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“If anyone travels on a road in search of knowledge, God will cause him to travel on one

of the roads of Paradise. The angels will lower their wings in their great pleasure with

one who seeks knowledge. The inhabitants of the heavens and the Earth and (even) the

fish in the deep waters will ask forgiveness for the learned man. The superiority of the

learned over the devout is like that of the moon, on the night when it is full, over the

rest of the stars. The learned are the heirs of the Prophets, and the Prophets leave (no

monetary inheritance), they leave only knowledge, and he who takes it takes an abundant

portion.”

Sunan of Abu-Dawood
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Abstract
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by Muhdar Tasrief

In order to enhance the performance of a ship in waves, improvement of its hull geometry

seems to be important and should be treated appropriately. For this purpose, a prac-

tical integrated optimization method is developed and utilized to acquire the improved

ship geometry. Namely, the Genetic Algorithm (GA) with binary encoding or so-called

Binary-Coded Genetic Algorithm (BCGA) and the Enhanced Unified Theory (EUT)

are integrated together to optimize the basis ship geometry through its Sectional Area

Curve (SAC).

In this study, the shape function based on the shifting method is adopted to the SAC

during optimization. Specifically the position of transverse sections is shifted in longitu-

dinal direction to modify the prismatic coefficient, the longitudinal center of buoyancy

and the parallel middle body of the basis ship geometry. For simplicity, the principal

dimension i.e. the ship length, breadth and draft must be constant. Needless to say

that the main objective function of this optimization is to minimize the added resistance

computed by EUT as a core method of computation.

From the results obtained in this study, the added resistance of modified Wigley model

decreases in large amount at the desired wavelength region in which the optimization

is performed. Furthermore, an optimization with the actual ship, namely SR-108 is

also done in order to illustrate the effectiveness of the present method for the practical

purpose. Thus it can be concluded that the combination between the BCGA and the

EUT may be regarded as a reliable practical tool to improve the performance of a ship

in waves, particularly in reducing the added resistance.
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Chapter 1

Introduction

1.1 Background

A ship is a dynamic floating body operated in an environment called ocean. In the

ocean, rough weather may occur due to winds and waves. When a ship is moving

on such weather, its resistance may increase, especially due to waves. Such inevitable

condition may lead to involuntary reduction of ship speed and to perilous circumstance

accordingly. Moreover a new regulation of the International Maritime Organization

(IMO) regarding the energy efficiency for ships, especially the Energy Efficiency Design

Index (EEDI) has come into force. It is definitely a mandatory for the new ships with

400 gross tonnages and above, in which the attained EEDI for those ships should be less

than the required EEDI.

One way to lessen the attained EEDI of a ship is by decreasing its propulsion power,

which may lead to reduction of its speed. To preserve the speed of a ship while lowering

its propulsion power, an improvement of ship hull geometry should possibly be done to

enhance its performance. Reducing an increase of resistance in waves, namely the added

resistance of a ship will be a worthy choice to realize that.

A simple method to generate a new geometry of ships is by adopting the lines distortion

approach in which the new lines are generated from the lines of a basis ship geometry as

a parent by modifying some form parameters e.g. prismatic coefficient, block coefficient,

longitudinal center of buoyancy, parallel middle body, etc. A former work exploiting

this approach is the shifting method. In this method, the Sectional Area Curve (SAC)

is distorted by shifting the longitudinal positions of each section in between the ships

ends in such a way to modify the form parameters.

1



Chapter 1. Background 2

However it is recognized that generating the new ship geometry through the line distor-

tion approach does not mean that the new ship geometry will have a better hydrody-

namic performance than the original ones. To cope with this matter, an optimization

method becomes necessary to acquire the best optimized ship geometry resulting from

the line distortion approach. In general, there are two major categories of optimiza-

tion methods; namely deterministic and stochastic optimization algorithms. However,

the deterministic method is never user-friendly and thus the stochastic optimization

algorithm, namely Evolutionary Algorithms (EAs) would be exploited to get the best

optimized ship geometry in this study.

Among the EAs, the Genetic Algorithm (GA) is the most extended method representing

the evolutionary tool based on natural selection. The GA searches for the best solution

by involving its genetic operators such as selection, crossover and mutation operators,

including elitism. This solution is obtained by means of encoding and decoding mech-

anisms. A common method for encoding, namely the binary encoding will be used

further due to its simplicity and gives many possible solutions even with small disparity.

It should be noted that the GA is a stochastic method, and thus slightly different results

might be occurred for different runs.

In this dissertation an optimization method based on natural selection, namely the GA

with binary encoding or so-called the Binary-Coded Genetic Algorithm (BCGA) is newly

constructed by adopting the shifting technique to the SAC of a ship. In the optimization

process, the shape function combined with Lagrangian interpolation is introduced for

generating an innovative shape of this curve with optimized form parameters; hence

increasing performance of a ship. Specifically, at least two parameters in the shape

function are optimized to generate the new SAC. One parameter is used to define the

magnitude of shape function whether to change the cross sectional area of each station

or not, except those at ship ends and middle stations as well as at a fixed station which

is defined by another parameter being optimized. The number of these parameters could

be increased to generate more various shapes of SAC.

For the purpose of establishing a new BCGA and to examine its performance, a modified

Wigley model with blunt-bow coefficients is employed as a basis ship geometry. The

objective function used in this optimization is measured from the added resistance owing

to ship motions. It will be computed by means of Enhanced Unified Theory (EUT)

due to its superiority to the strip theory in that the effect of wave reflection mainly

generated near the bow is taken into account through the body boundary condition

in the diffraction problem as well as 3D and forward-speed effects ignored in the strip

theory are incorporated in the EUT through the matching process.



Chapter 1. Overview 3

In order to illustrate effectiveness and efficiency of the present method developed, an

actual ship e.g. SR-108 is also employed as a basis ship geometry in addition to a

modified Wigley model. In this case the objective function will be based on sensitivity

study to the added resistance about its peak. According to the sensitivity study, it is

found that both amplitude and phase of the pitch motion give the largest contribution to

the peak value of the added resistance. The optimization of SR-108 therefore is extended

with multi objective functions, namely the pitch motion component will be the primary

fitness function followed by the total added resistance as the secondary fitness function.

In addition, the steady wave-making resistance is also computed in order to confirm

reduction of the total resistance of such ship.

1.2 Overview

This dissertation is concerned with the ship optimization of hydrodynamic problems. In

this case, the optimization will be based on an existing ship as a basis ship geometry to

comply with the regulation of IMO regarding the EEDI. The purpose of this regulation

is to reduce the emission of the green house gasses from international shipping. It can

be attained by improving ship performance which allows us to decrease the main engine

power. Particularly, reducing the ship motions and thus minimizing the added resistance

is addressed to this study.

The main objective of this study is to develop a computational algorithm, namely a

practical integrated optimization method, to obtain an optimal ship geometry with high

seakeeping performance. To achieve this objective, an optimization method based on

natural selection with binary encoding, namely the BCGA is constructed with a modified

Wigley model employed as a basis ship geometry. In this algorithm, the shape function

followed by Lagrangian interpolation and the EUT for computing the added resistance

are incorporated as subroutines in the main algorithm.

For the purpose of establishing this optimization method, an optimization is performed

for two different cases based on the selected operational area of a ship. Namely, the

shorter wavelengths (λ/L = 0.30 ∼ 0.80) and longer wavelengths (λ/L = 0.80 ∼ 1.30)

regions are chosen. In this case the objective function is to minimize the total added

resistance. In addition of optimizing a modified Wigley model, an actual ship SR-108

is also optimized at certain wavelengths region in which the added resistance becomes

maximum. The steady wave resistance is also computed to confirm reduction of the

total wave resistance.
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Chapter 1 of this dissertation describes the introduction, including the background,

overview and objectives of the study. In Chapter 2, the optimization method is given

with the shape function of the SAC. Besides that, the computation method of the added

resistance is also elucidated in this chapter. Description of the computed model is

provided in Chapter 3. Chapter 4 describes the sensitivity of the peak value of the

added resistance to the ship motions. This chapter also discusses the relative importance

of each term in the added resistance.

Before optimizing the SAC, it might be useful to understand its characteristics by the

shifting method which is given in Chapter 5. In order to acquire the best perfromance

of the GA, a preliminary and validation of its computation method should be done which

is described in Chapter 6. The results and discussions of the optimization for both

of modified Wigley model and actual ship SR-108 are also given in the same chapter.

Finally, the conclusions and recommendations are given in Chapter 7.



Chapter 2

Theory of Computation

In the ship optimization problem, there must be an optimization method to obtain the

best optimized ship geometry with an optimal performance according to the objective

function. In this study, the Genetic Algorithm (GA) with binary encoding or so-called

Binary Coded Genetic Algorithm (BCGA) and the Enhanced Unified Theory (EUT)

based on the linear potential theory are combined together to optimize the basis ship

geometry by computing the added resistance as the objective function. In order to un-

derstand these, the theoretical background and calculation methods of this optimization

are going to be elucidated in this chapter.

2.1 Optimization Method

2.1.1 General Description of Binary-Coded Genetic Algorithm (BCGA)

In general there are two major classes of the optimization algorithms, namely determinis-

tic and stochastic optimization algorithms. Deterministic algorithm is always having the

same solution with the same number of the objective functions under the condition that

the search space, starting-point, and termination condition are constant. Although the

same solution is always obtained, the deterministic optimization algorithm is not user-

friendly due to its complexity. Thus the stochastic optimization algorithm, namely the

Evolutionary Algorithm (EA) should be exploited to get the best solution of a problem.

The EA is an attempt to solve problems by mimicking the process in natural evolution.

The most extended and popular technique representing the application of this evolu-

tionary theory is the Genetic Algorithm (GA). The GA is actually adaptive heuristic

search algorithm based on natural selection and genetic to find the best solution of the

problems. It is inspired by the theory of evolution, nameley survival of the fittest.

5



Chapter 2. Optimization Method 6

A set of initial possible solutions or so-called a population inside a certain domain called

search space, is randomly generated in GA. A population contains a certain number

of potential solutions, sometimes called individuals or chromosomes. A chromosome

consists of some genes and it can be expressed as follows

Ci = (x1, x2, x3, ..., xj) (2.1)

where xj represents a gene with j -number of the i -th potential solution. A gene itself

represents a special character of chromosome.

In GA, possible solutions from one population are taken and used to form a new popula-

tion with the motivation that it will be better than the old population. Every individual

in a population is assigned according to the fitness function, a measure of its goodness

with respect to the problem under consideration. In another word, the value of the fit-

ness function is regarded as the quantitative information to guide in searching the best

individual of a population.

To put the GA working on any problems, it is necessary to define a method for encoding

a chromosome. There are several kinds of method to encode a chromosome, for instance

binary encoding, value encoding, permutation encoding, and tree encoding. In binary

encoding, every chromosome is given in form of a string of bits. For value encoding,

a chromosome is given as a sequence of some values. In permutation encoding, every

chromosome is a string of numbers that represent a position in a sequence and thus it

is usually used in ordering problems. In case of tree encoding, every chromosome is a

tree of some objects, i.e. functions or commands in programming language.

Among those methods of encoding, the binary encoding is the most common one to

encode a chromosome containing some characters on its genes. This is due to its sim-

plicity to be used in any kind of problems. Nevertheless the binary encoding gives many

possible solutions even with small disparity. In binary encoding a chromosome given in

Eq.(2.1) can be expressed as, for example

C = (1101, 1111, 1010, 0110, 0010) (2.2)

or simply given as

C = (1101 1111 1010 0110 0010) (2.3)

From this chromosome, it could be understood that it consists of five genes and each

gene is constituted with four bits.

After encoding, decoding takes place. Genes of a chromosome in form of binary strings

are firstly converted to the integers or decoded binary strings of j-th gene with length
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m by using the following formula

Ij =

mj−1∑
k=0

2kSk (2.4)

where S is a bit of strings whether 0 or 1 and represented as Sm−1, ...S3, S2, S1, S0. These

decoded binary strings are then converted to the real numbers by using the following

transformation

Rj = RLj +
(RUj −RLj )

(2mj − 1)
× Ij (2.5)

with superscripts U and L denote upper and lower limits of the j-th gene. It should be

noted here that in this study a term of gene is refer to a parameter being optimized. An

example of using these transformations may be given with the first gene of chromosome

in Eq.(2.3), i.e. 1101 . In this case we have 4-bits string (m = 4), thus its decoded binary

string or integer value is equal to

I = 23 × 1 + 22 × 1 + 21 × 0 + 20 × 1 = 13

Knowing the value of upper and lower limits of this gene, for instance 0.0 and 1.0

respectively, the real value of it may be obtained easily using Eq.(2.5) as follows

R = 0 +
(1.0− 0.0)

(24 − 1)
× 13 = 0.86667

In GA the most important part is the genetic operators involving several operators,

such as selection, crossover, and mutation operators including elitism. Its performance

is extremely influenced by these operators.

Selection Operator

Selection in the genetic algorithm is the process of choosing parents for mating. Thus it

can be said that the selection operator is a genetic operator that chooses a chromosome

from the current population for inclusion in the next population. It is believed to be

responsible for the convergence of the algorithm. Good individuals based on their fitness

value will be selected to be parents for mating. There are several methods available for

selection purpose such as

• Roulette wheel ; A selection operator in which the chance of a chromosome getting

selected is proportional to its rank or fitness. In this method, The wheel is spun

N times, where N is the number of chromosomes in the population. On each spin,

the chromosome under the wheels marker is selected to be in the pool of parents

for the next population
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• Tournament ; A selection operator that provides selective pressure by holding a

tournament competition among N chromosomes. The best chromosome from the

tournament is the one with the highest fitness. It is then chosen as the selected

individual for the next population.

• Rank ; A selection operator which ranks the population and every chormosome

receives fitness from the ranking. The worst chromosome has fitness 1 and the

best has fitness N.

• Boltzmann; A selection operator that simulates the process of slow cooling of

molten metal to achieve the minimum function value in a minimization problem

of simulated annealing.

• Top percent ; A selection operator that randomly selects a chromosome from the

top N percent of the population as specified by the user.

Although there are some kinds of selection operator, the most commonly used for selec-

tion are only the first three operators. For faster convergence, the tournament selection

is usually adopted because it selects the winner of a tournament. However it does not

mean that the tournament selection is always better than the roulette wheel selection;

it depends on the problem encountered.

Crossover Operator

In GA, crossover or reproduction is a genetic operator that mates two parent (old)

chromosomes to produce offspring (new) chromosomes depending on the crossover prob-

ability (Pc). The idea behind crossover is that the new chromosome may be better than

both of the parents if it takes the best characteristics from each of the parents. The

main search tool of BCGA relies on this operator. Crossover occurs during evolution

according to a user-definable crossover probability. Various crossover techniques can be

given as follows

• Single point ; A crossover operator that randomly selects one crossover point within

a chromosome then interchanges the two parent chromosomes at this point to

produce two new offspring chromosomes.

• Two point ; A crossover operator that randomly selects two crossover points within

a chromosome then interchanges the two parent chromosomes between these points

to produce two new offspring chromosomes.

• Multi-point (N-point); A crossover operator which randomly selects N -number

crossover points within a chromosome then interchanges the two parent chromo-

somes between these points to produce two new offspring chromosomes.
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• Uniform; A crossover operator that decides which parent will contribute to each

of the gene values in the offspring chromosomes based on mixing ratio defined by

user. This allows the parent chromosomes to be mixed at the gene level rather

than the segment level (as with one and two point crossovers).

