local region. Particles in the middle white region follow the classical Newtonian equation
of motion, while particles in the yellow side region move according to the modified equation
of motion. The horizontal dimension of the white region is 2{¢, ; and its volume is constant,
while the horizontal dimension of the yellow region, and thus its volume V,,1, vary according

to its equation of motion. Periodic boundary conditions are set in all lateral directions.
*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
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2.5 Interfacial Tension

Surface tension is generally known as the force working along liquid-vapor interface that
is responsible for a number of phenomena including the spherical shape of droplets and
capillary effect. Surface tension is defined as the force along a line of unit length, where
the force is parallel to the surface and perpendicular to the line. Surface tension also
has a dimension of energy per unit area. The same kind of definition is also used for

interfaces such as solid-vapor, solid-liquid or between different liquids.

2.5.1 Bakker’s equation

In macro-scale, the pressure tensor components of a static liquid bulk satisfy the fol-
lowing:

P = P = p¥ = p¥, (2.60)
P = pY¥* = P =) (2.61)

However, it is not the case for a flat interface. Consider an interface that is perpendic-
ular to the z-axis as shown in Fig. 2.10] Because of symmetric properties and static
condition, the non-diagonal components are still all equal to zero as in Equation [2.61
However, P?# is no longer equal to P*® and PYY due to the interface and surface tension
force which only acts parallel to the surface, although P** is still equal to P¥Y. Here
the three diagonal components are rewritten using normal and tangential pressures PV
and PT:

P = pN (2.62)

pr* = p¥w = pT, (2.63)

Because surface tension only works along the interface and the system is in static equi-
librium, the only force working along the z-direction is the static pressure. Therefore,
normal pressure P?* = PN at the interface is the same as the static pressure P in the
bulk

PN =P, (2.64)

and considering the force balance in z-direction, PV is constant in the whole system.

Consider a surface area perpendicular to the z-axis with unit width in the y-
_t 1

272
completely covers the interface thickness of this surface area as shown in Fig. The

direction and its height equal to [ with the height range [ ] in the z-direction which

stress acting perpendicular to the side is given by integrating tangential pressure over
l

the area as — [ 2, PTdz. If no interface exists, the total stress is simply equal to —IP,
2
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Figure 2.10: Hlustration of normal and tangential pressures.

however with an interface, the surface is “pulled” by the surface tension, i.e. positive
stress is additionally applied. Following the mechanical definition used by Kirkwood
and Buff,1® surface tension is the excess of stress due to the interface. Hence, because

the surface area is of unit width, the surface tension can be obtained by

1 1
,ylv:_/Q Psz+lP=/2 P — PTqz. (2.65)
1 !

Because the normal pressure PV is constant along the z-direction, Equation can

be equivalently rewritten as

A = /2 PN — PTqs. (2.66)

N~

Since the tangential pressure becomes equal to the bulk pressure P = PN = pT
sufficiently away from the interface, Equation [2.66| can also be written as follows in
case there is only one interface in an infinite system in z-direction
oo
Al = / PN — PTdz, (2.67)
—00
and this equation is known as the Bakker’s equation. Because several systems in this

work have more than one interface, Equation [2.66|is used exclusively.
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2. MOLECULAR DYNAMICS METHOD AND THEORY

Figure 2.11: Liquid-vapor interface with a surface area stretching over it. Front view on
the right and side view on the left.
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2.5 Interfacial Tension

2.5.2 Young-Laplace equation

The relation between droplet’s internal pressure and its liquid-vapor interfacial tension
is discussed in this section. Because only quasi-two-dimensional droplets are investi-
gated in this study, this section will also be limited to two dimensions.

Consider a small two-dimensional surface area of a static droplet that is expressed
by angle © and radius R, as shown in Fig. This area is affected by the droplet’s
internal pressure P, the vapor phase’s external pressure P°™ and the liquid-vapor
interfacial tension v!Y. Because the droplet is static, the forces must be in balance.
While force balance for the horizontal direction is obvious, the following equations can

be derived to describe the force balance in the vertical direction as

2R sin <(;)>Pin = 2Rsin <(;)>P°“t + 27" sin (2) (2.68)

This provides the Young-Laplace equation given by
) ,ylv
P — PoW — AP = N (2.69)

where AP is called “Laplace pressure”. Equation [2.69] provides a relationship among
pressure difference across curved surface, its surface tension and radius of curvature,
showing that Laplace pressure is larger for larger interfacial tension and smaller radius

of curvature.

Figure 2.12: A two-dimensional minuscule surface area, with a length of OR.
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2. MOLECULAR DYNAMICS METHOD AND THEORY

2.5.3 Thermodynamic integration

The solid-liquid interfacial tension can also be obtained by using thermodynamic in-
tegration proposed by Leroy et al.4% It is especially useful when Bakker’s equation is
not applicable. The basic premise is to use a phantom wall, for which the interfacial
tension is already known, in a similar way to a piston to quasi-reversibly push the fluid
away from the solid surface by moving the said phantom wall. The reversible work
done by the phantom wall corresponds to the difference in Gibbs free surface energy
between the solid-liquid interfaces of the walls and the thermodynamic work done to
increase the system volume. For an interface between phases o and (3, the relationship
between Gibbs free energy per unit area ¢®? of the interface and interfacial tension v*?

is as follows4”

yP = g*f Zra%, (2.70)

where F?B and u; are the surface excess at the interface and chemical potential for
component i, respectively. For systems containing only a single-component phase there
is no excess I'*? = 0, and the Gibbs free energy of the interface and interfacial tensions

become equivalent

yP = gb, (2.71)

therefore the interfacial tension difference can be readily obtained from the work done
by the phantom wall.

A set of systems used for the integration in this study is shown in Fig. Several
systems with differently positioned phantom walls are created to obtain the pressure
that is exerted onto the walls in a quasi-reversible process. The interfacial tension
difference is thus obtained by

z P
Volia — ’Ygilantom = - /ZO Pphantode + 5 (il-1), (2.72)
where 7§cl>lid and VSZhantom are the solid-liquid interfacial tensions for the solid surface

and phantom wall, while P, and P are the pressure exerted on the phantom walls

hantom
by liquid molecules and sthem pressure, respectively. The distance from the center of
the calculation cell to the phantom wall and the mean length of calculation cell in the
horizontal direction are respectively denoted by Z and [, and the values of Z before
and after the quasi-reversible change are Z° and Z'.
This method can only be easily applied to single-component liquid systems, be-
cause as shown in Equation the need to calculate the chemical potential arises for

mixtures.
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Figure 2.13: A set of systems used to calculate interfacial tension difference from ther-
modynamic integration. The arrow shows the integration direction. The phantom walls
are initially positioned at Z° from the system center and out of the interaction range of the
liquid phase, while in the final stage, the liquid phase is pushed to a distance of Z' from
the system center where no solid-liquid interaction occurs. Periodic boundary is applied in
all directions.
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2. MOLECULAR DYNAMICS METHOD AND THEORY

2.5.4 Young’s equation and wettability

When a static macro-scale droplet is formed on a flat surface as schematically illustrated
in Fig. [2.14] there are three two-phase interfaces: solid-liquid, solid-vapor and liquid-
vapor. Each interface has its own surface tension per unit length that are marked here
as v*!, v*¥ and 4. Each interface exerts a certain force aiming to reduce its area. The
area where the three-phase interface exists is called the contact line, and it is also the
place where the three interfacial forces meet. Since droplet in Fig. [2.14]is in a static
equilibrium, it is clear that these forces are balanced. The following equation known

as Young’s relation describes the balance in horizontal direction
A4 A cosh — 4% =0, (2.73)

where the angle 6 is called contact angle. The smaller the contact angle is, the greater
the solid-liquid interface becomes. At an angle of 8 = 0 liquid expands and covers as
much of solid surface as possible, while at # = 7 the droplet acquires a spherical shape
and has almost no contact with the solid surface. The contact angle is a measure of
wettability: solid surfaces with 6 > T and 6 < 7 are referred to as hydrophilic and
hydrophobic, respectively.

In addition, it is believed that the surface provides the forces necessary to reach

equilibrium for the vertical direction.

Vapor

sV sl

Y Y
—

Solid

Figure 2.14: Force balance at three-phase interface line of a liquid droplet in contact
with a solid surface.
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2.5.5 Young’s equation at the micro-scale

Strictly speaking, Fig. does not illustrate the state of a micro-scale droplet ac-
curately. As will be show in Chapter [3] an adsorption layer exists at the solid-liquid
interface, and the contact angle at the three-phase interface is different from that of a
macroscopic droplet as illustrated in Fig. It is also difficult to define the three-
phase interface as a single point since each of the interfaces has a transition layer of
a finite thickness. Because of these reasons, it is no longer reasonable to consider the
force balance at the three-phase interface. An alternative approach is taken as shown
in Fig. where the horizontal force balance on a control volume containing the

three-phase interface in a two-dimensional droplet is considered
Y4 A cos ' — 450 — IP™ 4 PO = 0, (2.74)

where [ and 0" are the height of the control volume and the “contact” angle between
the upper boundary of the control volume and the droplet, while P™ and P°" are the
droplet and vapor phase pressures, respectively. If we assume that the droplet has a
constant curvature outside the control volume and the Young-Laplace Equation [2.69

can be used, the force balance is further simplified to

l
A <cos 0 — R) -7 =0, (2.75)

where R is the radius of the droplet outside the control volume.

Vapor
Control
Volume
Pout - // l — Pin
sV sl
7 Solid L

Figure 2.15: Force balance at the control volume set over the three-phase interface line.

Next, lets investigate the geometrical relation between 6 and €', where 6 is the

macroscopic contact angle, i.e. the contact angle if there was no adsorption layer at
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2. MOLECULAR DYNAMICS METHOD AND THEORY

the three-phase interface. Consider a circle drawn over the droplet using its radius as

illustrated in Fig. [2.16] The following simple geometric relations hold

0=—
cos 7

b (2.76)

0 =
cos 7

where d is the distance from the circle center to the solid-liquid interface. It is trivial
to see that Eq. reduces to

V4 A cosh — 4% =0, (2.77)

which is identical to Young’s Equation[2.73] This shows that when applying the Young’s
relation to micro-scale droplets, the macroscopic contact angle, and not that of the

adsorption layer, should be used.

0~
0& L\
R d

Figure 2.16: Geometric relation between the contact angles.
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2.6 Force Balance at Interfaces

2.6 Force Balance at Interfaces

As will be shown in later sections, interfaces have transition layers of finite thickness,
but the wetting theory described in Sections and uses an idealized model of
interfaces with zero thickness. It is possible to define an interface position, so that the
balance of force and moment due to the pressure tensor distribution become equivalent
between the idealized model and the actual interface with a transition layer.4® In ac-
cordance with the original paper, for a flat interface between two o and 3 phases, the

equations are given as

Zaﬂ 1 1
/ Pedz [ PPy — AP = / © Pl (2.78)
_1 Zozﬁ _ L
2 2
o ; ;
/ z Pzdz +/ PPadz — 79PyP = / z PT2dz, (2.79)
_ L Zap _ L
2 2

where 42 and Z*P are the interfacial tension and the position of the interface, while
P® and P? denote the isotropic bulk pressure in each phase. Following the assumption
used in the previous Section that the normal pressure PV is constant along the

z-direction, the isotropic bulk pressures can be replaced by PV, giving

1
v = [ pN _ pTyy, (2.80)

|~

l
Lt
70 = — /21 (PN — PT) zdz, (2.81)
v —3

where Equation [2.80] returns to Bakker’s Equation [2.60] used to calculate interfacial
tensions. Using Equation it is trivial to obtain the position of the interface.
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2. MOLECULAR DYNAMICS METHOD AND THEORY

2.7 Numerical Integration

The velocity Verlet method is used for integrating both translational and rotational
equations of motion. The basic premise is to calculate future position using current
values, then use the newly calculated position to calculate total force at the next step,

and finally use all to predict velocity.

