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“If anyone travels on a road in search of knowledge, God will cause him to travel on one
of the roads of Paradise. The angels will lower their wings in their great pleasure with
one who seeks knowledge. The inhabitants of the heavens and the Earth and (even) the
fish in the deep waters will ask forgiveness for the learned man. The superiority of the
learned over the devout is like that of the moon, on the night when it is full, over the
rest of the stars. The learned are the heirs of the Prophets, and the Prophets leave (no

monetary inheritance), they leave only knowledge, and he who takes it takes an abundant

portion.”

Sunan of Abu-Dawood
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Abstract
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Doctor of Engineering

by Muhdar Tasrief

In order to enhance the performance of a ship in waves, improvement of its hull geometry
seems to be important and should be treated appropriately. For this purpose, a prac-
tical integrated optimization method is developed and utilized to acquire the improved
ship geometry. Namely, the Genetic Algorithm (GA) with binary encoding or so-called
Binary-Coded Genetic Algorithm (BCGA) and the Enhanced Unified Theory (EUT)
are integrated together to optimize the basis ship geometry through its Sectional Area
Curve (SAC).

In this study, the shape function based on the shifting method is adopted to the SAC
during optimization. Specifically the position of transverse sections is shifted in longitu-
dinal direction to modify the prismatic coefficient, the longitudinal center of buoyancy
and the parallel middle body of the basis ship geometry. For simplicity, the principal
dimension i.e. the ship length, breadth and draft must be constant. Needless to say
that the main objective function of this optimization is to minimize the added resistance

computed by EUT as a core method of computation.

From the results obtained in this study, the added resistance of modified Wigley model
decreases in large amount at the desired wavelength region in which the optimization
is performed. Furthermore, an optimization with the actual ship, namely SR-108 is
also done in order to illustrate the effectiveness of the present method for the practical
purpose. Thus it can be concluded that the combination between the BCGA and the
EUT may be regarded as a reliable practical tool to improve the performance of a ship

in waves, particularly in reducing the added resistance.
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Chapter 1

Introduction

1.1 Background

A ship is a dynamic floating body operated in an environment called ocean. In the
ocean, rough weather may occur due to winds and waves. When a ship is moving
on such weather, its resistance may increase, especially due to waves. Such inevitable
condition may lead to involuntary reduction of ship speed and to perilous circumstance
accordingly. Moreover a new regulation of the International Maritime Organization
(IMO) regarding the energy efficiency for ships, especially the Energy Efficiency Design
Index (EEDI) has come into force. It is definitely a mandatory for the new ships with
400 gross tonnages and above, in which the attained EEDI for those ships should be less
than the required EEDI.

One way to lessen the attained EEDI of a ship is by decreasing its propulsion power,
which may lead to reduction of its speed. To preserve the speed of a ship while lowering
its propulsion power, an improvement of ship hull geometry should possibly be done to
enhance its performance. Reducing an increase of resistance in waves, namely the added

resistance of a ship will be a worthy choice to realize that.

A simple method to generate a new geometry of ships is by adopting the lines distortion
approach in which the new lines are generated from the lines of a basis ship geometry as
a parent by modifying some form parameters e.g. prismatic coefficient, block coefficient,
longitudinal center of buoyancy, parallel middle body, etc. A former work exploiting
this approach is the shifting method. In this method, the Sectional Area Curve (SAC)
is distorted by shifting the longitudinal positions of each section in between the ships

ends in such a way to modify the form parameters.
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However it is recognized that generating the new ship geometry through the line distor-
tion approach does not mean that the new ship geometry will have a better hydrody-
namic performance than the original ones. To cope with this matter, an optimization
method becomes necessary to acquire the best optimized ship geometry resulting from
the line distortion approach. In general, there are two major categories of optimiza-
tion methods; namely deterministic and stochastic optimization algorithms. However,
the deterministic method is never user-friendly and thus the stochastic optimization
algorithm, namely Evolutionary Algorithms (EAs) would be exploited to get the best
optimized ship geometry in this study.

Among the EAs, the Genetic Algorithm (GA) is the most extended method representing
the evolutionary tool based on natural selection. The GA searches for the best solution
by involving its genetic operators such as selection, crossover and mutation operators,
including elitism. This solution is obtained by means of encoding and decoding mech-
anisms. A common method for encoding, namely the binary encoding will be used
further due to its simplicity and gives many possible solutions even with small disparity.
It should be noted that the GA is a stochastic method, and thus slightly different results

might be occurred for different runs.

In this dissertation an optimization method based on natural selection, namely the GA
with binary encoding or so-called the Binary-Coded Genetic Algorithm (BCGA) is newly
constructed by adopting the shifting technique to the SAC of a ship. In the optimization
process, the shape function combined with Lagrangian interpolation is introduced for
generating an innovative shape of this curve with optimized form parameters; hence
increasing performance of a ship. Specifically, at least two parameters in the shape
function are optimized to generate the new SAC. One parameter is used to define the
magnitude of shape function whether to change the cross sectional area of each station
or not, except those at ship ends and middle stations as well as at a fixed station which
is defined by another parameter being optimized. The number of these parameters could

be increased to generate more various shapes of SAC.

For the purpose of establishing a new BCGA and to examine its performance, a modified
Wigley model with blunt-bow coefficients is employed as a basis ship geometry. The
objective function used in this optimization is measured from the added resistance owing
to ship motions. It will be computed by means of Enhanced Unified Theory (EUT)
due to its superiority to the strip theory in that the effect of wave reflection mainly
generated near the bow is taken into account through the body boundary condition
in the diffraction problem as well as 3D and forward-speed effects ignored in the strip

theory are incorporated in the EUT through the matching process.
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In order to illustrate effectiveness and efficiency of the present method developed, an
actual ship e.g. SR-108 is also employed as a basis ship geometry in addition to a
modified Wigley model. In this case the objective function will be based on sensitivity
study to the added resistance about its peak. According to the sensitivity study, it is
found that both amplitude and phase of the pitch motion give the largest contribution to
the peak value of the added resistance. The optimization of SR-108 therefore is extended
with multi objective functions, namely the pitch motion component will be the primary
fitness function followed by the total added resistance as the secondary fitness function.
In addition, the steady wave-making resistance is also computed in order to confirm

reduction of the total resistance of such ship.

1.2 Overview

This dissertation is concerned with the ship optimization of hydrodynamic problems. In
this case, the optimization will be based on an existing ship as a basis ship geometry to
comply with the regulation of IMO regarding the EEDI. The purpose of this regulation
is to reduce the emission of the green house gasses from international shipping. It can
be attained by improving ship performance which allows us to decrease the main engine
power. Particularly, reducing the ship motions and thus minimizing the added resistance

is addressed to this study.

The main objective of this study is to develop a computational algorithm, namely a
practical integrated optimization method, to obtain an optimal ship geometry with high
seakeeping performance. To achieve this objective, an optimization method based on
natural selection with binary encoding, namely the BCGA is constructed with a modified
Wigley model employed as a basis ship geometry. In this algorithm, the shape function
followed by Lagrangian interpolation and the EUT for computing the added resistance

are incorporated as subroutines in the main algorithm.

For the purpose of establishing this optimization method, an optimization is performed
for two different cases based on the selected operational area of a ship. Namely, the
shorter wavelengths (A\/L = 0.30 ~ 0.80) and longer wavelengths (A\/L = 0.80 ~ 1.30)
regions are chosen. In this case the objective function is to minimize the total added
resistance. In addition of optimizing a modified Wigley model, an actual ship SR-108
is also optimized at certain wavelengths region in which the added resistance becomes
maximum. The steady wave resistance is also computed to confirm reduction of the

total wave resistance.
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Chapter 1 of this dissertation describes the introduction, including the background,
overview and objectives of the study. In Chapter 2, the optimization method is given
with the shape function of the SAC. Besides that, the computation method of the added
resistance is also elucidated in this chapter. Description of the computed model is
provided in Chapter 3. Chapter 4 describes the sensitivity of the peak value of the
added resistance to the ship motions. This chapter also discusses the relative importance

of each term in the added resistance.

Before optimizing the SAC, it might be useful to understand its characteristics by the
shifting method which is given in Chapter 5. In order to acquire the best perfromance
of the GA, a preliminary and validation of its computation method should be done which
is described in Chapter 6. The results and discussions of the optimization for both
of modified Wigley model and actual ship SR-108 are also given in the same chapter.

Finally, the conclusions and recommendations are given in Chapter 7.



Chapter 2
Theory of Computation

In the ship optimization problem, there must be an optimization method to obtain the
best optimized ship geometry with an optimal performance according to the objective
function. In this study, the Genetic Algorithm (GA) with binary encoding or so-called
Binary Coded Genetic Algorithm (BCGA) and the Enhanced Unified Theory (EUT)
based on the linear potential theory are combined together to optimize the basis ship
geometry by computing the added resistance as the objective function. In order to un-
derstand these, the theoretical background and calculation methods of this optimization

are going to be elucidated in this chapter.

2.1 Optimization Method

2.1.1 General Description of Binary-Coded Genetic Algorithm (BCGA)

In general there are two major classes of the optimization algorithms, namely determinis-
tic and stochastic optimization algorithms. Deterministic algorithm is always having the
same solution with the same number of the objective functions under the condition that
the search space, starting-point, and termination condition are constant. Although the
same solution is always obtained, the deterministic optimization algorithm is not user-
friendly due to its complexity. Thus the stochastic optimization algorithm, namely the

Evolutionary Algorithm (EA) should be exploited to get the best solution of a problem.

The EA is an attempt to solve problems by mimicking the process in natural evolution.
The most extended and popular technique representing the application of this evolu-
tionary theory is the Genetic Algorithm (GA). The GA is actually adaptive heuristic
search algorithm based on natural selection and genetic to find the best solution of the

problems. It is inspired by the theory of evolution, nameley survival of the fittest.

5
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A set of initial possible solutions or so-called a population inside a certain domain called
search space, is randomly generated in GA. A population contains a certain number
of potential solutions, sometimes called individuals or chromosomes. A chromosome

consists of some genes and it can be expressed as follows
Ci = (xl,xz,xg,...,a:j) (2.1)

where x; represents a gene with j-number of the i-th potential solution. A gene itself

represents a special character of chromosome.

In GA, possible solutions from one population are taken and used to form a new popula-
tion with the motivation that it will be better than the old population. Every individual
in a population is assigned according to the fitness function, a measure of its goodness
with respect to the problem under consideration. In another word, the value of the fit-
ness function is regarded as the quantitative information to guide in searching the best

individual of a population.

To put the GA working on any problems, it is necessary to define a method for encoding
a chromosome. There are several kinds of method to encode a chromosome, for instance
binary encoding, value encoding, permutation encoding, and tree encoding. In binary
encoding, every chromosome is given in form of a string of bits. For value encoding,
a chromosome is given as a sequence of some values. In permutation encoding, every
chromosome is a string of numbers that represent a position in a sequence and thus it
is usually used in ordering problems. In case of tree encoding, every chromosome is a

tree of some objects, i.e. functions or commands in programming language.

Among those methods of encoding, the binary encoding is the most common one to
encode a chromosome containing some characters on its genes. This is due to its sim-
plicity to be used in any kind of problems. Nevertheless the binary encoding gives many
possible solutions even with small disparity. In binary encoding a chromosome given in

Eq.(2.1) can be expressed as, for example
C = (1101, 1111, 1010, 0110, 0010) (2.2)

or simply given as

C = (11011111 1010 0110 0010) (2.3)

From this chromosome, it could be understood that it consists of five genes and each

gene is constituted with four bits.