• Heuristic; A crossover operator that uses the fitness values of the two parent

chromosomes to determine the direction of the search. The offspring are created

according to the following equations

Offspring1 = BestParent+ r × (BestParent−WorstParent)

Offspring2 = BestParent

}
(2.6)

where r denotes a random number between 0 and 1.

• Arithmetic; A crossover operator that linearly combines two parent chromosome

vectors to produce two new offspring chromosomes according to the following equa-

tions:
Offspring1 = a× Parent1 + (1− a)× Parent2
Offspring2 = (1− a)× Parent1 + a× Parent2

}
(2.7)

where a is a random weighting factor.

Because of simplicity, the most commonly used crossover operators are single point,

N -point, and uniform crossovers.

Mutation Operator

After crossover is performed, mutation takes place. Mutation is a genetic operator that

alters one or more gene values in a chromosome from its initial state based on the

mutation probability (Pm). This probability should usually be set fairly low (0.01 is

a good first choice). If it is set to high, the search will turn into a primitive random

search. According to its definition, the main purpose of mutation is to prevent premature

convergence or stagnating at any local optima by ensuring population diversity. As the

same with selection and crossover operators, the mutation operator also has various

kinds given as follows

• Flip bit ; A mutation operator that simply inverts the value of the chosen gene (0

goes to 1 and 1 goes to 0).

• Boundary ; A mutation operator that replaces the value of the chosen gene with

either the upper or lower bound for that gene (chosen randomly).
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• Uniform; A mutation operator that replaces the value of the chosen gene with a

uniform random value selected between the user-specified upper and lower bounds

for that gene. This mutation operator can only be used for integer and float genes.

• Non-uniform; A mutation operator that increases the probability that the amount

of the mutation will be close to 0 as the generation number increases. This mu-

tation operator keeps the population from stagnating in the early stages of the

evolution then allows the genetic algorithm to tune the solution in the later stages

of evolution.

• Gaussian; A mutation operator that adds a unit Gaussian distributed random

value to the chosen gene. The new gene value is clipped if it falls outside of the

user-specified lower or upper bounds for that gene.

The first operator is specially used for binary genes and the remaining operators can

only be used for integer and float genes. Because in this study the binary encoding is

adopted, thus the only available operator for mutation is flip bit operator.

Elitism

In order to keep the highest fitness chromosome in the new population, elitism must be

involved. This is because, by elitism the best chromosome in the previous population is

always included in the new population and it will be selected directly to be parent if the

best chromosome in the current population has lower fitness than the one in the previous

population. Performance of the BCGA is improved significantly by this operator.

Generally, the optimization-flow process involving all of such operators can be seen in

Fig. 2.1. The optimization is begun with the basis ship geometry followed by creating

an initial population at the first generation. Here some individuals or chromosomes

which consist of some genes are randomly generated in form of binary strings as given

in Eq.(2.2) or Eq.(2.3). These chromosomes are firstly decoded to the integers by using

Eq.(2.4) and then transformed to the real-valued parameters by transformation given in

Eq.(2.5). The process is then followed by generating various shapes of Sectional Area

Curve (SAC) by the shape function. It should be noted here again that each gene

represents a parameter being optimized in the shape function.

Once the new sectional area curves have been obtained through the shape function

together with Lagrangian interpolation to get the new station positions, the Enhanced

Unified Theory (EUT) is then used to find their fitness. Based on their fitness, then the

selection is performed, followed by crossover and mutation respectively as well as elitism

if necessary to obtain the new individuals which will be used to replace all individuals
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of a population in the former generation. This process will be repeated until the result

converges at a certain number of generations.

Figure 2.1: Flow process of BCGA

It should be kept in mind that a slightly different result for the same problem from one

run to another might be obtained as the BCGA is a stochastic method. Further details

of GA and its operators might be found in, for example Coley [4], Sivandam and Deepa

[5], and Chakraborty [6].

2.1.2 Lines Distortion Approach

Because the shape function is based on the shifting method, it is necessary to explain

about this method in obtaining the new ship hull geometry. A simple approach to ob-

tain the ship hull geometry derived from a basis hull is by distorting the Sectional Area

Curve (SAC) of the basis hull. In this case the alternative designs are derived with

the same principal dimensions but different form coefficients i.e. the block coefficient

(CB), prismatic coefficient (CP ), and longitudinal center of buoyancy (LCB). These can

be made by moving aft or forward the shape of sections along the ship’s longitudinal
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axis (x-axis) in an appropriate way and hence distorts SAC. Therefore by the Lack-

enby [3] transformation, the block coefficient through prismatic coefficient can be varied

independently for the aft- and fore-bodies using the following formulae

δCPa =
2[δCPt(Bf − z)− δz(CPt + δCPt)]− Cfδpf + Caδpa

(Bf +Ba)
(2.8)

δCPf =
2[δCPt(Bf + z) + δz(CPt + δCPt)] + Cfδpf − Caδpa

(Bf +Ba)
(2.9)

Here subscripts a and f denote quantities of the aft- and fore-bodies, respectively. These

are subject to the practical limits

δCP =
δp(1− CP )± 1

2A
(

1− δp
1−p

)
1− p

(2.10)

where CP is the total prismatic coefficient of the basis hull and δCP the required change

in the total prismatic coefficient. z means the distance of LCB in the basis hull form from

midship expressed as a fraction of the half-length and δz the required shift of LCB in

the derived form. p and δp denote the fractional length of parallel middle body and the

required change in the parallel middle body of the half-body, respectively. The position

of LCB can be shifted independently by changing the value of δz and the parallel middle

body can be introduced by altering the value of δp which has the following practical

limits

δp =
1− p

1± 2(1−CP )(1−p)
A

(2.11)

Therefore the general relation between the fractional distance of any transverse section

(x) from midship and the necessary shift (δx) in the x-axis can be obtained as follows

δx = (1− x)

{
δp

1− p
+

(x− p)
A

[
δCP − δp

(
1− CP
1− p

)]}
(2.12)

In Eq.(2.8) to Eq.(2.12) A,B and C are constants depending only on the geometrical

properties of the basis hull and can be computed by the following equations

A = CP (1− 2x)− p(1− CP )

B =
CP [2x− 3k2 − p(1− 2x)

A

C =
B(1− CP )− CP (1− 2x)

1− p

 (2.13)

Here x and k stand for the fractional distance (lever) of the first moment and the second

moment of the half-body about midship.
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2.1.3 Shape Function

During optimization, the shape function based on principle of the shifting method is

introduced for generating various shapes of SAC. Specifically, some parameters in the

shape function are optimized to generate the new SAC. One or more parameters are

used to define the magnitude of shape function to change the cross sectional area of

each station except those at ship ends and a station with the largest transverse area

(usually midship) as well as at a fixed station defined by another parameters which are

also to be optimized.

The shape function was firstly introduced by Kim H. et al. [7] with two parameters

for optimizing only the fore body. However this function is extended in this study with

several parameters for optimizing the whole body of a ship as given in Eq.(2.14), for

instance with six parameters

An(x) = A0(x) + f(x)

f(x) =



α3

[
0.5

(
1− cos 2π

x− x1
α1 − x1

)]1/2
, x1 ≤ x ≤ α1

α4

[
0.5

(
1− cos 2π

x− α1

α1 − x2

)]1/2
, α1 ≤ x ≤ x2

α5

[
0.5

(
1− cos 2π

x− x2
α2 − x2

)]1/2
, x2 ≤ x ≤ α2

α6

[
0.5

(
1− cos 2π

x− α2

α2 − x3

)]1/2
, α2 ≤ x ≤ x3



(2.14)

where A0(x) and f(x) denote the original SAC and the shape function, respectively. α3

to α6 are the parameters used to determine the slope of SAC or magnitude of the shape

function, α1 and α2 the parameters to control the location of fixed stations as shown in

Fig. 2.2.

Specifically three among them will optimize SAC of the aft-body, with two parameters

determining the slope of SAC and the remainder controlling the location of a fixed

station. Another three parameters of total six parameters will optimize SAC of the

fore-body with the same formation as for the aft-body. All parameters in the shape

function are determined during optimization. The number of parameters can be varied

to get more various shapes of SAC. Because the whole body of a ship is optimized, then

the fixed stations x1, x2, and x3 will be the position of the aft-end, middle (largest

transverse area), and fore-end stations, respectively.
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Figure 2.2: SAC and shape function

2.1.4 Fitness Function

In the optimization process, the objective function should be defined first whether to

maximize or minimize the function. In this case the objective function is taken to min-

imize the added resistance. In order to understand the performance of an optimization

process, it is necessary to define the fitness function or the so-called Performance Index

(PI) of an individual as shown in Fig. 2.3.

Figure 2.3: Performance Index (PI)

According to Fig. 2.3, the PI is defined as the area beneath the added resistance curve.

It should be noted that PI itself is readily obtained by computing the blue area using a

numerical integration method. Because the objective function is to minimize the added

resistance, the lower a value of the PI implies the higher performance of a ship in term

of the added resistance. Needless to say, the minimum and maximum wavelength ratios

in Fig. 2.3 are determined according to area in which a ship being optimized will be
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operated.

2.2 Theory of Water Waves

2.2.1 Governing Equations for an Inviscid Fluid

The governing equations are derived from the conservation of mass and the conservation

of momentum. By defining a fluid volume under consideration as V (t) and denoting the

fluid density as ρ, the conservation of mass can be written in the form

d

dt

∫∫∫
V (t)

ρ dV = 0 (2.15)

Regarding the conservation of momentum, by neglecting the viscous shear stress and

considering only the normal pressure force and the gravity force, we can obtain the

following relation

d

dt

∫∫∫
V (t)

ρui dV = −
∫∫

S(t)
pni dS +

∫∫∫
V (t)

ρgδi3 dV (2.16)

where S is the surface of the fluid volume and p is the pressure acting on the surface

with ni the i-th component (i=1,2,3) of the unit normal vector pointing out of fluid

volume, ui is the i-th component of the velocity vector, g and δi3 denote the gravity

acceleration and the Kronecker’s delta, equal to 1 only for i = 3.

For the left-hand sides of Eqs.(2.15) and (2.16), we can apply the transport theorem [8]

written in the form

d

dt

∫∫∫
V (t)

Fi dV =

∫∫∫
V

∂Fi
∂t

dV +

∫∫
S
Fiun dS (2.17)

where Fi denotes the i-th component of a vector quantity or can be simply a scalar

quantity.

Utilizing Gauss’ theorem with understanding of un = ujnj , the surface integral in

Eq.(2.17) can be transformed into volume integral and hence Eq.(2.15) can be expressed

as
d

dt

∫∫∫
V
ρ dV =

∫∫∫
V

[
∂ρ

∂t
+

∂

∂xj
(ρuj)

]
dV = 0 (2.18)

Since this volume can be composed of an arbitrary group of fluid particles, the integrand

itself must be equal to zero for the entire fluid. Thus the conservation of mass gives the
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following continuity equation
∂ρ

∂t
+

∂

∂xj
(ρuj) = 0 (2.19)

For an incompressible fluid, the density is constant, and thus the continuity equation

can be given as
∂uj
∂xj

= 0 or ∇ · u = 0 (2.20)

Similar to the continuity equation, by applying the transport theorem as well as Gauss‘

theorem to the conservation of momentum, it follows that∫∫∫
V

[
∂

∂t
(ρui) +

∂

∂xj
(ρuiuj)

]
dV =

∫∫∫
V

[
− ∂ρ

∂xi
+ ρgδi3

]
dV (2.21)

It is noted again that the fluid volume in question is arbitrary; hence Eq.(2.21) must

hold for integrands alone. For an incompressible fluid with constant density, we can

finally obtain Euler’s equations in the form

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ gδi3 (2.22)

where the continuity equation Eq.(2.20) has been invoked. Equations (2.20) and (2.22)

are the governing equations for an incompressible inviscid fluid.

2.2.2 Potential Flow and Velocity Potential

In most problems related to water waves, we may assume that the motion of fluid is

irrotational; that is ∇ × u = 0. On the other hand, in the vector analysis, an identity

of ∇×∇Φ = 0 holds for an arbitrary scalar function Φ(x , t). Combining these, we can

see that velocity vector can be represented as u = ∇Φ in terms of scalar function which

is known as the velocity potential. The flows than can be described with the velocity

potential are referred to as the potential flows.

If u = ∇Φ is substituted in the continuity equation Eq.(2.20), it follows that

∂2Φ

∂x2j
= 0 or ∇2Φ = 0 (2.23)

This is known as the Laplace equation and the governing equation to be solved for

potential flows.

Next we consider how Euler’s equations Eq.(2.22) can be transformed for the potential

flow. For the case of irrotational fluid motion expressed by ∇ × u = 0, the advection
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term on the left-hand side of Eq.(2.22) can be written as

uj
∂ui
∂xj

=
1

2

∂

∂xi
(∇Φ · ∇Φ) (2.24)

Therefore, by substituting ui = ∇Φ in Eq.(2.22), it follows that

∂

∂xi

(
∂Φ

∂t
+

1

2
∇Φ · ∇Φ +

p

ρ
− gz

)
= 0 (2.25)

and then the following equation known as Bernoulli’s pressure equation can readily be

obtained:

p− pc = −ρ
(
∂Φ

∂t
+

1

2
∇Φ · ∇Φ − gz

)
(2.26)

where pc is a constant, which can be taken equal to the atmospheric pressure pa for the

case of zero forward speed and equal to pa +
1

2
ρU2 when considered with a reference

frame moving at constant speed U .

2.2.3 Boundary Conditions

In order to solve the Laplace equation, appropriate boundary conditions must be imposed

on the boundaries of the fluid domain concerned. To describe those boundary conditions

explicitly, we write the velocity potential as follows:

Φ(x , t) = U [ΦD(x ) + φs(x )] + ΦU (x , t) (2.27)

ΦU (x , t) = <
[
φ(x )eiωt

]
(2.28)

where ΦD represents the steady basis flow, normally taken as the double-body flow

or simply the uniform flow equal to −x for the so-called Neumann-Kelvin problem.

φs(x ) denotes the steady disturbance term associated with steady waves. The unsteady

velocity potential is assumed to be time-harmonic with encounter circular frequency ω,

and we will consider the spatial part φ(x ), with the time-dependent term eiωt factored

out as in Eq.(2.28). With these expressions, first from Eq.(2.26) the pressure can be

written in a decomposed form as follows:

P (x , t) = ρgz + PS(x ) + PU (x , t) (2.29)
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where

PS =
1

2
ρU2 (1−V ·V )

=
1

2
ρU2 (1−∇ΦD · ∇ΦD − 2∇ΦD · ∇φs) +O(φ2s) (2.30)

PU = −ρ
(
∂

∂t
+ UV · ∇

)
ΦU −

1

2
∇ΦU · ∇ΦU

= −ρ
(
∂

∂t
+ U∇ΦD · ∇

)
ΦU +O(φsΦU ,ΦU

2) (2.31)

and V = ∇(ΦD + φs). In Eqs.(2.30) and (2.31), higher-order terms in φs and ΦU are

neglected. By substituting Eq.(2.28) in Eq.(2.31), the linearized unsteady pressure can

be written in the form
PU (x , t) = <

[
p(x )eiωt

]
p = −ρ(iω + U∇ΦD · ∇)φ

}
(2.32)

Although the free-surface boundary condition can be derived by combining the kine-

matic and dynamic conditions, a more expedient approach is to consider the substantial

derivative of the pressure equal to zero on the free surface. Namely(
∂

∂t
+∇Φ · ∇

)
[ρgz + PS(x ) + PU (x , t)] = 0 on z = ζ (2.33)

where z = ζ(x, y, t) denotes the wave elevation on the free surface.