2.7.1 Numerical integration of translational motion

In case of translational motion of a particle of mass m, using the current position of
center of mass 7 (t), velocity (t) and force F () at time t, the position of the center

of mass 7 (t + h) after a time step h is obtained as

F(t+h) =7 (t) +hi(t) + g (t). (2.82)

2m
Using 7 (¢ + h), potential ® (t + k) and more importantly total force F (£ + h) can be
computed. With this, velocity ¢/ (¢ + h) can also be obtained as

U(t+h):17(t)+%{ﬁ(t)+ﬁ(t+h)}. (2.83)

2.7.2 Numerical integration of rotational motion

For the integration of rotational motion velocity Verlet method with modified quaternion-

Z950]

constraint techniques is used in this study. The first step is to predict quaternion

7 after a time step h by
- S N h? ., 2
q(t+h)=q(t) +hq(t) + 5-q(t) = A(&)h7G(?), (2.84)
where cj’ (t) can be determined from the quaternion ¢'(¢) and principal angular velocity
@ (t) via Equation m The second derivative ¢(t) is obtained from the following

relation through the time derivative of Equation [2.16| as
SRR RN 5
¢=5Q"—q(qd). (2.85)

The principal angular acceleration &P is obtained by solving Equations The last
term in Equation is a constraint force that works to fulfill constraint in Equa-
tion 2.I3] By adding this constraint force, uncertainty that arises from numerical
solution is reduced. The coefficient A is derived from the constraint in Equation [2.13

as

h? - . LR N IR
/\h2=1—2q-q—\/1—h2q-q—h3q-q—4{q-q—(q-Q) } (2.86)
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2.7 Numerical Integration

Having obtained ¢ (¢ + k), provided that 7 (¢t + h) and F (t + h) have also been com-
puted, it is possible to calculate principal torque T (t + h). A natural procedure would

be to calculate the next principal angular velocity ® (t + h) as
- - h . N
& (t+h) =)+ {wb () + & (t+ h)} . (2.87)

However, if Equation [2.7]is rewritten as

b 7b
wb _ Tz +wbwb Iyylzz
A Y=z b 0
I:m: I$CB
b
d)b — & + wbwb zztzxx (2 88)
Y Jb SN ’
vy vy
5,10
b z b, b rTr Yy
w, =7 tww
b Y b 7
IZZ IZZ

it is clear that the angular acceleration has a non-linear dependence on the angular
velocity, thus making Equation also non-linear. It is necessary to iteratively cal-
culate Equation [2.88| in order to obtain a solution. A rough estimation of the principal
b(0)

angular acceleration % can be given by only considering the principal torque part of

Equation [2.88] B
GO — (Ib) T (2.89)

with I° being the principal inertia moment matrix

. 0 0
b _ b
I’ = 8 I%y [Ob , (2.90)

and T being the principal torque. With this it is also possible to estimate angular

velocity @?(©@):

GO (¢ + h) = & (1) + g (SO @+ +a 1)} (2.91)

This value can now be used to get a more precise estimate of principal angular accel-
eration via Equation At least three iterations are needed to obtain a satisfactory
estimation. In this research, the iterations are continued until the absolute difference
of the angular velocity components between iterations is less than 0.02 rad/s, with the

upper limit being one-hundred iterations.

2.7.3 Numerical integration under pressure control

When under pressure control, the equation of motion for translational motion is modi-

fied and system volume becomes a variable with its own equation of motion, therefore
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2. MOLECULAR DYNAMICS METHOD AND THEORY

reformulation of numerical integration is needed. The volume size V' (¢ + h) is obtained

only by straightforward substitution

V (t+h) :V(t)+hV(t)+h£V(t) (292)
- 1+Np-hn(t)+NP2'h {ﬁ(t)+Np-n(t)2}]V(t), |

where 7 (t) is obtained by either Equation or and Np is the number of
pressure control directions: 3 for the original bulk pressure control scheme and 1 for
one-dimensional local pressure control. The positions for bulk pressure control scheme
7 (t + h) and the control component « for that of one-dimensional local pressure control
scheme 7% (t + h) are obtained in a similar way

F(t+h) =7 (t) + h7(t) + h;%(t)

2 2 (2.93)
= [1 + hn (t) + % {7'7 t)+n (t)Q}} 7(t) + ho (t) + ;—mF (t),
h2
r®(t +h) = r®(t) + hi® (t) + 57’*“ (t)
h2 . 2 o o h2 03
- [1 +hn (1) + 5 {77 (t) +n(t) }] () + bt (8) + 5 F7 () (2.94)

2

s {r ()« )+ % {0400

Using the updated positions the total force F (t + h) can be computed. With this, the
remaining variables at ¢ + h can be obtained. A simple attempt for calculating the

change rate 7 (t + h) is given by
h. .
n(t+h)=n(t)+5 ) +a+h)}. (2.95)

Similarly, velocities for bulk pressure control scheme ¥ (t + h) and the control compo-
nent « for that of one-dimensional local pressure control scheme v® (t 4+ h) are given

by

6(t+h)zﬁ(t)+g{{7(t)+{7(t+h)
! h . h (= , (2.96)
= m [{1— 2n(t)}v(t)+Qm{F(t)—i_F(t—i_h)H ,
o (£ ) = 07 (8) + o {5 (6) + 0 (¢ + B}
(2.97)

This obviously creates a problem, since 7 (¢ 4+ h) is necessary to calculate ¥ (¢t + h) and
v (t+ h), but n (t + h) itself is obtained by either Equation or which requires
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pressure that is obtained by either Equation or and where the velocities at
t 4+ h are required. A non-linear relation exists that must be solved iteratively. Firstly,

an estimate of the velocities is calculated by

7O (t + h) = {1 - gn (t)} T(t) + % {ﬁ(t) v R+ h)} : (2.98)
v (¢ 4 p) = {1 -~ (t)} V() + g (F (1) + F (R} (2.99)

The pressure can be divided into kinetic energy and intermolecular potential energy
members,

P = Py + Py, (2.100)

where Pr and Pg correspond to the first and second terms on the right-hand side of

Equations and respectively. While Py (t + h) can be readily calculated from
only 7 (t + h) and V (t + h), the following relation holds for Pg

1
Pg(t+h) = PO (t+1), (2.101)

{142yt +hn))°

where PJ(EO) is the kinetic energy term calculated from the estimated velocities. Finally,
the i-th estimation of 7 (¢ 4+ h) is given by the following equation
14 (t + h) {PCD (t + h) - Pset} + kaTset

W
h V(t+h) PP (t+h)

o ' .
B }(2 102)

where the value from the previous time step is used initially n®) (t + h) = 5 (¢). The
Equation [2.102] is iterated at most one-thousand times or until 7 (¢ + h) fully con-

verges. Once 7 (t+ h) is obtained, velocities can be easily calculated by using the

W (4 B) = () + 5 |17 (5)+ N,

+Np-

estimations made earlier

1

— = 7O 4n), 2.103
1+%n(t+h)v (t+h) ( )

T(t+h) =

1
v (t4+h) = ——— 0O (4 n). (2.104)
L+ 2n(t+h)
Only one non-linear equation must be solved iteratively, thus it is possible to obtain a

high-precision solution.
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2.8 Calculation Speed-Up Techniques and Boundary Con-

ditions
2.8.1 Cut-off

By only considering interactions between sites closer than a cut-off distance 7,4 and
neglecting any possible effect further than that, calculation time is greatly saved be-
cause the number of interactions to be calculated is reduced. The Coulomb and L-J
interactions in Equations[2.17)and are truncated at a cut-off distance r¢,t using the

Heaviside step function H.y; and approach zero smoothly at reyt with the coefficients

in Equations [2.107] and [2.108}
qq; | 1 1 rii )2
Oc(rij) = H(reus —7ij) - 5 [~ * {(% < . > B C%}] 7 210

dmeg Tij Tcut Tcut
O‘. . 12 O‘. . 6 /’/‘. . 2
(I)LJ(’I"Z‘J') = H(Tcut - Tij) . 45ij [(Z]) — (ZJ) + {C%J < Y > - C%J}] y (2.106)
Tij Tij Tcut
oo\ 12 N
gi-o(22)" (22
cut cut
" 12 o 6 (2.107)
0 1) ij
;=17 —4 )
LJ <rcut> (Tcut>
1
C2C == 5,
(2.108)
H =3
Heaviside step function Hyt is defined as follows
0, r<o0
H, = ’ . 2.109
cut (1) {17 r>0 ( )

It is a common practice to set reyt to 2.50 or 3¢ in systems consisting of only L-J
particles. Because the Coulomb potential is also cut-off in this work, the cut-off distance
is set to reyt = 1.5 nm ~ 50¢ to partly account for its long-range tail. This still results
in some undesirable effects such as lower interfacial tensions, but since the essential
phenomena such as surface tension dependence on temperature remain unchanged,”!
and exactly reproducing physical properties is not the objective of this work, it is
deemed sufficient.

Equation is integrated as described in Section to also produce a cut-off

version of the potential wall

4me;; 2 (o \ 2 o\ ©
Dw(di;) = H(rews — dij) - ——2 | = ”) — <J> d2; — clydl + &pd? — Sy |
W( ]) ( t J) T(Q]\/g [{5 <dlj dij i Wiy W54 %%

(2.110)
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The coefficients in Eq. [2.110] are as follows
1 oij \ 2 oij \°
C%N:Q{(i( z]) _3< U)}’
Teut Tcut Tcut
oo\ 12 PN
C%V:14< ”) —8( ”> , (2.111)
Tcut Tcut

Qo 2 )42 [0y 12_6 oij \"
W ) 5 Tcut Tcut .
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2.8.2 Boundary conditions

2.8.2.1 periodic boundary conditions

Periodic boundary conditions are used to construct an infinite latticed that replicates
the simulation system throughout space. Identical imaginary cells surround the basic
simulation cell. Figure shows the concept in two-dimensional space. A particle
interacts with image particles in neighboring cells in addition to particles in its own cell.
Consequently, if a particle leaves a cell by passing the boundary, an identical counterpart
enters from the opposing side. In effect, a simulation of infinitively repeated system is
conducted with the calculation cost of one cell. To avoid interacting with several image

counterparts of the same particle, basic cell dimensions must be larger than 2rcyt.

o C o

i %c/f Q\C/f Q\C/

Image Particle Basic cell Image cell

e /| & o
®\ Pa\rticle .\ ®\
/@ /Cu{-.off area ./ /@ C/
o o o
A\ A\ A\
/S A & {

Figure 2.17: Concept of periodic boundary conditions.
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2.8.2.2 mirror boundary conditions

Mirror boundary conditions are used as a simple method to prevent particles from
wandering outside the calculation cell. The basic premise is shown in Fig. 2.18 once a
particle has crossed the mirror boundary, the sign of the velocity component perpen-
dicular to the boundary plane is reversed, thus forcing the particle to return into the
calculation cell. Only the total energy of the system is preserved, so this method is
not fit for systems where boundary conditions have a great effect. In this work mir-
ror boundary conditions are used only at the boundary facing a vapor phase, where

intermolecular interaction is scarce and boundary effect is thought to be negligible.

Calculation :? Mirror Calculation ? Mirror
Cell ? Boundary Cell ¢ Boundary

- —> -
v . v
v Velocity v

? (Vx!vy) Change ? (_vx’vy)
v Yoo
x v x v
v v

Figure 2.18: Concept of mirror boundary conditions.
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2.8.3 Book-keeping

With only using a potential implementing cut-off, there is still a need to calculate
the distance of every combination of two sites and check if they are within the cut-off
distance at every time step. To avoid this, the book-keeping method is also used. The
basic premise is to have a list of nearby site pairs. Upon list creation, all sites within
distance of rcys + Areyt are included with a margin Arqyg so that the list creation is not
mandatory at every time step. During the potential and force calculations, only sites
inside pairs in the list are considered, thus saving considerable time. If the maximum
absolute displacement among all sites after the previous list creation goes over %

the whole list is updated. The margin Ar.y is a parameter between 0.01 and 0.1 nm

that is determined before calculation.

In case of a system with pressure control as described in Sections [2.4.3| and [2.4.4]

the volume of the calculation system itself changes, thus the distance between particles
whose interaction crosses over periodic boundary conditions can change even if the
particles themselves do not move. There is no need for special treatment for the case
when the system volume is larger than when the list was created, since particle distances
can only get larger. On the other hand, if the system volume is smaller than that at the
list creation, the maximum possible distance decrease between particles due to volume

change is either

V@O 4+ O) 1 (120) = @)+ @) + (1) (2112)
for bulk pressure control scheme or
12O (2.113)

for one-dimensional local pressure control scheme, where [*, [Y and [* are the calculation
cell dimensions, [¢ is the cell dimension of the pressure control direction, and the
“(0)” superscript denotes the dimension values at the time of list creation. The value
of Equation or is added to the maximum absolute displacement among

interaction sites upon deciding the need for the list update.
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Figure 2.19: Concept of book-keeping method.
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3

WATER-ALCOHOL MIXTURE
DROPLETS

3.1 Simulation System and Conditions

Creation procedures of simulation systems of water-methanol and water-IPA droplets
on a solid surface are described in this section. Essentially, an equilibrium system of a
water droplet on a solid surface is created at first, and water-alcohol droplet systems are

then created by mixing in alcohol molecules into the previously created water droplet.

3.1.1 Water droplet on a solid surface

As a first step, an equilibrium water droplet system at a constant temperature is cre-
ated. A cubic lattice consisting of 4000 randomly positioned water molecules is con-
structed as shown in Fig. The periodic boundary conditions are set in all directions
with cell dimensions set to 9x 3.047 x 9 nm?. The cell dimensions are chosen to produce
a droplet with the largest possible diameter, while preventing particles from interact-
ing with multiple images of same particles over the periodic boundaries. It has been
suggested that in finite-size interfaces the liquid-vapor interfacial tension increases due

22153 and this has been investigates and confirmed for both L-J lig-

to capillary waves,
uid®%29 and water systems.”® Based on those works, the size of y-dimension is large
enough to make the effects negligible and it was verified that setting a larger y-dimension
does not influence droplet wettability dramatically. Any possible discrepancies in in-
terfacial tensions are also eliminated by using similar dimensions in later systems as
well. The simulation is carried out using the SPC/E®" potential for interaction between
water molecules using simple velocity scaling at every 50 steps to maintain a steady

temperature at 298.15 K. The time step is set to h = 1 fs and the total simulation is
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3. WATER-ALCOHOL MIXTURE DROPLETS

continued for 1 ns. It can be easily seen from Fig. that molecules successfully form

a quasi-two-dimensional droplet after the equilibration.

Equilibration
for 1 ns

Figure 3.1: Construction of a quasi-two-dimensional liquid droplet.

