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Chapter 1

General introduction

Cellular functions are determined by integrative interactions between various constituents,
1.e., genes, transcripts, proteins, and metabolites. Thus, it is important to study these interactions
to understand the whole biological system. Genetic perturbations are often used to investigate
the contribution of individual components. One of such components is a transcription factor.
Transcription factors are the regulatory proteins that interact with DNA to either promote or
suppress gene expression. Due to the importance of transcription factors in gene regulation,
they have been widely studied and much attention has been paid regarding the roles of
transcription factors. In this thesis, the effects of transcription factor-related gene deletion
towards metabolic levels were studied, using the budding yeast Saccharomyces cerevisiae as a

model organism.

1.1. Yeast as a model organism
1.1.1. Yeast transcription factors

Since its completion of genome sequencing in 1996 !, research on yeast Saccharomyces
cerevisiae has shifted from merely decoding the DNAs to understanding the function of the
genes, i.e., functional genomics. S. cerevisiae has been used for a model eukaryote for its
convenience to handle and manipulate genetically, fast growth and short generation time.
Although this single-celled eukaryote is much simpler than multicellular organisms, the cell
cycle is very similar to the cell cycle in humans. Up to 30% of genes implicated in human

2, and many studies regarding aging,

disease may have orthologs in the yeast proteome
apoptosis, metabolism and gene expression have been performed using yeasts 3. Additionally,
S. cerevisiae 1s an industrially important microorganism, used in many fields, from food
industry to the production of chemicals. The use of S. cerevisiae has been assisted by vast
literatures and curated databases. Examples are SGD (Saccharomyces Genome Database,

http://www.yeastgenome.org/), YEASTRACT (Yeast Search for Transcriptional Regulators



And Consensus Tracking, http://www.yeastract.com/) and YMDB (Yeast Metabolome
Database, http://www.ymdb.ca/).

Cells employ an elaborate and complex gene expression system that allows them to
reprogram their genetic makeup in response to different environments and growth demands. At
the forefront of this control system lies transcription factors (TFs). TFs are the regulatory
proteins that initiate or suppress gene expression, directly by binding to the promoter regions
in the DNA, or indirectly by forming complex with other TFs. For decades, researchers have
been interested in the function and regulation of TFs; biotechnologically this knowledge can
help in the improvement of industrially important microbial strains as demonstrated by global
transcriptional machinery engineering (¢TME) technique *°, and clinically TFs themselves can
serve as potential drug targets such as estrogen receptors and c-Myc for cancer therapies %7, and

generally proposed for new drug discovery 5°.

Yeast has been used to study eukaryotic transcriptional regulatory mechanisms as well.
Transcriptional regulatory mechanisms are fundamentally similar in eukaryotes, in which
complex promoters with multiple protein binding sites are typical !°. Components of the basal
RNA polymerase II machinery and several general transcription factors have been determined,

and the yeast system has been the leading model for these discoveries .

Generally, TFs can be categorized based on their transcription modes or protein structures
(DNA binding domain motifs). In terms of transcription modes, TFs can be divided into three
classes; 1) core machinery transcriptional component (i.e., basal transcription factors) that binds
to the DNA promoter region, examples are the TATA-binding proteins; 2) activator or repressor
proteins (i.e., sequence-specific binding proteins) that recognize specific DNA sequences and
directly bind to the UAS (upstream activation sequence) or URS (upstream repression
sequence); and 3) co-activator proteins that do not by themselves bind to the DNA but instead

interact with other TFs to activate gene expression machinery.

On the basis of DNA-binding domain (DBD), TFs are categorized into three general classes:
zinc-stabilized, zipper type and helix-turn-helix (Fig. 1-1, reviewed by Hahn and Young,
2011'"Y). In the zinc-stabilized class, the TFs can be further classified into three sub-classes:
C2H2 zinc fingers, C6 (zinc knuckle or Zn,Cyse binuclear zinc cluster) and C4 (or GATA
fingers). C2H2 and C4 are ubiquitous while C6 is unique to fungi. The zinc-stabilized DBD is



the most abundant in all organisms, and as the name indicates, requires Zn?" to stabilize. At
least one TF in yeast, i.e., Acel/Cup2 is stabilized by Cu?*. There are 53 members in C2H2
(e.g., Adrl, Migl, Zapl), 55 members in C6 (e.g., Gal4, Hapl, Leu3) and 5 members in C4
(GIn3, Gatl, Nill, Dal80, Ash1) proteins.

The second most abundant TF class is the zipper type. DBD of this class is characterized
by a dimerization motif and a basic region. There are two sub-classes of zipper type: bZIP (basic
leucine zippers; 14 members, e.g., Gen4, Yapl, Skol) and bHLH (basic helix-loop-helix; 9
members, e.g., [no2, Ino4, Rtgl, Rtg3). Zipper type TFs form homo- or heterodimers, a feature
that enables multi-regulatory control of transcription. Consequently, zipper type TFs involve in

many processes including cell development and stress responses.

The third class, HTH (helix-turn-helix; 8 members, e.g., Matal, Mata2, Matal), also forms
homo- and heterodimers. A classical HTH protein in yeast is Mato2, which, together with
Mcml, represses a-specific genes in Mata haploids. The forkhead (Fkh) transcription factors

(Mcml, Fkh1, Fkh2, Mcm1) and the heat shock factor (HSF) are related to the HTH proteins.

However, there are also TFs that lack a DBD motif, such as Met4 and Swi6, while other
TFs such as Gerl and Dal81 have a DBD that is dispensable. These proteins form a heterodimer
and interact with DNA through their binding partner.
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Fig. 1-1. Classification of yeast transcription factors according to DNA binding domain motifs. (A)
C2H2 zinc fingers of Adrl; (B) C6 (zinc knuckle) of Gal4; (C) bZIP structure of Gen4; (D) bHLH of
Pho4; (E) helix-turn-helix of Mata2 and winged helix of Mcm1. (Hahn and Young, 2011'1)

1.1.2. Transcription factors and gene regulatory studies

Because of the important role of TFs in gene expression, various studies have been
undertaken to find which TFs are involved in the expression of a certain set of genes, when and
why the genes are expressed, and more importantly the consequences of such gene expression.
Large scale gene-protein and protein-protein interactions and transcript analysis have
contributed to the vast knowledge of TFs, following current advancement in microarray and

ChIP techniques. Several strategies commonly employed are; computer-based approach such



as development of algorithms that seek conserved promoter elements or common sequence

clements in the promoters of co-expressed genes %13

, microarray-based biochemical
approaches that identifies binding and the sequence of individual TFs '#16, and ChIP-chip 71

that identifies sequences bound by a TF in vivo.

Despite the large amount of studies, the understanding of TFs is far from complete due to
the complex nature of gene regulation; multiple-stage control and modularity element of TFs,
post-transcriptional and post-translational modifications, and lack of information regarding the
signaling molecules itself and intercellular communication that all lead to gene expression.
Particularly, the connection between the transcript and protein to final phenotypic change is
lacking, and thus an alternative approach to studying TF regulation is necessary. Although
transcriptomics can analyze genome-wide gene expression levels and many large-scale genetic
perturbations using microarrays have been performed !%202!, transcript levels are known to be
unstable, and it is difficult to compare such large data generated across different technology
platforms, genetic backgrounds and degrees of replication ?2. Moreover, while the expression
levels of genes encoding an enzyme can be relatively easy to infer (for example, the
upregulation of an enzyme catalyzing a biochemical reaction can be interpreted as increased
products and decreased substrates), interpretation of genes encoding e.g., a transporter or a
permease may not be as simple. Therefore, additional parameters (in this case, metabolite

levels) can help in the interpretation of gene transcription process and its effects to the cells.

1.1.3. S. cerevisiae central carbon metabolism

Yeast has been the subject of study since the 17" century, when it was identified by a Dutch
lens maker, Antonie van Leeuwenhoek who first developed the microscope. Today, it is still
one of the important microorganisms, due to its industrial relevance in many applications, from
bread to winemaking, to the production of chemicals. S. cerevisiae is a Crabtree positive yeast,
a facultative anaerobe, able to perform alcoholic fermentation of glucose under fully aerobic
conditions. The adaptation of S. cerevisiae’s metabolism under different conditions represents

an excellent model for studying metabolic regulation.