Substituting Eq.(2.27) for Φ and Eqs.(2.30) and (2.32) for PS and PU respectively and

ignoring higher-order terms in φs and φ as in obtaining Eqs.(2.30) and (2.31), the lin-

earized free-surface boundary conditions for the steady and unsteady velocity potentials

can be obtained. Those results may be expressed as follows:

U2

2
∇ΦD · ∇(∇ΦD · ∇ΦD) + U2∇ΦD · ∇(∇ΦD · ∇φs)

+
U2

2
∇(∇ΦD · ∇ΦD) · ∇φs − g

∂φs
∂z

on z = 0 (2.34)

−ω2φ+ 2iUω∇ΦD · ∇φ+ U2∇ΦD · ∇(ΦD · ∇φ)

+
U2

2
∇(∇ΦD · ∇ΦD) · ∇φ+ U∇2ΦD(iω + U∇ΦD · ∇)φ− g∂φ

∂z
= 0 on z = 0

(2.35)
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In these boundary conditions, if only the uniform flow is considered as the steady basis

flow (ΦD = −x), we can approximate as

∇ΦD = −e1 (2.36)

where e1 denotes the unit vector along the x-axis. In this case (Neumann-Kelvin ap-

proximation), Eqs.(2.34) and (2.35) take the following forms

U2∂
2φs
∂x2

− g∂φs
∂z

= 0 on z = 0 (2.37)

(
iω − U ∂

∂x

)2

φ− g∂φ
∂z

= 0 on z = 0 (2.38)

Next we consider the boundary condition on the hull surface of a ship, which may be

obtained also by considering the substantial derivative of the ship’s hull surface equal to

zero. In terms of the body-fixed coordinate system x = (x, y, z), the ship’s hull surface

is supposed to be expressed as F (x ) = 0. Then, by noting that substantial derivative

should be performed with respect to the space-fixed coordinate system x = (x, y, z), the

following relation holds(
∂

∂t
+∇Φ(x , t) · ∇

)
F (x ) = ∇F · ∂x

∂t
+∇Φ(x , t)

{(
∇F · ∂x

∂x

)
e1

+

(
∇F · ∂x

∂y

)
e2 +

(
∇F · ∂x

∂z

)
e3

}
= 0 (2.39)

Here, ∇ denotes the differential operator with respect to the body-fixed coordinate

system. With the assumption of small amplitude of unsteady ship motions, the relation

between x and x is given by

x = x +α(t) (2.40)

α(t) = αT (t) +αR(t)× x , αT (t) =

3∑
j=1

ξj(t)ej , αR(t) =

3∑
j=1

ξj+3(t)ej (2.41)

where ξj(t) is the displacement in the j-th mode of ship motions, defined as surge, sway,

heave for j = 1, 2, 3, and roll, pitch, yaw for j = 4, 5, 6, respectively.

Dividing Eq.(2.39) by |∇F | and noting the definition of the normal vector as n =

∇F/|∇F |, we have from Eqs.(2.39) and (2.40) the following:

∇Φ(x , t) · n = α̇(t) · n + [(∇Φ(x , t) · ∇)α(t)] · n (2.42)
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To consider effects of the difference between x and x , the Taylor-series expansion should

be applied to ∇Φ(x , t) and the result can be written as

∇Φ(x , t) = UV (x ) +∇ΦU (x , t)

= UV (x ) +∇ΦU (x , t)

+(α(t) · ∇) [UV (x ) +∇ΦU (x , t)] +O(α2) (2.43)

Then, substituting Eq.(2.43) in Eq.(2.42), separating into steady and unsteady terms,

we can have the linearized body boundary conditions as follows

V · n =
∂ΦD

∂n
+
∂φs
∂n

= 0 on SH (2.44)

∇ΦU · n =
∂ΦU

∂n
= α̇(t) · n + U [(V · ∇)α(t)− (α(t) · ∇)V ] · n on SH (2.45)

Here SH denotes the wetted part of hull surface of a ship, and we note that x and n are

replaced with x and n , because the effect of difference between these can be regarded

as higher order and hence neglected.

Assuming time-harmonic motion, we write the unsteady displacement in the j-th mode

of motion in the form

ξj(t) = <
[
Xje

iωt
]

(2.46)

where Xj is the complex amplitude. Then we can show that Eq.(2.45) can be recast in

the following form

∂φ

∂n
= iω

6∑
j=1

Xj

(
nj +

U

iω
mj

)
(2.47)

where
(n1, n2, n3) = n , (n4, n5, n6) = x × n

(m1,m2,m3) = −(n · ∇)V ≡m

(m4,m5,m6) = −(n · ∇)(x ×V ) = V × n + x ×m

 (2.48)

In these body boundary conditions, if the steady basis flow is approximated with uniform

flow, ΦD = −x and thus V = (−1, 0, 0). Therefore Eq.(2.44) and Eq.(2.48) reduce to

∂φs
∂n

= n1 on SH (2.49)

(m1,m2,m3) = (0, 0, 0)

(m4,m5,m6) = (0, n3,−n2)

}
(2.50)
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Last, the radiation condition must also be imposed at a distance from the ship. This

condition is physically rather complicated especially when the ship has both forward

speed and harmonic oscillation. Nevertheless, mathematically, it is known that intro-

ducing the Rayleigh’s artificial viscosity coefficient (denoted as µ) into the free-surface

condition ensures the satisfaction of the radiation condition. Taking account of this

technique, for instance, the Neumann-Kelvin type free-surface conditions, Eqs.(2.37)

and (2.38), should be modified as follows:

U2∂
2φs
∂x2

− g∂φs
∂z
− µU ∂φs

∂x
= 0 on z = 0 (2.51)

(
iω − U ∂

∂x

)2

φ− g∂φ
∂z

+ µ

(
iω − U ∂

∂x

)
φ = 0 on z = 0 (2.52)

This Rayleigh’s artificial viscosity coefficient µ is supposed to be very small. Thus once

a solution satisfying the radiation condition has been obtained, we may set µ equal to

zero.

2.2.4 Principle of Energy Conservation

We are going to describe the principle of energy conservation which will also be used

in deriving a formula of the added resistance. The conservation of energy is a funda-

mental concept in physics along with the conservation of mass and the conservation of

momentum. In general mechanics, the total energy in the fluid is the sum of kinetic and

potential energies. Mathematically it is expressed as

E = Ek + Ep (2.53)

In a prescribed volume V , it is given by a volume integral

E = ρ

∫∫∫
V

(
1

2
u2 − gz

)
dV = ρ

∫∫∫
V

(
1

2
∇Φ · ∇Φ − gz

)
dV (2.54)

where the z-axis is positive downward. Utilizing the transport theorem Eq.(2.17), the

rate-of-change with respect to time of the total energy can be written as

dE

dt
= ρ

∫∫∫
V

∂

∂t

(
1

2
∇Φ · ∇Φ − gz

)
dV + ρ

∫∫
S

(
1

2
∇Φ · ∇Φ − gz

)
un dS (2.55)
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Firstly, let us consider the integrand of the volume integral. The only contribution to

this integral is from kinetic energy term which takes the form

∂

∂t

(
1

2
∇Φ · ∇Φ

)
= ∇Φ · ∇∂Φ

∂t
= ∇ ·

(
∂Φ

∂t
∇Φ

)
(2.56)

Meanwhile the integrand in the second term of the right-hand side of Eq.(2.55), from

Bernoulli’s equation, can be given as

1

2
∇Φ · ∇Φ − gz = −

(
p− pa
ρ

+
∂Φ

∂t

)
(2.57)

Substituting these into Eq.(2.55), then we have

dE

dt
= ρ

∫∫∫
V
∇ ·
(
∂Φ

∂t
∇Φ

)
dV − ρ

∫∫
S

(
p− pa
ρ

+
∂Φ

∂t

)
un dS (2.58)

Lastly, by applying Gauss’ theorem, the first term of the right-hand of side of Eq.(2.58)

can be written as the surface integral and thus it becomes

dE

dt
= ρ

∫∫
S

[
∂Φ

∂t

∂Φ

∂n
−
(
p− pa
ρ

+
∂Φ

∂t

)
un

]
dS (2.59)

Further details about the theory of water waves in marine hydrodynamics, the reader

should refer to Newman [8] and Kashiwagi [9].

2.3 Theory of the Added Resistance in Waves

2.3.1 Far-Field Asymptotic Form of the Velocity Potential

Let us introduce the velocity potential at large distance from the ship with considering a

ship advancing at constant forward speed U into a plane progressive wave of amplitude

A, circular frequency ω0 and wavenumber k0 at infinite water depth as shown in Fig.

2.4. Due to the incident wave with angle χ, the ship undergoes oscillatory motions about

its mean position with the encounter frequency ω = ω0 − k0U cosχ.
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Figure 2.4: Coordinate system and notations

Therefore under the assumption that the fluid is inviscid and irrotational as well as the

amplitude of incident wave and ship’s oscillation to be small, the total velocity potential

can then be written as

ΦT (x, y, z, t) = U [ΦD(x, y, z, t) + φs(x, y, z)] + Φ(x, y, z, t) (2.60)

Φ(x, y, z, t) = <[φ(x, y, z)eiωt] (2.61)

where ΦD represents the steady basis flow and in what follows for analysing the unsteady

problems, the uniform flow is assumed as the basis flow; in this case ΦD = −x. U is

the constant forward speed of a ship in the x-axis, φs denotes the steady disturbance

potential due to steady translation of a ship in otherwise calm water. Φ is the unsteady

component due to ship motions in waves given in Eq.(2.61) with < denoting the real

part is to be taken. This component consists of the diffraction and radiation potentials

which can be written in the form

φ(x, y, z) =
gA

iω0
(ϕ0 + ϕ) (2.62)

where

ϕ0 = e−k0z−ik0(x cosχ+y sinχ) (2.63)

ϕ = ϕ7 −
ωω0

g

6∑
j=1

Xj

A
ϕj (2.64)

are the incident-wave potential and the ship-generated disturbance potential, respec-

tively. The first term in Eq.(2.64) is the scattering wave potential (ϕ7) and ϕj in the

last term is the radiation potential due to ship oscillation in all six degrees of freedom
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(j = 1 ∼ 6) with complex amplitude Xj in the j-th mode of motion. These velocity

potentials must satisfy the following equations

[L] ∇2φ = 0 (2.65)

[F ]

(
iω − U ∂

∂x

)2

φ− g∂φ
∂z

= 0, on z = 0 (2.66)

[B]
∂φ

∂z
= 0, at z →∞ (2.67)

[H]
∂φ

∂n
= iω

6∑
j=1

Xj

(
nj +

U

iω
mj

)
, on SH (2.68)

where nj and mj are already defined in Eq.(2.48).

Applying the Green’s theorem, the disturbance velocity potential satisfying the radiation

condition in addition to Eqs.(2.65) ∼ (2.68) can take the form

ϕ(P ) =

∫∫
SH

(
∂ϕ(Q)

∂nQ
− ϕ(Q)

∂

∂nQ

)
G(P ;Q) dS(Q) (2.69)

where P = (x, y, z) is the field point and Q = (ξ, η, ζ) is the integration point along

the ship’s wetted hull. With the Fourier transform technique, the Green function G

appropriate for the present problem can be obtained as

G(P,Q) = − 1

4π

(
1

r
− 1

r′

)
− 1

2π

∫ ∞
−∞

e−ik(x−ξ) dk · Re

∫ ∞
0

e−in(z+ζ)−|y−η|
√
n2+k2

(n+ iκ)
√
n2 + k2

n dn

− 1

2π

[∫ k2

k1

+

∫ k4

k3

]
κ√

k2 − κ2
e−κ(z+ζ)−|y−η|

√
k2−κ2−ik(x−ξ) dk

+
i

2π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
κ√

κ2 − k2

× e−κ(z+ζ)−iεk|y−η|
√
κ2−k2−ik(x−ξ) dk (2.70)
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where

r

r′

}
=

√
(x− ξ)2 + (y − η)2 + (z ∓ ζ)2 (2.71)

κ =
1

g
(ω + kU)2 = K + 2kτ +

k2

K0
(2.72)

K =
ω2

g
, τ =

Uω

g
, K0 =

g

U2
(2.73)

k1

k2

}
= −K0

2

[
1 + 2τ ±

√
1 + 4τ

]
(2.74)

k3

k4

}
=

K0

2

[
1− 2τ ∓

√
1− 4τ

]
(2.75)

εk = sgn(ω + kU) =

{
−1 for −∞ < k < k1

1 for k2 < k <∞
(2.76)

In the case of τ > 1/4, wavenumbers k3 and k4 given by Eq.(2.75) are not real, and thus

the limits of integration in Eq.(2.70) should be interpreted such that k3 = k4 for τ > 1/4

(hereafter this convention should be understood). It should be noted for Eq.(2.69) that

the so-called line integral term, contribution from the intersection line between the free

surface and the ship’s hull surface, is ignored for simplicity and also with the assumption

of slenderness of a ship.

To obtain a far field approximation to the disturbance potential ϕ when the transverse

distance |y| is large, let us consider the asymptotic approximation of the Green function

itself. It is obvious that all the terms except the last one in Eq.(2.70) vanish for large

values of |y|. Therefore, substituting only the last term of Eq.(2.70) into Eq.(2.69), we

obtain the desired approximation of the velocity potential valid at large distances from

the x-axis:

ϕ(x, y, z) ∼ i

2π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
H±(k)

κ√
κ2 − k2

e−κz∓iεky
√
κ2−k2−ikx dk (2.77)

where

H±(k) =

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζ±iεkη

√
κ2−k2+ikξ dS (2.78)

is the Kochin function equivalent to the complex amplitude of the far field disturbance

wave. The upper or lower of the complex signs in Eqs.(2.77) and (2.78) is to be taken

according as the sign of y is positive or negative, respectively. With the convention that
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the Kochin function is zero outside the integration range explicitly shown in Eq.(2.77),

we shall write Eq.(2.77) in the form

ϕ(x, y, z) ∼ 1

2π

∫ ∞
−∞

iεkH
±(k)

κ√
κ2 − k2

e−κz∓iεky
√
κ2−k2e−ikx dk (2.79)

Up to this point, it is convenient to define the Fourier transform

F [f(x)](k) ≡
∫ ∞
∞

f(x)eikx dx = F (k)

F−1[F (k)](x) ≡ 1

2π

∫ ∞
∞

F (k)e−ikx dk = f(x)

 (2.80)

and Dirac’s delta function δ(x) which has the following property:∫ ∞
∞

f(x)δ(x− x0) dx = f(x0) (2.81)

Different from the usual definition, here eikx is used in the Fourier transform, not in the

inverse transform. By virtue of the Fourier transform, the disturbance potential in the

far-field can be written as

F [ϕ(x, y, z)] =

∫ ∞
−∞

ϕ(x, y, z)eikx dx

= iεkH
±(k)

κ√
κ2 − k2

e−κz∓iεky
√
κ2−k2 (2.82)

Applying the same procedure above, the Fourier transform of incident wave potential

can be given in the following expression

F [ϕ0(x, y, z)] =

∫ ∞
−∞

ϕ0(x, y, z)e
ikx dx

= F [e−i(k0 cosχ)x]e−k0z−ik0y sinχ (2.83)

Making use of the property of Diract’s delta function in Eq.(2.81), we may obtain the

following relation
1

2π

∫ ∞
∞

δ(k − k0)e−ikx dk =
1

2π
e−ik0x

F−1[δ(k − k0)] =
1

2π
e−ik0x

2πδ(k − k0) = F [e−ik0x]

 (2.84)

where the nature of Fourier inverse transform has been used. Utilizing the relationship

in Eq.(2.84), finally the desired result of incident wave potential may be written in the
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following form

F [ϕ0(x, y, z)] = 2πδ(k − k0 cosχ)e−k0z−ik0y sinχ

ϕ0(x, y, z) = F−1[2πδ(k − k0 cosχ)e−k0z−ik0y sinχ] (2.85)

2.3.2 Derivation of Added Resistance Formula

By virtue of the principle of momentum and energy conservations, a formula for the

added resistance is going to be derived in this section which is the same as the one

derived by Kashiwagi [10]. To this end, first let us consider the linear momentum

conservation in Eq.(2.16). Applying the transport theorem to the left-hand side of this

equation, the momentum conservation can be recast in the following form

dMi

dt
≡ d

dt

∫∫∫
V
ρvi dV = ρ

(∫∫∫
V

∂vi
∂t

dV +

∫∫
S
viun dS

)
(2.86)

Performing the substantial derivative Eq.(??), the first term on the right hand side of

equation above can be written as

∂vi
∂t

= − ∂

∂xi

(
p

ρ
− gz

)
− vj∂jvi (2.87)

where we note that the pressure p is measured with atmospheric pressure pa as the

reference value.