After encoding, decoding takes place. Genes of a chromosome in form of binary strings

are firstly converted to the integers or decoded binary strings of j-th gene with length
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m by using the following formula

mj—l

=Y 2%, (2.4)
k=0

where S is a bit of strings whether 0 or 1 and represented as S,,_1, ...53, S92, S1, Sg. These
decoded binary strings are then converted to the real numbers by using the following
transformation

(RY — RY)

_ plL J
Ry =8+ mm =3y

X Ij (25)
with superscripts U and L denote upper and lower limits of the j-th gene. It should be
noted here that in this study a term of gene is refer to a parameter being optimized. An
example of using these transformations may be given with the first gene of chromosome
in Eq.(2.3), i.e. 1101. In this case we have 4-bits string (m = 4), thus its decoded binary

string or integer value is equal to
IT=22x1+22x1+2'x0+2"%x1=13

Knowing the value of upper and lower limits of this gene, for instance 0.0 and 1.0

respectively, the real value of it may be obtained easily using Eq.(2.5) as follows

(1.0 — 0.0)

R=0+5r

x 13 = 0.86667
In GA the most important part is the genetic operators involving several operators,
such as selection, crossover, and mutation operators including elitism. Its performance

is extremely influenced by these operators.

Selection Operator

Selection in the genetic algorithm is the process of choosing parents for mating. Thus it
can be said that the selection operator is a genetic operator that chooses a chromosome
from the current population for inclusion in the next population. It is believed to be
responsible for the convergence of the algorithm. Good individuals based on their fitness
value will be selected to be parents for mating. There are several methods available for

selection purpose such as

e Roulette wheel; A selection operator in which the chance of a chromosome getting
selected is proportional to its rank or fitness. In this method, The wheel is spun
N times, where N is the number of chromosomes in the population. On each spin,
the chromosome under the wheels marker is selected to be in the pool of parents

for the next population
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e Tournament; A selection operator that provides selective pressure by holding a
tournament competition among N chromosomes. The best chromosome from the
tournament is the one with the highest fitness. It is then chosen as the selected

individual for the next population.

e Rank; A selection operator which ranks the population and every chormosome
receives fitness from the ranking. The worst chromosome has fitness 1 and the

best has fitness N.

e Boltzmann; A selection operator that simulates the process of slow cooling of
molten metal to achieve the minimum function value in a minimization problem

of simulated annealing.

e Top percent; A selection operator that randomly selects a chromosome from the

top N percent of the population as specified by the user.

Although there are some kinds of selection operator, the most commonly used for selec-
tion are only the first three operators. For faster convergence, the tournament selection
is usually adopted because it selects the winner of a tournament. However it does not
mean that the tournament selection is always better than the roulette wheel selection;

it depends on the problem encountered.

Crossover Operator

In GA, crossover or reproduction is a genetic operator that mates two parent (old)
chromosomes to produce offspring (new) chromosomes depending on the crossover prob-
ability (P.). The idea behind crossover is that the new chromosome may be better than
both of the parents if it takes the best characteristics from each of the parents. The
main search tool of BCGA relies on this operator. Crossover occurs during evolution
according to a user-definable crossover probability. Various crossover techniques can be

given as follows

e Single point; A crossover operator that randomly selects one crossover point within
a chromosome then interchanges the two parent chromosomes at this point to

produce two new offspring chromosomes.

e Two point; A crossover operator that randomly selects two crossover points within
a chromosome then interchanges the two parent chromosomes between these points

to produce two new offspring chromosomes.

e Multi-point (N-point); A crossover operator which randomly selects N-number
crossover points within a chromosome then interchanges the two parent chromo-

somes between these points to produce two new offspring chromosomes.
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e Uniform; A crossover operator that decides which parent will contribute to each
of the gene values in the offspring chromosomes based on mixing ratio defined by
user. This allows the parent chromosomes to be mixed at the gene level rather

than the segment level (as with one and two point crossovers).

e Heuristic; A crossover operator that uses the fitness values of the two parent
chromosomes to determine the direction of the search. The offspring are created

according to the following equations

Of fspringl = BestParent + r x (BestParent — WorstParent) (2.6)
Of fspring2 = BestParent '

where r denotes a random number between 0 and 1.

o Arithmetic; A crossover operator that linearly combines two parent chromosome
vectors to produce two new offspring chromosomes according to the following equa-

tions:

Of fspringl = a x Parentl + (1 — a) x Parent2 } (27)

Of fspring2 = (1 — a) x Parentl 4+ a x Parent2

where a is a random weighting factor.

Because of simplicity, the most commonly used crossover operators are single point,

N-point, and uniform crossovers.

Mutation Operator

After crossover is performed, mutation takes place. Mutation is a genetic operator that
alters one or more gene values in a chromosome from its initial state based on the
mutation probability (P,,). This probability should usually be set fairly low (0.01 is
a good first choice). If it is set to high, the search will turn into a primitive random
search. According to its definition, the main purpose of mutation is to prevent premature
convergence or stagnating at any local optima by ensuring population diversity. As the
same with selection and crossover operators, the mutation operator also has various

kinds given as follows
e Flip bit; A mutation operator that simply inverts the value of the chosen gene (0
goes to 1 and 1 goes to 0).

e Boundary; A mutation operator that replaces the value of the chosen gene with

either the upper or lower bound for that gene (chosen randomly).
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e Uniform; A mutation operator that replaces the value of the chosen gene with a
uniform random value selected between the user-specified upper and lower bounds

for that gene. This mutation operator can only be used for integer and float genes.

e Non-uniform; A mutation operator that increases the probability that the amount
of the mutation will be close to 0 as the generation number increases. This mu-
tation operator keeps the population from stagnating in the early stages of the
evolution then allows the genetic algorithm to tune the solution in the later stages

of evolution.

e Gaussian; A mutation operator that adds a unit Gaussian distributed random
value to the chosen gene. The new gene value is clipped if it falls outside of the

user-specified lower or upper bounds for that gene.

The first operator is specially used for binary genes and the remaining operators can
only be used for integer and float genes. Because in this study the binary encoding is

adopted, thus the only available operator for mutation is flip bit operator.

Elitism

In order to keep the highest fitness chromosome in the new population, elitism must be
involved. This is because, by elitism the best chromosome in the previous population is
always included in the new population and it will be selected directly to be parent if the
best chromosome in the current population has lower fitness than the one in the previous

population. Performance of the BCGA is improved significantly by this operator.

Generally, the optimization-flow process involving all of such operators can be seen in
Fig. 2.1. The optimization is begun with the basis ship geometry followed by creating
an initial population at the first generation. Here some individuals or chromosomes
which consist of some genes are randomly generated in form of binary strings as given
in Eq.(2.2) or Eq.(2.3). These chromosomes are firstly decoded to the integers by using
Eq.(2.4) and then transformed to the real-valued parameters by transformation given in
Eq.(2.5). The process is then followed by generating various shapes of Sectional Area
Curve (SAC) by the shape function. It should be noted here again that each gene

represents a parameter being optimized in the shape function.

Once the new sectional area curves have been obtained through the shape function
together with Lagrangian interpolation to get the new station positions, the Enhanced
Unified Theory (EUT) is then used to find their fitness. Based on their fitness, then the
selection is performed, followed by crossover and mutation respectively as well as elitism

if necessary to obtain the new individuals which will be used to replace all individuals
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of a population in the former generation. This process will be repeated until the result

converges at a certain number of generations.

START with basis hull form

h 4

Seed Population;
Generate N individuals

]

Decode mdmviduals

v

v

Find new SACs by shape
function & interpolation

h 4

Find fitness by EUT

Perform genetic operations Check convergence

LN

END with optimized hull
form

F1GURE 2.1: Flow process of BCGA

It should be kept in mind that a slightly different result for the same problem from one
run to another might be obtained as the BCGA is a stochastic method. Further details
of GA and its operators might be found in, for example Coley [4], Sivandam and Deepa
[5], and Chakraborty [6].

2.1.2 Lines Distortion Approach

Because the shape function is based on the shifting method, it is necessary to explain
about this method in obtaining the new ship hull geometry. A simple approach to ob-
tain the ship hull geometry derived from a basis hull is by distorting the Sectional Area
Curve (SAC) of the basis hull. In this case the alternative designs are derived with
the same principal dimensions but different form coefficients i.e. the block coefficient
(CB), prismatic coefficient (Cp), and longitudinal center of buoyancy (Lcpg). These can

be made by moving aft or forward the shape of sections along the ship’s longitudinal
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axis (z-axis) in an appropriate way and hence distorts SAC. Therefore by the Lack-
enby [3] transformation, the block coefficient through prismatic coefficient can be varied

independently for the aft- and fore-bodies using the following formulae

2[6Cp(Bf —Z) — 02(Cpt + 0Cpt)] — Cdps + Cobpy

5Cpa — TR (2.8)
5Cmr — 2[0Cpi(By + %) + 62(Cpy + 0Cpt)] + Cpdps — Cabdpq (2.9)
Pr= (Bf + B,) '

Here subscripts a and f denote quantities of the aft- and fore-bodies, respectively. These

are subject to the practical limits

p(1—Cp)+1a (1 - 1%)

5Cp = (2.10)

I-p
where Cp is the total prismatic coefficient of the basis hull and §Cp the required change
in the total prismatic coefficient. Z means the distance of Lo p in the basis hull form from
midship expressed as a fraction of the half-length and 0Z the required shift of Lop in
the derived form. p and dp denote the fractional length of parallel middle body and the
required change in the parallel middle body of the half-body, respectively. The position
of Lop can be shifted independently by changing the value of §Z and the parallel middle
body can be introduced by altering the value of §p which has the following practical

limits
I-p
op = P (2.11)

Therefore the general relation between the fractional distance of any transverse section

() from midship and the necessary shift (0x) in the z-axis can be obtained as follows

5x:(1—:£){15_pp—|— (x;p) [5cp—5p<11__ip>}} (2.12)

In Eq.(2.8) to Eq.(2.12) A, B and C are constants depending only on the geometrical

properties of the basis hull and can be computed by the following equations

A = Cp(li— QT);p(l—ij
_ Cp[2T — 314:A7 p(1 —27) (2.13)
B(l - Cp) — Cp(l - QT)

1—p

Here 7 and k stand for the fractional distance (lever) of the first moment and the second

moment of the half-body about midship.
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2.1.3 Shape Function

During optimization, the shape function based on principle of the shifting method is
introduced for generating various shapes of SAC. Specifically, some parameters in the
shape function are optimized to generate the new SAC. One or more parameters are
used to define the magnitude of shape function to change the cross sectional area of
each station except those at ship ends and a station with the largest transverse area
(usually midship) as well as at a fixed station defined by another parameters which are

also to be optimized.