At the center of metabolic network lies the central carbon metabolism. Central carbon
metabolism in S. cerevisiae refers to the breakdown of carbon source (typically glucose), to
produce biosynthetic precursors for biomass formation and generate energy required for growth.
It comprises both catabolic (breakdown of large molecules, energy-producing) and anabolic
(building up of large molecules from smaller units, energy-requiring) pathways. Central carbon
metabolism includes; a) glycolysis: the breakdown of sugar to pyruvate, b) pentose phosphate
pathway, PPP: used for the generation of NADPH, c) tricarboxylic acid cycle, TCA or Krebs
cycle: generating FADH> and NADH, which are then used for ATP production under oxidative
phosphorylation, and d) glyoxylate cycle: an anaplerotic pathway that ensures continuous
supply of intermediates when TCA cycle is compromised, and of growth in 2- and 3-carbon
molecules. Related to glycolysis is gluconeogenesis, the anabolic pathway to produce glucose
from non-carbohydrate carbon substrates such as pyruvate, lactate, glycerol, glucogenic amino

acids, and fatty acids. Fig. 1-2 illustrates the central carbon metabolism of S. cerevisiae.

The central carbon metabolism is highly conserved among various organisms and holds the
key to understanding cell regulation under different metabolic states, either caused by genetic
or environmental perturbations. Thus, examining alterations at the central metabolic level

signifies a fundamental step in functional genomics studies.

10
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Fig. 1-2. Central carbon metabolism of S. cerevisiae

1.2. Metabolomics

1.2.1. General concept

Biological systems are comprised of four main biochemical components, i.e., genes,
transcripts, proteins and metabolites. The complete collection of each component is referred to
as genome, transcriptome, proteome and metabolome (Fig. 1-3). These components interact

with each other in an integrative manner to determine cellular phenotypes. Systems level studies

11



of these biological components on a global scale has been driven by various ‘omics’
technologies, each built based on the individual component properties. These techniques are
driven by high-throughput approaches that yield a large set of data that are often challenging to
analyze, but present a holistic view of cellular functions. Table 1-1 summarizes ‘omics’
technologies. Besides these four main techniques, several other branched ‘omics’ such as
fluxomics (measurement of the ensemble of metabolic fluxes) and lipidomics (comprehensive

profiling of lipid molecules) have also been described.

TF complex

l' mRNA

VAVAN
VAV AN
/\/‘(V\ﬁ[ transcriptome ]

protein

@%

O -

)‘\WOH metabolite

oHll oH o)
B oﬁ‘ ?
N W O

2.2 el metabolome |

Fig. 1-3. The central dogma of biology, where genes are transcribed into mRNA, which is further
translated into protein, which then participates in a metabolic pathway to give rise to a certain metabolite.
This schematic diagram also captures the role of transcription factors as the forefront molecule in gene
transcription process. By measuring the metabolic alteration following a transcription factor

perturbation, elucidation of the TF function can be achieved.
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Table 1-1. The ‘omics’ technologies

Omics Description Methods Applications
Genomics Comprehensive study of a Gene sequencer  Genome sequence
genome, including protein information
coding genes, regulatory
elements and non-coding
sequences
Transcriptomics  Quantitative study of mRNA Hybridization Analysis of differential
(transcript) expression levels arrays gene expression, gene-
(microarrays) gene network
RNA sequencer
Proteomics Analysis of protein content 2D-PAGE gels Identification of
and abundances Protein arrays protein function,
MALDI-TOF, protein-protein
LC/MS interactions
Metabolomics Comprehensive study of GC/MS, LC/MS  Identification and

metabolites and metabolic

NMR

quantification of key

network metabolites,
elucidation of

metabolic behavior

Metabolites hold a special position in systems biology since they are most downstream
products of gene expression process. Transcripts or proteins can undergo various post-
transcriptional and post-translational modifications, and thus the changes in transcript or protein
abundances do not necessarily lead to an equal change in phenotype. In contrast, metabolites
represent the final outcome of gene expression, and thus are the ultimate readouts of a
phenotype. Moreover, metabolites also serve as the building block for genes and transcripts
(nucleotides), proteins (amino acids) and organelles, and well-preserved among different
organisms. In yeast, it is estimated that there are approximately 600-1000 metabolites 23, a
number far less than the number of genes or proteins. However, this also means that there is a
higher complexity since metabolites have no direct one-to-one relation with genes/proteins and

involve in various biochemical reactions simultaneously.

Generally, metabolomics strategies can be largely divided into; targeted analysis,

metabolite profiling, metabolomics and metabolic fingerprinting 2+%3.

Targeted analysis
approach is used when the metabolites of interest are known, and involves quantification of the

metabolites. Metabolite profiling, also called semi-targeted approach, is the quantitative or

13



qualitative determination of a group of related compounds or of specific metabolic pathways.
Metabolomics (qualitative and quantitative analysis of all metabolites) and metabolic
fingerprinting (sample classification by rapid, global analysis), are related to non-targeted
analysis, which typically aims to profile all metabolites, so-called ‘measure everything’
approach 2. In this study, a semi-targeted metabolomics approach is employed. Targeted and
semi-targeted analyses deal with a defined set of metabolites; the difference is mainly in terms
of the number of metabolites measured, typically around 20 for targeted and a hundred to a few
hundreds for semi-targeted 2°. The number of metabolites that can be measured is often limited
by the number of commercially available authentic metabolite standards. Semi-targeted
approach allows for a wider coverage of metabolites than targeted approach, consequently
higher chance of finding significant metabolites, with higher accuracy and quantification ability
than non-targeted approach. Thus, a good compromise between metabolite numbers and

quantification ability is obtained.

1.2.2. Metabolomics approach in this study

To elucidate the complex metabolic alteration following the deletion of a transcription
factor, ideally all of the metabolites are measured. However, the diverse chemical properties of
metabolites, including molecular weight, polarity, hydrophobicity, volatility, and chemical
structures, make simultaneous measurement technically demanding 6. Recently, ion pairing
liquid chromatography/mass spectrometry (LC/MS) has been developed as a widely-targeted
metabolome analysis platform that covers a wide range of metabolites 273!, Particularly, highly
polar intermediates from central metabolism, such as sugar phosphates and nucleotide
triphosphates, can be measured with good reproducibility using this platform. By adding an ion
pairing reagent in the mobile phase, the ability to retain highly polar metabolites that otherwise
are eluted near the void volume in regular reversed-phase LC is improved. Moreover, ion
pairing LC has a better separation and higher signals compared to hydrophilic interaction
chromatography (HILIC) in the analysis of central metabolites 2. Therefore, ion pairing LC/MS
fits as an analysis platform for metabolic profiling of transcription factor deletion mutants in
this study. The use of triple quadrupole mass spectrometry (MS/MS) helps to separate isomers

with an additional filter at the third quadrupole and improve selectivity.

14



In this study, ion pairing LC/MS is used as the main analysis platform for metabolite
profiling. Tributyl amine (TBA) is added to the mobile phase as an ion pairing reagent for the
separation of anionic metabolites. In addition, regular reversed-phase LC/MS and GC/MS were
also used as complementary platforms for the measurement of important metabolites undetected

or having poor performance in ion pairing LC/MS.

The overall workflow for this study is depicted in Fig. 1-4. First, analytical platform
dedicated for the profiling of yeast samples was developed. This step includes analysis of
standard metabolites, analysis of a reference strain and construction of an in-house yeast
metabolite library. Next, metabolic profiling of selected yeast strains was carried out, using the
established analysis platform. In this step, yeast samples were obtained after culture and
metabolite extraction, then subjected to metabolite measurement. In the subsequent step, peak
identification was performed, after which a peak list table (metabolome dataset) was obtained.
Finally, after suitable data pre-processing (normalization and scaling), multivariate data

analysis was conducted.

{ Analytical platform i Metabolicprofiling
¢ (D Analysis of standard D Yeast culture and £ Metabolite

i metabolites metabolite extraction measurement {LC-MS, GC-

! Retertlon time and myl M3 ete.)

MRM optimization
Linear range, LOD

o

P Analysls of reference
£ strain

BY4A742 [MATa leu2AD

hes 20 pra At kis 201}

S

3 Yeast metabolite
library

Using software to assign
peak BT and myz

TTTTT]

SC mmead lsmy, 203,
JO0H0 ek e

L] ‘
Callect cefis by Fast Ftratsan

Extract with MO HOMHCl=5/212

@ Peak list table
D Peak Hmﬂthn
| metabolites = 1" eg
E * = | Pifivate
,E E A Rikitol
o BT LMP
Multivariate . Biological
data analysis interpretation

Fig. 1-4. Schematic diagram of experimental workflow and strategies employed in this study.
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1.3. Research objective

As described in Section 1.1.2, the knowledge of transcription factors still has a long way to
go. Particularly, the missing link between TFs to final phenotypic change needs to be addressed.
To fill the gap of the connection between TFs and phenotype (cellular composition,
physiological appearances, growth competency etc.), the most downstream product of gene
expression 1.e., metabolites should be characterized. Metabolites can serve as an indicator of
the effects of such gene up- or down- regulation caused by TF deletion. Therefore, metabolite

profiling fits as an excellent approach for studying metabolic alteration in TF deficient strains.