The last term of Eq.(2.87) may be written in the form

vj∂jvi = ∂j(vjvi)− vi∂jvj (2.88)

where the last term of this equation is the continuity equation, Eq.(2.20), that is ∂jvj =

∇ · v = 0 and another term in the right-hand side of Eq.(2.88) can be written as

∂j(vjvi) = ∂(vjvi)/∂xj . Therefore by substituting this term into Eqs.(2.87) and (2.86)

as well as applying the divergence theorem, the linear momentum conservation will be

dMi

dt
= −ρ

∫∫
S

[(
p

ρ
− gz

)
ni + vi(vn − un)

]
dS (2.89)

Here the surface area (S) of surface integral above consists of the ship’s wetted surface

(SH), the free surface (SF ) and a control surface (SC) at a large distance from a ship as

we can see in Fig. 2.4. Therefore by considering the rate of change of linear momentum

conservation within the surface area and taking account of that there is no flux across
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SH and SF as well as that the pressure on SF is zero or

vn = un on SH and SF

un = 0 on S±C

p = 0 on SF

 (2.90)

then we obtain the following equation

dMi

dt
= −

∫∫
SH

[(pni − ρgzni)] dS −
∫∫

S±
C

[(pni − ρgzni) + ρvivn] dS (2.91)

Substituting vi = ∇ΦT and vn = vi · ni = ∇ΦT · n and considering only the forces in

the transverse plane (gzni = 0), the linear momentum conservation is to be

dM

dt
= −

∫∫
SH

pn dS −
∫∫

S±
C

[pn + ρ∇ΦT (∇ΦT · n)] dS (2.92)

From the equation above, we may obtain the force acting on the ship. Substituting the

velocity potential, Eq.(2.60), into the linear momentum conservation and taking only

the x-component as well as neglecting steady disturbance potential, the force may be

written in the following equation

Fx ≡
∫∫

SH

pnx dS = −dMx

dt
−
∫∫

S±
C

[
pnx + ρ

(
∂Φ

∂x
− U

)(
∂Φ

∂n
− Unx

)]
dS (2.93)

Taking time average of above equation dMx/dt will vanish due to the periodicity of fluid

motions. It means that there can be no net increase of momentum in the whole volume

of fluid from one cycle to another. Defining a resistance as the force in the negative

x-axis, the added resistance may be computed as

R =

∫∫
S±
C

[
pnx + ρ

(
∂Φ

∂x
− U

)(
∂Φ

∂n
− Unx

)]
dS (2.94)

In the present analysis the control surface (SC) will be considered as two flat plates

instead of the usual circular cylinder control surface as shown in Fig. 2.4. In this case,

the two flat plates are located at y = ±Y and extend from x = −∞ to x = ∞ as well

as free surface down to z = +∞. Considering the normal vector in the x component is

zero (nx = 0) on S±C , the added resistance can be expressed in the following form

R =

∫∫
SC

[
∂Φ

∂x

∂Φ

∂y

]Y
−Y

dS (2.95)
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where [ ]Y−Y means the difference between the values of the quantity in brackets at

y = Y and y = −Y .

Here on the present control surface, the local wave near the x-axis can be neglected due

to the assumption that Y is large. It means that the local waves will be zero at x = ±∞
in the three dimensional case. Meanwhile the disturbance waves radiating away from

the x-axis are exactly taken into account. By this control surface, the surface integral,

Eq.(2.95), can be transformed as below, if the free surface elevation is denoted as z = ζF .∫∫
SC

dS =

∫ ∞
ζF

dz

∫ ∞
−∞

dx

=

[∫ 0

ζF

+

∫ ∞
0

]
dz

∫ ∞
−∞

dx (2.96)

In the integral range above, contribution from (ζF , 0) is of higer order than O(Φ3)

because the integrand is already of order O(Φ2) and thus should be neglected. Then

Eq.(2.96) can be rewritten as∫∫
SC

dS =

∫ ∞
0

dz

∫ ∞
−∞

dx (2.97)

Utilizing this equation, the surface integral in Eq.(2.95) can be written in the form

R = ρ

∫ ∞
0

dz

∫ ∞
−∞

[
∂Φ

∂x

∂Φ

∂y

]Y
−Y

dx (2.98)

Now let us substitute Φ in Eq.(2.61) into this equation as follows

R = ρ

∫ ∞
0

dz

∫ ∞
−∞
<
[(

∂φ

∂x
eiωt
)(

∂φ

∂y
eiωt
)]Y
−Y

dx (2.99)

Considering time-average calculation by using the relation

<[Aeiωt]<[Beiωt] =
1

2
<[AB∗] (2.100)

where the asterisk denotes the complex conjugate. Therefore the added resistance,

Eq.(2.99), can then be written as follows

R =
1

2
ρ <

∫ ∞
0

dz

∫ ∞
−∞

[
∂φ

∂x

∂φ∗

∂y

]Y
−Y

dx (2.101)
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Next we substitute the velocity potential in Eq.(2.61) into Eq.(2.101). It follows that

R =
1

2
ρ

(
gA

ω0

)2

<
∫ ∞
0

dz

∫ ∞
−∞

[(
∂ϕ0

∂x
+
∂ϕ

∂x

)(
∂ϕ∗0
∂y

+
∂ϕ∗

∂y

)]Y
−Y

dx (2.102)

As we already assumed that the water depth is infinite (k0 = ω2
0/g) and also in Eq.(2.102)

the contribution of ϕ0 alone is zero because there can be no force associated with the

undisturbed incident wave system, therefore the added resistance can be written in the

form

R =
ρgA2

k0

1

2
<
∫ ∞
0

dz

∫ ∞
−∞

[
∂ϕ

∂x

∂ϕ∗

∂y
+
∂ϕ0

∂x

∂ϕ∗

∂y
+
∂ϕ

∂x

∂ϕ∗0
∂y

]Y
−Y

dx

=
ρgA2

k0

[
R1 +R2

]
(2.103)

where

R1 =
1

2
<
∫ ∞
0

dz

∫ ∞
−∞

[
∂ϕ

∂x

∂ϕ∗

∂y

]Y
−Y

dx (2.104)

R2 =
1

2
<
∫ ∞
0

dz

∫ ∞
−∞

[
∂ϕ0

∂x

∂ϕ∗

∂y
+
∂ϕ

∂x

∂ϕ∗0
∂y

]Y
−Y

dx (2.105)

As we can see in the equation above, the integration with respect to x allows us to apply

the Fourier-transform theorem (Parseval’s theorem) which can be written as∫ ∞
−∞

f(x)g(x) dx =
1

2π

∫ ∞
−∞

F (k)G∗(k) dk (2.106)

where F (k) and G(k) are the Fourier transforms of f(x) and g(x) respectively, which may

be calculated from the definition of the Fourier transform itself as Eq.(2.80), expressed

as
F (k) = F [f(x)] or f(x) = F−1[F (k)]

G(k) = F [g(x)] or g(x) = F−1[G(k)]

}
(2.107)

At first, let us consider R1 given in Eq.(2.104). Here we have only the disturbance

potential (ϕ) defined in Eq.(2.79). Differentiating ϕ with respect to x and y, then we

have

∂ϕ

∂x
=

1

2π

∫ ∞
−∞

kεkH
±(k)

κe−κz∓iεky
√
κ2−k2

√
κ2 − k2

e−ikx dk

= F−1
[
kεkH

±(k)
κe−κz∓iεky

√
κ2−k2

√
κ2 − k2

]
(2.108)
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∂ϕ

∂y
=

1

2π

∫ ∞
−∞
±ε2kH±(k)κe−κz∓iεky

√
κ2−k2e−ikx dk

= F−1
[
±H±(k)κe−κz∓iεky

√
κ2−k2

]
(2.109)

where the nature of ε2k = 1 has been used and ± sign just before the Kochin funtion

depends on whether y = Y and y = −Y . Substituting Eq.(2.108) and Eq.(2.109) and

applying Parseval’s theorem into Eq.(2.104), R1 can then be written as follows

R1 =
1

4π
<
∫ ∞
−∞

[
±kεk|H±(k)|2 κ2√

κ2 − k2

∫ ∞
0

e−2κz dz

]Y
−Y

dk (2.110)

Solving the integral equation with respect to z in Eq.(2.109) and following the nature

of εk as well as the integraton range, leads R1 to the following expression

R1 =
1

8π

∫ ∞
−∞

εk(|H+(k)|2 + |H−(k)|2) κ√
κ2 − k2

k dk

=
1

8π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
(|H+(k)|2 + |H−(k)|2) κ√

κ2 − k2
k dk (2.111)

Note that k3 = k4 in case of τ > 1/4.

Next, we consider R2 as in Eq.(2.105). Here we have not only disturbance potential (ϕ)

but also the incident wave potential (ϕ0) as defined in Eq.(2.85). Differentiating ϕ0 with

respect to x and y, the results are

F1

[
∂ϕ0

∂x

]
=

∫ ∞
−∞

[
(−ik0 cosχ) e−k0z−ik0(x cosχ+y sinχ)

]
eikxdx

= −2πik0 cosχe−k0z−ik0y sinχδ (k − k0 cosχ)

∂ϕ0

∂x
= F−1

[
−2πik0 cosχδ (k − k0 cosχ) e−k0z−ik0y sinχ

]
(2.112)

F1

[
∂ϕ0

∂y

]
=

∫ ∞
−∞

[
(−ik0 sinχ) e−k0z−ik0(x cosχ+y sinχ)

]
eikxdx

= −2πik0 sinχe−k0z−ik0y sinχδ (k − k0 cosχ)

∂ϕ0

∂y
= F−1

[
−2πik0 sinχδ (k − k0 cosχ) e−k0z−ik0y sinχ

]
(2.113)

where the relationship in Eq.(2.84) has been used in the equations above. Substituting

Eq.(2.108) and Eq.(2.109) as well as Eq.(2.112) and Eq.(2.113) and applying Parseval’s
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theorem into Eq.(2.105), then R2 can be recast in the following form

R2 = <

[
1

2

∫ ∞
0
dz

∫ ∞
−∞

[
∂ϕ0

∂x

∂ϕ∗

∂y
+
∂ϕ∗

∂x

∂ϕ∗0
∂y

]Y
−Y

dx

]

= <
[

1

2

∫ ∞
0
dz

1

2π

∫ ∞
−∞

[(
−2πik0 cosχδ (k − k0 cosχ) e−k0z−ik0y sinχ

)
×
(
±H±(k)κe−κz∓iεky

√
κ2−k2

)∗
+

(
kεkH

±(k)
κ√

κ2 − k2
e−κz∓iεky

√
κ2−k2

)
×
(
−2πik0 sinχδ (k − k0 cosχ) e−k0z−ik0y sinχ

)∗]Y
−Y

dk

]
= <

[
iκk0 cosχ

2

∫ ∞
0
e−(κ+k0)zdz

×
[(
∓H±(k0 cosχ)∗e

−iy
(
k0 sinχ∓iεk

√
κ2−(k0 cosχ)2

))

+

εkH±(k0 cosχ)
k0 sinχe

iy
(
k0 sinχ∓iεk

√
κ2−(k0 cosχ)2

)
√
κ2 − (k0 cosχ)2

Y
−Y

 (2.114)

where the relationship in Eq.(2.84) again has been used in the last expression.

According to the theory of hyper function, sinusoidal terms will vanish when taking the

limit of Y →∞ after performing the x and z integrations. It means that it is sufficient to

retain only terms which are independent of the y-axis in the equation above. Therefore

our consideration here is only for the two cases namely k0 sinχ = +εk
√
κ2 − (k0 cosχ)2

and k0 sinχ = −εk
√
κ2 − (k0 cosχ)2. If we solve them as a quadratic equation, we will

have

(k0 sinχ)2 =
(
±εk

√
κ2 − (k0 cosχ)2

)2
(2.115)

By using the nature of ±εk = 1, then we have the relation between κ and k0 as below

κ2 = k20 (sin2 χ+ cos2 χ)

κ = k0 (2.116)

Performing integral equation with respect to z of Eq.(2.114), the result is∫ ∞
0

e−(κ+k0)z dz =

[
− 1

(κ+ k0)
e−(κ+k0)z

]∞
0

=
1

(κ+ k0)

=
1

2κ
(2.117)
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Further, noting that εk = 1 when the sign in H± is positive and εk = −1 when the sign

in H± is negative and substituting k = k0 cosχ, the Kochin function Eq.(2.78) can be

recast in the form

H± (k0 cosχ) =

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζ±iεkη

√
κ2−(k0 cosχ)2+i(k0 cosχ)ξdS

=

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζ+ik0(η sinχ+ξ cosχ)dS

≡ H (k0, χ) (2.118)

Note that for each case of y = Y , y = −Y , the exponential function in Eq.(2.114), will

be

e
∓iy

(
k0 sinχ∓εk

√
κ2−(k0 cosχ)2

)
→ 1 (2.119)

Taking the result of Eq.(2.115) to Eq.(2.119) into account, R2 in Eq.(2.114) can be

written as follows

R2 = <

[
iκk0 cosχ

2

[
∓H(k0, χ)∗ + εkH(k0, χ)

k0 sinχ

k0 sinχ/εk

]Y
−Y

1

2κ

]

= <
[
ik0 cosχ

4
[∓H(k0, χ)∗ +H(k0, χ)]Y−Y

]
(2.120)

Utilizing the relation below

<[iza] = −=[za] = =[z∗a] (2.121)

finally the last result of R2 can be obtained as follows

R2 = −k0 cosχ

4

[
= [∓H(k0, χ)∗ +H(k0, χ)]Y−Y

]
= −k0 cosχ

4
= [−H (k0, χ)∗ +H (k0, χ)− {H (k0, χ)∗ +H (k0, χ)}]

=
k0 cosχ

2
= [H (k0, χ)∗]

= −k0 cosχ

2
= [H(k0, χ)] (2.122)

where symbol = denotes the imaginary part.