The shape function was firstly introduced by Kim H. et al. [7] with two parameters
for optimizing only the fore body. However this function is extended in this study with
several parameters for optimizing the whole body of a ship as given in Eq.(2.14), for

instance with six parameters

Ap(x) = Ao(z) + f(x)

- o 11/2
ag 0.5 (1 —cos2m—

- . . 1/2
as (0.5 (1 —cos2m——
- J1/2

| v—o1 )]’ 2.14
oy 0.5 <l—cos27r> yo1 < x < x9 ( )

ag [0.5 (1 — cos QWH

where Agp(z) and f(x) denote the original SAC and the shape function, respectively. as
to ag are the parameters used to determine the slope of SAC or magnitude of the shape
function, a; and as the parameters to control the location of fixed stations as shown in
Fig. 2.2.

Specifically three among them will optimize SAC of the aft-body, with two parameters
determining the slope of SAC and the remainder controlling the location of a fixed
station. Another three parameters of total six parameters will optimize SAC of the
fore-body with the same formation as for the aft-body. All parameters in the shape
function are determined during optimization. The number of parameters can be varied
to get more various shapes of SAC. Because the whole body of a ship is optimized, then
the fixed stations x1, xe, and x3 will be the position of the aft-end, middle (largest

transverse area), and fore-end stations, respectively.
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F1GURE 2.2: SAC and shape function

2.1.4 Fitness Function

In the optimization process, the objective function should be defined first whether to
maximize or minimize the function. In this case the objective function is taken to min-
imize the added resistance. In order to understand the performance of an optimization
process, it is necessary to define the fitness function or the so-called Performance Index

(PI) of an individual as shown in Fig. 2.3.

A
.

ey
N

=
<

g

=K

.

=
e
~ Pr
Min. AfL Max.

FIGURE 2.3: Performance Index (PI)

According to Fig. 2.3, the PI is defined as the area beneath the added resistance curve.
It should be noted that PI itself is readily obtained by computing the blue area using a
numerical integration method. Because the objective function is to minimize the added
resistance, the lower a value of the PI implies the higher performance of a ship in term
of the added resistance. Needless to say, the minimum and maximum wavelength ratios

in Fig. 2.3 are determined according to area in which a ship being optimized will be
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operated.

2.2 Theory of Water Waves

2.2.1 Governing Equations for an Inviscid Fluid

The governing equations are derived from the conservation of mass and the conservation
of momentum. By defining a fluid volume under consideration as V' (¢) and denoting the

fluid density as p, the conservation of mass can be written in the form

jt///v(t)pdv—o (2.15)

Regarding the conservation of momentum, by neglecting the viscous shear stress and
considering only the normal pressure force and the gravity force, we can obtain the

following relation

d/// pu; dV = // pn; dS + /// pgdiz dV (2.16)
dt V(t) S(t) V()

where S is the surface of the fluid volume and p is the pressure acting on the surface
with n; the i-th component (i=1,2,3) of the unit normal vector pointing out of fluid
volume, u; is the i-th component of the velocity vector, g and d;3 denote the gravity

acceleration and the Kronecker’s delta, equal to 1 only for ¢ = 3.

For the left-hand sides of Eqgs.(2.15) and (2.16), we can apply the transport theorem [8]

written in the form

il =]l

where F; denotes the i-th component of a vector quantity or can be simply a scalar

OF; dV+// Fyu, dS (2.17)
ot s

quantity.

Utilizing Gauss’ theorem with understanding of u, = wu;jn;, the surface integral in

Eq.(2.17) can be transformed into volume integral and hence Eq.(2.15) can be expressed

e[l e

Since this volume can be composed of an arbitrary group of fluid particles, the integrand

as

itself must be equal to zero for the entire fluid. Thus the conservation of mass gives the
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following continuity equation
0

For an incompressible fluid, the density is constant, and thus the continuity equation
can be given as
6Uj
— =0 o V-u=0 (2.20)
8.CC]‘
Similar to the continuity equation, by applying the transport theorem as well as Gauss'

theorem to the conservation of momentum, it follows that

/ / /V [gt(puiwaij(pum)} dv = / / /V [—gji + pg5i3] v (2.21)

It is noted again that the fluid volume in question is arbitrary; hence Eq.(2.21) must

hold for integrands alone. For an incompressible fluid with constant density, we can

finally obtain Euler’s equations in the form

ou; ou; 1 0p
) S— ) 2.22
ot * i 8xj P 8.% * 9(513 ( )

where the continuity equation Eq.(2.20) has been invoked. Equations (2.20) and (2.22)

are the governing equations for an incompressible inviscid fluid.

2.2.2 Potential Flow and Velocity Potential

In most problems related to water waves, we may assume that the motion of fluid is
irrotational; that is V x u = 0. On the other hand, in the vector analysis, an identity
of V x V& = 0 holds for an arbitrary scalar function @(x,t). Combining these, we can
see that velocity vector can be represented as u = V @ in terms of scalar function which
is known as the velocity potential. The flows than can be described with the velocity

potential are referred to as the potential flows.
If u = V@ is substituted in the continuity equation Eq.(2.20), it follows that

0*®
—— =0 or V¢ =0 (2.23)
aazj

This is known as the Laplace equation and the governing equation to be solved for

potential flows.

Next we consider how Euler’s equations Eq.(2.22) can be transformed for the potential

flow. For the case of irrotational fluid motion expressed by V x u = 0, the advection
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term on the left-hand side of Eq.(2.22) can be written as

w2t 19
jaibj N 281‘@'

(Vo -Vo) (2.24)

Therefore, by substituting u; = V@ in Eq.(2.22), it follows that

o (09 1 D
L IVP-VP+ L — = 2.2
B, <8t + 2V Vo4 p gz> 0 (2.25)

and then the following equation known as Bernoulli’s pressure equation can readily be

obtained:
09 1

—pe=—p| = +VP - VP — 2.26

P De p<at+2 92> (2.26)

where p. is a constant, which can be taken equal to the atmospheric pressure p, for the

1
case of zero forward speed and equal to p, + i,oU 2 when considered with a reference

frame moving at constant speed U.

2.2.3 Boundary Conditions

In order to solve the Laplace equation, appropriate boundary conditions must be imposed
on the boundaries of the fluid domain concerned. To describe those boundary conditions

explicitly, we write the velocity potential as follows:
O(x,t) =U[Pp(x) + ¢s(x)] + Py(=, t) (2.27)

by (z,t) =R [p(z)e™] (2.28)

where @p represents the steady basis flow, normally taken as the double-body flow
or simply the uniform flow equal to —z for the so-called Neumann-Kelvin problem.
¢s(x) denotes the steady disturbance term associated with steady waves. The unsteady
velocity potential is assumed to be time-harmonic with encounter circular frequency w,
and we will consider the spatial part ¢(z), with the time-dependent term e** factored
out as in Eq.(2.28). With these expressions, first from Eq.(2.26) the pressure can be

written in a decomposed form as follows:

P(x,t) = pgz + Ps(xz) + Py(z,t) (2.29)
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where
L o
Ps = SpU*(1-V V)
1
= 5pU2 (1—-V&p -VIp —2VDp - Vo) + O(¢?) (2.30)
o 1
Py = —p|=4+UV-V)|dy— Vo, -Vy
ot 2
= —p (6815 +UVPp - v> By + O(¢ps Py, Dy?) (2.31)

and V = V(&p + ¢s). In Egs.(2.30) and (2.31), higher-order terms in ¢5 and @y are
neglected. By substituting Eq.(2.28) in Eq.(2.31), the linearized unsteady pressure can

be written in the form

Py(z,t) =R [p(z)e™] } (2.32)

p=—pliw+UVPp V)p

Although the free-surface boundary condition can be derived by combining the kine-
matic and dynamic conditions, a more expedient approach is to consider the substantial

derivative of the pressure equal to zero on the free surface. Namely

(gt v, v> lpg= + Ps(@) + Pu(w,0)] =0 on z=¢ (2.33)

where z = ((x,y,t) denotes the wave elevation on the free surface.

Substituting Eq.(2.27) for @ and Eqgs.(2.30) and (2.32) for Pg and Py respectively and
ignoring higher-order terms in ¢s and ¢ as in obtaining Eqgs.(2.30) and (2.31), the lin-
earized free-surface boundary conditions for the steady and unsteady velocity potentials
can be obtained. Those results may be expressed as follows:

172

5 Vo V(Vép-Vap)+ UN &p -V(VPp - Vy)

U? 0o

+7V(V¢D -V&p) -Vos—g 5, OhF= 0 (2.34)

—w?¢+2iUWNV &p -V + U*N Sp - V(dp - Vo)
U2 )
+7V(V¢D -V&p)-Vo+ UV2¢D(iw+ UVop - V)¢—g£ =0 onz=0

(2.35)
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In these boundary conditions, if only the uniform flow is considered as the steady basis

flow (&p = —x), we can approximate as

Vop =—e (2.36)

where e; denotes the unit vector along the z-axis. In this case (Neumann-Kelvin ap-

proximation), Eqgs.(2.34) and (2.35) take the following forms

2
U? %f; = gaaqis =0 onz=0 (2.37)
0\°, ¢
(iw—Uax> qﬁ—g&:O onz=0 (2.38)

Next we consider the boundary condition on the hull surface of a ship, which may be
obtained also by considering the substantial derivative of the ship’s hull surface equal to
zero. In terms of the body-fixed coordinate system & = (7,7, Z), the ship’s hull surface
is supposed to be expressed as F(Z) = 0. Then, by noting that substantial derivative
should be performed with respect to the space-fixed coordinate system x = (z,y, z), the
following relation holds

0 =, 0T oz

<at+v¢(w,t)~v> F(z) = VF-at+V¢(w,t){<VF'a$) el

— Oz — Oz
- (VF : ay> es + (VF- 82> eg} =0 (2.39)

Here, V denotes the differential operator with respect to the body-fixed coordinate
system. With the assumption of small amplitude of unsteady ship motions, the relation

between  and T is given by

T =TT+ O’.(t) (2.40)
3 3
Oé(t) = OéT(t) + aR(t) X T, OLT(t) = ij(t)ej, aR(t) = Z£j+3(t)ej (2.41)
j=1 Jj=1

where £;(t) is the displacement in the j-th mode of ship motions, defined as surge, sway,

heave for j = 1,2, 3, and roll, pitch, yaw for j = 4,5, 6, respectively.

Dividing Eq.(2.39) by |VF| and noting the definition of the normal vector as m =
VF/|VF|, we have from Egs.(2.39) and (2.40) the following:

Vo(x,t) n=a(t) n+[(VO(x,t) V)a(t)]-n (2.42)
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To consider effects of the difference between & and =, the Taylor-series expansion should

be applied to V&(x,t) and the result can be written as

Vo(z,t) = UV(x)+Voy(x,t)
= UV (z)+Voy(z,t)
+Ha(t) - V) [UV(Z) + Voy(z,t)] + O(a?) (2.43)

Then, substituting Eq.(2.43) in Eq.(2.42), separating into steady and unsteady terms,

we can have the linearized body boundary conditions as follows

0P s
V.nza—f+ai:0 on Sy (2.44)
V@U-n:a;;[]:d(t)-n—l—U[(V-V)a(t)—(a(t)'V)V]-n on Sg  (2.45)

Here Sy denotes the wetted part of hull surface of a ship, and we note that @ and 7 are
replaced with & and n, because the effect of difference between these can be regarded

as higher order and hence neglected.