As a second step, using the final state of the previous equilibration, the system
dimensions are expanded to 30.226 x 3.047 x 30 nm?, and a solid surface with three
atom layers forming an fcc (111) lattice is added at the bottom of the calculation cell as
shown in Fig. [3.2] Each solid layer contains 1386 atoms, making 4158 surface atoms in
total. The liquid droplet is moved so that its center of mass would be at 5 nm distance
from the bottom of the calculation cell. Periodic boundaries are imposed in lateral z-
and y-directions and mirror boundary is imposed at the top of the calculation cell in
the z-direction. This simulation is run with the Langevin temperature control exerted
on the second layer of the solid surface, and this maintains the temperature of the
whole system at 298.15 K. This equilibration run is continued for 4 ns at a time step
of h = 1 fs. The time step is chosen so that there would be no temperature gradient
inside an equilibrated droplet on a solid surface, and a suitable equilibration time is
determined from the density distributions of the droplet at various simulation points.
Because the droplet is placed close enough for solid-liquid interactive forces to take
place, the droplet is attracted to the solid surface and forms a droplet in full contact
with the solid surface by the end of the equilibration as shown in Fig.

After the equilibration, simulation are continued for 8 ns under the same conditions
and temporal average within this period is used for the analysis of density, contact

angle and surface pressure.
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3.1 Simulation System and Conditions
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Figure 3.2: Construction of droplet on a solid surface system.

3.1.2 'Water-alcohol droplet on a solid surface

As a first step, equilibrium methanol or IPA droplets of various sizes are created in the
same manner as the single-component water droplet described in the previous section
and shown in Fig. 3.1l The OPLS-UABZS8 potential is used for methanol and IPA
molecules. All calculation conditions are identical to those used for single-component
water droplet, except for the equilibration times, which are 450 ps and 300 ps for
methanol and IPA, respectively.

In the second step, the equilibrated system containing a water droplet in contact
with a solid surface from the previous section and shown in Fig. [3.2] is used. The
equilibrated alcohol droplets are positioned at the center of this system with an initial
downward velocity set to 10 m/s as illustrated in Fig. All simulation conditions
are identical to those used in the previous section for the system in Fig. [3.2] except
for the equilibration time, which is set to 8 ns because more time is needed for the
systems to reach a chemical equilibrium and produce consistent density distributions.
The compositions of these systems are shown in Tables and where methanol

and IPA mass fractions, fyeon and fipa respectively, are also provided.

Table 3.1: Compositions of water-methanol mixture droplets.

MeOH mass fraction, fyeon (%) 8 15 21 26 31 35
# of water molecules 4000 4000 4000 4000 4000 4000
# of MeOH molecules 200 400 600 800 1000 1200
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3. WATER-ALCOHOL MIXTURE DROPLETS

V

Methanol
droplet

Water-methanol
mixture droplet
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Equilibration
for 8 ns

Figure 3.3: Construction of a water-methanol mixture droplet. Water-IPA droplets are
constructed in the same way.

Table 3.2: Compositions of water-IPA mixture droplets.

IPA mass fraction, fipa (%) 8 14 20 25 29
# of water molecules 4000 4000 4000 4000 4000
# of IPA molecules 100 200 300 400 500

After the equilibration, simulations are continued for 8 ns and the temporal average

within this period is used for the analysis of density, contact angle and surface pressure.

3.2 General Tendencies and Density Distributions

3.2.1 Water droplet on a solid surface

A snapshot of a droplet on a solid surface is displayed in the left panel of Fig. [3.4]
Water molecules form a hemispherical shape on the solid surface and have a contact
angle of about 90 degrees. Almost no molecules can be seen in the vapor phase in
the snapshot, and indeed the amount of evaporated water molecules is low. The two-
dimensional density distribution of water molecules around the center of mass of the
droplet is shown in the right panel of Fig. [3:4] It is clear that a constant bulk density
exists inside the droplet, therefore the behavior of micro-scale droplets is thought to be
realised to some extent in this work. A great increase in water density can be observed

at the solid surface. This shows that an adsorption layer is formed over the whole solid-
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3.2 General Tendencies and Density Distributions

liquid interface. A closer look shows that at least two more layers of increased density

follow the first adsorption layer, though they are not as distinct as the adsorption layer.

height, z (nm)
oA N WA OO

0 2 4 6 8 10 12
length, x (nm)

Figure 3.4: (Left) snapshot and (right) two-dimensional density distribution of water

droplet on a solid surface.

3.2.2 Water-alcohol droplet on a solid surface

Snapshots and density distributions of the water-methanol and water-IPA mixture
droplet systems after equilibration are shown in Figs. to and Figs. to
3.15] respectively. Symmetric density distributions are separately displayed for lig-
uid, water and alcohol, from which the heterogeneous mixing feature can be clearly

observed.

3.2.2.1 water-methanol droplet on a solid surface

From the overall snapshots shown in Figs. to apparent contact angles change
dramatically with the increase of methanol fraction fyeom, and thus wettability shows
a noticeable increase. It is also interesting to note that molecules seen in the vapor
phase are almost exclusively methanol. This happens because methanol molecules are
more volatile, and also because methanol molecules have a stronger tendency to gather
at the solid-vapor interface than water molecules, thus they are more exposed to the
vapor phase.

In addition, changes in the droplet composition are also apparent. With a low
methanol concentration of fyeon = 8 % shown in Fig. [3.5], methanol molecules have the
highest concentration at the three-phase interface line and tend to gather mostly at the
solid-liquid interface and to a lesser extent at the liquid-vapor interface. The preference
to gather at the three-line interface indicates that in addition to two-phase interfacial

tensions, line tension also changes due to alcohol additives, although this does not have

53



3. WATER-ALCOHOL MIXTURE DROPLETS

any influence on wettability because the droplets are quasi-two-dimensional. At a higher
methanol concentration of fyeon = 15 % in Fig. more methanol molecules extend
to the solid-liquid and liquid-vapor interfaces and a solid-liquid mono-layer starts to
be formed. This mono-layer is apparently fully formed at fumeom = 21 % shown in
Fig. At high concentrations of fyeon > 26 % shown in Figs. to large
amounts of methanol molecules diffuse into the droplet bulk, showing good solubility.
On the other hand, no methanol molecules can be observed at the solid-vapor interface
even at the highest concentration of fyieon = 35 % shown in Fig. This hints that
there is no methanol saturation in the droplet yet, and mixture droplets at even higher

concentrations are possible.
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3.2 General Tendencies and Density Distributions

(a) View of the simulation system

(c) Water density distribution
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Figure 3.5: Snapshot and two-dimensional density distributions of water-methanol mix-

ture droplet at fyeon = 8 %.

(a) View of the simulation system

(c) Water density distribution
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Figure 3.6: Snapshot and two-dimensional density distributions of water-methanol mix-

ture droplet at fyeon = 15 %.
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(a) View of the simulation system (b) Liquid density distribution
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Figure 3.7: Snapshot and two-dimensional density distributions of water-methanol mix-

ture droplet at fyeon = 21 %.

(a) View of the simulation system (b) Liquid density distribution
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Figure 3.8: Snapshot and two-dimensional density distributions of water-methanol mix-

ture droplet at fypeon = 26 %.
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(a) View of the simulation system (b) Liquid density distribution
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Figure 3.9: Snapshot and two-dimensional density distributions of water-methanol mix-

ture droplet at fycon = 31 %.
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Figure 3.10: Snapshot and two-dimensional density distributions of water-methanol

mixture droplet at fyicon = 35 %.
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3. WATER-ALCOHOL MIXTURE DROPLETS

3.2.2.2 water-IPA droplet on a solid surface

From the overall snapshots shown in Figs. to it is observed that apparent
contact angles change greatly with the increase of IPA fraction fips, and wettability
shows a substantial increase as with water-methanol droplets. Molecules in the vapor
phase are almost exclusively IPA because of higher volatility and due to a tendency to
cover liquid-vapor interfaces, which is also similar to water-methanol droplet systems.

The system with a low IPA concentration of fipa = 8 % shown in Fig. has
IPA molecules gathering at solid-liquid and solid-vapor interfaces, and this feature is
similar to the water-methanol mixture system with a low methanol concentration shown
in Fig. However, the tendency to gather at the three-phase interface line is much
stronger for IPA molecules. In addition, an IPA mono-layer can be observed partly
extending from the three-phase interface towards the solid-liquid interface. At higher
IPA concentrations of fipa > 14 % in Figs. to more alcohol molecules gather
at the solid-liquid and liquid-vapor interfaces and a distinct IPA mono-layer is formed
at the solid-liquid interface. It is remarkable that even at very high concentrations
IPA molecules do not diffuse inside the bulk, but rather begin to cover the solid-vapor
interface as can be observed in Fig. thus creating a very different system compared

to that of water-methanol mixture droplets.

o8
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(a) View of the simulation system (b) Liquid density distribution
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Figure 3.11: Snapshot and two-dimensional density distributions of water-IPA mixture

droplet at fipa = 8 %.
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Figure 3.12: Snapshot and two-dimensional density distributions of water-IPA mixture

droplet at fipa = 14 %.
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(a) View of the simulation system (b) Liquid density distribution
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Figure 3.13: Snapshot and two-dimensional density distributions of water-IPA mixture

droplet at fipa = 20 %.
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Figure 3.14: Snapshot and two-dimensional density distributions of water-IPA mixture

droplet at fipa = 25 %.
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(a) View of the simulation system

(c) Water density distribution
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Figure 3.15:
droplet at fipa = 29 %.
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Snapshot and two-dimensional density distributions of water-IPA mixture
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3.3 Contact Angles

An apparent contact angle is evaluated by fitting a circle to a density contour line in
liquid-vapor interface region away from the three-phase interface and measuring its an-
gle against a plane elevated above the equilibrium position of the topmost solid surface
layer. In other words, the “macroscopic” contact angle and not that of the adsorp-
tion layer at the three-phase interface is measured, as was discussed in Section [2.5.5
The density and elevation values are 745 kg/m? and 0.365 nm for water-methanol,
and 876 kg/m? and 0.294 nm for water-IPA droplets, respectively. These density and
elevation values are obtained in quasi-one-dimensional systems as discussed in detail
later in Section 4.5 in which the positions of solid-liquid and liquid-vapor interfaces
are determined from the balance of force and moment due to pressure tensor distribu-
tion.?® The relation between alcohol mass fraction in mixture droplets and the cosine of
their contact angle 6 is illustrated in Fig. for both water-methanol and water-IPA
droplets. An obvious increase in wettability with smaller contact angle is observed with
increasing alcohol fractions in both water-methanol and water-IPA mixture droplets.
The density distributions discussed in the previous Section [3.2.2.2] suggest that the
change in contact angle is not simply due to a decrease in liquid-vapor surface tension,
but also due to a significant change in the solid-liquid interfacial energy. Both water-
methanol and water-IPA droplets mostly show a substantial increase in cos # with the
increase of alcohol fractions fyeom and fipa, however, the increase seems almost linear
for water-methanol systems, while water-IPA systems show a more irregular behavior.
Specifically, cos § at an IPA mass fraction of fipa = 8 % changes very little from that at
fipa = 0 %. This is thought to be because the IPA mono-layer is only formed in prox-
imity to the three-phase interface and there is very little amount of IPA molecules in
liquid-vapor and solid-vapor interfaces. Once the IPA mono-layer is formed, however,
any extra IPA molecules are free to occupy other interfaces and influence wettability.
Because of this, both methanol and IPA molecules seem to enhance wettability to sim-
ilar amounts at larger mass fractions, although IPA starts to show signs of saturation

at higher fractions of fipa > 20 %.
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Figure 3.16: Relation between the cosine of contact angle of water-alcohol mixture droplet

and alcohol mass fraction.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute

of Physics.
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3.4 Surface Pressure Distribution

Normal pressure exerted onto the solid surface by the droplet is evaluated in this section.
Specifically, the pressure acting upon a virtual plane parallel to the solid surface set
between the solid surface and droplet is calculated. The position of the virtual plane is
set at an elevation of 0.59 nm above the bottom solid surface layer, so that no particles
pass across it. This height is approximately 0.14 nm above the top layer. The virtual
plane is divided into regions with a width of E’Qﬁm ~ 1.2 nm to account for the surface
lattice periodicity and provide a smooth distribution.

The surface pressure distribution for the water droplet system is displayed in Fig.
Three data points nearest to the droplet center show a high pressure of about 10 MPa,
which is thought to be the Laplace pressure described in Section The pressure
steeply drops and becomes negative in the vicinity of the contact line, meaning that
the surface is being pulled upwards to the droplet. This can be related to the vertical
component of the liquid-vapor interfacial tension, which is not accounted by Young’s
equation discussed in Section [2.5.4] although no quantitative evaluation has been done.

Pressure at x > 7 nm reflects the vapor pressure and is very small due to the lack of

liquid molecules in the vapor phase.
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Figure 3.17: Distribution of the normal pressure exerted on the surface in a water droplet

system. The density distribution of the liquid molecules is also provided for clarity.