Therefore, the total added resistance can be rewritten by substituting R1 and R2 into

Eq.(2.103)

R

ρgA2
=

1

8πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]{∣∣H+(k)
∣∣2 +

∣∣H−(k)
∣∣2} κ√

κ2 − k2
kdk

−1

2
cosχ= [H (k0, χ)] (2.123)
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After considering the principle of linear momentum conservation, to get the expected

result of the added resistance as obtained by Maruo [11], let us consider the principle

of energy conservation Eq.(2.59). Considering the boundary condition of each control

surface in Eq.(2.90), Eq.(2.59) may be written in the form

dE

dt
= −

∫∫
SH

(p− pa)vn dS +

∫∫
SC

∂Φ

∂t

∂Φ

∂n
dS (2.124)

Taking time average of Eq.(2.59), dE/dt will be zero due to periodicity of fluid motions.

Here we have no work done or no dissipation energy by the floating ship because there

is no external force except the constant towing force and gravitational force keeping the

equilibrium position of the ship in space. It means that∫∫
SH

(p− pa)vn dS = 0 (2.125)

Thus the only contribution from taking time average of Eq.(2.124) is∫∫
SC

∂Φ

∂t

∂Φ

∂n
dS = 0 (2.126)

Substituting the velocity potential Eq.(2.60) into above and considering that the normal

vector of x and z components on SC are equal to zero, then we can write equation below∫∫
SC

∂Φ

∂t

∂Φ

∂y
dS = 0 (2.127)

In order to treat the surface integral of Eq.(2.127), Eq.(2.97) may be used instead and

yields the following equation

∫ ∞
0

dz

∫ ∞
−∞

[
∂Φ

∂t

∂Φ

∂y

]Y
−Y

dx = 0 (2.128)

Making use of taking time average relation in Eq.(2.100) and substituting Eq.(2.61), the

transformation result of Eq.(2.128) will be

∫ ∞
0

dz

∫ ∞
−∞

[
∂Φ

∂t

∂Φ

∂y

]Y
−Y

dx =

∫ ∞
0

dz

∫ ∞
−∞

[
<(iωφeiωt)<

(
∂φ

∂y
eiωt
)]Y
−Y

dx

=
1

2
<
∫ ∞
0

dz

∫ ∞
−∞

[
iωφ

∂φ∗

∂y

]Y
−Y

dx (2.129)
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By substituting Eq.(2.62), utilizing relation in Eq.(2.121) and decomposing the result

above into two parts, then we have

1

2
ω

(
gA

ω0

)2

<
∫ ∞
0

dz

∫ ∞
−∞

[
i(ϕ0 + ϕ)

∂(ϕ∗0 + ϕ∗)

∂y

]Y
−Y

dx

= −1

2
ω

(
gA

ω0

)2

=
∫ ∞
0

dz

∫ ∞
−∞

[
ϕ0
∂ϕ∗0
∂y

+ ϕ0
∂ϕ∗

∂y
+ ϕ

∂ϕ∗0
∂y

+ ϕ
∂ϕ∗

∂y

]Y
−Y

dx (2.130)

The first term in brackets of the right-hand side has no effect because there can be no

force associated with the undisturbed incident wave system as already explained before.

Therefore, Eq.(2.130) will be

1

2
=
∫ ∞
0
dz

∫ ∞
−∞

[
ϕ
∂ϕ∗

∂y

]Y
−Y

dx = −1

2
=
∫ ∞
0
dz

∫ ∞
−∞

[
ϕ0
∂ϕ∗

∂y
+ ϕ

∂ϕ∗0
∂y

]Y
−Y

dx (2.131)

The procedure of performing these integrations with respect to x and z is the same

as that for Eq.(2.104) and Eq.(2.105); that is, to apply Parseval’s theorem given in

Eq.(2.107) with the Fourier transforms of ϕ and ϕ0. Substituting Eq.(2.82), Eq.(2.109)

and utilizing Eq.(2.117) to solve integral equation with respect to z, the left-hand side

of Eq.(2.131) (which is denoted as L) is written as

L =
1

2
=
[∫ ∞

0
dz

1

2π

∫ ∞
−∞

[(
iεkH

±(k)
κ√

κ2 − k2
e−κz∓iεky

√
κ2−k2

)
×
(
±H±(k)κe−κz∓iεky

√
κ2−k2

)∗]Y
−Y

dk

]
=

1

8π
=

[∫ ∞
−∞

[
±iεk

∣∣H±(k)
∣∣2 κ√

κ2 − k2

]Y
−Y

dk

]

=
1

8π
=
[
i

∫ ∞
−∞

εk

{∣∣H+(k)
∣∣2 +

∣∣H−(k)
∣∣2} κ√

κ2 − k2
dk

]
=

1

8π

∫ ∞
−∞

εk

{∣∣H+(k)
∣∣2 +

∣∣H−(k)
∣∣2} κ√

κ2 − k2
dk

=
1

8π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]{∣∣H+(k)
∣∣2 +

∣∣H−(k)
∣∣2} κ√

κ2 − k2
dk (2.132)
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Similarly, the right-hand side of Eq.(2.131) (which is denoted as R) is obtained by

substituting Eqs.(2.82), (2.85), (2.109) and Eq.(2.113) as follows

R = −1

2
=
[∫ ∞

0
dz

∫ ∞
−∞

[(
−2πik0 sinχδ (k − k0 cosχ) e−k0z−ik0y sinχ

)∗
×
(
iεkH

±(k)
κ√

κ2 − k2
e−κz∓iεky

√
κ2−k2

)
+
(
±H±(k)κe−κz∓iεky

√
κ2−k2

)∗ (
2πδ (k − k0 cosχ) e−k0z−ik0y sinχ

)]Y
−Y

dk

]
=

1

4
=
[
[H (k0, χ)∓H (k0, χ)∗]

Y
−Y

]
=

1

4
= [−2H (k0, χ)∗]

=
1

2
= [H (k0, χ)] (2.133)

where several relationships such as k0 sinχ = ±εk
√
κ2 − (k0 cosχ)2 and Eq.(2.115)

through Eq.(2.119) are used in obtaining Eq.(2.133). Thus Eq.(2.131) takes the fol-

lowing expression

1

8π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]{∣∣H+(k)
∣∣2 +

∣∣H−(k)
∣∣2} κ√

κ2 − k2
dk =

1

2
= [H (k0, χ)] (2.134)

Substituting this result into Eq.(2.123), the added resistance can be recast in the form

R

ρgA2
=

1

8πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]{∣∣H+(k)
∣∣2 +

∣∣H−(k)
∣∣2} κ (k − k0 cosχ)√

κ2 − k2
dk (2.135)

If we decompose the Kochin function in the symmetric C(k) and anti-symmetric S(k)

components with respect to the center plane of a ship symmetrical about y = 0 as

H±(k) = C(k)± iεkS(k) (2.136)

where

C(k) =
1

2

{
H±(k; η = η) +H±(k; η = −η)

}
=

1

2

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζeikξ

(
e±iεkη

√
κ2−k2 + e∓iεkη

√
κ2−k2

)
dS

=

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζeikξ cos

(
εkη
√
κ2 − k2

)
dS

=

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζ+ikξ cos

(
η
√
κ2 − k2

)
dS (2.137)
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and

± iεkS(k) =
1

2

{
H±(k; η = η)−H±(k; η = −η)

}
=

1

2

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζeikξ

(
e±iεkη

√
κ2−k2 − e∓iεkη

√
κ2−k2

)
dS

=

∫∫
SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζeikξ

{
±i sin

(
εkη
√
κ2 − k2

)}
dS

= ±iεk
∫∫

SH

(
∂ϕ

∂n
− ϕ ∂

∂n

)
e−κζ+ikξ sin

(
η
√
κ2 − k2

)
dS (2.138)

Finally the added resistance in Eq.(2.135) can be recast and given in the form

R

ρgA2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]{
|C(k)|2 + |S(k)|2

} κ (k − k0 cosχ)√
κ2 − k2

dk (2.139)

From this equation we can see that no contribution to the added resistance exists from

the interaction between symmetric waves C(k) and anti-symmetric wave S(k). They

give only independent contributions.

2.4 Enhanced Unified Theory (EUT)

In order to compute the added resistance, the unsteady velocity potential given in

Eq.(2.61) must be sought to satisfy the Laplace equation, appropriate boundary con-

ditions on the free surface and ship’s hull surface, and the radiation condition. In the

slender-ship theory, these governing equations and boundary conditions may be simpli-

fied further by introducing the slenderness parameter ε, which is usually taken as B/L

or d/L (B, d, L being ship’s breadth, draft, and length, respectively).

In the outer region far from the ship, when the limit of ε→ 0, the ship will be viewed as

a segment along the x axis and then the body boundary condition cannot be imposed;

which is called the outer problem. By the variable transformation of y = εY and z = εZ,

the y and z axes may be stretched to zoom in the body surface. Therefore the body

boundary condition can be satisfied in the magnified Y -Z plane.

On the other hand, the far-field behavior of ship-generated waves cannot be perceived

in the near field close to the ship, and thus the radiation condition cannot be imposed;

which is called the inner problem. In what follows, only the symmetric mode of motions

in the radiation problem (surge, heave, and pitch corresponding to j= 1, 3, and 5,

respectively) and the symmetric component in the diffraction problem with respect to

the vertical x-z plane (j = 7) are to be considered.
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2.4.1 Radiation Problem

In the inner region close to the ship hull, the gradient of the flow velocity along the x-axis

is small compared to that in transverse sections and the radiation condition cannot be

imposed. Therefore the unsteady velocity potential in radiation problem must satisfy

the following boundary conditions

∂2φj
∂y2

+
∂2φj
∂z2

= 0 for z ≥ 0 (2.140)

∂φj
∂z

+Kφj = 0 on z ≥ 0 (2.141)

∂φj
∂n

= nj +
U

iω
mj on CH(x) (2.142)

where K = ω2/g, nj denotes the j-th components of the unit normal vector positive

pointing out of fluid domain

n = (n1, n2, n3)

(x × n) = (n4, n5, n6)

x = (x, y, z)

 (2.143)

and mj is the j-th components of the so-called m-term, speed-dependent term which

represents interactions with steady flow

−(n · ∇)V = (m1,m2,m3)

−(n · ∇)(x ×V ) = (m4,m5,m6)

V = ∇[−x+ φs(x, y, z)]

 (2.144)

These are considered on the contour CH(x) of the transverse section at position x over the

ship’s length. It should be noted here that the contributions from the steady disturbance

potential (φs) for computing the m-term are neglected in this paper and thus mj = 0

for j = 1, 3;m5 = n3 and n5 = −xn3. Note that only the symmetric mode of motion

(j = 1, 3, 5) in the radiation problem is considered.

Due to lack of the radiation condition, a homogeneous solution may be allowed to con-

struct the general inner solution satsifying the boundary conditions in the following

form

φj(x; y, z) = φPj (y, z) + Cj(x)φH(y, z) (2.145)

φPj (y, z) = ϕj(y, z) +
U

iω
ϕ̂j(y, z) (2.146)

φHj (y, z) = {ϕ3(y, z)− ϕ∗3(y, z)} (2.147)
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where φPj denotes the particular solutions with ϕj and ϕj are solutions corresponding

to the first and the second terms on the right-hand side of Eq.(2.142) respectively. φHj

is a homogeneous solution with Cj(x) being the unknown coefficient and the asterisk

denotes the complex conjugate.

In the outer region far away from the ship, the body boundary condition cannot be

imposed. Thus the outer solution can be provided by a line distribution of the 3D

source along the x-axis and expressed in the form

φj(x, y, z) =

∫
L
Qj(ξ)G(x− ξ, y, z)dξ (2.148)

where G is the 3D Green function given by Eq.(2.70) for the translating and oscillating

problems, and Qj is its unknown strength. By matching the outer expansion of the inner

solution and the inner expansion of the outer solution in an overlap region, the unknown

Cj(x) in Eq.(2.146) and Qj(x) in Eq.(2.148) can be obtained and given as follows

φj(x) +
i

2π

(
1− σ3

σ∗3

)
=

∫
L
Qj(ξ)f(x− ξ)dξ = σj +

U

iω
σ̂j (2.149)

Cj(x) {σ3 − σ∗3} = Qj −
{
σj +

U

iω
σ̂j

}
(2.150)

where f(x − ξ) is the kernel function representing the 3D and forward-speed effects;

its explicit expression is given in the original unified theory developed by Newman &

Sclavounos [12]. σj and σ̂j denote the 2D Kochin function to be computed from ϕj and

ϕ̂j , respectively.

2.4.2 Diffraction Problem

With assumption that the rapidly-varying part of the scattering potential along the

ship’s length is of the same form as the incident wave, the scattering potential may be

sought in the form

φ7(x; y, z) = ψ7(x; , y, z)eilx; l = −k0 cosχ (2.151)
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where ψ7 is the slowly-varying part of the inner solution satisfying the following boundary

conditions

∂2ψ7

∂y2
+
∂2ψ7

∂z2
− l2ψ7 = 0 on z ≥ 0 (2.152)

∂ψ7

∂z
+ k0ψ7 = 0 on z = 0 (2.153)

∂ψ7

∂n
= k0e

−k0z {(n3 + in1 cosχ) cos(k0y sinχ)

+ n2 sinχ sin(k0y sinχ)} on CH(x) (2.154)

Therefore in the same fashion as in the radiation problem, the general inner solution for

the diffraction problem can be given as follows

ψ7(x; y, z) = ψP7 (y, z) + C7(x)ψH7 (y, z) (2.155)

ψP7 (y, z) = −e−k0z cos(k0y sinχ) (2.156)

ψH7 (y, z) =
{
ψ2D(x; y, z) + e−k0z cos k0y sinχ

}
(2.157)

where ψ2D denotes the numerical solution satisfying the body boundary condition which

includes the contribution of x-component of the normal vector in Eq.(2.154). Using the

same procedure for obtaining the unknown coefficient in the radiation problem, the

unknown in the diffraction problem C7(x) can also be obtained by matching the inner

and outer solutions. Therefore by solving an integral equation of the source strength in

the outer solution, the unknown coefficient C7(x) can be determined from the followings:

Q7(x) +
1

π
σ7

{
Q7(x)h1(χ)−

∫
L
Q7(ξ)f(x− ξ)dξ

}
= σ7e

ilx (2.158)

C7(x)σ7e
ilx = Q7(x) (2.159)

where

h1(x) = cscχ cosh−1(| secχ|)− ln(2| secχ|) (2.160)

Fore more details about radiation and diffraction problems in the EUT, the reader should

refer to Kashiwagi [13] and Kashiwagi [14]

2.4.3 Hydrodynamic Forces

In order to obtain hydrodynamic forces, let us first consider the pressure. In the linear

theory, the spatial part of the unsteady pressure can be obtained by discarding the
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higher order terms in Bernoulli’s pressure equation and given as

p = −ρ(iω + UV · ∇)φ+ ρg(X3 +X4y −X5x) (2.161)

where the first term on the right-hand side represents the hydrodynamic pressure, with

V defined as in Eq.(2.144) and the second term is the hydrostatic pressure due to ship

motions from its equilibrium position and has nothing to do with the velocity potential.