In this study, a dispensable activator/repressor group of TFs (non-essential for growth) is
dealt with. Intermediates from the central carbon metabolism and related amino acid
biosynthetic pathways are measured following TF-gene perturbation, and the correlations
between TF-metabolite are derived. The overall goal of this study is to deepen the knowledge
of TFs and transcriptional regulation by examining metabolic alteration levels. To achieve this

goal, the following strategies were set;

1. Demonstrate the utility of metabolomics in finding novel TF-metabolite correlations using

a model transcription factor complex
2. Perform a global metabolome analysis for a comprehensive set of TF deletion strains

3. Use the obtained TF-metabolite correlation data to suggest possible new associations

and/or further enhance existing knowledge

16



1.4. Outline of the thesis

This thesis regards the effects of transcription factor deletion towards metabolic alteration.
Specifically, the correlations between a TF gene and metabolites were investigated. In Chapter
1, general introduction and research background are presented. In particular, yeast transcription
factors and metabolomics techniques are discussed. In Chapter 2, metabolic profiling of two
representative basic helix-loop-helix (bHLH) transcription factors Rtgl and Rtg3 yeast mutant
is demonstrated as a proof-of-principle of the utility of metabolomics approach in finding TF-
metabolite correlations. Using exploratory data analysis, information regarding important
metabolites that discriminate between mutant and wild-type strain was obtained. Of note was
the identification of metabolites/metabolic pathways previously unidentified from other
approaches, and metabolic changes in the early growth phase. In Chapter 3, a global
metabolome analysis was performed for 154 TF deletion strains. Characterization using
hierarchical clustering analysis (HCA) and differential analysis showed that the strains can be
categorized according to their metabolic phenotype; some clustering shared similar known
function or the same gene annotation, in agreement with previous findings, whereas some
demonstrated new associations. These results illustrate that metabolomics can assist in the
generation of new working hypotheses of TF functional analysis based on TF-metabolite
correlations, which were not necessarily evident from transcript data. Also discussed are issues
regarding data normalization and correction of batch-to-batch variation, a prevalent problem in
mid- to large-scale metabolomics studies. Finally, in Chapter 4, general conclusions and future

perspectives are presented.
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Chapter 2

Metabolic profiling of retrograde pathway transcription factors

Rtgl and Rtg3 knockout yeast

2.1. Introduction

In this chapter, as a proof-of-principle, two representative transcription factors were chosen
for metabolic profiling. To ensure that the TF deletion will result in a substantial alteration in
metabolite levels (so that the difference between wild-type and disruptant strains can be clearly
seen in terms of metabolic profile), TFs that are known to affect metabolic pathways were
selected. In this regard, Rtgl and Rtg3, two mitochondrial retrograde pathway regulators that
have several target genes in the tricarboxylic acid (TCA) cycle, fit this purpose. Furthermore,

mitochondrial retrograde pathway is conserved in many organisms including humans 3334,

Rtgl and Rtg3 are two basic helix-loop-helix (bHLH) transcription factors found in yeast
Saccharomyces cerevisiae and are known regulators of mitochondrial retrograde (RTG)
response *’. bHLH proteins were chosen as they represent a large family of regulators,
conserved in all eukaryotes 7 and have been widely studied. They engage in diverse
metabolic pathways including phosphate utilization, amino acid biosynthesis, and glycolysis.
Owing to the characteristic dimer formation of bHLH proteins, it is expected that they involve
in various metabolic pathways and are inter-connected with each other as well as other

transcription factors 3837,

Mitochondrial RTG response is the signaling pathway from mitochondria to the nucleus
triggered by the functional states of mitochondria “°*?. Fig. 2-1 summarizes the regulatory
mechanism of retrograde response. This pathway maintains a continuous supply of 2-
oxoglutarate, a precursor of glutamate and glutamine biosynthesis, by activating anaplerotic
metabolism of citrate and oxaloacetate via glyoxylate cycle when respiratory metabolism

through the TCA cycle is compromised in the event of reduced mitochondrial functions. It is
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thus one of the important signaling pathways that ensure a continuous supply of precursors,

such as 2-oxoglutarate for biosynthetic reactions through alternative metabolic pathways.

Rtgl and Rtg3 form heterodimers and translocate from the cytoplasm to the nucleus when
RTG response is activated **. This translocation depends on the phosphorylation state of Rtg3
and the transcriptional activation domain is contained within Rtg3. Rtgl/Rtg3 complex binds
to an R-box (GTCAC) which differs from the canonical E-box site (CANNTG) to which most
other bHLH proteins bind #*. Among Rtg1/Rtg3 target genes are several TCA cycle genes, but
the prototypical target is CIT2 #* which encodes a peroxisomal citrate synthase in S. cerevisiae.
In petite cells (cells that contain nonfunctional, mutated mtDNA (p~) or have completely lost
their mtDNA (p?)), the transcripts encoding TCA cycle and glycolytic enzymes were found to
be increased under repressing (i.e., glucose) and derepressing (i.e., raffinose) growth conditions
45, while stimulation of glycolysis was also observed in p~ cell when grown under glucose

condition, with increased glycerol synthesis and decreased trehalose production 46

Retrograde

Fig. 2-1. Retrograde regulation in yeast, induced by Rtgl and Rtg3 complex. Rtgl/Rtg3 is, in turn,
regulated by another repressor protein Mksl, whose association with Bmhl/Bmh2 prevents
translocation of Rtgl/Rtg3 from the cytoplasm to the nucleus. A phosphatase Rtg2, acts upstream,
dephosphorylates and binds to Mks1 to allow retrograde response (adapted from Butow and Avadhani,
2004 41).
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In addition, the target of rapamycin (TOR) kinase pathway, an essential pathway that
controls multiple cellular processes in response to nutritional signals, was shown to negatively
regulate RTG target genes . Glutamate, glutamine and proline were reported as signaling
molecules and both TOR-dependent and TOR-independent modes for RTG target gene
expression have been demonstrated 4°%3!, The interplay between TOR and RTG pathways, as
well as the heterodimeric nature of Rtgl/Rtg3 regulators suggest that more complex metabolic
regulations exist corresponding to various nutrition and growth conditions. In particular,
metabolic signals that regulate TOR and RTG target genes are only partly understood, and it is
unclear if the metabolites themselves are regulated by these pathways. In a recent study by
Zhang et al. (2013) 2, adenosine triphosphate (ATP) was identified as a candidate signaling
molecule in the mitochondrial retrograde pathway. However, the association of other
metabolites are unknown, and there is a possibility of other metabolic signals since RTG
pathway functions to recover the metabolic balance when TCA cycle is repressed. Therefore,
characterization of metabolite pools would represent the first screening step to identify these

metabolic signals.

In this chapter, metabolomics approach is applied to find metabolic regulations possibly
mediated by Rtgl and Rtg3. While RTG gene deletion exhibited no difference in growth rates
when grown in synthetic complete media, a significant alteration in metabolic pathways,
especially those involving polyamine biosynthesis, as well as TCA and glyoxylate cycles was
observed. It was found that metabolic alterations occur at various metabolic sites, and that these
changes relate to different growth phases, but the difference can be detected even at mid-
exponential phase. This study illustrates a broader assessment of metabolic change following

RTG-gene deletion than previously described.
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2.2. Experimental section
2.2.1. Strain growth conditions and sample preparation

Yeast BY4742 (MATo leu2A0 lys2A0 ura3A0 his3A1) was used as the parental/wild-type
strain for all experiments. BY4742 isogenic derivatives, rzgl A disruptant (MATo leu2A0 lys2A0
ura3A0 his3A1 rtgl::kanMX) and rtg3A disruptant (MATa leu2A0 lys2A0 ura3A0 his3A1
rtg3::kanMX), were purchased from Open Biosystems (Huntsville, AL, USA). All cultures were
grown in synthetic media composed of 0.67% Difco™ yeast nitrogen base without amino acids
(BD, MD, USA), 2% glucose (Nacalai Tesque, Kyoto, Japan) and standard concentrations of
amino acids and bases 3. The cultivation and sampling were performed as follows. Yeast cells
from frozen glycerol stock were plated onto YPD agar plates (10 g/L yeast extract, 20 g/L
peptone, 20 g/L glucose, 20 g/L agar (all from BD, MD, USA except glucose and agar from
Nacalai Tesque), with added geneticin G418 (Wako, Osaka, Japan) 200 pg/mL for disruptant
strains) and grown at 30 °C for 2 days. After two days, a single colony was obtained, transferred
to liquid media and let to grow overnight (pre-culture) at 30 °C in a rotary shaker (200 rpm). A
portion of the pre-cultured yeast cells were then transferred to fresh media, starting optical
density at 600 nm (ODeoo0) of 0.1, and continued to grow at 30 °C to desired ODsoo and harvested
using a rapid filtration system. The harvested cell amount was kept at 5 OD units, equivalent to
1 mg of cells by dry weight at each sampling point. After washing with 5 mL water, the filter-
bound cells were inserted into 1 mL of —30 °C precooled single-phase extraction solvent
(methanol/chloroform/water = 5/22 vwAh %) with added 12 pg/mL of 14-
piperazinediethanesulfonic acid, PIPES (Dojindo, Kumamoto, Japan) as an internal standard and
immediately quenched in liquid nitrogen. The samples were kept at —80 °C until extraction.
Extraction was carried out at 4 °C, 1200 rpm for 30 min. After that, all liquid extract was
transferred to a new tube, 400 puL. water added, vortexed and centrifuged at 4 °C, 16100 rcf
(relative centrifugal force) for 3 min to separate polar and non-polar phases. The upper polar
phase was collected, concentrated five times from the initial volume and ready for LC-MS

analysis. Extracted samples were analyzed within 24 h after extraction.