The surface pressure distributions for water-methanol and water-IPA droplet sys-

tems are provided in Figs. [3.18] and respectively. A general trend can be seen

that at greater alcohol mass fractions, the Laplace pressure is reduced and the absolute
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3.4 Surface Pressure Distribution

value of the negative pressure peak at the contact line is also reduced. Possible causes
of this are increase of the droplet radius, decrease of the contact angle and decrease of
the liquid-vapor interfacial tensions, and this will be discussed in Section [4.4

The Laplace pressure plotted against alcohol fraction is shown in Fig. [3.20, where
the Laplace pressure is calculated by averaging the data points inside the liquid bulk for
every droplet. The vapor pressure is assumed to be zero in all cases. A linear relation
can be seen between alcohol mass fraction f and Laplace pressure AP for both water-
methanol and water-IPA droplets, and the two lines are remarkably similar. This hints
that both methanol and IPA molecules have similar effect on the droplet interfaces,
which would be in accordance with their similar effect on the contact angle seen in
Fig. 3.16] This is rather surprising, considering the great difference in the alcohol

distributions inside the mixture droplets.
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Figure 3.18: Distributions of the normal pressure exerted on the surface in water-
methanol systems. The density distributions of the alcohol molecules are also provide
for clarity (continue).
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Figure 3.18: (Continued) distributions of the normal pressure exerted on the surface
in water-methanol systems. The density distributions of the alcohol molecules are also

provide for clarity.
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Figure 3.20: Laplace pressure inside droplets.

69



3. WATER-ALCOHOL MIXTURE DROPLETS

70



4

QUASI-ONE-DIMENSIONAL
SYSTEMS

Calculation of interfacial tensions is performed in this chapter. The wettability of
water and water-alcohol mixture droplets in the previous Chapter [3| is expressed in
a very visible and easily understandable way, but it is a non-trivial task to extract
interfacial tensions. One of the reasons is that the hemicylindrical droplet shape with
a curved surface makes it difficult to directly calculate interfacial properties. To solve

this problem, another set of systems which contain only planar interfaces is used.

4.1 Simulation System and Conditions

4.1.1 Systems with solid-liquid and liquid-vapor interfaces

The simulation systems used to investigate solid-liquid and liquid-vapor interfaces are
constructed in two steps as shown in Fig.

As a first step, a combination of water and alcohol molecules is randomly positioned
at cubic lattice points as shown in the left side of Fig. Water-methanol and water-
IPA compositions are shown in Tables and and three single-component systems
consisting of 1800 water, 800 methanol and 500 IPA molecules are also created. The
initial calculation cell dimensions are set to 3.358 x 3.047 x 18 nm?, and periodic bound-
ary conditions are set in all directions. As with the droplet systems, the cell dimensions
are chosen to produce a liquid membrane with the greatest possible thickness, while
preventing particles from interacting with multiple images of same particles over the
periodic boundaries. For the first equilibration, the system temperature is maintained
at 298.15 K using simple velocity scaling. Systems consisting of single-component lig-

uid molecules are equilibrated for 3 ns, while all the other water-alcohol systems are
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Table 4.1: Compositions of quasi-one-dimensional systems for water-methanol.

# of water molecules 1800 1800 1800 1800 1800 1800
# of MeOH molecules 100 200 300 400 500 600

Table 4.2: Compositions of quasi-one-dimensional systems for water-IPA.

# of water molecules 1800 1800 1800 1800 1800 1800
# of IPA molecules 50 60 70 80 90 100

equilibrated for 4 ns. The time step is set to h = 2 fs for all systems to reduce the
calculation cost, because we are not interested in their properties at this point. The
equilibration eventually produces a membrane as seen in Fig.

As the second and final equilibration step, dimensions for the systems equilibrated
in the first step are extended to 3.358 x 3.047 x 21 nm?, and a solid surface with
three atom layers forming an fcc (111) lattice is added at the bottom of the calculation
cell, while a mirror boundary condition is set at the top. Each solid layer contains
154 atoms, making 462 surface atoms in total. In addition, the liquid film is set to
have a 20 m/s downward velocity as shown in Fig. No velocity scaling takes
place, and temperature of the system is maintained at 298.15 K using the Langevin
temperature control method exerted on the surface particles in the second layer. The
equilibration run with a time step of A = 1 fs is carried out for 4 ns in the case of
systems with single-component liquid films, and for 8 ns and 16 ns for water-IPA and
water-methanol systems, respectively. As with the droplet systems, the time step is
set so that no temperature gradient would exist in equilibrated systems, while suitable
equilibration times are determined to produce equilibrated systems with consistent
density distributions.

The average of 8 ns simulation after the equilibration is used for the analysis of

solid-liquid and liquid-vapor interfaces.

72



4.1 Simulation System and Conditions

z
y\T/vx

Mixture liquid

18 nm
21 nm

Second |
Il _equilibration |

—20m/s

First

ff“;,, . equilibration I

3

\Ozx& 3> Three solid layers | &
)/) ’ fce (111) face

Figure 4.1: Construction process of the simulation systems used for analysis of solid-liquid

and liquid-vapor interfaces.
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4.1.2 Water-IPA systems with a solid-vapor interface

In water-IPA droplet systems, IPA molecules have a strong tendency to moisten the
solid-liquid interface at high concentrations as can be especially clearly observed in
Figs. and while this is not observed in water-methanol droplets. The solid
surface area of simulation systems described in the previous section is too small to
express the complicated network among the IPA molecules, therefore a bigger simu-
lation system is needed to correctly evaluate the solid-vapor interface. The system
used to evaluate solid-vapor interface is displayed in Fig.[4.2] where the number of IPA
molecules is set to either 25, 50, 75, 100, 150, 200, 250 or 300, creating nine distinct
systems. These numbers were chosen to cover the density range of solid-liquid inter-
faces of Chapter [3| and no water molecules are included here because the number of
water molecules at solid-liquid interfaces there is minuscule. Calculation conditions
other than the composition of liquid molecules, i.e. control temperature, interaction
with non-polarized solid surface and boundary conditions, are kept unchanged. The
systems created this way are equilibrated for 1 ns with h = 1 fs time step, which is the
same as single-component liquid films in the previous section, although much shorter
equilibration times would have been sufficient. After the equilibration, simulations are
continued for 4 ns under the same conditions and temporal average within this period

is used for the analysis of density and solid-vapor interfacial tensions.

Three solid layers
fcc (111) face

Figure 4.2: Snapshot of a simulation system used to evaluate solid-vapor interfacial
tension for IPA molecules.
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4.2 Density and Pressure Distribution of Systems with Solid-Liquid and
Liquid-Vapor Interfaces

4.2 Density and Pressure Distribution of Systems with
Solid-Liquid and Liquid-Vapor Interfaces

The density and pressure distributions are investigated in this section for systems such
as displayed in Fig. which contain flat solid-liquid and liquid-vapor interfaces.
The method described in Section is used to calculate the local pressure tensor.
Pressure in the z-direction is set to be the normal pressure PY = P#?  and pressure in
the 2- and y-directions is set to be the tangential pressure PT = % (P*® 4+ PY), where
the average of pressure in x- and y- directions is taken to reduce the numerical error of
the tangential pressure. Interaction between solid and liquid particles is only taken into
account for calculating the normal pressure. It has been shown by Nijmeijer and van
Leeuwen" that solid-liquid interaction does not contribute to the tangential pressure
when the surface structure is periodic, and it is assumed that this is also applicable to
this research, as the thermal vibrations in the solid surface are relatively small.
Firstly, one-dimensional density and local pressure distributions along the z-direction
of single-component water, methanol and IPA layers are displayed in Fig. The nor-
mal pressure PV shown in the left panels of Fig. is mostly constant. This is fully
expected, since in case of hydrostatic equilibrium, normal pressure must remain un-
changed in the whole system as already stated in Section In addition, it is clear
that normal and tangential pressures become equal in the liquid bulk, therefore the
thickness of the liquid layers is regarded to be enough and liquid-vapor and solid-liquid
interfaces are far enough from each other. It is also notable that the overall pressure
of the system is very low because of low saturated vapor pressure, and there are few
molecules in the vapor phase. Unlike the normal pressure, the tangential pressure PT
varies largely at liquid-vapor and solid-liquid interfaces, meaning that substantial inter-
facial tensions exist. By comparing the density and pressure distributions in the right
and left panels of Fig. it is easy to notice that the tangential tension varies only at
the regions where there is also a change in density. This is by no means a coincidence,
as a variation in density is highly related to interfacial tensions as also discussed by
Nijmeijer and van Leeuwen.™ This explains the oscillatory nature of the tangential
pressure at the solid-liquid interface, where the density distribution also changes in an
oscillatory manner. It is interesting to note that the change in the tangential pressure
is mostly the same regardless of the liquid type, except for the absolute values of the

peaks, which reflect the difference in the interfacial tension values.
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Figure 4.3: Density and pressure distributions of single-component layers, composed of
either 1800 water, 800 methanol or 500 IPA molecules.
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4.2 Density and Pressure Distribution of Systems with Solid-Liquid and
Liquid-Vapor Interfaces

Density and local pressure distributions along the z-direction for water-methanol
and water-IPA liquid layers on a solid surface are displayed in Fig. through Fig.

Methanol molecules show good solubility as seen in all density graphs in Figs.
and On the other hand, IPA molecules show a higher preference to concentrate at
the interfaces, and a noticeable bulk diffusion is only present at systems with a large
number of IPA molecules as can be observed in the left panel of Fig. (b, ¢). This
difference between methanol and IPA is also present in the droplet systems and can be
clearly seen by comparing water-methanol and water-IPA droplets with high alcohol
concentrations in Figs. [3.9)and .15} methanol molecules diffuse inside the droplet bulk,
while IPA molecules prefer to moisten the solid-vapor interface.

The apparent features of the local pressure distributions of water-alcohol mixtures
do not differ much from those of single-component layers: the tangential pressure has a
negative peak at the liquid-vapor interface and oscillates at the solid-liquid interface. A
closer inspection, however, seems to indicate that there is less oscillation in tangential
pressure at the solid-liquid interfaces of water-IPA mixtures shown in Figs. and [4.7]
than water-methanol mixture shown in Figs. .4 and [4.5] This is thought to be because
IPA molecules only create a single mono-layer at the solid-liquid interface for most
mixtures, while methanol molecules create several layers. This causes a greater density
oscillation in water-methanol systems, which leads to a greater tangential pressure

oscillation at the solid-liquid interface.
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Figure 4.4: Density and pressure distributions of water-methanol mixture layers in sys-

tems composed of 1800 water and 100, 200 or 300 methanol molecules.
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Liquid-Vapor Interfaces
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Figure 4.5: Density and pressure distributions of water-methanol mixture layers in sys-

tems composed of 1800 water and 400, 500 or 600 methanol molecules.
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Figure 4.6: Density and pressure distributions of water-IPA mixture layers in systems
composed of 1800 water and 50, 60 or 70 IPA molecules.
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Figure 4.7: Density and pressure distributions of water-IPA mixture layers in systems
composed of 1800 water and 80, 90 or 100 IPA molecules.
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4.3 Molecular Orientations

In this section, molecular orientations are investigated at the solid-liquid and liquid-
vapor interfaces for systems such as in Fig.

The angles between the z-axis and two different bonds are selected for each molecule
and their two-dimensional probability distributions are calculated. The selected angles
are two /n*O-H for each hydrogen atom in a water molecule, /7*O-H and Z7*O-
CHj; for a methanol molecule, and Z77*O-H and Z7*O-CH for an IPA molecule, where
7% is the unit vector to +z direction. Because systems in Fig. are quasi-one-
dimensional, the molecular orientations are axially symmetric in regards to the z-axis,
thus two variables are enough to fully describe the three-dimensional orientation of
rigid molecules.

Even completely isotropic distribution of a single unit vector would not produce an
uniform probability, but be proportional to the sine of the angle, because more states
can be occupied at angles closer to 90 degrees. To remove this bias, an unweighted
probability distribution made from isotropic molecular orientations is used to weight
other probability distribution graphs. Isotropic molecular orientations are obtained by

randomly generating 1 x 10'° uniform orientations for water and methanol, and 2 x 10'°

uniform orientations for IPA molecules.

4.3.1 Single-component systems

The solid-liquid and liquid-vapor interface regions are determined from the density
distribution graphs in Fig. The density peak nearest to the solid surface is used to
investigate the orientations in the solid-liquid interfaces and the liquid-vapor interfaces
areset as —5.5hnm < z< —4nm, —-5nm < z < —-3.5nm and —4.5nm < z < —2.5 nm

for single-component water, methanol and IPA systems, respectively.
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Figure 4.8: (Top) probability distribution of angular configurations in the liquid-vapor
interface of single-component water system. (Bottom) molecular orientations seen from

various angles corresponding to the areas marked in the probability distribution graph.

4.3.1.1 single-component water

The probability distribution graph of angular configurations in the liquid-vapor inter-
face of single-component water system is shown in the top panel of Fig. The angu-
lar distribution is spread out, with most probability in 60 deg. < /7*O-H< 100 deg.,
corresponding to water molecules directing their O—H bonds almost parallel to the
liquid-vapor interface, with hydrogen atoms pointing slightly to the vapor phase. Two
preferable orientations are displayed in Fig. (a, b). This would mean that the liquid-
vapor interface is slightly polarized outwards, which is in accordance with a previous

research.57
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Figure 4.9: (Top) probability distribution of angular configurations in the density peak
nearest to the solid-liquid interface of single-component water system. (Bottom) molecular
orientations seen from various angles corresponding to the areas marked in the probability

distribution graph.