Assuming time-harmonic motion, we write the unsteady displacement in the j-th mode

of motion in the form

&(t) =R [Xje'] (2.46)

where X is the complex amplitude. Then we can show that Eq.(2.45) can be recast in

the following form
6
99 _ . U
% = w;Xj (nj + iwmj> (2.47)

where
(n1,n2,n3) =n, (na,ns,n6) =T xXn

(m1,m2,m3) =—(n-V)V =m (2.48)

(my,ms,mg) = —(n-V)(xx V)=V xn+zxxm

In these body boundary conditions, if the steady basis flow is approximated with uniform
flow, &p = —z and thus V = (—1,0,0). Therefore Eq.(2.44) and Eq.(2.48) reduce to

095
on

=n; on Sy (2.49)

(2.50)

(ml,mg,mg) = (07070) }
(ma, ms, mg) = (0,13, —ng2)
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Last, the radiation condition must also be imposed at a distance from the ship. This
condition is physically rather complicated especially when the ship has both forward
speed and harmonic oscillation. Nevertheless, mathematically, it is known that intro-
ducing the Rayleigh’s artificial viscosity coefficient (denoted as p) into the free-surface
condition ensures the satisfaction of the radiation condition. Taking account of this
technique, for instance, the Neumann-Kelvin type free-surface conditions, Eqgs.(2.37)
and (2.38), should be modified as follows:

0x2 g 0z K ox

2
200 _ 005 _ ;905 _, onz=0 (2.51)

. 9\’ d¢ 4 d
<2w_U8:/U) ¢—gaz+u<zw—Uax)¢—0 onz=20 (2.52)

This Rayleigh’s artificial viscosity coefficient p is supposed to be very small. Thus once
a solution satisfying the radiation condition has been obtained, we may set p equal to

zZero.

2.2.4 Principle of Energy Conservation

We are going to describe the principle of energy conservation which will also be used
in deriving a formula of the added resistance. The conservation of energy is a funda-
mental concept in physics along with the conservation of mass and the conservation of
momentum. In general mechanics, the total energy in the fluid is the sum of kinetic and

potential energies. Mathematically it is expressed as
E=FE;,+E, (2.53)

In a prescribed volume V, it is given by a volume integral

E:p///v<;u2—gz) dep//[/(iV@-V@—gz) dv (2.54)

where the z-axis is positive downward. Utilizing the transport theorem Eq.(2.17), the

rate-of-change with respect to time of the total energy can be written as

dE 0 (1 1
dt—p///vat(QV¢-Vd5—gz> dV—i—,o//S(2V§Z5-V§Z5—gz>undS (2.55)



Chapter 2. Theory of the Added Resistance in Waves 22

Firstly, let us consider the integrand of the volume integral. The only contribution to

this integral is from kinetic energy term which takes the form

o (1 oP 0P
at<2v¢-v¢> =Ve.-Vor =V- (atVsﬁ) (2.56)

Meanwhile the integrand in the second term of the right-hand side of Eq.(2.55), from

Bernoulli’s equation, can be given as

_}_7

P (2.57)

;V@-V@—gz:—(p_pa agp)

Substituting these into Eq.(2.55), then we have

dE_ 8£ . P — DPa 82
dt—p///vv <atV@> dv p//s( , +8t>und5 (2.58)

Lastly, by applying Gauss’ theorem, the first term of the right-hand of side of Eq.(2.58)

can be written as the surface integral and thus it becomes
dE 0P 0P p—pg OP
o= — — | u,| dS 2.59
dt p//s[atan ( P +8t)u] (2:59)

Further details about the theory of water waves in marine hydrodynamics, the reader

should refer to Newman [8] and Kashiwagi [9].

2.3 Theory of the Added Resistance in Waves

2.3.1 Far-Field Asymptotic Form of the Velocity Potential

Let us introduce the velocity potential at large distance from the ship with considering a
ship advancing at constant forward speed U into a plane progressive wave of amplitude
A, circular frequency wg and wavenumber kg at infinite water depth as shown in Fig.
2.4. Due to the incident wave with angle y, the ship undergoes oscillatory motions about

its mean position with the encounter frequency w = wg — koU cos .
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FIGURE 2.4: Coordinate system and notations

Therefore under the assumption that the fluid is inviscid and irrotational as well as the
amplitude of incident wave and ship’s oscillation to be small, the total velocity potential

can then be written as
@T(Jj? y? Z? t) = U[QSD (‘T7 y? Z? t) + ¢3(x7 y? z)] + ds(x? y7 Z? t) (2‘60)

b(x,y, z,t) = Rlo(x, y, 2)e™"] (2.61)

where @p represents the steady basis flow and in what follows for analysing the unsteady
problems, the uniform flow is assumed as the basis flow; in this case ¢p = —z. U is
the constant forward speed of a ship in the z-axis, ¢ denotes the steady disturbance
potential due to steady translation of a ship in otherwise calm water. @ is the unsteady
component due to ship motions in waves given in Eq.(2.61) with R denoting the real
part is to be taken. This component consists of the diffraction and radiation potentials

which can be written in the form

gA
W
where
0o = efk‘ozfiko(ﬂﬁ cos x+ysin x) (263)
wwo o~ X
0 )
80:907*727]% (2.64)
9 =4

are the incident-wave potential and the ship-generated disturbance potential, respec-
tively. The first term in Eq.(2.64) is the scattering wave potential (¢7) and ¢; in the

last term is the radiation potential due to ship oscillation in all six degrees of freedom
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(j =1 ~ 6) with complex amplitude X; in the j-th mode of motion. These velocity

potentials must satisfy the following equations

(L] Vi =0 (2.65)

] w2 5 g2 —0 (2.66)
w 9 10) ga =0, onz= .

[B] g—f =0, at z — o0 (2.67)

[H] &b:iwiX~ n-—l—gm- on S (2.68)
on = T\ w7 a )

where n; and m; are already defined in Eq.(2.48).

Applying the Green’s theorem, the disturbance velocity potential satisfying the radiation
condition in addition to Egs.(2.65) ~ (2.68) can take the form

o) = [[ (%02 -z ) i) s( (2:69)

where P = (z,y,2) is the field point and @ = (£,7,() is the integration point along
the ship’s wetted hull. With the Fourier transform technique, the Green function G

appropriate for the present problem can be obtained as

GmQ>:‘uwQ‘w>

1 [ o0 p—in(z+()—ly—nlvn?+k?
—— e k@) gp. . Re/ n dn
27 J_oo 0o (n+ir)Vn? +k?
k k
1 { / L / 4] LB eyl VR —ik(a—€) g
27 | Jky ks | VEZ — K2

i k1 k3 o K
+—|— + + W i
2w |: /OO ~/kg /k4 :| \/m
« efn(erC)*iEk|y*ﬁ|m*ik($*§) dk (2.70)
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where
.
,} = VE@-2+Wy—n?+(zF()? (2.71)
T
1( +kU)? = K +2k +k2 (2.72)
K = —(w = T+ — .
g Ky
K = < Vo gy= 2 (2.73)
ey —_— T = — _ = .
gv q ) 0 U2
k K
kl = —5 [+ Vitar] (2.74)
2

kg} _ @[1_273“/@} (2.75)
ks 2

-1 for —co<k<k
e = sgn(w+kU) = o ! (2.76)
1 for ko <k<o

In the case of 7 > 1/4, wavenumbers k3 and k4 given by Eq.(2.75) are not real, and thus
the limits of integration in Eq.(2.70) should be interpreted such that ks = k4 for 7 > 1/4
(hereafter this convention should be understood). It should be noted for Eq.(2.69) that
the so-called line integral term, contribution from the intersection line between the free
surface and the ship’s hull surface, is ignored for simplicity and also with the assumption

of slenderness of a ship.

To obtain a far field approximation to the disturbance potential ¢ when the transverse
distance |y| is large, let us consider the asymptotic approximation of the Green function
itself. It is obvious that all the terms except the last one in Eq.(2.70) vanish for large
values of |y|. Therefore, substituting only the last term of Eq.(2.70) into Eq.(2.69), we

obtain the desired approximation of the velocity potential valid at large distances from

the x-axis:
i h P ik
o(x,y,2) ~ — [—/ +/ / ] H e MATIERYVRTERTTIRE gl (2.77)
2m o Jks ka k2
where

// <8n > e—ﬁ(:ﬁ:ié‘kn\/HQ—k‘Qﬁ-ik‘{ ds (278)

is the Kochin function equivalent to the complex amplitude of the far field disturbance
wave. The upper or lower of the complex signs in Eqgs.(2.77) and (2.78) is to be taken

according as the sign of y is positive or negative, respectively. With the convention that
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the Kochin function is zero outside the integration range explicitly shown in Eq.(2.77),

we shall write Eq.(2.77) in the form

1 e . .
pla,y,2) ~ o / iEkHi(k)\/ﬁe‘m“kyv”2—’%—““ dk (2.79)

Up to this point, it is convenient to define the Fourier transform

/ F@)e™ dw = F(R)

(2.80)
/ F(k)e™ dk = f(z)

FHP(R)] ()

2w

and Dirac’s delta function §(x) which has the following property:
| #a)ste = a0) do = s (281)

Different from the usual definition, here €*** is used in the Fourier transform, not in the
inverse transform. By virtue of the Fourier transform, the disturbance potential in the

far-field can be written as

Fleww2) = [ plap2)e™ do
- iekHi(k)\/ﬁe—“m%V K=K (2.82)

Applying the same procedure above, the Fourier transform of incident wave potential

can be given in the following expression

F[QOO(.’L‘,y,Z)] = / Soo(xvyaz)eikm dx

—00

B f[efi(ko cosx)x]efkozfikoysmx (283)

Making use of the property of Diract’s delta function in Eq.(2.81), we may obtain the

following relation

1 > —ikx 1 —ikox
0(k —ko)e dk = —e™ '
21 Joo ) 27
./—"_1[6(]{' _ ko)] — 7€—ikox (284.)
27

216 (k — ko) = Fle™ 7]

where the nature of Fourier inverse transform has been used. Utilizing the relationship

in Eq.(2.84), finally the desired result of incident wave potential may be written in the
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following form

Flpo(w,y,2)] = 2m6(k — ko cos x)e o= Hovsinx
wo(z,y,2) = FL2r6(k — ko cos x)e oz~ ikoysinx] (2.85)

2.3.2 Derivation of Added Resistance Formula

By virtue of the principle of momentum and energy conservations, a formula for the
added resistance is going to be derived in this section which is the same as the one
derived by Kashiwagi [10]. To this end, first let us consider the linear momentum
conservation in Eq.(2.16). Applying the transport theorem to the left-hand side of this

equation, the momentum conservation can be recast in the following form

dM; _ d o Ov; .
et o ([ o o) o

Performing the substantial derivative Eq.(??), the first term on the right hand side of

equation above can be written as

8111- 0
ot = —awi <p — gz) — Ujaj’Ui (2'87)

where we note that the pressure p is measured with atmospheric pressure p, as the

reference value.
The last term of Eq.(2.87) may be written in the form

vjajvi = 8]- (Uj’Ui) - Uiaj’Uj (288)
where the last term of this equation is the continuity equation, Eq.(2.20), that is 0;v; =
V - v = 0 and another term in the right-hand side of Eq.(2.88) can be written as

0;(vjv;) = O(vjv;)/0xj. Therefore by substituting this term into Egs.(2.87) and (2.86)

as well as applying the divergence theorem, the linear momentum conservation will be

Here the surface area (5) of surface integral above consists of the ship’s wetted surface