For extracellular metabolome, ~1 mL of the medium filtrate was collected at the same time

during cell filtration and diluted four times with water prior to LC-MS analysis.
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2.2.2. Metabolite profiling and quantification

The analysis platform consists of a Shimadzu Nexera series UHPLC system (Shimadzu,
Kyoto, Japan) coupled to a triple quadrupole mass spectrometer, LCMS-8030, with a
modification to improve the sensitivity (Shimadzu, Kyoto, Japan). Two LC/MS methods were
employed; (1) ion-pairing reversed phase ultrahigh performance liquid chromatography-
tandem mass spectrometry (UHPLC-MS/MS) to detect mainly anionic metabolites, such as
sugar phosphates and nucleotides from primary metabolism; and (2) regular reversed phase
UHPLC-MS/MS for the analysis of other metabolites undetected in ESI negative mode. For
ion-pairing UHPLC-MS/MS, the method was developed based on Luo et al. (2007) * and
Buescher et al. (2010) 3!, modified to match in-house LC and MS system and tested with several
types of columns and analytical parameters to optimize peak shape and separation profile. The
MS/MS fragment for each analyte was determined using authentic standards. In addition, the
analysis time was successfully accelerated from 36 min 3! to 15 min. The final analytical
conditions were as follows; column: L-Column2 ODS (150 mm x 2.1 mm, 3 um, Chemicals
Evaluation and Research Institute Japan); flow rate: 0.3 mL/min; column temperature: 35 °C;
mobile phase A: water containing 10 mM tributyl amine and 15 mM acetic acid; mobile phase
B: methanol; gradient program: 0% B (0-0.5 min) - 25% B (7.5 min) - 90% B (11-11.5 min) -
0% B (11.6-15 min); sample cycle time: 15 min; injection volume: 3 pL. The mass
spectrometric parameters were: ESI negative mode; desolvation line (DL) temperature: 250 °C;
nebulizer gas flow: 2 L/min; heat block temperature: 400 °C; other parameters were optimized

automatically by flow injection analysis and auto-tuning.

For regular reversed phase UHPLC-MS/MS, the parameters were as follows: column:
Discovery HS F5-3 (150 mm X 2.1 mm, 3 pm, Supelco Analytical, PA, USA); flow rate: 0.3
mL/min; column temperature: 40 °C; mobile phase A: water with 0.1% formic acid; mobile
phase B: acetonitrile with 0.1% formic acid; gradient program: 0% B (0-1 min) - 20% B (11 min)
- 100% B (11.5-13 min) - 0% B (13.1-15 min); sample cycle time: 15 min; injection volume: 3
uL. The mass spectrometric parameters were: ESI positive mode; desolvation line (DL)
temperature: 250 °C; nebulizer gas flow: 2 L/min; heat block temperature: 400 °C; other
parameters were optimized automatically by flow injection analysis and auto-tuning. The
optimized multiple reaction monitoring (MRM) parameters and retention time for each

metabolite are listed in Supplementary Table S1.
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All samples were kept in a 4 °C autosampler during analysis. Standard mixtures of authentic
metabolites and the pooled QC sample 3*3 were injected periodically throughout the analysis
run for evaluating the stability and reproducibility of the analytical system. All reagents were

of LC-MS grades (Wako, Osaka, Japan).

Peak picking was conducted by LabSolutions (Shimadzu, Kyoto, Japan) followed by
manual inspection. The parameters were set as follows: integration: auto, max peak: 3, width:
5 s; smoothing: standard, counts: 5, width: 1 s; identification: absolute RT and closest peak,
target window: 5%, reference window: 5%, process time: 1 min. Obtained peaks were
identified based on an in-house metabolite library. The identity was checked by spiking
authentic standards to yeast extract and confirming that the particular metabolite peak intensity
increases with added concentration. Pooled yeast aliquots were used as a quality control for
reproducibility monitoring 3*¢. Peaks with poor reproducibility (relative standard deviation,

RSD of peak intensity >30% >°) were omitted from the list.

2.2.3. Multivariate data analysis

The amount of each metabolite (peak intensity) was normalized to internal standard 1,4-
piperazinediethanesulfonic acid (PIPES), mean-centered and scaled to unit variance. Principal
component analysis (PCA) was performed using SIMCA-P+ ver13 (Umetrics, Umed, Sweden).
Pathway analysis was performed using MetaboAnalyst 2.0 °. Heat map and hierarchical
clustering of fold-change normalized intensities were performed on Cluster 3.0 3% and viewed
on Java Treeview *°. The statistical difference (two-tailed heteroscedastic #-test) was calculated

using MS Excel. Pathway mapping was performed by VANTED V2.1.0 .

2.2.4. Yeast chronological lifespan measurement

The chronological lifespan (CLS) measurement was based on Parella and Longo (2008) °'.
Briefly, aliquots of yeast culture grown to the stationary phase were diluted to approximately
103-10* cells/mL, and 100 puL were spread onto YPD (1% yeast extract, 2% peptone, 2%

dextrose, 2% agar (% w/v)) plates. Yeast colonies were counted after 2—4 days of incubation at
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30 °C. CLS (at Day X) is defined as the percentage of the number of colonies at Day X divided

by the number of colonies at Day 3.

2.3. Results and discussion
2.3.1. Time-course metabolic profiling of RTG-deleted strains

Wild-type BY4742 and RTG-deletion strains showed a comparable growth under SC
medium (maximum specific growth rate, p = 0.456+0.011 h'!, 0.461+0.015 h'! and 0.462+0.013
h'! for BY4742, rtgIA disruptant and rtg3A disruptant respectively). Since RTG response is
initiated under decreased mitochondrial and respiratory function, it is expected that declined
growth resulting from nutrient cessation and stress accumulation in the stationary growth phase
would yield sufficient metabolomics pattern which can distinguish between wild-type and
strains lacking RTG response. Therefore, it is appropriate that the metabolic profiling is
performed at stationary phase. However, such response against stress or growth adjustment can
also be sensed at metabolite levels sooner before there is a detectable change in phenotype, such
as demonstrated previously in yeast replicative lifespan study 2. Therefore, a time-course
metabolic profiling should be designed so that the difference between wild-type and rtg/A

disruptant, or r¢g3A disruptant can be captured as early as possible.

The yeast strains grown to stationary phase were sampled at four sampling points. The
culture was started at ODgoo=0.1 (0 h). Each sampling point was taken at various times with
different optical density values, ODgoo, corresponding to different growth phases (ODgoo=1 at 5
h for mid-exponential, ODgoo=5 at 9 h for late-exponential, ODgoo=10 at 26 h for post-diauxic
and at 76 h for stationary phases). The collected culture volume was adjusted according to the
OD value so that the total cell number for metabolomics profiling is kept constant
(approximately 5 x 107 cells for each sample). Under high glucose condition, initially, S.
cerevisiae operates mainly in the glycolytic mode to ferment glucose to ethanol independent of
the presence of oxygen. During this stage, the expression of the genes encoding TCA cycle
enzymes and other genes required for growth under non-fermentable carbon sources is
repressed, a phenomenon known as glucose repression. Mitochondrial function is also repressed.

Along with decreased glucose concentration, cells switch to gluconeogenesis and increase their
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respiratory rate and, finally, enter the stationary phase, where they accumulate storage
carbohydrates. Therefore, the sampling points cover different metabolic states of the cells.

Additionally, extracellular metabolites from the growth medium were also measured.