The probability distribution graph of angular configurations in the density peak
nearest to the solid surface of single-component water systems is shown in the top
panel of Fig. Unlike that of the liquid-vapor interface in Fig. molecules in this
region are much more strongly oriented, although this has much to do with the fact
that Fig. also includes bulk information. Most orientations are close to that shown
in Fig. [4.9] (a) and slightly downward polarized. It is also clear that a small fraction
of molecules direct their hydrogen atom upward from the solid surface to create an
orientation similar to Fig. (b). This can be interpreted as either trying to create
hydrogen bond with above positioned molecules, or trying to mitigate the downward
polarization caused by the dominant orientation. The orientations shown in Fig. 4.8 (a)

and Fig. (a) are almost a mirror image of each other in regards to the xy-plane
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and might suggest that solid-liquid and liquid-vapor interfaces are similar structurally,

and that the non-polar solid surface only creates density oscillation at the solid-liquid

interface.
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Figure 4.10: (Top) probability distribution of angular configurations in the liquid-vapor
interface of single-component methanol system. (Bottom) molecular orientations seen from
various angles corresponding to the area marked in the probability distribution graph.

4.3.1.2 single-component methanol

The probability distribution graph of angular configurations in the liquid-vapor inter-
face of single-component methanol system is shown in the top panel of Fig. The
probability distribution is highly biased and there is only one dominating orientation
where the methyl groups are directed to the vapor phase as shown in Fig. m (a).
This happens because the hydroxyl groups are directed to the liquid bulk to create
hydrogen bonds. Although the hydrogen atoms are directed towards the liquid bulk,
the liquid-vapor interface is still upward polarized similarly to the liquid-vapor interface
of single-component water shown in Fig. because the methyl groups also have a

positive charge.
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Figure 4.11: (Top) probability distribution of angular configurations in the density peak
nearest to the solid-liquid interface of single-component methanol system. (Bottom) molec-
ular orientations seen from various angles corresponding to the areas marked in the prob-

ability distribution graph.

The probability distribution graph of angular configurations in the density peak
nearest to the solid surface of single-component methanol systems is shown in the top
panel of Fig. Unlike in the liquid-vapor interface shown in Fig. there are two
distinguishable orientations, and neither one of them corresponds to one observed in the
liquid-vapor interface. This contrasts with the similar orientations that were observed
for water in liquid-vapor and solid-liquid interfaces in Figs. and and is thought
to occur because there is only a single L-J interaction site in the SPC/E water model,
therefore the solid surface has little effect on the molecular orientations, while there are
two interaction sites in the OPLS-UA methanol model and thus molecular orientations
are more easily affected. In the dominant orientation shown in Fig. 4.11| (a), methanol

has both of its O-CHs and O—H bonds almost parallel to the solid-liquid interface. The
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less dominant orientation is with the methyl group pointing towards the solid surface,
whilst the hydrogen atom is directed upward. This allows the molecules to create

hydrogen bonds with other molecules further inside the bulk.
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Figure 4.12: (Top) probability distribution of ITPA trans conformer angular configura-
tions in the liquid-vapor interface of single-component IPA system. (Bottom) molecular
orientations seen from various angles corresponding to the area marked in the probability
distribution graph.

4.3.1.3 single-component IPA

Because IPA liquid in this work is composed of a mixture of three conformers shown in
Fig. some extra steps must be taken for calculating the probability distribution of
angular configurations. Most importantly, extra care should be taken when handling the
gauche conformers shown in Fig. (a), because unlike water and methanol molecules,
TPA gauche conformer molecules do not have a plane of symmetry. Specifically, even
the same /77*O—-H and Zn*O—CH values correspond to different orientations depending
on if the O—CH and O—H bonds are positioned clockwise or counterclockwise in respect
to the z-axis. To take this into account, /77*O—CH is given a negative value when O—H

is positioned counterclockwise to O—CH. Because the two gauche conformers are mirror
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images of each other and basically equivalent, their results are combined and shown as

the distribution of the conformer corresponding to the right panel of Fig. (a).
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Figure 4.13: (Top) probability distribution of IPA gauche conformer angular configura-
tions in the liquid-vapor interface of single-component IPA system. (Bottom) molecular
orientations seen from various angles corresponding to the areas marked in the probability

distribution graph.

The probability distribution graphs of angular configurations in the liquid-vapor
interface of single-component IPA system are shown in the top panels of Figs. [£.12| and
for the trans and gauche conformers, respectively. Take note that because Fig.
does not make a distinction between the bond clockwiseness of the trans conformer,
the probability density is roughly two times larger than that in Fig. for the gauche
conformer. In both of these graphs, the probabilities are highly biased and the main
orientations illustrated in Figs. (a) and [4.13| (a, b) have the methyl groups pointing
upward to the vapor phase, which is comparable to that of the liquid-vapor interface

of single-component methanol system shown in Fig. [f.10] There is also some upward
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polarization due to a positive charge in the CH group, which is also comparable to what
was observed for single-component methanol system. Therefore, it is safe to assume

that the liquid-vapor interfaces of methanol and IPA are somewhat similar.

180 5.0e-04
160 - !
140 -
[
o0 120 -
§ 100 g
$ 80 - §
2 S
= 60 - Q.
N 40
20 -
0 T T T T T T T T 0.0e+00
0 20 40 60 80 100120140160180
Zin°0O—CH (deg.)
@ g:o
7 z z z
$v IR v v
(b) f
z z z z
oy oy v v
“ go
7 z z z
$v doy v v

Figure 4.14: (Top) probability distribution of IPA trans conformer angular configura-
tions in the density peak nearest to the solid-liquid interface of single-component IPA
system. (Bottom) molecular orientations seen from various angles corresponding to the

areas marked in the probability distribution graph.

The probability distribution graphs of angular configurations in the density peak
nearest to the solid surface of single-component methanol systems are shown in the
top panels of Figs. and for the trans and gauche conformers, respectively.
Unlike for the liquid-vapor interface shown in Figs. [£.12|and [£.13] the trans and gauche
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confronters appear to take different orientations, which are also different from what
was observed in the case of methanol in Fig. 4.11} The trans conformer has a clear
dominant orientation shown in Fig. m (a), where the methyl groups point downward
to the solid surface and the hydroxyl groups point upward to the bulk. There are also
less dominant orientations displayed in Fig. (b, ¢), where one methyl group is
pointing downward and the other upward, with the O—H bond more or less parallel to
the interface. These orientations appear mostly separate from each other, with little
interchange between the different states. On the other hand, the orientations of the
gauche conformer displayed in Fig. [£.15] show a completely different situation. There
appear to be numerous orientations, some of them illustrated in Fig. (a, b, c,d, e),
with transitional orientations of slightly lower probability interconnecting the dominant
ones. The orientation with methyl groups pointing downward to the solid surface and
hydroxyl groups pointing upward to the liquid bulk shown in Fig. |4.15| (a) appears
to be slightly more dominant than the others, and this does somewhat correspond
to the dominant orientation of the trans conformer in the same region displayed in
Fig. 4.14] (a), but other orientations and the transition among them is unique to the
gauche conformer. The position of the hydrogen atom is the only difference between the
conformers, but it appears to be enough to cause vastly different interfacial structures,

where the trans conformer seems to be more tightly constrained than the gauche one.
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Figure 4.15: (Top) probability distribution of IPA gauche conformer angular configu-

rations in the density peak nearest to the solid-liquid interface of single-component IPA

system.

(Bottom) molecular orientations seen from various angles corresponding to the

areas marked in the probability distribution graph.
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4.3.2 Water-methanol mixture

As with single-component systems in Section the density distribution graphs
in Figs. 4.4 and are used to determine the regions to investigate the molecular
orientations in solid-liquid and liquid-vapor interfaces. The density peak nearest to the
solid surface is chosen as the region to investigate the solid-liquid interface. Take note
that the density peaks for water and methanol are slightly misaligned, therefore the
regions used for water and methanol molecular orientations are slightly different. The
liquid-vapor region is chosen to fully enclose the methanol peak at the interface, and
the same region is used for both water and methanol components.

The probability distribution graphs of water and methanol angular configurations
in liquid-vapor interfaces of water-methanol mixture systems are shown in Figs.
and respectively, where single-component graphs from Figs. and are also
included for reference. As shown in Fig. water does not show much change in
its structure overall, and only a greater spreading in the water orientation distribution
with the increase of methanol concentration is observed. This might be due to the fact
that the liquid-vapor interface is primary covered with methanol molecules, therefore
water orientations become closer to those in the bulk. It is interesting to note that at
a very low methanol concentration shown in Fig. [4.16| (b), water appears to be more
strongly oriented and polarized than that in the single-component system, although this
is not certain due to different methods of selecting the analysis regions. Much greater
change is observed in methanol orientations shown in Fig. [£.17] where the distribution
becomes diffused with the increase of methanol concentration, although the dominant
orientation shown in Fig. 4.10| (a) remains unchanged. This is thought to be due to the
fact that the dominant orientation is advantageous in creating hydrogen bonds with
the molecules inside the bulk, and therefore is more prominent when the bulk is mostly
composed of water molecules, which can create more hydrogen bonds than methanol

molecules.
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Figure 4.16: Probability distributions of water angular configurations in the liquid-vapor

interface of water-methanol mixture systems. Single-component system is also included for

reference.

93



4. QUASI-ONE-DIMENSIONAL SYSTEMS

180 +—

-
n
o

-
N
o

(a) MeOH: 100
Zii"O—H (deg.)

w
o

180 -

N
0
o

-
N
o

(c) MeOH: 300
Zin°0—H (deg.)

w
o

180 -

N
n
o

-
N
o

(e) MeOH: 500
Zii°0O—H (deg.)

w
o

180 -

-
n
o

-
N
o

(g) Pure MeOH
Zii°0O—H (deg.)

w
o

o

0 30 60 90 120 150 180
£in"0—CHj (deg.)

(b) MeOH: 200
Zii°0—H (deg.)

(d) MeOH: 400

(f) MeOH: 600

180 +—

-
(&)
o

-
N
o

D
o

180 -

N
[($)]
o

-
N
o

Zii"O—H (deg.)
8 8

180 -

w
o

w
o

0 30 60 90 120 150 180
Z1n"0—CHjy (deg.)

HE .

0.0e+00 3.0e-04
probability

Figure 4.17: Probability distributions of methanol angular configurations in the liquid-

vapor interface of water-methanol mixture systems. Single-component system is also in-

cluded for reference.
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The probability distribution graphs of water and methanol angular configurations
are shown in Figs. and respectively, for the density peaks nearest to the
solid surface where single-component graphs from Figs. and are also included
for reference. Surprisingly, water displayed in Fig. shows almost no change in
orientations, even though there are very few water molecules in the first density peak at
higher methanol concentrations as seen in Fig. 4.5 Thus it seems that water molecules
themselves do not behave differently if water molecules are replaced with methanol
at the solid-liquid interface. On the other hand, orientations of methanol molecules
illustrated in Fig. [£.19]show a more distinct change. Overall, the same two orientations
seen in single-component methanol system shown in Fig. (a, b) are present, but all
are equally dominant, except for the system with a very low methanol concentration
shown in Fig. [4.19| (a) which is more similar to single-component methanol system.
The existence of water molecules inside mixture systems allows the methanol molecules
inside the first density peak to create more hydrogen bonds, therefore the orientation
with the hydroxyl group pointing upward shown in Fig. (b) is more suited for it
and becomes more prominent. The unique feature seen in Fig.|4.19|(a) can be explained
by an abundant amount of water molecules in the first density peak, as seen from the
density distribution in the left panel of Fig. (a), which would suggest that the extra
hydrogen bonds are taken up by water molecules in the adsorption layer, therefore the

change in methanol orientations is not as dramatic.
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Figure 4.18: Probability distributions of water angular configurations in the density peak
nearest to the solid-liquid interface of water-methanol mixture systems. Single-component

system is also included for reference.

96



4.3 Molecular Orientations

(@) 150 S
—
%”120

I = an
O = 99 o
5} é [}
= 2 60 1 =
= N 1 )
~ 30 1 f—

o 150 o
o« é‘%zo

an i an
O = 9% @)
O é [}
o N - )
~ 30 1 ~

(e) MeOH: 500
(f) MeOH: 600

(g) Pure MeOH

0 ] T T T T T
0O 30 60 90 120 150 180

Z1n"0—CHj (deg.)

180

-
(&)
o

-
N
o

Zn°0—H (deg.)
8 8

w
o

180

N
(&)
o

-
N
o

Zn°0—H (deg.)
8 8

w
o

180

N
a
o

N
N
o

Zn°0—H (deg.)
8 8

w
o

o

0 30

60 90 120 150 180

Z1n"0—CHj, (deg.)

B .

0.0e+00

probability

2.0e-04

Figure 4.19: Probability distributions of methanol angular configurations in the den-
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4.3.3 Water-IPA mixture

As with water-methanol systems in Section the density distribution graphs in
Figs. [£.6] and [4.7] are used to determine the regions to investigate the molecular ori-
entations in solid-liquid and liquid-vapor interfaces. For the solid-liquid interface, the
regions are chosen to encompass the first IPA density peaks at the solid-liquid inter-
face. The molecular orientations of water are not investigated because no density peak
exists as seen in Fig. [4.7] The liquid-vapor region is chosen to fully enclose the IPA
peak at the liquid-vapor interface, and the same region is used for both water and IPA
components.