Neglecting the contribution from φs in V , Eq.(2.161) can be rewritten as

p = −ρ
(
iω − U ∂

∂x

)
φ+ ρg(X3 +X4y −X5x) (2.162)

Substituting φ in Eq.(2.162), then the total oscillating pressure acting on the ship can

be divided into three components; radiation pressure pR, diffraction pressure pD and the

variance of hydrostatic pressure pS , respectively, and expressed as

p(x) = pR(x) + pD(x) + pS(x) (2.163)

where

pR(x) = ρω2

(
1− U

iω

∂

∂x

) ∑
j=1,3,5

Xjφj (2.164)

pD(x) = −ρgA ω

ω0

(
1− U

iω

∂

∂x

)
φD (2.165)

pS(x) = ρg(X3 +X4y +X5x) (2.166)

and φD in Eq.(2.165) is the diffraction potential that is the sum of the incident wave

potential and scattering potential.

After introducing the pressures, now let us consider the hydrodynamic forces. These

forces can be obtained by integrating the pressures as in Eqs.(2.164) to (2.166) on the

wetted surface of the ship SH . The first one from Eq.(2.164), the radiation force acting

in the i-th direction is written as

Fi = −
∫∫

SH

pR(x)nidS

= −(iω)2
∑

j=1,3,5

[
Aij +

Bij
iω

]
Xj (2.167)
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where

Aij +
Bij
iω

= −ρ
∫
L
dx

∫
CH

(
ni −

U

iω
mi

)(
ϕj +

U

iω
ϕ̂j

)
−ρ
∫
L
dxCj(x)

∫
CH

(
ni −

U

iω
mi

)
φHj dS (2.168)

and Tuck’s theorem [15] has been applied in obtaining the final result. Aij and Bij

denote the added mass and the damping coefficients in the i-th direction due to the

j-th mode of motion. The second one is the resulting force from diffraction pressure

Eq.(2.165) which is the wave exciting force, given in the following result

Ei = −
∫∫

SH

pD(x)nidS

= ρgA

∫
L
dxC7(x)eilx

∫
CH

{
ψ2D + e−k0z cos(k0y sinχ)

}
nidS (2.169)

The last one is the contribution from the hydrostatic pressure that is the restoring force,

which can be expressed as

Si = −
∫∫

SH

pS(x)nidS

= −ρg
∫∫

SH

(X3 +X4y −X5x)nidS (2.170)

The existence of this force may cause resonance in the direction of heave and also in

pitch as well as in roll as the moment due to couple of vertical forces.

2.4.4 Ship Motions

It has been mentioned before that only symmetric modes of motion are considered here,

then the motion equations for surge, heave and pitch motions can be computed by the

following equation

∑
j=1,3,5

[−ω2(Mij +Aij) + iωBij + Cij ]Xj = Ei (i = 1, 3, 5) (2.171)
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where Mij is the generalized mass matrix and Cij the restoring force matrix. The

resulting nonzero terms from these matrices are

M11 = M33, M55 = I55 = ρ∇κ2yy
C33 = ρgAw, C35 = C53 = −ρgAwxw
C55 = ρg∇GML

 (2.172)

where ∇ denotes the displacement volume, κyy is the gyrational radius in pitch. Aw

is the waterplane area with xw as its center in x-axis and GML is a distance from the

center of gravity to the longitudinal metacenter.

Once the linearized boundary-value problems for the unsteady velocity potentials have

been solved, the added resistance in waves, which is a time-averaged quantity of second

order with respect to the incident-wave amplitude, can be computed with Eq.(2.139)

known as Maruo’s [11] formula. Note that the added resistance can be computed only

from the symmetric components of the Kochin function when considering only the head

waves, hence it can be given as

R

ρgA2
=

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
|H(k)|2 κ√

κ2 − k2
(k + k0)dk (2.173)

where H(k) denotes the symmetric component of the Kochin function given in the form

of superposition of ship-generated progressive waves and can be written specifically in

the following expression

H(k) = H7(k)−
√
k0K

∑
j=1,3,5

Xj

A
Hj(k) (2.174)

|H(k)|2 = |H7(k)|2 + k0K|ξjHj(k)|2 − 2
√
k0K<[H7(k) {ξjHj(k)}∗] (2.175)

For simplicity Xj/A in Eq.(2.174) is denoted by ξj in Eq.(2.175), where asterisk means

the complex conjugate and summation convention is applied in Eq.(2.175) instead of

summation sign in Eq.(2.174), subscript j = 1, 3, 5 denotes the Kochin function of surge,

heave and pitch motions respectively, for the radiation problem and j = 7 for diffraction

problem. In the EUT, the Kochin function can be computed from

Hj(k) =

∫
L
Qj(x)eikxdx (2.176)

Each term on the right-hand side of Eq.(2.175) denotes the contribution from the diffrac-

tion wave, the radiation wave, and the cross terms between the diffraction and radiation

waves. Thus in accordance with each term in Eq.(2.175), it might be useful to write the
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added resistance as a summation of the following three components:

RAW = R
(DD)
AW +R

(RR)
AW +R

(DR)
AW (2.177)

where

R
(DD)
AW =

1

4πk0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
|H7(k)|2 κ√

κ2 − k2
(k + k0)dk (2.178)

R
(RR)
AW =

K

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
|ξjHj(k)|2 κ√

κ2 − k2
(k + k0)dk (2.179)

R
(DR)
AW = −

√
K

2π
√
k0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
<[H7(k) {ξjHj(k)}∗]κ(k + k0)√

κ2 − k2
dk (2.180)

2.5 Steady Wave Resistance

In order to confirm the amount of reduction of the total wave resistance, the steady

wave resistance should also be computed. In the Holtrop & Mennen [16] method, the

wave resistance is formulated in the form

RW = c1c2c5∇ρg exp
{
m1 + F−0.9n +m2 cos(λF−2n )

}
(2.181)

where

c1 = 2223105 c3.786137 (d/B)1.07961(90− iE)−1.37565 (2.182)

c7 =


0.229577(B/L)1/3 for B/L < 0.11

B/L for 0.11 < B/L < 0.25

0.5− 0.0625L/B for B/L > 0.25

(2.183)

c2 = exp(−1.89
√
c3) (2.184)

c3 =
0.56A1.5

Bd{
Bd(0.31

√
ABT + d− hB)

} (2.185)

c2 is a parameter which accounts for the reduction of the wave resistance due to the

bulbous bow and c3 the coefficient that determines the influence of the bulbous bow on

the wave resistance with hB is the center position of the transverse area of the bulb ABT
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above the keel line. Another coefficient in Eq.(2.181) is c5 which can be given as follows

c5 = 1− 0.8AT /(BdCM ) (2.186)

where AT represents the immersed part of the transverse area of the transom at zero

speed and CM the coefficient of midship. The other parameters in Eq.(2.181) can be

computed as follow

λ =

{
1.446CP − 0.03L/B for B/L < 12

1.446CP − 0.36 for B/L > 12
(2.187)

m1 = 0.0140407L/d− 1.75254∇1/3/L− 4.79323B/L− c16 (2.188)

c16 =

{
8.07981CP − 13.8673C2

P + 6.984388C3
P for CP < 0.80

1.73014− 0.7067CP for CP > 0.80
(2.189)

m2 = c15C
2
P exp(−0.1F−2n ) (2.190)

c15 =


−1.69385 for L3/∇ < 512

−1.69385 + (L/∇1/3 − 8.0)/2.36 for 512 < L3/∇ < 1727

0 for L3/∇ > 1727

(2.191)

In Eq.(2.182), iE denotes the half angle of entrance of the waterline in degrees measured

at the bow with reference to the ship center plane. ∇ appearing above is the ship dis-

placement and CP the coefficient of prismatic. Hence the steady wave-making coefficient

can be obtained and given in a nondimensional form as

CW =
RW

1
2ρSU

2
(2.192)

with S indicates the wetted surface area of a ship.
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Computed Models

3.1 Modified Wigley Model

For the purpose of establishing a new BCGA and to examine its performance in connec-

tion with the EUT, a modified Wigley model with blunt-bow coefficients is employed

in this optimization as a basis ship geometry. The hull geometry of this model can be

expressed mathematically in the form

η = (1− ζ2)(1− ξ2)(1 + 0.6ξ2 + ξ4) + ζ2(1− ζ8)(1− ξ2)4

ξ =
x

(L/2
, η =

y

B/2
, ζ =

z

d

 (3.1)

The computation is performed at Fn = 0.20 in the range of wavelength ratio of incident

wave, λ/L = 0.3 ∼ 2.0. Furthermore, the main dimensions of the ship model and the

parameters used in the computation are given in Table 3.1 below.

Table 3.1: Principal particular of modified Wigley model

Item Value Unit

Length (L) 2.500 m
Breadth (B) 0.500 m
Draft (d) 0.175 m
Block coefficient (CB) 0.6342 -
Midship coefficient (CM ) 0.9088 -
Prismatic coefficient (CP ) 0.6979 -
Waterplane coefficient (CWP ) 0.8038 -

Displacement (∇) 0.1388 m3

Center of gravity (OG) 0.031 m
Pitch gyrational radius (Kyy/L) 0.236 -
Froude Number (Fn) 0.20 -
Wavelength ratio (λ/L) 0.30 ∼ 2.00 -
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Because this optimization is dealing with the Sectional Area Curve (SAC), it is necessary

to show SAC of modified Wigley model as depicted in Fig. 3.1. The body plan and

perspective view of this model are also shown in Fig. 3.2 and Fig. 3.3, respectively.

Figure 3.1: SAC of modified Wigley model

Figure 3.2: Body plan of modified Wigley model

Figure 3.3: Perspective view of modified Wigley model
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From Figs.3.1 and 3.2, we are able to see that this modified Wigley model is symmetric

with respect to both x = 0 and y = 0. Because of its symmetricity with respect to x = 0,

contribution from restoring coefficient of coupled motions between heave and pitch in

Eq.(2.172) is equal to zero.

3.2 Container Ship SR-108

In addition to the modified Wigley model, a real container ship SR-108 will also be

optimized in order to confirm and illustrate the effectiveness and efficiency of the present

practical integrated optimization method. The principal dimensions of SR-108 are given

in the following Table 3.2.

Table 3.2: Principal particular of SR-108

Item Value Unit

Length (LPP ) 175.00 m
Breadth (B) 25.400 m
Draft (d) 9.5000 m
Block coefficient (CB) 0.5719 -
Midship coefficient (CM ) 0.9700 -
Prismatic coefficient (CP ) 0.5895 -
Waterplane coefficient (CWP ) 0.7111 -

Displacement (∇) 24149.907 m3

Froude number (Fn) 0.20 -
Incident wave angle (χ) 180 degree

The perspective view of SR-108 is depicted in the following Fig. 3.4.

Figure 3.4: Perspective view of SR-108

The body plan and SAC of SR-108 are also given in the following Fig. 3.5 and Fig. 3.6.
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Figure 3.5: Body plan of SR-108

Figure 3.6: SAC of SR-108

Needless to say that in this optimization the principal dimensions of ship are kept con-

stant. Therefore the shifting method used in this optimization will only shift the stations

between after peak and fore peak stations, excluding a station in which the sectional

area becomes maximum.
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Study on Added Resistance

4.1 Sensitivity of a Peak Value of the Added Resistance

In order to reduce the added resistance in waves, it is necessary to understand its sen-

sitivity to the ship motions, particularly the peak value of the added resistance. In

sensitivity study, we check sensitivity of the peak value of the added resistance to the

amplitude and phase difference of ship motions [1]. To this end, a calculation of the

added resistance by using measured (experiment) data will be performed. In this case,

experiment data which can be only the amplitude or only the phase or both of them for

each mode of ship motions will be used in computing the added resistance.

Because the added resistance in head waves can be computed only from symmetric

modes of motion (surge, heave and pitch), only these modes will be considered. In order

to realize sensitivity of the peak value of the added resistance to the ship motions, it is

necessary to show discrepancy between experiment data and computed one by EUT for

the amplitude and phase of ship motions as shown in Figs. 4.1, 4.2 and 4.3.

Considering only the wavelength where the added resistance becomes maximum that

is at the middle wavelength region around λ/L = 1.1, then we can see the amount of

discrepancy between those data for ship motions. However the phase difference in pitch

motion between experiment and computed data is almost zero. Corresponding to those

figures, the resulting added resistance can be depicted in Fig. 4.4 through Fig. 4.6.

At those figures, blue square, green triangle and orange gradient represent the value of

the added resistance computed from the experiment data in both amplitude and phase

difference, only amplitude and only phase difference, respectively. Meanwhile red line

represents the added resistance computed from numerical result (computed data) of ship

motions.
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Figure 4.1: Amplitude and phase of surge motion

Figure 4.2: Amplitude and phase of heave motion

Figure 4.1 shows the differences between measured data and computed result of surge

motion for both amplitude and phase difference. Although these discrepancies can be

observed, all corresponding results of the added resistance are almost the same as shown

in Fig. 4.4. It means that the peak value of added resistance is not sensitive to the
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Figure 4.3: Amplitude and phase of pitch motion

Figure 4.4: Added resistance from measured and computed data of surge motion

surge motion in both amplitude and phase difference and hence it can be neglected. In

case of heave motion, discrepancy of amplitude and phase difference between measured

and computed data is shown in Fig. 4.2. Using measured data, the peak value of added
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Figure 4.5: Added resistance from measured and computed data of heave motion

Figure 4.6: Added resistance from measured and computed data of pitch motion

resistance changes drastically compared to the original one (computed data) as depicted

by blue square in Fig. 4.5. Thus it allows us to say that the peak value of added

resistance is sensitive to the heave motion. However green triangle and orange gradient
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reveal that the peak value of added resistance is only sensitive to the phase difference

of heave motion.

In Fig. 4.3, it is shown that the pitch amplitude of measured data is different from

computed one; however discrepancy in phase difference cannot be observed. Computing

the added resistance using measured data makes aware that its peak value decreases

significantly which is shown as blue square in Fig. 4.6. Even only using the amplitude

of measured data, the corresponding added resistance is also changed which is similar

when using both amplitude and phase difference of pitch motion of measured data. Thus

we may say that the peak value of added resistance is sensitive to the amplitude of pitch

motion.

4.2 Relative Importance of Each Term in Added Resis-

tance

Apart from previous investigations, now let us investigate the contribution from each

term of the Kochin function in the equation of added resistance as in Eq.(2.175) or

Eq.(2.177). As we can see in this equation, the added resistance consists of three terms

that are diffraction term, radiation term and cross-term between diffraction and radia-

tion. According to the sensitivity study, the surge motion is not influential in determi-

nation of the peak value of added resistance. Thus in the following investigation, the

contribution from this term can be neglected. The corresponding results of the added

resistance from each term of the Kochin function is shown in Fig. 4.7.

It is well-known that the most important component in the added resistance in the

short wavelength region is the contribution from diffraction component. However in

the subsequent wavelength, the radiation component becomes important and gives the

largest contribution to the added resistance as well as the cross-term between diffraction

and radiation waves which is in opposite sign as clearly shown also in Fig. 4.7.

In order to realize which motion is the most important in the radiation waves, this term

may be decomposed further for each mode of motion or combination between them.

These decompositions can be written as follow

R
(HH)
AW =

K

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
|ξ3H3(k)|2 κ√

κ2 − k2
(k + k0)dk (4.1)

R
(PP )
AW =

K

4π

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
|ξ5H5(k)|2 κ√

κ2 − k2
(k + k0)dk (4.2)
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Figure 4.7: Relative importance of each term in added resistance

The added resistance due to these decompositions can be seen in Fig. 4.8. Meanwhile

the cross-term can also be decomposed for combination between diffraction and radiation

terms as shown in Fig. 4.9 which can be given in the following equations.