As a result, 96 intracellular metabolites from yeast cell extracts and 53 extracellular
metabolites from the growth medium were identified. The metabolite peaks were normalized
to an internal standard 1,4-piperazinediethanesulfonic acid (PIPES), mean-centered and scaled

to unit variance before subjected to data analysis.

First, to reveal metabolic alteration patterns between RTG disruptants and wild-type strains,
principal component analysis (PCA) was performed. PCA is an unsupervised multivariate
analysis that seeks the variance among different groups of samples and plots them so that the
largest variance is contained in the first principal component, the second largest variance in the
second principal component, and so on. Metabolome data (intracellular metabolites) were fitted
into PCA with five significant components (Supplementary Table S2). PCA score plot (Fig. 2-
2 (A)) shows that the first principal component (PC1, accounting for 53.7% of the total
variance), separates between different growth phases, while principal component 2 (PC2,
accounting for 13.5% of the total variance), separates between wild-type and mutant strains.
This result indicated that gene deletion effects can be observed at metabolite levels with high

resolution, even when there is no observable change in growth rate.

Next, PCA loading plot (Fig. 2-2 (B)) was examined, which shows metabolites that
contribute to the separation observed on the score plot (for a complete list of loading values,
see Supplementary Table S3). Along PCI1, nucleotide monophosphates and ribonucleosides
were seen as major contributors to discrimination of samples at late growth phases (26 and 76
h), while proteinogenic amino acids except for proline and cysteine, and glycolysis
intermediates were generally abundant in samples at early growth phases. Along PC2, increased
level of 2-oxoglutarate and glyoxylate was distinctive in wild-type at 76 h, while putrescine,

cAMP, threonine and ornithine were high in RTG-deficient strains.
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Fig. 2-2. (A) PCA score plot for time-course metabolic profiling at 5 h, 9 h, 26 h and 76 h of control

strain BY4742, and rtgIA and rtg3A disruptants (n=3). The metabolites were normalized to an internal
standard (PIPES) and auto-scaled. Ellipse indicates 95% confidence border based on Hotelling’s T2.
Separation among different sampling points (different growth phases) can be seen along PC1, while the

separation between control and disruptant strains was observable on PC2.
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Fig. 2-2. (B) The corresponding loading plot illustrating metabolites that contribute to the separation on

PC1 and PC2. Along PCI1, nucleotide monophosphates and ribonucleosides were seen as major

contributors to discrimination of samples at late growth phases (26 and 76 h), while proteinogenic amino

acids except for proline and cysteine, and glycolysis intermediates were generally abundant in samples

at early growth phases. Along PC2, increased level of 2-oxoglutarate and glyoxylate was distinctive in

wild-type BY4742 at 76 h, while putrescine, cAMP, threonine and ornithine were high in RTG-deficient

strains. For the complete list of loading values, see Supplementary Table S3.
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2.3.2. Metabolites and metabolic pathways associated with RTGI and RTG3

The purpose of PCA is to observe the separation pattern between wild-type and RTG-
deletion strains. As the separation was successfully observed on the second principal
component, the metabolites that showed a large loading value on PC2 were further analyzed.
The loadings describe the multivariate makeup as a vector in multivariate space, and thus
determine the underlying variables that are important to each PC. The 50 most important
metabolites, with absolute loading values > 0.05 are shown in Fig. 2-3 (A). High levels of TCA
and glyoxylate cycle intermediates (2-oxoglutarate, glyoxylate, malate, isocitrate, citrate,
succinate) positively correlate with RTG-genes (increased in BY4742 and decreased when
RTG-genes were deleted), while high levels of polyamine biosynthetic intermediates
(putrescine, ornithine, spermidine) negatively correlate with RTG-genes (increased when RTG-

genes were deleted).

To get the overall view of the contribution of these metabolites into different metabolic
pathways, the 50 most influential metabolites were subjected into pathway enrichment analysis
using MetaboAnalyst 2.0 7. The result is shown in Fig. 2-3 (B) and Table 2-1. Besides TCA
and glyoxylate cycles, amino acid metabolism makes up the majority of the affected pathways.
TOR activity is closely related to amino acid signaling, thus the result in part reflects the
involvement of TOR in RTG pathway. This result also suggests that Rtgl and Rtg3 may also

hold regulatory effects on amino acid metabolisms other than glutamate and glutamine.
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Fig. 2-3. (A) Loading values for 50 most influential metabolites along principal component 2, PC2 that
distinguishes RTG-deficient strains from control BY4742. Positive loadings indicate a positive
correlation with RTG regulation (decreased when the RTG regulatory gene was deleted), while negative
loadings indicate a negative correlation with RTG regulation (increased when the RTG regulatory gene
was deleted). (B) Overview of pathway analysis, showing matched pathways according to pathway
enrichment analysis and pathway impact values from pathway topology analysis. Circles represent the
metabolite-matched pathways of S. cerevisiae retrieved from Kyoto Encyclopedia of Genes and
Genomes (KEGG). Color intensity indicates the significance of the pathway (the darker the more

significant), while size indicates pathway impact score (the centrality of its involved metabolites).
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Table 2-1. Pathway analysis using MetaboAnalyst 2.0 (hits > 2, arranged according to p-

values).

Pathway name Total Hits p -log (p) FDR Impact

Arginine and proline
37 13 2.37E-08 17.556  1.54E-06  0.57168

metabolism
Alanine, aspartate and
) 20 8  5.69E-06 12.077  0.000185  0.87254
glutamate metabolism
Aminoacyl-tRNA
) ) 67 13 4.65E-05 9.9767  0.001007 0
biosynthesis
Glutathione metabolism 23 7 0.000182 8.6137  0.002951  0.63277
Citrate cycle (TCA cycle) 20 6  0.000608 7.4058  0.006591  0.30939
Nitrogen metabolism 8 4 0.000608 7.4047  0.006591 0
Glyoxylate and
) ] 14 5 0.000747 7.1989 0.00694  0.48551
dicarboxylate metabolism
Glycine, serine and
26 6 0.00275 5.8963  0.022342  0.41988
threonine metabolism
beta-Alanine metabolism 7 3 0.005565 5.1912  0.040194 1
Pyrimidine metabolism 35 6 0.012898 43507 0.083836  0.25014
Lysine biosynthesis 19 4 0.020822 3.8717 0.12304 0.125
Cysteine and methionine
) 33 5  0.037927 3.2721 0.20544  0.31009
metabolism
Purine metabolism 60 7 0.053069 2.9362 0.26535  0.07859
Butanoate metabolism 17 3 0.071451 2.6387 0.33174  0.28571
Cyanoamino acid
) 10 2 0.11148 2.1939 0.48308 0
metabolism
Valine, leucine and
] ] ) ] 24 3 0.16013 1.8318 0.65052  0.07519
isoleucine biosynthesis
Sulfur metabolism 13 2 0.17308 1.754 0.66178  0.05319
Propanoate metabolism 14 2 0.19472 1.6362 0.70314 0
Pantothenate and CoA
] ) 16 2 0.23889 1.4318 0.81724 0
biosynthesis
Starch and sucrose
) 18 2 0.28357 1.2603 0.92162  0.15497
metabolism
Porphyrin and chlorophyll
Rind P 20 2 0.32811 1.1144 1 0
metabolism
Pyruvate metabolism 23 2 0.39349  0.93271 1 0.1159
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Since the highest positive and negative loading was observed in 2-oxoglutarate and
putrescine respectively, the regulatory effects of Rtgl/Rtg3 on TCA/glyoxylate cycle and
superpathway of polyamine biosynthesis were further investigated. Time-course profiles of
metabolites from TCA/glyoxylate cycle and polyamine biosynthesis are shown in Fig. 2-4. As
expected, citrate levels were reduced significantly in RTG disruptant strains, consistent with
previous studies that reported the transcriptional regulation of C/72 by the Rtgl/Rtg3 complex
42 Other metabolic intermediates shared in TCA and glyoxylate cycles (2-oxoglutarate, isocitrate,
glyoxylate, malate, succinate) were also decreased in the disruptants, especially during
deceleration/post-diauxic and stationary phases (Fig. 2-4 (A)). Fumarate, which is exclusive to
the TCA cycle, showed no significant difference. These observations can be explained
according to the different growth phases. Initially, yeast cells were under a fermentative
(glucose repressing) condition, during which the TCA cycle and mitochondrial biogenesis are
repressed . As glucose concentration decreases, the cells prepare for the reversion of metabolic
fluxes; reducing glycolytic activity and increasing the flux thorough the glyoxylate cycle and
gluconeogenesis . Glucose exhaustion leads to a transient diauxic phase, which induces gene
transcription for mitochondrial proteins and adaptation to respiratory metabolism %. The low levels
of TCA/glyoxylate cycle intermediates in RTG deletion mutants after the post-diauxic phase
thus reflect the inability of the cells to supply anaplerotic citrate from the glyoxylate cycle,
since the expression of CI72 requires Rtgl/Rtg3. Interestingly, 2-oxoglutarate readily showed
a significant decrease from the mid-exponential phase (ODgoo = 1), in contrast to other
TCA/glyoxylate cycle intermediates which only showed clear differences after the post-diauxic

phase (Fig. 2-4 (A)).