The probability distribution graphs of angular configurations of water, IPA trans
conformer and IPA gauche conformer in liquid-vapor interfaces of water-IPA mixture
systems are shown in Figs. [£.20] [£.21] and [4.22] respectively, where single-component
graphs from Figs. and are also included for reference. As displayed in

Fig. [4.20] water does not show much change in its structure overall and, similarly

to that observed in water-methanol systems in Fig. [£.16] only a greater diffusion in
the orientation distribution with the increase of IPA concentration is observed. It is
interesting to note that in two systems shown in Fig. m (c, d), water appears to be
more strongly oriented and polarized than that in any other systems, although it is
difficult to say if it is indeed the case or this simply comes from the uncertainty in the
methods of selecting the analysis regions. As with methanol in water-methanol systems
in Fig. {.17] much greater change is observed in IPA orientations as shown in Figs. [4.2]]
and where orientations are diffused greatly with the increase of IPA concentration,
although the dominant orientations remain unchanged. The same explanation can be
given as that for the methanol molecules in the water-methanol mixture systems, i.e.
greater amount of water molecules inside liquid bulk provides more hydrogen bonds,

leading to stronger orientations.
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Figure 4.20: Probability distributions of water angular configurations in the liquid-vapor
interface of water-IPA mixture systems. Single-component system is also included for

reference.
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Figure 4.21: Probability distributions of angular configurations of IPA trans conformer

in the liquid-vapor interface of water-IPA mixture systems. Single-component system is

also included for reference.
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Figure 4.22: Probability distributions of angular configurations of IPA gauche conformer
in the liquid-vapor interface of water-IPA mixture systems (continue).
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Figure 4.22: (Continued) probability distributions of angular configurations of TPA
gauche conformer in the liquid-vapor interface of water-IPA mixture systems. Single-

component system is also included for reference.
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The probability distribution graphs of angular configurations of IPA trans and IPA
gauche conformers in the density peaks nearest to the solid surface of water-IPA mixture
systems are shown in Figs. and respectively, where single-component graphs
from Figs. and are also included for reference. Observing the orientations
of the trans conformer, it can be seen that only the dominant orientation from the
single-component IPA system shown in Fig. [4.14] (a) remains visible, while the lesser
ones shown in Fig. (b, ¢) are no longer prominent. On the other hand, in the
case of the gauche conformer, the dominating orientation changes from Fig. |4.15| (a,
b) in single-component IPA to Fig. 4.15| (¢) inside water-IPA mixture, where there are
also seemingly less transitional states between the various orientations. The dominant
orientations of both conformers have the methyl groups pointing downward to the solid
surface, and hydroxyl groups pointing upward to the liquid bulk, implying eagerness
to create hydrogen bonds with water molecules positioned above them, and resulting
in much stronger orientations than in single-component systems. On the other hand,
the strength of orientations appears at the same level for different IPA concentrations.
This is related to the fact that the IPA molecules in the analysed systems do not diffuse
into the bulk, and thus, a change in concentration mostly implies only the increase of

molecules inside the interfaces, leaving the bulk consisting of mostly water molecules.
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Figure 4.23: Probability distributions of angular configurations of IPA trans conformer
in the density peak nearest to the solid-liquid interface of water-IPA mixture systems.

Single-component system is also included for reference.
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Figure 4.24: Probability distributions of angular configurations of IPA gauche conformer
in the density peak nearest to the solid-liquid interface of water-IPA mixture systems

(continue).
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Figure 4.24: (Continued) Probability distributions of angular configurations of TPA
gauche conformer in the density peak nearest to the solid-liquid interface of water-IPA

mixture systems. Single-component system is also included for reference.
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4.4 Interfacial Tensions

Interfacial tensions are calculated from the difference between normal and tangential

pressures, using the method described in Section [2.5.1

4.4.1 Systems with solid-liquid and liquid-vapor interfaces

Because there are two two-phase interfaces in the simulation systems containing solid-
liquid and liquid-vapor interfaces as shown in Fig. [4.1] it is necessary to define interface
regions. The interface regions are chosen to encompass the areas with density or pres-
sure change and to be bounded at a position where tangential pressure PT becomes
equal to normal pressure PT i.e. where pressure becomes isotropic, so that the result-
ing interfacial tensions are not dependent on the exact boundary conditions.

While methanol fraction inside liquid bulk ff/}tel(]%H was proved to be a sufficient
parameter to determine the state of each interface, relative IPA adsorption was cho-
sen to express the state of each interface for water-IPA mixture droplets, because the
IPA molecules do not diffuse into droplet bulk as shown in the density distribution in
Figs. and [£.7 and its fraction inside liquid bulk is not an appropriate parameter to
express the interface state. The relative IPA adsorption for an interface between o and

B phases Fﬁf A against an arbitrary Gibbs dividing surface is given by

8 B B ”ﬁpA — Npy

«@ _ « « 1

FIPA - NIPA - Nwator B a ) (41)
Nwater — Mwater

where n and N are number density and surface excess per unit area for each substance
in each phase. Relative adsorption is an invariant independent of the location of the
Gibbs dividing surface. Relative methanol adsorption FffeOH can also be defined in an
identical manner.

Solid-liquid and liquid-vapor interfacial tensions v* and ~* for water-methanol and

water-IPA mixtures are displayed in Figs.[4.25|and [4.27] in which methanol bulk fraction

ﬁﬁéH and relative IPA adsorption I'ips at each interface are respectively adopted as
parameters. Interfacial tension data for water-methanol mixtures in Fig. [4.25] is also
displayed in Fig. where relative methanol adsorption I'vieog at each interface is
used as parameter for easier comparison with water-IPA systems. The change of fyﬁ}IeOH,
Y on and 148, respectively shown in Figs. (a), (b) and Fig. (b) is gradual
and each seems to approach the value of single-component alcohol at higher solvent

amounts. The graphs of liquid-vapor interfacial tensions in Figs. (b) and (b) in

particular are very linear, while the same water-methanol mixture data in Fig. [4.25| (b),
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where methanol bulk fraction ff\’/}‘ééH is used as a parameter, shows a clearly non-linear

relation. This suggest that there is a linear relationship between the interfacial tension
and the relative adsorption amount and indeed, interfacial tension can be expressed as
a linear combination of surface free energy, chemical potential and relative adsorption
amount as shown by Equation [2.70]in Section Therefore, although in Section [4.3]
it was shown that with larger alcohol concentrations the probability of dominating
molecular orientations of alcohol molecules at interfaces greatly decreases as illustrated
in Fig. for methanol and Figs. and for IPA, this does not seem to have
a noticeable effect on the liquid-vapor interfacial tensions.

Unlike other interfaces, a very steep decrease in the solid-liquid interfacial tension
vk, of water-TPA mixture is observed in Fig. [4.27] (a), and this is thought to be due
to the formation of a complete IPA mono-layer at the solid-liquid interface. This is
also thought to be the reason why several data points seem to concentrate in close
proximity at high relative adsorption of Ff%,A > 3.5 nm~2. The IPA mono-layer at the
solid-liquid interface saturates at Ffpr > 3.5 nm~2 and any extra alcohol molecules
are forced to occupy other interfaces and phases. This can be readily observed as
solid-vapor interface moistening in Figs. and and as IPA diffusing into bulk
in Fig. (b, ¢), while no such behaviour is observed in water-methanol mixtures
investigated in this work. Molecular orientations investigated in Section show that
although the structure of this IPA mono-layer is different from the adsorption layer
of single-component IPA systems, it remains mostly unchanged and independent of
IPA concentration as illustrated in Figs. and The density distribution graph
of the water-IPA mixture system with the lowest IPA adsorption amount shown in
Fig. [4.4] (a) is the only one with a considerable amount of water molecules inside the
first density peak from the solid surface, therefore it appears that the IPA mono-layer
has a distinct effect on the interfacial tension only when there are almost no water
molecules remaining inside it.

The cause and meaning of the negative values of solid-liquid interfacial tensions in
Figs. [4.25| (a), (a) and (a) should be addressed here. The interaction between
solid particles is modeled with the harmonic potential shown in Equation in
which the interaction pairs are prescribed a priori to connect the nearest neighbors and
potential energy is set to be zero at the equilibrium distance. Because of this, the total
potential energy of the solid surface without thermal vibrations placed in vacuum is
zero, and solid bulk has no energetic advantage over surface in this model, even though

the particles at the surface have less interaction pairs than those in the bulk. If liquid
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Figure 4.25: Dependence of solid-liquid and solid-vapor interfacial tensions for water-
methanol mixtures on methanol bulk fraction evaluated in quasi-one-dimensional systems.
Red horizontal lines show the values of single-component methanol. Note that the values

provided for the solid-liquid interface are relative to that of solid-vacuum.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.
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Figure 4.26: Dependence of solid-liquid and solid-vapor interfacial tensions in water-
methanol mixtures on the relative methanol adsorption at each interface evaluated in
quasi-one-dimensional systems. Red horizontal lines show the values of single-component
methanol. Note that the values provided for the solid-liquid interface are relative to that

of solid-vacuum.
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Figure 4.27: Dependence of solid-liquid and liquid-vapor interfacial tensions in water-
IPA mixtures on the relative IPA adsorption at each interface evaluated in quasi-one-
dimensional systems. Red horizontal lines show the values of single-component IPA. Note

that the values provided for the solid-liquid interface are relative to that of solid-vacuum.
*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.

molecules are adsorbed onto this solid surface, the total potential energy will become
negative, since the L-J potential used for solid-liquid interactions has a negative well.
This means that the solid-liquid and solid-vapor interfacial tensions calculated by the
Bakker’s equation in this and the next sections are relative to that of solid-vacuum.
Since only the difference of the solid-liquid and solid-vapor interfacial tensions is needed,
as shown in the Young’s Equation 2.73] relative values are enough. On the other hand,
the liquid-vapor interfacial tensions calculated by the Bakker’s equation are absolute
and always positive.

As a final note, the issue of inconsistencies in Figs. (a) and (b) should be
addressed. For the solid-liquid interface graph of water-methanol systems in Fig. [4.20]
at high methanol concentrations, the alcohol molecules at interfaces and that inside
liquid bulk increase at a similar rate, producing close relative adsorption values for
different systems. Because of this, mass fraction inside liquid bulk fﬁﬁ(’fm is used for
water-methanol systems in later sections, although it should be possible to produce a
smoother graph by increasing the number of data samples. The liquid-vapor interface
graph of water-IPA systems in Fig. (b) exhibits rougher curves than other graphs.
This is a consequence of IPA molecules preferring to remain at the interfaces, being
represented by a mixture of three rigid isotopes, and being larger than methanol ones.

Because of this, it is thought that the liquid-vapor interface tends to remain at certain
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local configurations. This might also explain why a stronger polarization of water
molecules in liquid-vapor interfaces was observed in the two systems corresponding
to Figs. (c) and (d), which was inconsistent with other systems, although it is
uncertain if these differences are related to change in interfacial tensions. Therefore
even the sampling of several nanoseconds might not be enough to obtain a statistically

reliable ensemble average.
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4.4.2 Systems with solid-vapor interfaces

Because there is only one solid-vapor interface in the simulation system as seen from
Fig. [f.2] the interface boundary is taken over the whole system. Since almost no
molecules exist in the vapor phase, relative adsorption amount I'tp, is calculated by

simply dividing the number of IPA molecules by the cross-sectional area.

1.2 1 1 1 1
0 0.2 0.4 0.6 0.8 1

relative adsorption, I'jpa (nm?)

rel. interfacial tension, Y;pa (MN/m)

Figure 4.28: Dependence of solid-vapor interfacial tension on the relative IPA adsorption
amount, evaluated in quasi-one-dimensional systems. A linear fitting is displayed with a
blue line, where the fitting function is v*¥ = ¢ -8, with ¢ = —1.06 x 1072! [N - m]. Note
that the values provided for the solid-vapor interface are relative to that of solid-vacuum.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute

of Physics.

Solid-vapor interfacial tension for IPA molecules v5, plotted against IPA adsorp-
tion amount I'f5, is shown in Fig. with the cause and meaning of the negative
tension values given in the previous section. A linear relationship clearly exists show-
ing that the interfacial tension is proportional to the amount of TPA molecules at the
solid-vapor interface. This would mean that droplet wettability would become worse if
there was no change in the interfacial tensions of other interfaces. However, as can be
confirmed in Fig. changes in solid-liquid and liquid-vapor interfacial tensions are
much greater, and this means that solid-vapor interface has hardly any effect on the
mixture-droplet wettability. Because in water-methanol droplet systems, there are even
less molecules in the solid-vapor interfaces as seen in Figs. through the solid-
vapor interface is not investigated for methanol molecules and solid-vapor interfacial

tension is considered to be always 1.0 = 0.
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4.5 Force Balance at Interfaces

The positions of solid-liquid and liquid-vapor interfaces are calculated in this section
using the method described in Section [2.6

For solid-liquid interface, its position is expressed as the distance from the topmost
solid surface layer, and the obtained values are displayed in Fig.[4.29] Systems with the
number of alcohol molecules above 200 for water-methanol, and with that above 60 for
water-IPA show similar solid-liquid interface positions of 0.2 nm < Z*! < 0.4 nm and do
not vary significantly. On the other hand, water-methanol systems containing 100 and
200 alcohol molecules show much smaller values, while for water-IPA systems containing
50 and 60 alcohol molecules the interface positions become negative, i.e. below the solid
surface. This is clearly unphysical and turned out to be due to the calculation error
caused by the roughness of tangential pressure PT distribution as seen in Figs.
through [£.7] The calculations concerning the balance of force, and therefore interfacial
tension, are not affected by this, because only the integrated value is used as shown
in Equations [2.60] and 2.80, and any roughness is cancelled out. This is not true for
the balance of moment however, because the integration of the tangential pressure PT
is weighted with the z-coordinate as shown in Equation [2.81] and the jaggedness is
no longer cancelled out and results in calculation error. This error is more apparent
for systems containing interfacial tensions with small absolute values, which prevents
obtaining reliable results for systems containing small amounts of alcohol molecules.
Because of this, only consistent data circled in red in Fig. obtained from systems
with larger numbers of alcohol molecules is adopted to estimate the interface position
used to measure the contact angles in Section (3.3

For liquid-vapor interface, liquid density at the interface position was chosen because
the resulting values are not dependent on the system dimensions. The densities at
liquid-vapor interface for both water-methanol and water-IPA mixtures are displayed
in Fig. m Remarkably, water-IPA mixtures in Fig. m (b) show very consistent
density values, while the values for water-methanol mixtures in Fig. [4.30| (a) appear
very inconsistent and sporadic. Specifically, water-methanol systems containing 400
and 500 alcohol molecules show unnaturally low densities. Since the absolute values
of liquid-vapor interfacial tensions decrease with the increase in alcohol molecules, as
discussed in Section the error coming from roughness also increases, and the values
change greatly depending on the integration region. The inconsistencies in water-
methanol systems are thought to be a result of improperly chosen boundary conditions.