R
(DH)
AW = −

√
K

2π
√
k0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
<[H7(k) {ξ3H3(k)}∗]κ(k + k0)√

κ2 − k2
dk (4.3)

R
(DP )
AW = −

√
K

2π
√
k0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
<[H7(k) {ξ5H5(k)}∗]κ(k + k0)√

κ2 − k2
dk (4.4)

R
(HP )
AW = −

√
K

2π
√
k0

[
−
∫ k1

−∞
+

∫ k3

k2

+

∫ ∞
k4

]
<[ξ3H3(k) {ξ5H5(k)}∗]κ(k + k0)√

κ2 − k2
dk (4.5)

According to Fig. 4.8, the largest contribution to the peak value of added resistance

arises from the Kochin function of pitch motion. A reason for this might be due to the

sensitivity of the peak value of added resistance to the pitch motion in both amplitude

and phase difference. Besides that, this figure also shows that the wavelength where the

added resistance in terms of pitch motion (brown dashed-double-dotted line) takes its

maximum coincides with the wavelength where the added resistance due to radiation

component (blue dashe-dotted line) becomes maximum. It means that the pitch motion

also plays an important role in determining the peak frequency of added resistance due

to radiation and even in determination of the peak frequency of total added resistance

(red solid line).

Nevertheless the peak frequency of added resistance due to pitch motion is slightly dif-

ferent with the peak frequency of total added resistance. It might be mainly attributed
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Figure 4.8: Relative importance of each term in radiation waves

Figure 4.9: Relative importance of each term in cross-terms between scattered and
radiation waves

to the effects of damping coefficients and coupled motions in Eq.(2.171). Based on these

results, it can be concluded that the pitch motion is the most important part in deter-

mining the peak value of the added resistance. Thus it will be used as primary fitness

function in addition to the total added resistance as a secondary fitness function during

optimization process, particularly in optimizing the SR-108 at middle wavelengths.
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On the other hand, the cross term between heave and pitch motions represented as green

long-dashed line in Fig. 4.9 gives the largest reduction to the added resistance, especially

near the peak. In addition, the cross term contribution of diffraction and pitch motion

also reduces the added resistance around its peak given as blue dashed-dotted line on the

same figure. Having a close look to Fig. 4.9, then we could realize that all of the cross

terms become negative before λ/L = 1.0, except that of a cross term between diffraction

and heave motion (light brown dashed line). It becomes negative after the total added

resistance reaches its maximum, thus it implies that this cross term increases the peak

value of the added resistance in reverse with other cross terms.



Chapter 5

Variation of Ship Hull Geometry

by Shifting Method

Because the principle of the shifting method is adopted during optimization, it might be

useful to understand the characteristics of SAC of the new ship hull geometry directly

generated by this method. It should be noted here that in the shifting method, a new

ship hull geometry may be derived from the following three cases [17]:

• Varying the block coefficient (CB)

• Shifting the longitudinal center of buoyancy (LCB)

• Introducing the parallel middle body (PMB)

In this chapter, the above three cases will be discussed in details. The effect of changing

those three parameters will also be investigated.

5.1 Varying the Block Coefficient (CB)

Let us begin to derive a new hull geometry of ship by changing its CB. In this case

CB of a basis hull geometry, namely the modified Wigley model is set to CB = 0.60

and CB = 0.70 from its original value as shown in Table 3.1. By using the Lackenby’s

transformation given in Eq.(2.8) to Eq.(2.12), the necessary shift (δx) in the x-axis can

be obtained. Thus the corresponding sectional area curve resulting from change in CB

is given in Fig. 5.1. Due to variation of CB in Fig. 5.1, the ship displacement (∇)

will change to ∇ = 0.13125 (m3) and ∇ = 0.15313 (m3) for CB = 0.60 and CB = 0.70,
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Figure 5.1: SAC of varying CB

(a) Body plan

(b) Perspective view

Figure 5.2: Body plan and perspective view of CB = 0.60

respectively. The body plan and perspective view of both of them are shown in Figs.5.2

and 5.3 for CB = 0.60 and CB = 0.70, respectively.
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(a) Body plan

(b) Perspective view

Figure 5.3: Body plan and perspective view of CB = 0.70

The corresponding results of comparisons for surge, heave and pitch motions at Fn =

0.20 between basis hull and derived hull forms are presented in Fig. 5.4 through Fig. 5.6.

In Fig. 5.4 for the surge motion, we can see that decreasing the block coefficient tends

to increase the surge motion. In another word, a large CB will decrease this motion.

This trend can also be observed for the case of heave and pitch motions as shown in

Figs. 5.5 and 5.6. It means that increasing CB will decrease the amplitude of symmetric

mode of motions. The corresponding results of the added resistance resulting from this

case is depicted in Fig. 5.7

In the previous chapter, we confirmed that the amplitude of pitch motion as well as the

phase difference of heave and pitch motions are sensitive to the peak value of the added

resistance. Thus judging from Figs. 5.5 and 5.6, one may envisage that the resulting

added resistance will reduce relatively largely. However, in this case it is clearly shown

in Fig. 5.7 that only small quantity of the added resistance diminishes about its peak
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Figure 5.4: Surge motion of varying CB

Figure 5.5: Heave motion of varying CB

although the amplitude of heave and pitch motions decrease fairly large with similar

phase difference of both of them. It implies that only the pitch amplitude gives a large

contribution to such reduction. It is also observed in the same figure that the added

resistance in the shorter wavelengths region increases for the case of CB = 0.70. It
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Figure 5.6: Pitch motion of varying CB

might be attributed to the larger amplitude of Kochin function at transverse section,

especially in the diffraction problem; that is, this increase might be induced by numerical

irregularity and hence probably not real.

Figure 5.7: Added resistance of varying CB
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5.2 Shifting the Longitudinal Center of Buoyancy (LCB)

In this case, the longitudinal center of buoyancy is shifted about 0.05 (m) towards ship’s

stern and bow without changing the principal particulars of a ship, including its CB.

For the case of shifting LCB towards ship’s stern, the stern part becomes blunter and

fore part finer. It can be seen clearly through its body plan and perspective view as

given in Fig. 5.8. The body plan and perspective view of shifting LCB towards ship’s

bow are elucidated in Fig. 5.9. The comparison of SAC among them is shown in Fig.

5.10.

(a) Body plan

(b) Perspective view

Figure 5.8: Body plan and perspective view of shifting LCB = 0.05 aft

The symmetric modes of ship motions resulting from this case are shown in Fig. 5.11

through Fig. 5.13. Figure 5.11 reveals that the effect of shifting LCB for surge motion is

very small. For heave motion, shifting the LCB affects the heave motion which increases

its amplitude as LCB shifted towards ship’s bow as shown in Fig. 5.12. Different with
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(a) Body plan

(b) Perspective view

Figure 5.9: Body plan and perspective view of shifting LCB = 0.05 fwd

Figure 5.10: SAC of shifting LCB

heave motion, the amplitude of pitch motion decreases as the LCB shifted forward and

its phase also changes to some little extent which is depicted in Fig. 5.13.
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Figure 5.11: Surge motion of shifting LCB

Figure 5.12: Heave motion of shifting LCB

As a consequence, the added resistance changes depending on the direction where LCB

moves. This change in the added resistance is shown in Fig. 5.14. From this figure,

we could observe that shifting LCB towards ship’s bow reduces the added resistance,

particularly around its peak to longer waves due to the sensitivity of the pitch motion
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Figure 5.13: Pitch motion of shifting LCB

Figure 5.14: Added resistance of shifting LCB

in both amplitude and phase difference to the peak of added resistance. However, the

added resistance increases at the shorter wavelengths region. The reason for this is

owing to the larger amplitude of Kochin function at transverse section near the bow
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in the diffraction problem as its bow shape becomes blunter. On the other hand, the

bow shape becomes finer as LCB shifted towards ship’s stern; hence diffracts less waves

than that of the basis hull. Therefore the corresponding results of the added resistance

decreases around shorter wavelengths region which is also shown in Fig. 5.14.

5.3 Introducing the Parallel Middle Body (PMB)

In case of introducing the parallel middle body (PMB), we insert the PMB to the basis

hull without increasing CB. In this case we insert PMB to aft- and fore-bodies with

length of 0.15 (m), respectively and to the middle body with equal distance. For the

case of inserting PMB to the aft- and fore-bodies, the body plan and perspective view

of them are given in Fig. 5.15 and Fig. 5.16, respectively.

(a) Body plan

(b) Perspective view

Figure 5.15: Body plan and perspective view of introducing PMB = 0.15 m aft
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(a) Body plan

(b) Perspective view

Figure 5.16: Body plan and perspective view of introducing PMB = 0.15 m fwd

Meanwhile the body plan and perspective view of inserting PMB to the middle body

is depicted in Fig. 5.17. The comparison of SAC among them can be observed in Fig.

5.18. The ship motions resulting from introducing PMB are shown in Fig. 5.19 to Fig.

5.21 for surge, heave, and pitch motions, respectively. It is obviously shown in Fig. 5.19

that inserting PMB to the aft- and fore-bodies as well as to the middle body does not

affect the surge motion and hence it becomes negligible. Figures 5.20 and 5.21 show the

amplitude and phase difference of heave and pitch motions, respectively. Introducing

the PMB to the fore body and to the middle body increases the amplitude of both heave

and pitch motions. However inserting PMB to the aft body increases only the amplitude

of pitch motion.

Figure 5.22 shows the resulting added resistance due to introducing of the PMB to the

basis hull. Although inserting the PMB at the aft body affects only the pitch motion,

the resulting added resistance due to this change increases relatively largely at its peak
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(a) Body plan

(b) Perspective view

Figure 5.17: Body plan and perspective view of introducing PMB = 0.15 m middle

Figure 5.18: SAC of introducing PMB

compared to the case of inserting PMB at the fore body and the middle body. Conversely,

the effects of inserting the PMB at the fore body to the peak value of the added resistance
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Figure 5.19: Surge motion of introducing PMB

Figure 5.20: Heave motion of introducing PMB

is negligible even though it increases the amplitude of both heave and pitch motions. It

might be due to slight change in phase difference of pitch motion. Meanwhile the effects

of combination between these two given as brown (dashed and double-dotted) line can

be observed in Fig. 5.19 through Fig. 5.22.
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Figure 5.21: Pitch motion of introducing PMB

Figure 5.22: Added resistance of introducing PMB



Chapter 6

Optimization Results and

Discussions

6.1 Preliminary and Validation of Computation

Because the most important part of a genetic algorithm is the genetic operations, thus

it is necessary to determine the genetic operators themselves first whether suitable or

not to reach the goal of this study as a preliminary computation. Therefore some

computations with a modified Wigley model employed as a basis hull are performed

with different genetic operators. At the beginning, let us consider the selection operator,

Figure 6.1: PI of selection operator

72
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namely roulette wheel and tournament selection operators. The Performance Index (PI)

depicting the comparison between them is shown in Fig. 6.1. It is obviously shown on

this figure that for the case of adopting the tournament selection, particularly for the

short wavelength region (λ/L = 0.30 ∼ 0.80), the PI converges before 100th generation.

Meanwhile for roulette wheel selection, it converges after 130th generation. Besides that,

it is also noticed that the PI of tournament selection has higher performance than the

PI of roulette wheel selection.

As the main search tool of the BCGA relies on the crossover operator, it is also necessary

to define this operator. The commonly used methods for crossover are single-point,

uniform, and k-point crossovers. Fig. 6.2 shows the PI of those crossovers. As can be

seen in Fig. 6.2, the single-point crossover gives the best performance followed by the

uniform crossover and the k-point (in this case k = 3) crossover, respectively.

Figure 6.2: PI of crossover operator

The remaining operator is the mutation operator. There are indeed several kinds of

mutation operator, however only flip-bit mutation is available for binary string which is

used in this study. The same preliminary computation is also done for the middle wave-

length region (λ/L = 0.80 ∼ 1.30) to confirm its suitable genetic operators. Therefore

from these preliminary computations, the genetic operators for both short and middle

wavelength cases have been determined and are summarized in Table 6.1 together with

another parameters used in the optimization [2].

It is noted here again that a modified Wigley model is employed on this preliminary

computation with tweenty (20) population numbers for each generation. Needless to say

that the genetic operators shown in Table 6.1 may change depending on the problem
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Table 6.1: Parameter used for Wigley optimization

Parameters Short wavelength Middle wavelength

Minimum wavelength 0.30 0.80
Maximum wavelength 0.80 1.30
Population number 20 20
Selection operator Tournament Roulette
Crossover operator Single point 3-points
Mutation operator Flipping Flipping
Crossover probability (Pc) 0.8 0.8
Mutation probability (Pm) 0.0156 0.0156
Another operator Elitism Elitism
PI of basis hull 0.6132 2.9693

encountered. However for selection and crossover operators, the tournament and single

point operators are generally used for all cases in order to acquire the best optimized

model with faster convergence.

Figure 6.3: Comparison of EUT and experimental results

In an optimization problem, besides the optimization algorithm itself, the most impor-

tant thing is that a reliability of a method used for computing the objective function.

Hence, in this chapter, a validation of the Enhanced Unified Theory (EUT) as a core

method of computation should be given. For this purpose, a comparison of the added

resistance of a modified Wigley model between the results of experiment conducted by

Kashiwag [18] and the one computed by EUT is depicted in Fig. 6.3 which was already

described explicitly in Chapter 4.
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From this figure, we could observe a favorable agreement between the results of basis

hull computed by the EUT and ones by experiment for almost all wavelengths, except

around short wavelengths in which the EUT underestimates the experimental results.

Nonetheless a correction formula for that discrepancy is also given on that paper (Kashi-

wagi [18]) which can be applied in this study. Therefore the combination between the

BCGA and EUT can be relied on in obtaining the best optimized hull geometry of a

ship in reducing the added resistance, especially around its peak.

6.2 Optimization of Modified Wigley Model

After obtaining the suitable genetic operators described in the preceding section, the

optimization with a modified Wigley model by BCGA via shape function is going to be

performed. In this case the optimization is performed for two operational regions of a

ship, namely short and middle wavelength regions. Short and middle wavelength regions

are defined as λ/L varied between 0.30 ∼ 0.80 and 0.80 ∼ 1.30, respectively. It should

be noted here that the objective function of this optimization is to minimize the added

resistance at those wavelength regions.

Now let us consider the PI both of them as shown in Fig. 6.4. From this figure, it can

be seen that the best optimized hull geometry for the case of short wavelengths region

is obtained at 259th generation as its PI converges from this generation; meanwhile the

PI for the case of middle wavelengths region converges at 302th generation.

Figure 6.4: PI of short and middle wavelength regions
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Case of Short Wavelength Region

The optimization for short wavelength region is considered first. From Fig. 6.4 the

corresponding sectional area curve (SAC) of the best optimized hull geometry together

with SAC of the basis hull geometry and its shape function can be depicted in Fig.

6.5. In this figure, it can be observed that the fore-front part of the best optimized

hull geometry is finer than the basis hull geometry. This is due to the fact that the

magnitude of the shape function becomes negative at bow part and thus diminishes the

sectional area of some sections around this part. It can also be illustrated clearly at the

comparison of their body plans shown in Fig. 6.6. The perspective view of this best

optimized geometry is also depicted in the same figure.