Another interesting and unexpected observation was the elevated levels of polyamines
putrescine and spermidine in rtg/A and rtg3A disruptant strains at stationary phase (the
intensities of spermine from yeast extract were too low and could not be measured reliably, Fig.
2-4 (B)). Polyamine compounds have been associated with cytoprotective effects against
oxidative and inflammatory stresses and its depletion has been linked to yeast aging and
necrosis %%, However, other stress response-related metabolites such as glutathione and
trehalose showed an opposite trend (Loading plot Fig. 2-2 (B) and Fig. 2-3 (A)). It is possible
that polyamines might serve as defense metabolites against stresses when RTG pathway is

inactivated.
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Fig. 2-4. Time-course metabolic profiles of wild-type BY4742, rtglA disruptant and rzg3A disruptant
(n=3) in (A) TCA/glyoxylate cycle and (B) superpathway of polyamine biosynthesis, shown together
with the neighboring metabolic pathways (PPP: pentose phosphate pathway). Metabolite intensities
were normalized to an internal standard and relative to those of control (BY4742) at time 5 h (ODeoo=1).
In S. cerevisiae, TCA cycle occurs in the mitochondria, while glyoxylate cycle in the peroxisome,
however both are drawn combined in this figure since only bulk metabolites were measured. Note that
in the event of fermentative metabolism and glyoxylate cycle activation, the flow from succinate to
oxaloacetate is blocked (explaining the decreased levels of fumarate which cannot be supplemented

through the anaplerotic pathway).
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2.3.3. Metabolic alteration levels in rtgIA and rtg3A disruptants

Since Rtgl and Rtg3 act in a heterodimer complex, and neither protein alone is able to bind

to R-box sites 4

, it 1s anticipated that the deletion of either gene would result in a similar
metabolic alteration. Fig. 2-5 depicts a heat map of metabolite changes of BY4742, rtgIA and
rtg3A disruptants at four different culture time, corresponding to different growth phases. Both
rtgIA and rtg3A disruptants displayed a strikingly similar metabolic alteration pattern. In
addition, fold-change values were calculated and the statistical difference between the two
deletion strains was compared (Table 2-2). The fold-change values range from approximately
-37 times (citrulline in r#g3A disruptant at 5 h) to 21 times (spermidine in rzg3A disruptants at
76 h). Only ornithine showed a significant difference between rtg/A and rtg3A disruptants at 5
h, while for the rest of the metabolites, r7g/A and rtg3A disruptants did not differ statistically
across all time points. Therefore, it is concluded that the deletion of either RTG1 or RTG3 yields
the same metabolic rearrangements, and the absence of either one component is sufficient for a
shortfall of RTG response. However, for a majority of metabolites, RTG3 appears to have more
profound effects on metabolomics parameters (larger fold-change) upon deletion than R7G 1.
This result was reflected in the PCA score plot (Fig. 2-2 (A)) where rtg/A disruptant was
positioned closer to BY4742 than r#g3A disruptant.
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Fig. 2-5. Heat map showing the differential expression in BY4742, rtgIA and rtg3A disruptants at four
different time points. Metabolite intensities were normalized to internal standard and relative to those
of wild-type BY4742 at time 5 h (ODgoo=1), averaged and log, transformed. Metabolite clustering was

based on Pearson’s correlation and average linkage.
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Table 2-2. Metabolite fold-change for 50 most important metabolites for rtg/A and rzg3A disruptants relative to wild-type strain BY4742 at each
sampling time (-inversed in the case of down-regulation). Bold values indicate statistically significant difference between rtg/A and rtg3A disruptants

(» <0.05, determined by two-tailed heteroscedastic #-test and corrected for multiple testing (Benjamini & Hochberg false discovery rate, FDR)).
5h 9h 26 h 76 h

Metabolites riglA  reg3A D riglA  rig3A D riglA  reg3A D riglA  rig3A y
TCA/glyoxylate cycle
2-Oxoglutarate -926 -1592 0.179 -832 -948 0.682 -3.79 -5.07 0.205 -4.54 -6.28 0.356
Malate -1.23  -1.51 0308 -1.14 -1.01 0.647 -1.69 -1.76 0434 -245 -2.68 0.273
Isocitrate -3.47 389 0679 -1.17 -1.55 0.721 -5.15 -7.50 0.200 -594 -10.86 0.264
Citrate -1.69  -273 0363 -137 -1.51 0.686 -2.11 -442 0206 -235 -331 0.306
Succinate 1.09 -1.25 0358 -1.20 -1.21 0980 -1.16 -1.19 0.830 -1.97 -2.11 0.530
Fumarate -1.23 -135 0377  -1.10 -1.16  0.699 1.29 .12 0351 -1.34 -1.94 0.304
Glyoxylate 1.09 -1.39 0352 -121 -126 0.620 -1.77 -1.75 0981 -6.40 -6.00 0.792
Glycolate -1.20  -1.22 0.885 -131 -1.23 0.665 -123 -1.06 0.236 -5.50 -6.52 0.376
Starch and sucrose metabolism
UDP-glucose -1.15 -146 0377 -120 -1.34 0.719 -121 -1.56 0332 -1.25 -1.50 0.330
Trehalose -1.08  -1.11  0.680 1.17 1.07  0.537 1.29 1.04 0303 -223 -270 0.362
Pyrimidine metabolism
Orotate -1.40 221 0341 -125 -1.39 0.668 1.05 1.01 0.622 -1.08 -1.15 0.733
Uridine -1.48 1.18  0.385 1.31 196 0.659 -124 -126 0987 -1.03 -1.05 0.907
Thymidine -1.19 1.03 0376 -1.02 1.03  0.954 1.26 1.26 0982 -1.26 -1.32 0.802
CTP -1.27  -1.55 0363 -134 -1.36 0953 -1.84 -3.12 0214 -351 -4.69 0.341
UMP -1.28  -1.72 0398 -1.44 -1.37 0.819 1.26 1.60  0.333 2.12 1.78  0.336
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CMP -1.17  -1.23

Purine metabolism

Xanthine -1.08 1.58
ATP -1.14 -1.33
Deoxyadenosine -1.57  -1.77
GMP -1.15 -1.82
cAMP -1.02 1.03

Amino acid metabolism

Histidine metabolism

Histidine -1.18  -1.34
Cysteine and methionine metabolism

Cysteine -1.50 -2.62
Methionine -1.11 -1.34
S-Adenosylmethionine 1.15 1.02
Valine, leucine and isoleucine metabolism
2-Isopropylmalate -1.54  -2.13
Valine -1.28  -1.58
Lysine metabolism

Amino adipic acid -5.14  -11.67
Glycine, serine and threonine metabolism

Glycine -1.24 -1.64
Glycerate -1.09  -1.23
Homoserine 1.31  -1.05

0.867

0.374
0.385
0.589
0.390
0.864

0.339

0.210

0.312

0.840

0.377
0.235

0.369

0.354

0.547
0.342

-1.25

-1.08
-1.24
-1.04
-1.06

1.20

-1.30

-1.11

1.26

2.40

-2.07
-1.24

-12.36

-1.26

-1.15
1.08

-1.25

1.14
-1.37
1.10
-1.05
1.29

-1.50

1.07

1.14

2.29

-2.48
-1.36

-14.42

-1.18

-1.19
1.36

0.999

0.646
0.660
0.675
0.938
0.787

0.586

0.570

0.651

0.924

0.735
0.795

0.644

0.812

0.936
0.687

1.71

-1.24
-1.38
1.24
1.41
1.01

-2.52

1.17

1.03

1.33

-1.37
-1.09

-2.47

-1.31

-1.13
1.09

1.77

-1.51
-2.64
1.36
1.95
1.63

-2.46

1.03

1.16

2.12

-1.66
1.00

-3.68

-1.25

-1.01
-1.10

0.831

0.217
0.196
0.325
0.232
0.287

0.851

0.505

0.228

0.212

0.380
0.281

0.190

0.835

0.340
0.323

2.25

-1.92
-2.31
-1.28
2.64
4.27

-2.62

-3.34

3.87

-1.62

-1.64
-1.26

-5.15

-1.32

-1.50
1.17

2.16

-2.65
-3.81
-1.17
2.34
4.43

-2.24

-3.58

4.03

1.08

-1.87
-1.24

-7.05

-1.36

-1.85
-1.16

0.808

0.376
0.298
0.434
0.522
0.800

0.264

0.800

0.539

0.352

0.434
0.797

0.339

0.588

0.288
0.320
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38

Threonine 1.18 -1.02

Beta-alanine metabolism

b-Alanine 134 -1.17
Arginine and proline metabolism

Arginine 1.09 -1.04
Citrulline -35.03 -37.33
Hydroxyproline -1.06  -1.61
4-Aminobutyrate -4.65  -5.55
Proline -1.34 -1.45
Alanine, aspartate and glutamate metabolism
Glutamine -2.01  -2.53
Glutamate -2.04  -2.76
Aspartate 1.27 1.13
Alanine -1.05  -1.23
Phenylalanine, tyrosine and tryptophan metabolism
Tryptophan -1.11 -1.26
Glutathione metabolism, polyamine biosynthesis
Glutathione -1.21 -1.43
Spermidine -1.33  -1.74
Ornithine -1.87 1.13
Putrescine 1.83 2.32