By assuming that the density values of water-methanol at the solid-liquid interface are
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Figure 4.29: Solid-liquid interface positions for quasi-one-dimensional (a) water-methanol
and (b) water-IPA mixture systems. The calculated interface position at the water-IPA
mixture system with 50 IPA molecules is Z%! = —4.1 nm, but is not displayed in order to
maintain clarity. The average interface position used in Section [3:3]is calculated from the
data points circled in red.

similar to those of water-IPA systems, the water-methanol systems containing 200 and
300 alcohol molecules were chosen to estimate the average density, while all data points
were used for water-IPA systems. Although this obviously does not give a statistically
reliable value, the chosen density of the liquid-vapor interface has a much smaller effect
on the apparent contact angle than the elevation of the solid-liquid interface, therefore

the introduced error is not considered to be substantial.
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Figure 4.30: Liquid densities at liquid-vapor interfaces for quasi-one-dimensional (a)
water-methanol and (b) water-IPA mixture systems. The average density at the interface
position used in Section @ is calculated from the data points circled in red.
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SYSTEMS USED FOR
THERMODYNAMIC
INTEGRATION

Bakker’s equation was used to evaluate interfacial tensions in Section under the
assumption that the interfaces cannot support elastic strain.’™® This is not the case
however for solid-liquid and solid-vapor interfaces where the solid molecules at the
surface are allowed to vibrate around their equilibrium positions, and thus can indeed

support strain.®® This results in the following Shuttleworth equation:

d

s=n+ d—z, (5.1)
where s and ¢ are interfacial stress and elastic strain, respectively. Because of this,
using Bakker’s equation on solid-liquid and solid-vapor interfaces is appropriate only
when the solid surface is completely periodic or a potential wall, such as described by
Eq. An alternative measuring way is needed to accurately evaluate the interfacial

tension when the second term in the right hand side of Eq. is non-zero.
An additional type of quasi-one-dimensional simulation systems is constructed in a

similar manner to systems in Chapter 4] to independently assess solid-liquid interfacial

tensions by using thermodynamic integration as described in Section [2.5.3]

5.1 Simulation System and Conditions

Snapshots of equilibrated single-component water, methanol and IPA systems are
shown in Fig. Periodic boundary conditions are imposed in all lateral directions

and the liquid inside is composed of either 3000 water, 1500 methanol or 1000 TPA
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molecules. Two solid surfaces each containing three layers are symmetrically located at
the center of the calculation cell, with innermost layers being 3 nm apart. The position
of solid atoms in the innermost layers is fixed and the temperature of those in the
middle layers is controlled by the Langevin method at 298.15 K. In addition, two sets
of three potential walls recreating the mean potential field of the solid surface are also
placed symmetrically to the xy-plane. Thirty-seven simulation systems are created for
each liquid type with the innermost potential planes being apart from 0 to 6 nm. As
well as the integration methods and temperature control used in the previous systems,
additional temperature and pressure control is applied to the liquid phase with thermo-
stat and barostat relaxation times 77 and 7, set to 2 and 5 ps respectively and pressure
set to atmospheric value using the control schemes described in Sections and[2.4.4]
To reduce the effect on the system, the relaxation times are approximately 10 times
longer than what would be the minimal ones recommended in the original paper#® for
an L-J liquid with the potential parameters of the oxygen atom in the SPC/E model.
Only the z-component of the local pressure tensor in the liquid phase is controlled and
the pressure control region starts at 0.175 nm outwards from the equilibrium position
of the plane closest to the liquid phase, and no surface or liquid molecules are present
at this region. The size of calculation region in x- and y-directions is the same as the
systems in Chapter 3.358 x 3.047 nm?, while that in z-direction is initially set to
30 nm but this decreases greatly due to the pressure control scheme. After 1 ns of
equilibration, the average of simulation for 8 ns data is used to analyze systems with
the potential planes closest and furthest apart, while the average of data for 2 ns is
used for all others in-between. The time step is set to h = 1 fs in accordance to the

quasi-one-dimensional systems in Chapter
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5.1 Simulation System and Conditions

(a) Water (b) Methanol

3 potential
walls

3 solid layers
fcc (111) face

Ll

Figure 5.1: Snapshots of single-component (a) water, (b) methanol and (c¢) IPA simulation
system used to independently assess solid-liquid interfacial tensions. Cell size in the z-
dimension [, varies due to the pressure control scheme, and I indicates the distance of
the pressure control region from the system center, with details given in Section The
innermost potential plane distance from the system center is set to Z = 2.5 nm for all the

systems in the snapshots.
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5. SYSTEMS USED FOR THERMODYNAMIC INTEGRATION

5.2 Pressure Exerted on Potential Walls

The pressure exerted on the potential walls is shown in Fig. All of the graphs
show a similar trend with the pressure being negative at Z < 1.5 nm and positive
at Z > 1.5 nm, i.e. potential walls are attracted towards the liquid components at
Z < 1.5 nm, and pushed back by the liquid components at Z > 1.5 nm. The peaks of
water component are slightly smaller than those of methanol and IPA, showing a weaker
interaction between water and solid surface than that between alcohol and solid surface.
This is to be expected, since the absolute value of the solid-liquid interfacial tension of

water is much smaller than that of either methanol or IPA as seen in Figs. and
respectively.

(a) Water (b) Methanol (c) IPA

pressure, P;)Ylantom (MPa)

_800 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 05 1 15 2 25 0 05 1 15 2 25 0 05 1 15 2 25 3

plane distance, Z (nm) plane distance, Z (nm) plane distance, Z (nm)

Figure 5.2: Relation between pressure exerted on the potential walls and distance between
innermost potential wall and the center of the systems such as shown in Fig. The two

solid walls are positioned 1.5 nm from the center of the calculation cell.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.
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5.3 Density and Pressure Distributions

5.3 Density and Pressure Distributions

The density and pressure distributions are provided for systems with the potential
planes closest and furthest apart. The same methodology is used as already described
in Section The results for systems, where the potential planes are at Z = 0 and
Z = 3 nm from the system center, are respectively shown in Figs. and Because
intermolecular interaction range in this study is set to r¢yt = 1.5 nm, no interaction
between the potential walls and liquid molecules occurs for systems of Fig. [5.3] while for
Fig.5.4 nothing interacts with the solid surfaces. Therefore, Figs.[5.3and [5.4] effectively
show density and pressure distributions of systems containing liquid molecules and
only either solid surfaces or potential walls, and can be used to evaluate the difference
between solid-liquid interfaces. Qualitatively, density and pressure distributions seem
to only depend on the liquid component. This is to be expected, because the potential
walls have been specifically constructed to recreate the main potential field of the solid

surface.
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Figure 5.3: Density and pressure distributions of single-component systems, composed
of either 3000 water, 1500 methanol or 1000 IPA molecules when the potential walls are at
Z = 0 from the center of the system. The distributions are averaged with taking system

symmetry into account.
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Figure 5.4: Density and pressure distributions of single-component systems, composed
of either 3000 water, 1500 methanol or 1000 IPA molecules when the potential walls are
at Z = 3 nm from the center of the system. The distributions are averaged with taking

system symmetry into account.
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5. SYSTEMS USED FOR THERMODYNAMIC INTEGRATION

Table 5.1: Difference in Gibbs free surface energy of solid-liquid interface between solid
surface and potential wall together with interfacial tensions obtained using various meth-

ods. Note that the values are relative to the interfacial tension of solid-vacuum.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.

Water Methanol IPA

ol = Vohamtom (MN/m)  —237 166 —0.92
Vo antom (MN/m) 112 —46.15 —51.97
lia (0N/m) 350 —47.81  —52.89
Vihatdeer (N /m) 216 —45.22  —53.97

5.4 Interfacial Tensions

In this section interfacial tension difference is evaluated from the data displayed in
Fig. [5.2] using thermodynamic integration as described in Section In addition to
this, Bakker’s equation described in Section and also used in Section [£.4] is used
with data shown in Figs. and to directly calculate interfacial tensions ')’EZakker and
7I§lhant0m at Z = 0 nm and Z = 3 nm respectively. Here, 'yélakker is the value obtained
by using Bakker’s equation directly on the solid surface. The results are summarized
in Table All of the interfacial tensions have negative values, and this might seem
unphysical, but this is only because they are relative to that of solid-vacuum, and this
was discussed in greater detail in Section[£.4] It is interesting to note that solid surfaces
have lower solid-liquid interfacial tensions than potential walls for all liquids. This is
to be expected, since the solid surface has a structure which allows liquid molecules
to take more energetically stable configurations, and that should result in decreasing
the interfacial energy compared to a flat potential wall. This is also confirmed by the
fact that the difference is greater for water and methanol with smaller molecule size
than IPA. The interfacial tensions obtained by Bakker’s equation and those obtained
by thermodynamic integration only differ by about 2.6 mN/m at most. This is because
the solid surface used in this work is a perfect fcc crystal with only minor thermal
vibration and a small lattice spacing compared to the size of liquid molecules, and
therefore approximating it as a flat potential wall does not produce a large error. This
is effectively done by the Bakker’s integration with only using solid-liquid interaction
contribution to normal pressure as already described in Section [.2] It is expected that

the error would be much larger for rough or amorphous surfaces.
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6

CONTACT ANGLES AND
INTERFACIAL TENSIONS

6.1 Applicability of Young’s equation

Young’s equation describing the horizontal balance of interfacial tensions that was

discussed in Sections [2.5.4] and [2.5.5] gives a way to predict the droplet contact angle

from interfacial tensions calculated in Chapter [4] by treating the droplet as having zero
thickness interfaces. The three-phase interface is not considered and only the interfacial
data away from it is used, with the reasoning given in Section [2.5.5

Alcohol fractions in liquid bulk region of a droplet and relative alcohol adsorption
amounts at each interface away from the three-phase line are calculated for the water-
methanol and water-IPA droplet systems and the results are shown in Figs. and [6.2]
respectively. The alcohol fractions in Fig. reflect the observations made Figs. [3.5
through in Section that methanol molecules dissolve into the droplet bulk
much easier than IPA molecules. In addition, the relative adsorption amounts of each
interface in Fig. reveal that the solid-liquid interface in a water-IPA droplet at
fipa > 15 % is saturated by the creation of a mono-layer and excess alcohol molecules
start to overflow into the solid-vapor interface, while no such distinct signs of saturation
can be observed for water-methanol droplets. Some of preliminary results indicate that
the interface also saturates for water-methanol mixtures at a high enough alcohol ratio,
but because methanol readily dissolves into water, this only means that the increase
rates of interfacial and bulk alcohol become similar, describing a completely different
state from the saturation seen in water-IPA.

Interfacial tensions are estimated by linear interpolation of the data shown in
Figs. and (a, b) for solid-liquid and liquid-vapor interfaces or by the lin-
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6. CONTACT ANGLES AND INTERFACIAL TENSIONS
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Figure 6.1: Methanol and IPA fractions in liquid bulk in relation to the overall mass
fractions in droplet systems. The IPA fraction in liquid bulk is not used in determining

droplet interfacial tensions and is only displayed for reference.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.

(a) MeOH relative adsorption (b) IPA relative adsorption

solid-liquid —%—
liquid-vapor —5—
solid-vapor —&— .

relative adsorption, I’ (nm'z)

0 5 10 15 20 25 30 O 5 10 15 20 25 30
MeOH fraction, fy1.on (%) IPA fraction, fip, (%0)

Figure 6.2: (a) Water-methanol and (b) water-IPA relative adsorption amounts at each
droplet interface. The water-methanol relative adsorption amounts are not used in deter-

mining droplet interfacial tensions and are only displayed for reference.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.
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6.1 Applicability of Young’s equation

ear fitting function shown in Fig. for solid-vapor interfacial tension with IPA. The
solid-vapor interfacial tension for water-methanol mixture droplets is assumed to be
always zero.

The predicted contact angles are compared with the measured ones in Fig. [6.3
Although there are some discrepancies, a good quantitative agreement can be seen.

This means that our method accurately predicts interfacial tensions and shows that

Young’s approach is still applicable even at nano-scale.