(SH), the free surface (Sr) and a control surface (S¢) at a large distance from a ship as
we can see in Fig. 2.4. Therefore by considering the rate of change of linear momentum

conservation within the surface area and taking account of that there is no flux across
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Sy and Sg as well as that the pressure on Sg is zero or

v, =u, onSyand Sg
u, =0  on SE (2.90)

p=20 on Sp

then we obtain the following equation

— //SH[(pm — pgzn;)| dS — //Sé[(pnz = pgan;) + puivn] dS (2.91)

Substituting v; = V& and v, = v; - n; = V@7 - n and considering only the forces in

the transverse plane (gzn; = 0), the linear momentum conservation is to be

T //sH P ds = //Si [pn + pVOr(VOr - n)] dS (2.92)

From the equation above, we may obtain the force acting on the ship. Substituting the
velocity potential, Eq.(2.60), into the linear momentum conservation and taking only
the z-component as well as neglecting steady disturbance potential, the force may be

written in the following equation

x//SHpnzdS dM // [pnﬁp(?f—U) (Zf Un)] S (2.93)

Taking time average of above equation dM, /dt will vanish due to the periodicity of fluid

motions. It means that there can be no net increase of momentum in the whole volume
of fluid from one cycle to another. Defining a resistance as the force in the negative

z-axis, the added resistance may be computed as

TN Y L | | PR

In the present analysis the control surface (S¢) will be considered as two flat plates

instead of the usual circular cylinder control surface as shown in Fig. 2.4. In this case,
the two flat plates are located at y = £Y and extend from x = —o0 to x = oo as well
as free surface down to z = +o0o0. Considering the normal vector in the  component is

zero (n, = 0) on Sé, the added resistance can be expressed in the following form

//sc [gf gﬂ a5 (2.95)
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where [ ]¥y means the difference between the values of the quantity in brackets at
y=Y and y =Y.

Here on the present control surface, the local wave near the z-axis can be neglected due
to the assumption that Y is large. It means that the local waves will be zero at x = 400
in the three dimensional case. Meanwhile the disturbance waves radiating away from
the z-axis are exactly taken into account. By this control surface, the surface integral,

Eq.(2.95), can be transformed as below, if the free surface elevation is denoted as z = (p.

/SCdS = /C:odz/::d:n
_ U:JF/UOT dz /Z dz (2.96)

In the integral range above, contribution from ((r,0) is of higer order than O(&?%)
because the integrand is already of order O(#?) and thus should be neglected. Then
Eq.(2.96) can be rewritten as

//SC dS:/OOO @z /Z dz (2.97)

Utilizing this equation, the surface integral in Eq.(2.95) can be written in the form

_p/ / [‘;f g?ﬂ dz (2.98)

Now let us substitute @ in Eq.(2.61) into this equation as follows

R [T [nf(2e) (2o

Considering time-average calculation by using the relation

RIACTTRBe] = L RIAB'] (2.100)

where the asterisk denotes the complex conjugate. Therefore the added resistance,

Eq.(2.99), can then be written as follows

=3P 3?/0 dz /_OO [&E 2y ]_y dx (2.101)
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Next we substitute the velocity potential in Eq.(2.61) into Eq.(2.101). It follows that
= 9o o5 99" \]"
R = fp <> %/ / [( > ( + dr (2.102
Ay 9y )]y ( )

As we already assumed that the water depth is infinite (kg = w3 /g) and also in Eq.(2.102)

the contribution of (g alone is zero because there can be no force associated with the

undisturbed incident wave system, therefore the added resistance can be written in the

form
R e [Tas [T 050 Snle 2004
_ p%l [R1 + Ry (2.103)
where
R = ;?R/oodz /Oo [gi%ﬂy da (2.104)
Bo= g [Ta [T 2000 00 W

As we can see in the equation above, the integration with respect to z allows us to apply

the Fourier-transform theorem (Parseval’s theorem) which can be written as

/ fz ;ﬂ T RNGH () dk (2.106)

where F'(k) and G(k) are the Fourier transforms of f(x) and g(z) respectively, which may
be calculated from the definition of the Fourier transform itself as Eq.(2.80), expressed

F(k) = F[f(z)] or f(z) = F '[F (k)] (2.107)
s .

At first, let us consider R; given in Eq.(2.104). Here we have only the disturbance
potential (¢) defined in Eq.(2.79). Differentiating ¢ with respect to x and y, then we

have
1 o) —qu:iakym )
e e~ ke g
Ox VEZ — k2
—kzFiepyVr2—k2
e [kekﬂi(k) e —— (2.108)
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D L (% 2 (o e reFienu /=R =ik
g _ L +e2H rETIeRY VR o
3 o | eiH=(k)ke e dk
_ [ iHi(k)mwmmm] (2.109)

where the nature of E% = 1 has been used and =+ sign just before the Kochin funtion
depends on whether y = Y and y = —Y. Substituting Eq.(2.108) and Eq.(2.109) and
applying Parseval’s theorem into Eq.(2.104), Ry can then be written as follows

,%2 o)

K2 — k2 0

1 e.)
Ry = 5)%/ [iksk\Hi(k)P
am J_

Y
e 2 dz} dk (2.110)
-Y

Solving the integral equation with respect to z in Eq.(2.109) and following the nature

of ¢}, as well as the integraton range, leads R; to the following expression

— 1 [ K
= — HY (k) + [H™ (k)]?) ===k dk
Bo= o [Tl P mP
1 k1 k3 0 N ) 9 K
- — |-/ +[ + HY () + [H™ (k) |?) ek dk (2.111
s [ [ er s en g ak

Note that k3 = k4 in case of 7 > 1/4.

Next, we consider R as in Eq.(2.105). Here we have not only disturbance potential (¢)
but also the incident wave potential () as defined in Eq.(2.85). Differentiating ¢o with

respect to x and y, the results are

];-1 |:(?;00:| /OO |:(—’Lk0 cos X) e—koz—iko(;t cos x+y sinx)] eikacdl,
€ —00
= —2mikg cos ye FoFHRoysInX s (1 _ ko cos x)
8((;20 = F! [—2m'ko cos X0 (k — kg cos x) e~ oz~ ikoysin X] (2.112)

J—_-l |:8500:| _ / [(—Z]C() sin X) e—koz—iko(xcosx—i-ysinx)} eikxda:

Y —00
= —2mikgsin ye FoztRoysinXs (1 _ ko cos x)

dpo

2 - F [—2772'1{:0 sin x@ (k — ko cos x) e—koz—ikoySmX} (2.113)
y

where the relationship in Eq.(2.84) has been used in the equations above. Substituting
Eq.(2.108) and Eq.(2.109) as well as Eq.(2.112) and Eq.(2.113) and applying Parseval’s
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theorem into Eq.(2.105), then Ry can be recast in the following form

/ / Opo 0" 09" 051"
oxr Oy 6ac oy | _y

= R / dzf / —2mikg cos xd (k — ko cos x) e*ko‘z*"koysmg
X iHﬂ: k)He—/izq:zEkym> *
KR ) 2 2
+ (ke  HE(K 6—nz¢zakym>
MW T
. . *1Y
X | —2mikg sin xd (k — ko cos x) e‘koz—lkoy&nX) ] . dk]

_ » [mko cos X /Ooe_(“+k0)zdz
2 0

X [ (:FHi (ko cos x)*e " (kosin iz /2= (ko cos)7) >

1y (ko sin xFieg v/ k2 —(ko cos X)2> Y
VK2 — (ko cos )2

ko sin xe

+ | enH*® (Ko cos x) (2.114)

-y
where the relationship in Eq.(2.84) again has been used in the last expression.

According to the theory of hyper function, sinusoidal terms will vanish when taking the
limit of Y — oo after performing the x and z integrations. It means that it is sufficient to

retain only terms which are independent of the y-axis in the equation above. Therefore

our consideration here is only for the two cases namely kg sin y = +¢&p, \/ k2 — (ko cos x)?

and kosiny = —ep\/k2 — (ko cos x)2. If we solve them as a quadratic equation, we will

have

) 2
(kosiny)? = (i&‘k\/l‘iz ~ (ko cosx)2) (2.115)
By using the nature of +¢; = 1, then we have the relation between x and kg as below

k2 = k2 (sin® x + cos? x)
k= ko (2.116)

Performing integral equation with respect to z of Eq.(2.114), the result is

/OO ef(nJrko)z dz = o 1 67(/@+k0)z
0 (K + ko) 0
_ 1
N (k + ko)
1

= = 2.11
o (2.117)
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Further, noting that e, = 1 when the sign in H* is positive and e, = —1 when the sign
in H* is negative and substituting k = kg cos x, the Kochin function Eq.(2.78) can be

recast in the form

* (k‘o cos X) = // (an w@ﬂ) e-’%:‘:i&m\/ 2 — (ko cos x)2+i(ko cos X)gdS

—k(+iko(nsin x+& cos x) d
//SH ( on —¥ 8n> s

= H (ko,x) (2.118)

Note that for each case of y =Y, y = =Y, the exponential function in Eq.(2.114), will

be
eﬂFiy(kosinxﬂFEk\/m) —1 (2.119)

Taking the result of Eq.(2.115) to Eq.(2.119) into account, Ry in Eq.(2.114) can be

written as follows

— ikkg cos x . ko sin x Y
= — = |FH(k H(k — —
Ry 3‘3[ 5 [jF (Ko, x)* + exH( O’X)kosinx/sk L on

- R [iko(fsx [FH (ko, x)* + H (o, X)])—/Y:| (2.120)

Utilizing the relation below
Rliza] = —Szq] = S[2]] (2.121)

finally the last result of Ry can be obtained as follows

By = —M2PX[S A (o, ) + Hlko Iy
e C:SX% [—H (ko, x)* + H (ko, x) — {H (ko,x)" + H (ko, x)}]
= XS (1o, )"
= RN 1 (ko ) (2.122)

where symbol & denotes the imaginary part.