Pentose phosphate pathway
Ribose 5-phosphate -1.41 246

0.345

0.384

0.395
0.842
0.090
0.689
0.817

0.306
0.369
0.387
0.355

0.336

0.344

0.674

0.002

0.343

0.341

1.49

-1.30

-1.41
-12.89
-1.05
-1.76
-1.42

-2.25
-2.27
1.13
1.08

-1.08

-1.21

-1.12

1.45

1.75

-1.41

1.60

-2.01

-1.51
-10.94
1.02
-1.37
-1.25

-2.62
-2.63
1.16
1.07

-1.14

-1.27

-1.37

1.81

2.13

-1.58

0.740

0.673

0.868
0.669
0.938
0.678
0.682

0.718
0.189
0.678
0.989

0.714

0.640

0.675

0.110

0.723

0.616

1.85

1.07

-1.43
-3.39
-1.08
-2.28
-1.17

-2.02
-1.57
1.01
1.21

1.38

-1.03

3.01

-1.15

2.28

-1.98

1.77

1.26

-1.69
-5.10
-1.46
-1.48

1.08

-2.61
-1.93
-1.20

1.22

1.56

-1.07

3.56

1.09

1.68

-2.06

0.248

0.836

0.307
0.209
0.325
0.232
0.215

0.328
0.237
0.179
0.967

0.218

0.272

0.641

0.251

0.324

0.934

1.79

-2.98

-2.00
-3.48
-1.69
1.14
291

-1.93
-1.94
1.41
1.86

1.79

-1.36

13.24

1.90

5.33

-2.67

1.56

-2.72

253
-4.42
-1.15
-1.05

3.78

-2.84
-2.19
1.16
1.71

1.97

-1.51

20.61

221

4.85

-2.47

0.285

0.798

0.330
0.595
0.264
0.636
0.302

0.340
0.266
0.286
0.286

0.275

0.332

0.383

0.334

0.732

0.651



Glycolysis
Bisphosphoglycerate
Others (co-factors)
NAD

-1.23

-1.20

-2.25

-1.37

0.304

0.328

-1.64

-1.23

-1.62

-1.24

0.985

0.932

-1.92

-1.39

-2.48

-1.51

0.522

0.294

-3.12

-1.29

-3.99

-1.39

0.446

0.343
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2.3.4. Yeast chronological lifespan and its relation with RTG1 and RTG3

As described previously, mitochondrial function closely relates to the aging process, and
therefore, the association between RTG response with aging (lifespan) was further investigated.
The effect of metabolic rearrangements following RTG response activation/deactivation
towards aging can be evaluated in terms of yeast chronological lifespan. Activation of the
mitochondrial RTG pathway has been reported to contribute to genome stability  and increase
the yeast chronological lifespan, CLS . In a separate study, decreased TOR signaling was also
shown to extend CLS 7°. CLS is the period of time in which cells remain viable in a non-dividing
state after nutrients cease in stationary phase 7!, often expressed as the number of colonies

recovered when the yeast cells are transferred back to growth allowing environment.

In this study, the CLS of r#g/A and rtg3A disruptants was measured (Fig. 2-6) and indeed,
CLS was shortened in these strains. Although metabolic parameters showed that R7TG3 deletion
imposed a greater effect than RTG 1, CLS between rtglA and rtg3A disruptants did not seem to
differ. Together with metabolome data (Table 2-2), several observations can be made.
Trehalose and glutathione, two metabolites that have been positively related to stress response,
were accumulated in BY4742 at stationary phase. Meanwhile, amino acids such as histidine,
glycine, glutamine, valine, arginine and glutamate were low, while methionine, aspartate,
alanine, tryptophan, proline and threonine were higher at stationary phase in deletion strains.
Analysis of growth media (PCA plots of extracellular metabolite from the growth media,
Supplementary Fig. S1) revealed that extracellular threonine and valine were high in BY4742.
While the addition of isoleucine, threonine, and valine to growth media was reported to extend

CLS 72, the effects of intracellular amino acid level were not clarified.
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Fig. 2-6. The chronological lifespan (CLS) of BY4742, rtgIA and rtg3A disruptants, measured as the
number (log %) of viable cells in exhausted growth media after revival on YPD (1% yeast extract, 2%
peptone, 2% dextrose, 2% agar (% w/v)) plates. CLS at Day 3 (start of the stationary phase) was defined
as 100%.
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2.3.5. Comparison with previous literatures

The enzymatic and metabolic activities in 72g/A and rtg2A disruptants have been described
previously by Small et al. (1995) 73. The authors reported that when compared to levels in the
parental strain, the only changes seen, aside from the absence of peroxisomal citrate synthase,
were a reduction in mitochondrial citrate synthase activity (~30%-50%), a reduction in acetyl-
coA synthetase activity (~50%), a reduction in cytosolic (NAD) isocitrate dehydrogenase
activity (~50%) and a reduction in pyruvate carboxylase activity (~50%). These enzymes are
encoded by the genes, CIT2, CIT1, ACSI/ACS2, IDP2 and PYCI/PYC2, respectively. While
the reduced citrate and 2-oxoglutarate levels observed in this study might be explained by the
reduced activity of citrate synthases and isocitrate dehydrogenase, a difference in acetyl-coA
and oxaloacetate levels between wild-type and RTG disruptants was not observed. However,
the experiment by Small ez al. (1995) 7 was conducted under a non-repressive condition, i.e.,
using raffinose as a carbon source. Moreover, they indicated that the disruptant cells have
normally respiring mitochondria. In this study, mitochondrial function was confirmed to be
intact in rtg/A and rtg3A disruptants, as there were no difference in the cell counts of these
strains, when grown on YPD (1% yeast extract, 2% peptone, 2% dextrose, 2% agar (% w/v))
vs. YPG (1% yeast extract, 2% peptone, 2% glycerol, 2% agar (% w/v)) plates (Supplementary
Table S4).

In a recent large-scale microarray transcript profiling by Kemmeren et al. (2014) 22, they
indicated that there is a marked decrease in CITI, CIT2, ACO1, IDHI and IDH?2 expressions in
rtgIA and rtg3A disruptants. Similar to this experiment, they used BY4742 derivatives and grew
the yeast strains in synthetic complete (SC) medium with 2% glucose and sampled the cultures
at the mid-exponential phase. Therefore, the reduced levels of citrate, isocitrate and 2-
oxoglutarate observed in this study might be attributed to the reduced expression of CIT1/CIT2
(citrate synthases), ACOI (aconitase) and [DHI/IDH? (isocitrate dehydrogenases),
respectively. Moreover, the use of a rich medium does not seem to overcome the lack of 2-
oxogluratarate production in RTG disruptants. Kemmeren et al. (2014) ?? also showed that
GAPI and AGPI were upregulated in rtg/A and rtg3A disruptants. Gapl is a general amino
acid permease that directs the uptake of all naturally occurring amino acids 7+7° and has been

reported to be regulated by the nitrogen source and amino acid levels 7°, while Agp1 is an amino

acid permease, which transports asparagine and glutamine 7’. Chen and Kaiser (2002) 7® showed
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that high levels of endogenous glutamine and glutamate induced by the deletion of Mksl (a
negative regulator of RTG pathway) caused extremely low Gapl activity. In this study, while
the endogenous glutamate level was significantly lower in RTG disruptants, the exogenous
glutamate concentration in the medium for all strains did not differ (Supplementary Figure S2).
However, reduced levels of both intracellular and extracellular glutamine in RTG disruptants
can be seen (Supplementary Figure S2). Why increased Gapl and Agp1 induced by RTGI/RTG3
deletion seemed to result in an increased uptake of extracellular glutamine, but not glutamate, is
not clear. Interestingly, two genes that encode glutamate dehydrogenases for the synthesis
(GDH1) and degradation (GDH?2) of glutamate were also increased in RTG disruptants. Gdh1
synthesizes glutamate from ammonia and 2-oxoglutarate, while Gdh2 degrades glutamate to
ammonia and 2-oxoglutarate.Taken together, several explanations may underlie these
observations; (1) there’s a limit on the uptake level of glutamate when it is abundantly present
in the growth medium; (2) glutamine is preferred over glutamate for an uptake into the cells;
and (3) 2-oxoglutarate accumulation is primarily governed by de novo synthesis from isocitrate

by IDHI/IDH?2 and not much from glutamate degradation by GDH?2.