Figure 6.5: SAC and shape function for short wavelength region

In the preceding chapter, it was found that introducing the parallel middle body (PMB)

to the SAC of aft- and fore-bodies and reducing the sectional area of the end-parts

of them could reduce the added resistance, especially at short wavelengths region. A

similar shape of SAC is obtained as the best optimized shape during optimization which

can obviously be observed in Fig. 6.5. Hence, it is expected that the corresponding

added resistance resulting from this optimization decreases at short wavelength region.

It is well known that the most important component in determining the added resistance

at short wavelength region is the diffraction component in which the incident waves are

diffracted mainly near the ship’s bow. Fortunately, the EUT used to obtain the fitness

function, namely the added resistance in this optimization, takes account of the effect

of wave diffraction through the retention of n1-term in the body boundary condition for

the diffraction problem as shown in Eq.(2.154).

Therefore judging from Figs. 6.5 and 6.6, we may say that the amount of incident waves

diffracted by the finer bow shape of the best optimized hull form tends to become small

compared to that of the basis hull form does. This phenomenon can be observed from the

resulting added resistance obtained in this optimization as shown in Fig. 6.7. Although

the ship-ends become finer, due to the insertion of PMB to the middle body, the block
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(a) Body plan

(b) Perspective view

Figure 6.6: Body plan and perspective view for short wavelength region

coefficient of the best optimized hull form slightly increases to 0.6441 and hence the

prismatic coefficient becomes 0.7086.

As can be seen in Fig. 6.7, even though the basis hull form is only optimized at

λ/L = 0.30 ∼ 0.80, the obtained added resistance decreases until λ/L about 1.10 which

means that the added resistance can be optimized until around its peak by only consider-

ing some wavelengths at shorter wavelength region and hence reducing the computation

time. On the other hand, it is found that the separation distance between longitudi-

nal center of buoyancy (LCB) and longitudinal center of floatation (LCF ) of the best

optimized hull form becomes positive from its original zero value. It implies that the

resonance frequency in ship motion shifts to longer waves and consequently the added

resistance in longer waves increases. For further details about the separation distance

between LCB and LCF , the readers are advised to read Kashiwagi and Sumi [19].
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Figure 6.7: Added resistance for short wavelength region

Case of Middle Wavelength Region

Unlike for short wavelength region, the shape of SAC obtained from Fig. 6.4 for middle

wavelength region is slightly blunter than the original shape at its bow and stern which

is illustrated in Fig. 6.8 together with its shape function. The shape function shown in

this figure, particularly around x/L = 0.98 becomes positive and returns to exactly zero

at fore-end station (x/L = 1.00) which is a constraint described on the related chapter.

It is observable in Fig. 6.8 that the PMB is also inserted to the original SAC but only

to the fore body and thus the block coefficient somewhat rises to 0.6385. This can also

be observed in Fig. 6.9.

Figure 6.8: SAC and shape function for middle wavelength region

Figure 6.10 illustrates the results of the added resistance for optimization at middle

wavelength region, in which the obtained added resistance for the best optimized hull
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(a) Body plan

(b) Perspective view

Figure 6.9: Body plan and perspective view for middle wavelength region

geometry reduces relatively largely at concerned wavelengths, especially at its peak. It

might be attributed to the radiation component, namely ship motion which is the most

important component in the added resistance to determine its peak, especially pitch

motion. Nonetheless, the obtained results of the added resistance somewhat increase at

short wavelengths due to an increase of sectional area of few sections at the most-front

part of the fore body which is marked by positive value of the shape function at those

sections shown in Fig. 6.8.
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Figure 6.10: Added resistance for middle wavelength region

6.3 Optimization of SR-108 Container Ship

An optimization method based on natural selection, namely the genetic algorithm with

binary encoding or so-called the Binary-Coded Genetic Algorithm (BCGA), has been de-

veloped and utilized in the previous section to find out the best optimized hull geometry

of a parent hull, i.e. modified Wigley model. The results of optimization were favorable

in which the added resistance decreased relatively largely at concerned wavelengths re-

gions. However an optimization only with modified Wigley model is not sufficient to

prove the reliability of the present method. For that reason, therefore, an optimization

with the actual ship is going to be performed. In this case, an actual ship e.g. SR-108

is employed as a basis hull geometry. The SAC and body plan of SR-108 together with

its perspective view could be seen in Chapter 3. In addition, the steady wave resistance

is also computed by Holtrop & Mennen method [16] to confirm reduction of the total

resistance of a ship being optimized.

According to sensitivity study of the peak value of the added resistance described in

Chapter 4, it was found that both amplitude and phase of pitch motion gives the largest

contribution to the peak value of the added resistance, especially at its peak. Thus in

this optimization, the primary objective function is to reduce the pitch motion and the

secondary one is to reduce the added resistance. Besides that, the peak value of the

added resistance and the added resistance due to diffraction are also included in the

primary fitness function as a summation of them.
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It has been explained before that the number of parameters being optimized (genes)

in the shape function could be increased to generate more various shapes of SAC, but

it does not mean that the best optimized hull cannot be obtained with less number of

these parameters. Since the whole body is going to be optimized, at least four genes

should be involved. The following parameters are used in this optimization as shown in

Table 6.2.

Table 6.2: Parameter used for SR-108 optimization

Parameters Value

Population number 20
Selection operator Tournament
Crossover operator Single point
Mutation operator Flipping
Crossover probability (Pc) 0.8
Mutation probability (Pm) 0.0125
Another operator Elitism
Minimum wavelength 0.80
Maximum wavelength 1.30

In Table 6.2, we could see that the tournament selection combined with single-point

crossover operators are obtained as the most suitable operators for SR-108 in middle

wavelength region which are different with the case of optimizing the modified Wigley

model.

Optimization with Four Genes

For the purpose of optimization of the whole body, firstly four genes for each chromosome

are used with the range of amplitude set to be ±0.10 (aft) and ±0.12 (fore). For the fixed

stations, the range varies from AP station to the station with the largest transverse area

and from this station to FP station for aft and fore body respectively with a condition

that these genes should not be the same of the position of those three stations.

The results of optimization with four genes for each chromosome can be seen in the

following Figs. 6.11 to 6.16. The body plan and perspective view resulting from this

optimization is depicted in Fig. 6.11. In Fig. 6.12, it is clearly shown that both aft

and fore bodies become blunter and the parallel middle body is introduced at fore body.

This means that the centroid of the SAC or so-called the longitudinal center of buoyancy

(LCB) shifts toward fore body. The ship motions resulting from this optimization are

shown in Figs. 6.13, 6.14 and 6.15 for surge, heave and pitch motions, respectively.

In Fig. 6.15 the pitch motion as the primary fitness function decreases in large quantity,

especially at the wavelength ratio (λ/L = 0.80 ∼ 1.30) in which the optimization is

performed. Although the heave motion is not included directly to the primary fitness
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(a) Body plan

(b) Perspective view

Figure 6.11: Body plan and perspective view of four genes

Figure 6.12: SAC and shape function of four genes

function, the resulting heave motion from this optimization also decreases as shown in

Fig. 6.14. Nevertheless the amount of its reduction is smaller than that in the pitch

motion. Due to large reduction of the amplitude of ship motions, it is appropriate to

envisage that the corresponding result of the added resistance may also be reduced in

large amount. This result can be seen in Fig. 6.16.
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Figure 6.13: Surge motion of four genes

Figure 6.14: Heave motion of four genes

It should be noted again that this optimization is performed at λ/L = 0.80 ∼ 1.30

and Fn = 0.20. From Fig. 6.16, it is clearly shown that the added resistance as the

secondary fitness function remarkably decreases around its peak where the optimization

is performed. However it slightly increases at short wavelength region. The added

resistance of this optimized ship is also computed for several Froude numbers shown in
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Figure 6.15: Pitch motion of four genes

Figure 6.16: Added resistance of four genes

Fig. 6.17. It is noticeable that the discrepancy in the added resistance around its peak

between the basis hull geometry and optimized ones increases as the Froude number

increase. Besides that, in order to confirm reduction of the total wave resistance, the

corresponding result of the steady wave resistance for several Froude numbers can be

seen in Fig. 6.18. It is shown on this figure that the steady wave resistance is almost

negligible at those Froude numbers, except that from around Fn = 0.260 to 0.335.
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Figure 6.17: Added resistance of four genes for several Fn

Figure 6.18: Wave resistance coefficient of four genes

Based on the results shown above, it might be concluded that this optimized hull can

be operated at low and high speeds where the increase in the steady wave resistance

becomes negligible at those Froude numbers.



Chapter 6. Optimization of SR-108 Container Ship 86

Optimization with Six Genes

An optimization with six genes is also performed. In this case the range of genes for

amplitude is set to be ±0.12 for both aft- and fore-bodies and for the fixed stations,

it is exactly the same with the previous case including all parameters used in that

optimization. Similar trend of the SAC and shape function with four genes is obtained

in this optimization as shown in Fig. 6.19. The body plan and perspective view of the

best optimized hull geometry obtained from this optimization can be seen in Fig. 6.20.

The only difference is the shape around the parallel middle body of the fore body.

Figure 6.19: SAC and shape function of six genes

The results of this optimization can be seen in the following figures including its com-

parisons with the basis hull geometry and optimized ones with four genes. Fig. 6.21

through Fig. 6.25 show the results of the ship motions, the added resistance and the

steady wave resistance of the best optimized ship, respectively. In Fig. 6.23 we could

observe that the pitch motion of the optimized ship with six genes is lower than that of

with four genes. Besides that, the heave motion also largely decreases around its peak

as revealed in Fig. 6.22.

Consequently the corresponding result of the added resistance becomes the lowest among

them which is shown in Fig. 6.24. The steady wave resistance shown in Fig. 6.25 looks

negligible at Fn = 0.20 and becomes lower than that of the one optimized with four

genes at Fn = 0.260 ∼ 0.335. From these comparisons we could notice that the results

of six genes are better than those of four genes for both the added resistance and steady

wave making resistance.

Having a close look at the stern part of the perspective view shown in Fig. 6.20, an

eccentric shape at stern part exists in this figure which is due to the amplitude of shape

function denoted as α in Fig. 6.19. It also appears at the shape function of the best

optimized ship with four genes shown in Fig. 6.12. To evade this, the amplitude of

shape function (α) on that part is intentionally set to be zero. Thus the best optimized

hull is intentionally modified and its new perspective view is given in Fig. 6.26.
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(a) Body plan

(b) Perspective view

Figure 6.20: Body plan and perspective view of six genes

The added resistance resulting from this intentional change for several Froude numbers

can be seen in Fig. 6.27. From this result, we could understand that the added resistance

still decreases in large amount from that of the basis hull, although its quantity is lower

than that when the amplitude of the shape function is not equal to zero (α = 0.12).

Different with the added resistance, in Fig. 6.28 we could not observe the discrepancy

of the steady wave resistance coefficient between the basis hull and the optimized ones

with six genes and α = 0.00 for all Froude numbers. Therefore it can be confirmed that

the total wave resistance of the optimized ship is reduced from the decrease in the added

resistance with the steady wave resistance being almost unchanged [20].

After obtaining the best optimized hull geometry from this optimization, let us now

investigate the contribution from each term of the Kochin function in the resulting

added resistance as shown in Fig. 6.27, especially at Fn = 0.20. In this case, the

Kochin function is decomposed into diffraction and radiation terms as well as a cross
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Figure 6.21: Surge motion of six genes

Figure 6.22: Heave motion of six genes

term between them as given in Eq.2.178 to Eq.2.180. The resulting added resistance

due to these decompositions is shown in the following Fig. 6.29. The added resistance

of the basis hull form is also given in the same figure for comparison.
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Figure 6.23: Pitch motion of six genes

Figure 6.24: Added resistance of six genes

From Fig. 6.29, we could observe that the total added resistance resulting from this

optimization is lower than that of the original ones, particularly around its peak to the

longer wavelength region. However slightly increase of it is also observable in shorter

wavelength region. If we look at each component of the added resistance, it is clearly
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Figure 6.25: Wave resistance coefficient of six genes

Figure 6.26: Perspective view of six genes with α = 0.00

shown on Fig. 6.29 that the discrepancy of the added resistance in shorter waves is due

to the diffraction component given as dotted line. However around its peak to the longer

waves, it is atributed to the radiation components given as dashed-dotted line.

For more investigation, the Kochin function of radiation problem is further decomposed

into surge, heave and pitch motions as we only consider the symmetric mode of motion.

However, according to the sensitivity study described in Chapter 4, contribution of the

surge motion is negligible in determining the peak value of the added resistance. The

result of these decomposition can be seen in Fig. 6.30. From this figure we could observe

that the prominent component of radiation problem in determining the peak value of

the added resistance is due to the pitch motion given as dashed-double-dotted line on
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Figure 6.27: Added resistance of six genes with α = 0.00 for several Fn

Figure 6.28: Wave resistance coefficient of six genes with α = 0.00

that figure. It is almost the same with that due to the total component of radiation

problem given as dashed line.

In Fig. 6.30, we could observe that the added resistance due to heave motion decreases

in very large quantity due to the amplitude reduction of it shown in Fig. 6.22. However
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Figure 6.29: Main Component of RAW

Figure 6.30: Radiation Component of RAW

its effects are not significant to the total added resistance which only diminishes in

relatively small amount as shown in Fig. 6.24.
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Conclusions

Performance of a ship has been improved by a practical integrated optimization method

which was newly developed in this study. Namely, the Binary-Coded Genetic Algorithm

(BCGA) and Enhanced Unified Theory (EUT) were integrated together to reduce the

resistance of a ship in waves through the shape function and Lagrangian interpolation.

A modified Wigley model was firstly employed as a basis hull, followed by an actual ship

i.e. SR-108 for practical purposes. For modified Wigley model, the optimization was

performed at short (λ/L = 0.30 ∼ 0.80) and middle (λ/L = 0.80 ∼ 1.30) wavelengths

regions with the total added resistances being the objective function. For SR-108, it

was optimized only at middle wavelength region based on sensitivity study to the peak

value of the added resistance. The results obtained in this study may be summarized as

follows:

a. For the modified Wigley model at short wavelength region, a finer shape of bow

and stern with combination of inserting the parallel middle body (PMB) to the

aft- and fore-bodies of a ship would reduce the added resistance at concerned

wavelengths but increase around its peak to longer wavelengths.

b. For middle wavelength region, a slightly blunter bow shape with inserting the

PMB only to the fore-body of a modified Wigley model would reduce the added

resistance around its peak. It might be attributed to the pitch motion but slightly

increases at short wavelengths as its bow shape becomes blunter.

c. By doing a sensitivity study to the added resistance, especially at its peak, it was

found that the pitch motion is the most sensitive to the peak value of the added

resistance. Hence it was used as the primary fitness function to be optimized for

an actual container ship, SR-108.
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d. The best optimized shape of SR-108 in which the PMB was inserted and the blunter

bow was acquired would reduce the added resistance in large amount around its

peak at concerned wavelengths due to reduction of the pitch motion as well as

reduction of the heave motion.

e. Removing an eccentric shape i.e. small bump near stern of the best optimized

SR-108 did not increase the steady wave resistance but slightly increased the peak

value of the added resistance. Nevertheless, compared to the basis hull, the amount

of reduction of the resistance was remarkable.

f. The bow shape of a ship was the most important part in determining the added

resistance followed by the stern part which was also influential in reducing the

steady wave resistance.
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