Therefore, the total added resistance can be rewritten by substituting R; and Ry into
Eq.(2.103)

R k1 ks + K
pgA? 87Tk0[/ /k /] [EE W + G ‘} m2—k2kdk

—5 cos XS [H (ko, X)] (2.123)
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After considering the principle of linear momentum conservation, to get the expected
result of the added resistance as obtained by Maruo [11], let us consider the principle
of energy conservation Eq.(2.59). Considering the boundary condition of each control

surface in Eq.(2.90), Eq.(2.59) may be written in the form

ok XoX')
= - P — Pa)Un d5+// ——dS 2.124
/[ o= o (2.124)

Taking time average of Eq.(2.59), dF/dt will be zero due to periodicity of fluid motions.
Here we have no work done or no dissipation energy by the floating ship because there
is no external force except the constant towing force and gravitational force keeping the

equilibrium position of the ship in space. It means that

//SH(p—pa)vndS:O (2.125)

Thus the only contribution from taking time average of Eq.(2.124) is

9505
—_— = 2.12
//Sc P OT a5 =0 (2.126)

Substituting the velocity potential Eq.(2.60) into above and considering that the normal

vector of x and z components on S¢ are equal to zero, then we can write equation below

Frra
——dS =0 2.127
//SC ot Oy ( )

In order to treat the surface integral of Eq.(2.127), Eq.(2.97) may be used instead and

yields the following equation

/ / [aafaaf] dz =0 (2.128)

Making use of taking time average relation in Eq.(2.100) and substituting Eq.(2.61), the
transformation result of Eq.(2.128) will be

[l Taa], o = [ o) frooon (Ge] o
e[

do*
5 } . da (2.129)
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By substituting Eq.(2.62), utilizing relation in Eq.(2.121) and decomposing the result

above into two parts, then we have

w<> %/ dz/ [(poﬂp ((poa;(p)]_yd:”

1 A R
= w( ) / dz/ {cpo + ©o 3y +<pay +g08y 7ydx (2.130)

The first term in brackets of the right-hand side has no effect because there can be no
force associated with the undisturbed incident wave system as already explained before.
Therefore, Eq.(2.130) will be

1%/00612/00 01" = —\s/ dz/ 040 ' dx (2.131)
2 0 o ¥ ay - 900 90 8y N

The procedure of performing these integrations with respect to = and z is the same
as that for Eq.(2.104) and Eq.(2.105); that is, to apply Parseval’s theorem given in
Eq.(2.107) with the Fourier transforms of ¢ and . Substituting Eq.(2.82), Eq.(2.109)

and utilizing Eq.(2.117) to solve integral equation with respect to z, the left-hand side
of Eq.(2.131) (which is denoted as £) is written as

1 K ;
I :t —kzTFiepyV K2 —k?
L 53 [/ dz3 / [(zng )7,{2 —e )
Y
L+ —KkzTFicpyV K2 —k2
X ( (k)ke ) ] de:

/ Z [iiak |H*= (k)| \/Ef_ikz] YY dk]

= 3| [ a{imwr )
L[ e s

_ 8177[ /k1 /:3/] ‘H+ )2+ [H (k |}\/ﬁdk (2.132)

- —S

8
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Similarly, the right-hand side of Eq.(2.131) (which is denoted as R) is obtained by
substituting Eqs.(2.82), (2.85), (2.109) and Eq.(2.113) as follows

1 o o . . —koz—ikoysinx )"
R = —QS dz —2mk0 sin x6 (k — ko cos x) e 0= 0¥ X)

% (ZEkHi —nz:Fisky\/n2—k2
VK k:2

(k)r —nzﬁewm) (2%5 (k — ko cos x) e koz—thoy sinxﬂ }:Y

+

H_

Sx
H-

“

&l

[[H (ko, ) F H (Ko, )"y |

[—2H (o, x)"]

DO — S| = |
&l

&

H (ko, x)] (2.133)

where several relationships such as kpsiny = :tek\/ K2 — (ko cos x)* and Eq.(2.115)
through Eq.(2.119) are used in obtaining Eq.(2.133). Thus Eq.(2.131) takes the fol-

lowing expression

877[ /k /: /k] [HE (k)] + [H (k }} kzdk:;%[H(ko,X)] (2.134)

Substituting this result into Eq.(2.123), the added resistance can be recast in the form

o k (k — ko cos x)
= +
pgA2 B 871']{:0 [ / /kg / } [ (k)" + [H (k) } Ny ————""dk (2.135)

If we decompose the Kochin function in the symmetric C(k) and anti-symmetric S(k)

components with respect to the center plane of a ship symmetrical about y = 0 as

H*(k) = C(k) £ ieS(k) (2.136)
where
1
Clh) = 5 {H™( k:;n =) + Hi(k;n =)}
_ // eflﬂce’ikf (eiiskn\/,‘&fl# + €¥i5k7l\/'42*k2)ds
Su Bn

— // ( — ) e "CekE cos (5k77\/ K2 — kZ)dS
S on on
— —k(+ikE 2 _ 1.2
//SH <8n 4'0871) cos (77 k2 —k )dS (2.137)
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and

+iepS(k) = ! {Hi(k;n =n)— Hi(’fﬂ? =-n)}

_ // e—ng‘eik’f (e:l:iakm/m?—k:? N eq:iakn\/n2—k2>ds
8n
— I o e R tkE ;i 2 _ .2
= // <(9 4,0 ) e e {izsm <5k77 Kk*—k )}dS
_ —k(+ikE 2 _ 1.2
+ieg, //SH (571 > e sin (77 k?—k )dS (2.138)

Finally the added resistance in Eq.(2.135) can be recast and given in the form

=T | /kl /:/k} {lcwp +1sw} =4 RN i (2130

From this equation we can see that no contribution to the added resistance exists from

the interaction between symmetric waves C'(k) and anti-symmetric wave S(k). They

give only independent contributions.

2.4 Enhanced Unified Theory (EUT)

In order to compute the added resistance, the unsteady velocity potential given in
Eq.(2.61) must be sought to satisfy the Laplace equation, appropriate boundary con-
ditions on the free surface and ship’s hull surface, and the radiation condition. In the
slender-ship theory, these governing equations and boundary conditions may be simpli-
fied further by introducing the slenderness parameter e, which is usually taken as B/L

or d/L (B,d, L being ship’s breadth, draft, and length, respectively).

In the outer region far from the ship, when the limit of ¢ — 0, the ship will be viewed as
a segment along the x axis and then the body boundary condition cannot be imposed;
which is called the outer problem. By the variable transformation of y = eY and z = eZ,
the y and z axes may be stretched to zoom in the body surface. Therefore the body

boundary condition can be satisfied in the magnified Y-Z plane.

On the other hand, the far-field behavior of ship-generated waves cannot be perceived
in the near field close to the ship, and thus the radiation condition cannot be imposed;
which is called the inner problem. In what follows, only the symmetric mode of motions
in the radiation problem (surge, heave, and pitch corresponding to j= 1, 3, and 5,
respectively) and the symmetric component in the diffraction problem with respect to

the vertical z-z plane (j = 7) are to be considered.
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2.4.1 Radiation Problem

In the inner region close to the ship hull, the gradient of the flow velocity along the z-axis
is small compared to that in transverse sections and the radiation condition cannot be
imposed. Therefore the unsteady velocity potential in radiation problem must satisfy

the following boundary conditions

D?p;  0%¢;

= f > 2.14
oy + 5.2 0 or z>0 (2.140)
%—FK@:O onz >0 (2.141)
9 _ U
Yl —njtomy onCul) (2.142)

where K = w? /g, denotes the j-th components of the unit normal vector positive

pointing out of fluid domain

n = (n1,n2,n3)
(z x n) = (n4,n5,n6) (2.143)

x = (2,9,2)

and mj; is the j-th components of the so-called m-term, speed-dependent term which

represents interactions with steady flow

—(n- V)V = (m1, ma, m3)
—(n-V)(x x V) = (mq, ms, mg) (2.144)
V =V[—z+ ¢s(z,y, 2)]

These are considered on the contour C'i () of the transverse section at position = over the
ship’s length. It should be noted here that the contributions from the steady disturbance
potential (¢s) for computing the m-term are neglected in this paper and thus m; = 0
for j = 1,3;m5 = n3 and ns = —zng. Note that only the symmetric mode of motion

(j = 1,3,5) in the radiation problem is considered.

Due to lack of the radiation condition, a homogeneous solution may be allowed to con-
struct the general inner solution satsifying the boundary conditions in the following

form

bi(zsy,2) = oF (y,2) + Cj(x)e" (y, 2) (2.145)
Fw2) = (2 + - 8i(52) (2.146)
o (y, 2) {3(y,2) — ¥5(y,2)} (2.147)



Chapter 2. Enhanced Unified Theory (EUT) 39

where d)f denotes the particular solutions with ¢; and ¢; are solutions corresponding
to the first and the second terms on the right-hand side of Eq.(2.142) respectively. qﬁ]H
is a homogeneous solution with Cj(x) being the unknown coefficient and the asterisk

denotes the complex conjugate.

In the outer region far away from the ship, the body boundary condition cannot be
imposed. Thus the outer solution can be provided by a line distribution of the 3D

source along the x-axis and expressed in the form

(@9, 2 ./% (x — €y, 2)dé (2.148)

where G is the 3D Green function given by Eq.(2.70) for the translating and oscillating
problems, and @); is its unknown strength. By matching the outer expansion of the inner
solution and the inner expansion of the outer solution in an overlap region, the unknown

Cj(z) in Eq.(2.146) and Q;(x) in Eq.(2.148) can be obtained and given as follows

dj(z) + # < ) /Qg —&)dé =05+ Ua} (2.149)
Cj(z){o3 — 03} =Qj — {aj + Zay} (2.150)

where f(x — ) is the kernel function representing the 3D and forward-speed effects;
its explicit expression is given in the original unified theory developed by Newman &
Sclavounos [12]. ¢; and ¢; denote the 2D Kochin function to be computed from ¢; and

$j, respectively.

2.4.2 Diffraction Problem

With assumption that the rapidly-varying part of the scattering potential along the
ship’s length is of the same form as the incident wave, the scattering potential may be

sought in the form

dr(x5y, 2) = Pr(w;,y,2)e™™; 1= —kocosx (2.151)
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where 17 is the slowly-varying part of the inner solution satisfying the following boundary

conditions
8277[}7 821/)7 2
3y +a2—l1j)— onz >0 (2.152)
6@% +kotpr=0 onz=0 (2.153)
o7

o koe %% {(ng + iny cos x) cos(koy sin x)
n

+ ngsin xsin(koysiny)} on Cg(z) (2.154)

Therefore in the same fashion as in the radiation problem, the general inner solution for

the diffraction problem can be given as follows

Ur(wiy,2) = 97 (y,2) + Cr()f (y, 2) (2.155)
VP (y,z) = —e %% cos(koysin x) (2.156)
wf(y, z) = {wgD (r;y,2) + e 0% cos koy sin X} (2.157)

where 1¥2p denotes the numerical solution satisfying the body boundary condition which
includes the contribution of xz-component of the normal vector in Eq.(2.154). Using the
same procedure for obtaining the unknown coefficient in the radiation problem, the
unknown in the diffraction problem C7(x) can also be obtained by matching the inner
and outer solutions. Therefore by solving an integral equation of the source strength in

the outer solution, the unknown coefficient C7(x) can be determined from the followings:

Qr(x) + 07{ / Qre 5}2076“”” (2.158)
Cr(z)ore’™™ () (2.159)

where

hi(x) = cscx cosh™ (| sec x|) — In(2] sec x|) (2.160)

Fore more details about radiation and diffraction problems in the EUT, the reader should

refer to Kashiwagi [13] and Kashiwagi [14]

2.4.3 Hydrodynamic Forces

In order to obtain hydrodynamic forces, let us first consider the pressure. In the linear

theory, the spatial part of the unsteady pressure can be obtained by discarding the
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higher order terms in Bernoulli’s pressure equation and given as
p=—pliw+UV -V)p+ pg(Xs+ Xay — X5x) (2.161)

where the first term on the right-hand side represents the hydrodynamic pressure, with
V defined as in Eq.(2.144) and the second term is the hydrostatic pressure due to ship
motions from its equilibrium position and has nothing to do with the velocity potential.
Neglecting the contribution from ¢ in V', Eq.(2.161) can be rewritten as

, 0
p——p<zw—Uax

) o+ pg(Xg + Xyy — X5x) (2.162)
Substituting ¢ in Eq.(2.162), then the total oscillating pressure acting on the ship can
be divided into three components; radiation pressure pg, diffraction pressure pp and the

variance of hydrostatic pressure pg, respectively, and expressed as

p(z) = pr(z) + pp(z) + ps(z) (2.163)
where
U o
pr(®) = pu’ (1_max> Z X;¢; (2.164)
7=1,3,5
w U 0
pp(x) = —pgA;O (1_z’w8x ¢p (2.165)
ps(®) = pg(X3+ Xay + X5z) (2.166)

and ¢p in Eq.(2.165) is the diffraction potential that is the sum of the incident wave

potential and scattering potential.