(a) Water-methanol

MeOH mass fraction, fy;.on (%)

(b) Water-IPA
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Figure 6.3: Relation between the cosine of contact angle of the water-alcohol mixture

droplets and alcohol mass fractions.
*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and
H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.

127



6. CONTACT ANGLES AND INTERFACIAL TENSIONS

6.2 Margin of Error Brought by Using Bakker’s Equation

It has already been discussed in Chapter [] that it is not strictly appropriate to use
Bakker’s equation for interfaces containing a surface that can support strain, and it
has been confirmed in Section that Bakker’s equation does indeed produce slight
error in the solid-liquid interfacial tensions for single-component liquids. The same
procedure cannot be easily applied to multi-component liquids, because there is a need
to obtain the chemical potential of each component, which is a non-trivial task. Instead,
data summarized in Table are used to estimate the effect of Bakker’s equation on
mixture liquids. By comparing the interfacial tensions of single-component systems
obtained by directly using Bakker’s equation 'Y]%lakker and thermodynamic integration
'yjéhd, it is possible to roughly approximate the margin of error introduced by using
Bakker’s equation on the solid-liquid interfaces of mixtures.

For water and methanol systems, thermodynamic integration produced lower in-
terfacial tensions, and the methanol data showing a larger discrepancy was chosen to
approximate the margin of error for water-methanol systems. On the other hand, ther-
modynamic integration for IPA systems produced higher interfacial tensions, thus both
water and IPA data were used for water-IPA systems to give an error range in both
directions. The results are displayed in Fig. The error bars show that although of
similar order, the uncertainty brought by the Bakker’s equation does not explain the
discrepancies between measured and predicted contact angles, indicating that other

sources of uncertainty exist.
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6.2 Margin of Error Brought by Using Bakker’s Equation
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Figure 6.4: Relation between the cosine of contact angle of the water-alcohol mixture
droplets and alcohol mass fraction. Error bars show the uncertainty incurred by using
Bakker’s equation on a solid-liquid interface.

*Reprinted with permission from “D. Surblys, Y. Yamaguchi, K. Kuroda, M. Kagawa, T. Nakajima and

H. Fujimura, The Journal of Chemical Physics, 140, 034505 (2014)”. Copyright 2014, American Institute
of Physics.
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6. CONTACT ANGLES AND INTERFACIAL TENSIONS

6.3 Reevaluation of Liquid-Vapor Interfacial Tensions

It is a well-known fact that liquid-vapor interfacial tension is influenced by the droplet
curvature,*® and this is especially remarkable for very small droplets, such as in this
paper. The method of using flat interfaces does not take this into account and therefore
some degree of error is expected, which could explain the discrepancies in Fig. that
the error induced by Bakker’s equation could not fully capture.

Because of the relationship between droplets radius and its Laplace pressure as de-
scribed in Section [2.5.2] it is possible to obtain liquid-vapor interfacial tensions without
direct calculation of the pressure tensor. The droplet radii obtained when measuring
apparent contact angles in Chapter [3.3] are displayed in Fig. [6.5] The radius R of
the droplets increases with larger alcohol mass fractions f, which is in accord with

measured contact angles in Fig. |3.16

20

18 L MeOH —— |
IPA —6—
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droplet radius, R (nm)
o

4 1 1 1 1 1 1
0 5 10 15 20 25 30 35

alcohol mass fraction, 1 (%)

Figure 6.5: Dependence of droplet radius on alcohol mass fraction in water-methanol and

water-IPA systems.

Liquid-vapor interfacial tensions obtained from flat interfaces in Chapter [ and
those obtained from the Young-Laplace Equation [2.69| using data in Figs. and
are compared in Fig

Before discussing the result, irregular behaviour observed in solid-liquid interfa-
cial tensions obtained by Laplace equation for both water-methanol and water-IPA
droplets illustrated with red lines in Fig. should be addressed. No such large dis-
crepancies can be observed in either Laplace pressure or droplet radius graphs displayed

in Figs. [3.20] and respectively. However, because interfacial tension from Laplace
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6.3 Reevaluation of Liquid-Vapor Interfacial Tensions

equation is obtained by multiplying the two data, any small discrepancies increase mul-
tiplicatively. It is reasonable to assume that the radii are of high precision, because
they are obtained from density distribution of the droplets. On the other hand, Laplace
pressure is obtained from the intermolecular force, which is a differential quantity, and
therefore has much greater fluctuations and a greater margin of error. The fact that
the discrepancies are larger at high alcohol concentrations, i.e. at higher radii, also
supports the above-mentioned possibility that the discrepancies are due to uncertainty
coming from Laplace pressure measurement.

For both water-methanol and water-IPA systems in Fig. liquid-vapor interfa-
cial tension of droplets is smaller than that of flat planes, and this would mean that
surface tension decreases at small droplet radius, which is both theoretically sound and
observed in literature.#® On the other hand, droplet surface tension becomes larger
than that of planar interface at higher alcohol concentrations. It is not believed that
a circular interface can have a larger interfacial tension than a planar one, therefore
this indicates that either the droplet radius used to obtain Laplace pressure is incorrect
or that there are factors besides the droplet curvature that increase the uncertainty in

interfacial tension values obtained from flat interfaces.

(a) Water-methanol (b) Water-IPA
65 T T

60

—O— flat planes
—&— Laplace eq. )

interfacial tension, Yy v (mN/m)

20 1 1 1 1 1 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 0 05 1 15 2 25 3 35 4

bulk mass fraction, fy;,op (%)  relative adsorption, FHI)VA (nm?)
Figure 6.6: Comparison of liquid-vapor interfacial tensions obtained from flat interfaces

in Chapter[4and those obtained from water-methanol and water-IPA droplets using Young-
Laplace Equation W

Figure displays the measured contact angles together with predicted ones using
liquid-vapor interfacial tensions obtained from both Young-Laplace Equation [2.69 and
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6. CONTACT ANGLES AND INTERFACIAL TENSIONS

planar interface data in Section (1.4, where the uncertainty induced from using the
Bakker’s equation on solid-liquid interfaces is also shown by error bars. If we choose
to ignore the data points at fyrcon = 31 % and fipa = 29 %, where the liquid-vapor
interfacial tension was highly irregular compared to other values, then predictions using
solid-liquid interfacial tensions obtained from Young-Laplace equation seem to be more
precise for water-methanol mixtures at high methanol concentrations at fyeon > 20 %,
while being comparable in other cases. Because there is a systematic overestimation
of the water-methanol contact angles at this range when using WZMUGOH from planar
interfaces, it is safe to assume that the liquid-vapor interfacial tensions predicted from
planar interfaces are indeed incorrect. On the other hand, this is not observed for water-
TPA mixtures, therefore the cause of the error is not interfacial curvature. Three is a
strong possibility that using bulk mass fraction to describe the state of water-methanol
liquid-vapor interfaces at high alcohol concentrations is not completely adequate and

introduces a systematic error.

(a) Water-methanol (b) Water-IPA

contact angle, cosf

0 5 10 16 20 25 30 O 5 10 15 20 25 30
MeOH mass fraction, fy.on (%) IPA mass fraction, fip, (%)
—O— measured

—=— predicted with y jv from flat planes
—&— predicted with " from Young-Laplace equation

Figure 6.7: Relation between the cosine of contact angle of the water-alcohol mixture
droplets and alcohol mass fraction. Error bars show the uncertainty incurred by using
Bakker’s equation on a solid-liquid interface.
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CONCLUSIONS

In this study, simulations of water-methanol and water-IPA (isopropyl-alcohol) mixture
droplets on a solid surface were performed using molecular dynamics (MD) method to
understand better the effect that alcohol additives have on the wettability of water
droplet. Simulations of quasi-one-dimensional systems were also performed to quanti-
tatively calculate two-phase interfacial tensions. Finally, the validity of using quasi-one-
dimensional systems to predict droplet wettability was investigated for both solid-liquid
and liquid-vapor interfaces.

In Chapter [3] water-methanol and water-IPA droplets were created on a solid sur-
face. The droplets generally became more wettable with larger alcohol fractions and
both water-methanol and water-IPA mixtures achieved similar wettability at similar
alcohol mass fractions. Both types of alcohol molecules showed a strong preference to
gather at solid-liquid and liquid-vapor interfaces, and a clear tendency to gather at the
three-phase interface was also observed at very low mixture ratios. At high mixture
ratios, methanol molecules diffused well into the droplet bulk, while IPA molecules were
found to spread out to the solid-vapor interface with almost no molecules dissolving
inside the liquid droplet, thus creating two very different mixture systems. The IPA
unwillingness to diffuse into droplet bulk is thought to mainly come from the large
hydrophobic group. The obtained results such as difference in solubility are highly
dependent on the mixing rules, and while the Lorentz-Berthelot rules used in this work
do not accurately reproduce experimentally observed mixture properties, the general
tendencies are thought to be qualitatively similar. The Laplace pressure inside the
droplets was also calculated, and it was confirmed that it decreased as droplets became
more wettable, which corresponds well with the macro-scale model.

In Chapter [4] specific two-phase interfacial tensions were calculated in quasi-one-

dimensional simulation systems for flat interfaces using Bakker’s equation with pres-
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sure tensor distribution. Liquid-vapor interfacial tensions of both water-methanol and
water-IPA mixtures and solid-liquid interfacial tension of water-methanol mixtures de-
creased gradually and there was a linear relationship between the interfacial tension
values and the relative adsorption amount of alcohol molecules at each interface. On
the other hand, a very steep drop and saturation in the solid-liquid interfacial ten-
sion of water-IPA mixtures was observed after reaching a specific interfacial alcohol
concentration, and this was attributed to the formation of an IPA mono-layer which
appeared to have a certain preferable number density and interfacial tension. No such
sudden change was observed for water-methanol mixtures, although there also existed
a distinct methanol mono-layer at the solid-liquid interface. This was attributed to the
fact that methanol readily diffuses into water bulk, thus the formation of the mono-
layer is much less restrictive. It is thought that because pure alcohol liquids have lower
interfacial tensions than water, alcohol molecules covering the interfaces is the main
reason for the decrease of the interfacial tensions there, although none of the mixture
interfaces managed to decrease to the interfacial tension value of a single-component
alcohol. It was found that the solid-vapor interfacial tensions changed very little and
had a negligible effect on wettability even for systems where the solid-vapor interface
was clearly moistened by IPA molecules.

In Chapter[5] thermodynamic integration was used as an alternative method to cal-
culate the solid-liquid interfacial tensions of quasi-one-dimensional systems containing
single-component liquid. There it was confirmed that the Bakker’s equation produces
a slight error when used for a solid-liquid interface, where the solid can support elas-
tic strain. Because the solid surface used in this work was a perfect fcc crystal with
only minor thermal vibration and small lattice spacing compared to the size of liquid
molecules, the error was small, but it is expected that the error would be much larger
for rough or amorphous surfaces.

In Chapter [6] droplet interfacial tensions were assessed from the data obtained in
the quasi-one-dimensional systems in Chapter [] using relative interfacial adsorption
amount and bulk alcohol fraction as parameters to describe the interfacial states of
water-IPA and water-methanol systems, respectively. This produced good quantitative
estimation of the contact angle based on the Young’s equation, indicating that the
macroscopic approach of horizontal interfacial tension balance used in wetting theory
is still valid at nano-scale and that we could reliably predict the droplet interfacial
tensions. It was discovered that the uncertainty that the Bakker’s equation brought

into wettability estimation was of the same magnitude as the discrepancies between
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the measured and calculated contact angles, although the discrepancies could not be
explained by only this. Liquid-vapor interfacial tensions of droplets were alternatively
evaluated using the Young-Laplace equation, and this produced better contact angle
estimates than the interfacial tensions obtained from the planar interfaces for water-
methanol systems with high alcohol mass fractions, while the results in other cases were
comparable. This indicates that the alcohol mass fraction inside droplet bulk was not
and adequate parameter to describe the water-methanol droplet states at high alcohol
concentrations, while no such problems were observed for water-IPA mixtures where
relative adsorption amounts of interfacial alcohol were used.

The primary objectives of this research were to investigate the effect of alcohol addi-
tives on droplet wettability and to validate if the wetting theory used in the macro-scale
was still applicable to nano-scale mixture droplets. These objectives were successfully
achieved by directly investigating the change in the interfacial tensions and other in-
terfacial properties of water-alcohol mixture systems, which allowed to prove that even
mixture droplet systems of vastly different compositions follow the same principles de-
scribed by the macroscopic wetting theory, i.e. Young’s equation, when an idealized
model of interfaces with zero thickness is applied. Although addition of alcohol to
water is a well-known way to increase wettability, directly observing interfacial ten-
sions showed that the change in wettability in our systems was due to the decrease of
not only liquid-vapor but also solid-liquid interfacial tensions. A secondary objective
to evaluate the validity of methods used to obtain the solid-liquid and liquid-vapor
interfacial tensions was also achieved. Unfortunately, a detailed evaluation of the solid-
liquid interface was only done for single-component liquid systems, and a rather crude
assessment had to be made for mixture systems. In principle, it was possible to do the
same assessment using mixture systems, although the need to calculate the chemical
potential would have arisen. A better evaluation of simulation uncertainty would have
also greatly eased the validation process. None the less, it is expected that this new
knowledge and insight will be helpful in improving the techniques and methods of con-
trolling droplet wettability. This research only deal with a non-polar and almost ideally
smooth solid surface, but the methods described in this work should also be applicable

to rougher or polarized surfaces.
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