After introducing the pressures, now let us consider the hydrodynamic forces. These
forces can be obtained by integrating the pressures as in Eqs.(2.164) to (2.166) on the
wetted surface of the ship Sy. The first one from Eq.(2.164), the radiation force acting

in the i-th direction is written as

F, = _//SH pr(z)n;dS

Bij
= —(iw)® ) [Aij+ .J}Xj (2.167)
j=1,35 o
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where

B
A+ -2
ww

frae L, (= Gom) (o4 52)
=—p [ dx n; — —my Y+ —¥;
I Ch w w

_p/dxcj(x)/ <ni— Um) Hds (2.168)
L Cy w

and Tuck’s theorem [15] has been applied in obtaining the final result. A;; and Bj;
denote the added mass and the damping coeflicients in the i-th direction due to the
j-th mode of motion. The second one is the resulting force from diffraction pressure

Eq.(2.165) which is the wave exciting force, given in the following result

B = —//SHpD(m)nidS

= pgA/dxC%(:c)eM/ {¢2D+e—koz cos(koysinx)}nids (2.169)
L Cu

The last one is the contribution from the hydrostatic pressure that is the restoring force,

which can be expressed as

S; = _//SH ps(x)n;dS

= —pg // (X3 + Xuy — Xs52)n;dS (2.170)
SH

The existence of this force may cause resonance in the direction of heave and also in

pitch as well as in roll as the moment due to couple of vertical forces.

2.4.4 Ship Motions

It has been mentioned before that only symmetric modes of motion are considered here,
then the motion equations for surge, heave and pitch motions can be computed by the

following equation

Z [—WQ(Mij + A”) + iWBij + Cij]Xj =F; (Z =1,3, 5) (2.171)
7=1,3,5
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where M;; is the generalized mass matrix and C;; the restoring force matrix. The

resulting nonzero terms from these matrices are

My = M3s3, Mss = I55 = PV"@Zy
Cs33 = pgAy, O35 =Cs3 = —pgAuTuy (2.172)
Css = pgVG M|,

where V denotes the displacement volume, ry, is the gyrational radius in pitch. A,
is the waterplane area with xz,, as its center in z-axis and GM}, is a distance from the

center of gravity to the longitudinal metacenter.

Once the linearized boundary-value problems for the unsteady velocity potentials have
been solved, the added resistance in waves, which is a time-averaged quantity of second
order with respect to the incident-wave amplitude, can be computed with Eq.(2.139)
known as Maruo’s [11] formula. Note that the added resistance can be computed only
from the symmetric components of the Kochin function when considering only the head

waves, hence it can be given as

R 1 k1 ks o0 9 K
S I R H(E) |2 ——2(k + ko)dk 2.173
pgA2 drko |: /—oo /kz /k:4 :| ’ ( )‘ VK2 — kQ( 0) ( )

where H (k) denotes the symmetric component of the Kochin function given in the form
of superposition of ship-generated progressive waves and can be written specifically in

the following expression

H(k) = Hr(k) = VEoEK ) %Hj(k) (2.174)

7=1,3,5
HR)? = | Hr (k) + kK| Hy () — 20/ ke KRH: (k) &, Hy(W)}] (2.175)

For simplicity X;/A in Eq.(2.174) is denoted by &; in Eq.(2.175), where asterisk means
the complex conjugate and summation convention is applied in Eq.(2.175) instead of
summation sign in Eq.(2.174), subscript j = 1,3, 5 denotes the Kochin function of surge,
heave and pitch motions respectively, for the radiation problem and j = 7 for diffraction

problem. In the EUT, the Kochin function can be computed from

H,(k) = /L Q;(x)e™ da (2.176)

Each term on the right-hand side of Eq.(2.175) denotes the contribution from the diffrac-
tion wave, the radiation wave, and the cross terms between the diffraction and radiation

waves. Thus in accordance with each term in Eq.(2.175), it might be useful to write the
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added resistance as a summation of the following three components:

Raw = Ry + RYY + R (2.177)
where
(DD) ki ks
RED — 47rk:0 [ / /kg /k4 ] |\ H7 (K ﬁ(k+ko)dk (2.178)
k1 ks
RGER _ 4W[ / /k /k ]|g] W(k+/~co)dk (2.179)

R&W——m[— /i;/k /k] (Ho ) G H (DY 150k (2150

2.5 Steady Wave Resistance

In order to confirm the amount of reduction of the total wave resistance, the steady
wave resistance should also be computed. In the Holtrop & Mennen [16] method, the

wave resistance is formulated in the form

Rw = c1coe5Vpg exp {m1 + ;% + mg cos(AE, %)} (2.181)
where
¢ = 2223105 370 (d/B)M TN (90 — i) 1T (2.182)
0.229577(B/L)'/?  for B/L < 0.11
c; = { B/L for 0.11 < B/L < 0.25 (2.183)

0.5—0.0625L/B for B/L > 0.25

ca = exp(—1.89,/c3) (2.184)
0.56AL5
c3 Bd (2.185)

{Bd(0.31\/Apr +d—hp)}

co is a parameter which accounts for the reduction of the wave resistance due to the
bulbous bow and c3 the coefficient that determines the influence of the bulbous bow on

the wave resistance with hp is the center position of the transverse area of the bulb Agr
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above the keel line. Another coefficient in Eq.(2.181) is ¢5 which can be given as follows

Cy = 1-— O.SAT/(BdCM) (2.186)

where Ap represents the immersed part of the transverse area of the transom at zero
speed and C}jy the coefficient of midship. The other parameters in Eq.(2.181) can be

computed as follow

1.446Cp — 0.03L/B for B/L < 12
\— P /B for B/ (2.187)
1.446Cp — 0.36 for B/L > 12
my = 0.0140407L/d — 1.75254V /3 /I — 4.79323B/L — c15 (2.188)
8.07981Cp — 13.8673C% + 6.984388C%  for Cp < 0.80 (2.189)
Cl6 = .
' 1.73014 — 0.7067Cp for Cp > 0.80
my = ¢15C%exp(—0.1F,2) (2.190)
—1.69385 for L3/V < 512
c1i5 =14 —1.69385 4 (L/V'/3 —8.0)/2.36 for 512 < L?/V < 1727 (2.191)
0 for L3 /V > 1727

In Eq.(2.182), ig denotes the half angle of entrance of the waterline in degrees measured
at the bow with reference to the ship center plane. V appearing above is the ship dis-
placement and Cp the coefficient of prismatic. Hence the steady wave-making coefficient

can be obtained and given in a nondimensional form as

Rw

Coy — W
W $pSU?

(2.192)

with S indicates the wetted surface area of a ship.



Chapter 3

Computed Models

3.1 Modified Wigley Model

For the purpose of establishing a new BCGA and to examine its performance in connec-
tion with the EUT, a modified Wigley model with blunt-bow coefficients is employed
in this optimization as a basis ship geometry. The hull geometry of this model can be

expressed mathematically in the form

n=(1-C)(1-HA+0.662+H+¢1 - -eH)
g & Yl
d

3 (3.1)
/2 " Bj2

The computation is performed at F'n = 0.20 in the range of wavelength ratio of incident
wave, A\/L = 0.3 ~ 2.0. Furthermore, the main dimensions of the ship model and the

parameters used in the computation are given in Table 3.1 below.

TABLE 3.1: Principal particular of modified Wigley model

| Item Value | Unit |
Length (L) 2.500 m
Breadth (B) 0.500 m
Draft (d) 0.175 m
Block coefficient (Cp) 0.6342 -
Midship coefficient (Cy) 0.9088 -
Prismatic coefficient (Cp) 0.6979 -
Waterplane coefficient (Cyyp) 0.8038 -
Displacement (V) 0.1388 m?
Center of gravity (OG) 0.031 m
Pitch gyrational radius (K, /L) 0.236 -
Froude Number (Fn) 0.20 -
Wavelength ratio (A/L) 0.30 ~ 2.00 -

46
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Chapter 3. Modified Wigley Model

Because this optimization is dealing with the Sectional Area Curve (SAC), it is necessary

to show SAC of modified Wigley model as depicted in Fig. 3.1. The body plan and

perspective view of this model are also shown in Fig. 3.2 and Fig. 3.3, respectively.

x/L

F1cUrE 3.1: SAC of modified Wigley model
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FI1GURE 3.2: Body plan of modified Wigley model

FIGURE 3.3: Perspective view of modified Wigley model
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TABLE 3.2: Principal particular of SR-108
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FIGURE 3.4: Perspective view of SR-108

From Figs.3.1 and 3.2, we are able to see that this modified Wigley model is symmetric
with respect to both £ = 0 and y = 0. Because of its symmetricity with respect to x = 0,

contribution from restoring coefficient of coupled motions between heave and pitch in
optimized in order to confirm and illustrate the effectiveness and efficiency of the present

practical integrated optimization method. The principal dimensions of SR-108 are given

In addition to the modified Wigley model, a real container ship SR-108 will also be
in the following Table 3.2.

Chapter 3. Container Ship SR-108
3.2 Container Ship SR-108
The perspective view of SR-108 is depicted in the following Fig. 3.4.

Eq.(2.172) is equal to zero.

R

The body plan and SAC of SR-108 are also given in the following Fig. 3.5 and Fig. 3.6.
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FIGURE 3.5: Body plan of SR-108
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FIGURE 3.6: SAC of SR-108

Needless to say that in this optimization the principal dimensions of ship are kept con-
stant. Therefore the shifting method used in this optimization will only shift the stations
between after peak and fore peak stations, excluding a station in which the sectional

area becomes maximum.



Chapter 4

Study on Added Resistance

4.1 Sensitivity of a Peak Value of the Added Resistance

In order to reduce the added resistance in waves, it is necessary to understand its sen-
sitivity to the ship motions, particularly the peak value of the added resistance. In
sensitivity study, we check sensitivity of the peak value of the added resistance to the
amplitude and phase difference of ship motions [1]. To this end, a calculation of the
added resistance by using measured (experiment) data will be performed. In this case,
experiment data which can be only the amplitude or only the phase or both of them for

each mode of ship motions will be used in computing the added resistance.

Because the added resistance in head waves can be computed only from symmetric
modes of motion (surge, heave and pitch), only these modes will be considered. In order
to realize sensitivity of the peak value of the added resistance to the ship motions, it is
necessary to show discrepancy between experiment data and computed one by EUT for

the amplitude and phase of ship motions as shown in Figs. 4.1, 4.2 and 4.3.

Considering only the wavelength where the added resistance becomes maximum that
is at the middle wavelength region around A\/L = 1.1, then we can see the amount of
discrepancy between those data for ship motions. However the phase difference in pitch
motion between experiment and computed data is almost zero. Corresponding to those
figures, the resulting added resistance can be depicted in Fig. 4.4 through Fig. 4.6.
At those figures, blue square, green triangle and orange gradient represent the value of
the added resistance computed from the experiment data in both amplitude and phase
difference, only amplitude and only phase difference, respectively. Meanwhile red line
represents the added resistance computed from numerical result (computed data) of ship

motions.

50
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FIGURE 4.2: Amplitude and phase of heave motion

Figure 4.1 shows the differences between measured data and computed result of surge
motion for both amplitude and phase difference. Although these discrepancies can be
observed, all corresponding results of the added resistance are almost the same as shown

in Fig. 4.4. It means that the peak value of added resistance is not sensitive to the
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FIGURE 4.4: Added resistance from measured and computed data of surge motion

surge motion in both amplitude and phase difference and hence it can be neglected. In
case of heave motion, discrepancy of amplitude and phase difference between measured

and computed data is shown in Fig. 4.2. Using measured data, the peak value of added
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FIGURE 4.6: Added resistance from measured and computed data of pitch motion

resistance changes drastically compared to the original one (computed data) as depicted
by blue square in Fig. 4.5. Thus it allows us to say that the peak value of added

resistance is sensitive to the heave motion. However green triangle and orange gradient
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reveal that the peak value of added resistance is only sensitive to the phase difference

of heave motion.

In Fig. 4.3, it is shown that the pitch amplitude of measured data is different from
computed one; however discrepancy in phase difference cannot be observed. Computing
the added resistance using measured data makes aware that its peak value decreases
significantly which is shown as blue square in Fig. 4.6. Even only using the amplitude
of measured data, the corresponding added resistance is also changed which is similar
when using both amplitude and phase difference of pitch motion of measured data. Thus
we may say that the peak value of added resistance is sensitive to the amplitude of pitch

motion.

4.2 Relative Importance of Each Term in Added Resis-

tance

Apart from previous investigations, now let us investigate the contribution from each
term of the Kochin function in the equation of added resistance as in Eq.(2.175) or
Eq.(2.177). As we can see in this equation, the added resistance consists of three terms
that are diffraction term, radiation term and cross-term between diffraction and radia-
tion. According to the sensitivity study, the surge motion is not influential in determi-
nation of the peak value of added resistance. Thus in the following investigation, the
contribution from this term can be neglected. The corresponding results of the added

resistance from each term of the Kochin function is shown in Fig. 4.7.

It is well-known that the most important component in the added resistance in the
short wavelength region is the contribution from diffraction component. However in
the subsequent wavelength, the radiation component becomes important and gives the
largest contribution to the added resistance as well as the cross-term between diffraction

and radiation waves which is in opposite sign as clearly shown also in Fig. 4.7.

In order to realize which motion is the most important in the radiation waves, this term
may be decomposed further for each mode of motion or combination between them.

These decompositions can be written as follow

K k1 ks 00 K
Ry = [—/ +/ +/ ] |3 Ha()|* — === (k + ko)dk (4.1)
—00 ko k4 K k’

4
k1 ks 00
(pP) _ K| _ He()2 4.2
RAW A7 |: /—oo+/lc2 +/k4 :| "55 5(k)‘ m(k+k0)dk ( . )
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FIGURE 4.7: Relative importance of each term in added resistance

The added resistance due to these decompositions can be seen in Fig. 4.8. Meanwhile
the cross-term can also be decomposed for combination between diffraction and radiation

terms as shown in Fig. 4.9 which can be given in the following equations.
RO / 4 / " / Oo] R (k) {6 Hy (1)) 5 E R0 g (43)
= 7 3113 T .
AW —0o0 k‘z k4 52 - k2

R I
2mv/ko
00 = [ [ [0 temsoor BE g )

(HP) _ VK ki ks o w k(k 4+ ko)
RGP =~ [— |+ e / 4 } Rléa Ha(h) {6 H(0)) |0k (45)

According to Fig. 4.8, the largest contribution to the peak value of added resistance
arises from the Kochin function of pitch motion. A reason for this might be due to the
sensitivity of the peak value of added resistance to the pitch motion in both amplitude
and phase difference. Besides that, this figure also shows that the wavelength where the
added resistance in terms of pitch motion (brown dashed-double-dotted line) takes its
maximum coincides with the wavelength where the added resistance due to radiation
component (blue dashe-dotted line) becomes maximum. It means that the pitch motion
also plays an important role in determining the peak frequency of added resistance due
to radiation and even in determination of the peak frequency of total added resistance

(red solid line).

Nevertheless the peak frequency of added resistance due to pitch motion is slightly dif-
ferent with the peak frequency of total added resistance. It might be mainly attributed
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FIGURE 4.8: Relative importance of each term in radiation waves

Modified Wigley Model Head waves, Fn=0.20
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FIGURE 4.9: Relative importance of each term in cross-terms between scattered and
radiation waves

to the effects of damping coefficients and coupled motions in Eq.(2.171). Based on these
results, it can be concluded that the pitch motion is the most important part in deter-
mining the peak value of the added resistance. Thus it will be used as primary fitness
function in addition to the total added resistance as a secondary fitness function during

optimization process, particularly in optimizing the SR-108 at middle wavelengths.
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On the other hand, the cross term between heave and pitch motions represented as green
long-dashed line in Fig. 4.9 gives the largest reduction to the added resistance, especially
near the peak. In addition, the cross term contribution of diffraction and pitch motion
also reduces the added resistance around its peak given as blue dashed-dotted line on the
same figure. Having a close look to Fig. 4.9, then we could realize that all of the cross
terms become negative before A/L = 1.0, except that of a cross term between diffraction
and heave motion (light brown dashed line). It becomes negative after the total added
resistance reaches its maximum, thus it implies that this cross term increases the peak

value of the added resistance in reverse with other cross terms.



Chapter 5

Variation of Ship Hull Geometry
by Shifting Method

Because the principle of the shifting method is adopted during optimization, it might be
useful to understand the characteristics of SAC of the new ship hull geometry directly
generated by this method. It should be noted here that in the shifting method, a new
ship hull geometry may be derived from the following three cases [17]:

e Varying the block coefficient (Cp)
e Shifting the longitudinal center of buoyancy (L¢cp)
e Introducing the parallel middle body (Pyp)

In this chapter, the above three cases will be discussed in details. The effect of changing

those three parameters will also be investigated.

5.1 Varying the Block Coefficient (Cp)

Let us begin to derive a new hull geometry of ship by changing its Cg. In this case
Cp of a basis hull geometry, namely the modified Wigley model is set to Cp = 0.60
and Cp = 0.70 from its original value as shown in Table 3.1. By using the Lackenby’s
transformation given in Eq.(2.8) to Eq.(2.12), the necessary shift (dz) in the z-axis can
be obtained. Thus the corresponding sectional area curve resulting from change in Cp
is given in Fig. 5.1. Due to variation of Cp in Fig. 5.1, the ship displacement (V)
will change to V = 0.13125 (m?) and V = 0.15313 (m?®) for Cp = 0.60 and Cz = 0.70,

58
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respectively.

(b) Perspective view
FIGURE 5.2: Body plan and perspective view of Cg = 0.60
respectively. The body plan and perspective view of both of them are shown in Figs.5.2

and 5.3 for Cg = 0.60 and Cg = 0.70,
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FI1GURE 5.3: Body plan and perspective view of Cg = 0.70

The corresponding results of comparisons for surge, heave and pitch motions at Fn =
0.20 between basis hull and derived hull forms are presented in Fig. 5.4 through Fig. 5.6.
In Fig. 5.4 for the surge motion, we can see that decreasing the block coefficient tends
to increase the surge motion. In another word, a large Cp will decrease this motion.
This trend can also be observed for the case of heave and pitch motions as shown in
Figs. 5.5 and 5.6. It means that increasing C'p will decrease the amplitude of symmetric
mode of motions. The corresponding results of the added resistance resulting from this

case is depicted in Fig. 5.7

In the previous chapter, we confirmed that the amplitude of pitch motion as well as the
phase difference of heave and pitch motions are sensitive to the peak value of the added
resistance. Thus judging from Figs. 5.5 and 5.6, one may envisage that the resulting
added resistance will reduce relatively largely. However, in this case it is clearly shown

in Fig. 5.7 that only small quantity of the added resistance diminishes about its peak
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FIGURE 5.5: Heave motion of varying Cpg

although the amplitude of heave and pitch motions decrease fairly large with similar
phase difference of both of them. It implies that only the pitch amplitude gives a large
contribution to such reduction. It is also observed in the same figure that the added

resistance in the shorter wavelengths region increases for the case of Cp = 0.70. It
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FIGURE 5.6: Pitch motion of varying Cg

might be attributed to the larger amplitude of Kochin function at transverse section,
especially in the diffraction problem; that is, this increase might be induced by numerical

irregularity and hence probably not real.

Modified Wigley Model Fn=0.2 y=180°
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F1GURE 5.7: Added resistance of varying Cpg
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5.2 Shifting the Longitudinal Center of Buoyancy (L¢p)

In this case, the longitudinal center of buoyancy is shifted about 0.05 (m) towards ship’s
stern and bow without changing the principal particulars of a ship, including its Cp.
For the case of shifting Lop towards ship’s stern, the stern part becomes blunter and
fore part finer. It can be seen clearly through its body plan and perspective view as
given in Fig. 5.8. The body plan and perspective view of shifting Lop towards ship’s
bow are elucidated in Fig. 5.9. The comparison of SAC among them is shown in Fig.
5.10.
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(b) Perspective view

FI1GURE 5.8: Body plan and perspective view of shifting Lcp = 0.05 aft

The symmetric modes of ship motions resulting from this case are shown in Fig. 5.11
through Fig. 5.13. Figure 5.11 reveals that the effect of shifting Lop for surge motion is
very small. For heave motion, shifting the Lop affects the heave motion which increases

its amplitude as Lop shifted towards ship’s bow as shown in Fig. 5.12. Different with
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FI1GURE 5.10: SAC of shifting Leop
heave motion, the amplitude of pitch motion decreases as the Lo p shifted forward and

its phase also changes to some little extent which is depicted in Fig. 5.13.
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As a consequence, the added resistance changes depending on the direction where Lop

moves. This change in the added resistance is shown in Fig. 5.14. From this figure,

we could observe that shifting Lop towards ship’s bow reduces the added resistance,

particularly around its peak to longer waves due to the sensitivity of the pitch motion
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FIGURE 5.14: Added resistance of shifting Lop

in both amplitude and phase difference to the peak of added resistance. However, the
added resistance increases at the shorter wavelengths region. The reason for this is

owing to the larger amplitude of Kochin function at transverse section near the bow
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in the diffraction problem as its bow shape becomes blunter. On the other hand, the
bow shape becomes finer as Lop shifted towards ship’s stern; hence diffracts less waves
than that of the basis hull. Therefore the corresponding results of the added resistance

decreases around shorter wavelengths region which is also shown in Fig. 5.14.

5.3 Introducing the Parallel Middle Body (Py5)

In case of introducing the parallel middle body (Py/p), we insert the Pysp to the basis
hull without increasing C'z. In this case we insert Py/p to aft- and fore-bodies with
length of 0.15 (m), respectively and to the middle body with equal distance. For the
case of inserting Py;p to the aft- and fore-bodies, the body plan and perspective view

of them are given in Fig. 5.15 and Fig. 5.16, respectively.
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FI1GURE 5.15: Body plan and perspective view of introducing Py;p = 0.15 m aft
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FIGURE 5.16: Body plan and perspective view of introducing Py;p = 0.15 m fwd
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