Moreover, the characteristic decrease in 2-oxogutarate concentrations in rzg/A and rtg3A
disruptants preceding the decrease of other TCA cycle intermediates (citrate, isocitrate, succinate,
malate) during the mid-exponential growth phase (Fig. 2-4 (A)) suggests that this metabolite
might play a critical role in controlling the flow and balance of TCA/glyoxylate cycles. Further
experiments, e.g., a flux analysis using labeled substrates, should be performed to confirm the
origin of 2-oxoglutarate under sufficient glutamate/glutamine concentrations in the growth
medium and to investigate the physiological attributions of this metabolite to the metabolic

reprogramming under RTG deletion.

2.4. Conclusions

In this chapter, metabolic profiling of r¢g/A and rtg3A disruptant strains was performed. By
relative comparison of metabolic alteration in these deletion strains with wild-type BY4742,
metabolites and metabolic pathways associated with RTG1/RTG3 genes and possibly related to
mitochondrial RTG response were identified. Besides TCA and glyoxylate cycles which have

been identified previously, other pathways including amino acid metabolism were affected, and
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thus supporting the idea of multi-regulatory coordination of bHLH proteins in different
transcription programs. The new insights obtained from this chapter are the markedly reduced
2-oxoglutarate level which precedes other TCA cycle intermediates, suggesting a key role of 2-
oxoglutarate in balancing TCA/glyoxylate cycle, as well as the elevated levels of polyamines
at stationary phase in r#g/A and rtg3A disruptants. In addition, the relationship between RTG-
gene deletion and chronological lifespan (CLS) was confirmed. This study illustrates the power
of metabolomics in finding gene/transcription factor-metabolite correlations and provides a
broader assessment of metabolic change following RTG-gene deletion. The outcome of this
study is expected to lead to deeper investigations into RTG response and bHLH proteins in

general.
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Chapter 3

Global analysis of gene-metabolite correlations in154

transcription factor deletion strains

3.1. Introduction

In Chapter 2, the utility of metabolomics approach in TF related study using a representative
TF complex was demonstrated. In this chapter, I proceeded to perform a global analysis of

metabolome that covers 154 TF-gene deletion strains.

As described previously, research in transcriptional regulation involves, among others, the
determination of DNA-binding domain (DBD) motifs and protein-protein interaction,
identification of downstream effector genes, quantification of transcript and protein abundances,
as well as network construction from genome-wide expression data using computational
methods 6217880 Despite the huge amount of research, the understanding of global gene
regulation by transcription factors is not yet complete; in yeast, for about half of the apparent
sequence-specific DNA-binding TFs, physiological functions and/or DNA-binding sites remain
unknown 78182 There are also inductions or repressions of pathways that do not seem to be
the direct target of the TF, which are probably due to transcriptional cascades. For example,
Hmsl1, appears to positively regulate genes involved in several diverse pathways, including
several that have dedicated TFs, and some genes that do not appear to contain Hms1-binding
sites in their promoters 82. Moreover, while TFs essentially bind to DNA promoter regions to
initiate their action, transcriptional regulation is not a simple binary on/off control. The number
of TF molecules also plays a part in determining the level of transcription 3. In addition, one
TF may be involved in various genes and requires a precise set of protein complex and co-
activators before transcription can be initiated. Furthermore, many regulatory events that link
triggering cues to final phenotypic reprograming remain poorly characterized, making it
difficult to predict cellular behavior even when the transcriptional machinery is known. The

missing link between the change in transcript or protein levels and phenotype (e.g., growth rate,
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chemical resistance, production of secondary metabolites) has to be investigated. Clearly, an
alternative approach to studying transcription factors besides gene expression profiling or DNA
and protein-protein binding is necessary in order to gain an overall picture of gene regulatory
mechanism. In particular, how perturbation in transcription factors affects metabolite levels and

ultimately cellular function needs to be addressed.

So far, studies regarding global transcriptional regulation and/or network using
metabolomics approach have been limited. Analysis of condition-dependent TF network using
metabolic flux distribution of 119 yeast TF deletion stains was reported previously #, which
reveals that metabolic flux alteration caused by TF deletion occurs almost exclusively at TCA
cycle, and only 23 strains exhibited differential flux ratio change. Amino acid profiling for
~5000 yeast single gene deletion strains was also conducted *°, which shows that clustering of
functionally related genes can be found for arginine biosynthesis and urea cycle pathways but
not other pathways. However, there are no comprehensive reports on metabolites other than
amino acids nor a dedicated metabolite profiling for transcription factor deletion strains.
Although Yeast Metabolome Database (YMDB) 8¢ serves as a database that lists all the

metabolites contained in yeast, there are no reports on metabolite levels of specific strain types.

Metabolomics has been regarded as a high resolution approach, due to its ability to capture
subtle change in metabolite levels, which often does not manifest in a change in phenotype until
at a much later stage. For example, Yoshida and colleagues demonstrated that the difference in
yeast replicative lifespan can be detected from metabolic fingerprints of exponentially growing
yeast cells (~4 doublings) whereas a conventional method by counting the number of daughter
cells from a single mother cell requires at least 20 generations before a comparison can be made.
This finding shows that metabolomics is a powerful tool to uncover a complicated phenotype
(i.e., lifespan) at earlier stage compared to conventional method. Metabolomics has also been
used to reveal silent genes, i.e., genes that produce no overt phenotype when deleted from the
genome, but have distinct metabolic concentrations 878, Furthermore, the use of single gene
knockouts of yeast S. cerevisiae has been proven to be useful in functional genomics studies,
using transcriptomics and metabolomics approaches 16348589 Therefore, metabolomics serves
as an excellent tool to study metabolic phenotype of non-essential gene knockouts of
transcription factors due to; 1) unlike enzymes, TFs have no one-to-one relation with metabolic

pathways, and thus hold much more complex regulatory network, and 2) most of these genes
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are purportedly silent, i.e., the gene deletion does not affect the growth rate of the organism,

leaving metabolic change as the sole indicator of strain condition.

In this chapter, the commercially available yeast single gene deletion library was used, and
metabolite profiling of 154 strains each lacking a non-essential gene putatively encoding
transcription factor was performed. The strains were then characterized according to their
metabolic profiles. Core metabolites and co-factors deriving from central metabolic pathways
such as glycolysis and TCA cycle, as well as amino acids and organic acids that are commonly
conserved in most organisms were identified. Metabolome dataset can serve as invaluable

inputs to assist researchers working on transcription factors and yeast biology in general.

3.2. Experimental section
3.2.1. Strain and culture condition

All strains used in this study were single gene knockouts from the European Saccharomyces
Cerevisiae Archive for Functional Analysis (EUROSCARF) *° collection, with BY4742 (MATo
leu2A0 lys2A0 ura3A0 his3AI) as the parental/wild-type strain. The knockout strains were
purchased from Open Biosystems (Huntsville, AL, USA) which were constructed by replacing
the target genes with kanMX cassette that confers resistance to geneticin °'. Each experiment

was conducted with at least three replicates, and BY4742 was used as a control.

Yeast cells from frozen glycerol stock were plated onto YPD agar plates (10 g/L yeast
extract, 20 g/L peptone, 20 g/L glucose, 20 g/L agar (all from BD, MD, USA except glucose
and agar from Nacalai Tesque), with added geneticin G418 (Wako, Osaka, Japan) 200 ug/mL
for knockout strains) and grown at 30 °C for 2 days. After two days, a single colony was
obtained and re-streaked on a new YPD plate to increase cell number. This plate was used as a
master plate for all cultivations. Cultivation was performed in three steps to reduce variation in
cell growth; pre-pre culture, pre-culture and main culture. All liquid cultures were grown in
synthetic complete (SC) medium *3. SC was chosen as the growth medium to enable all deletion
strains to grow comparably without severe growth defect, while still allowing controlled and
known nutrient composition . Preliminary experiment revealed that some of the knockouts

were auxotroph for certain amino acids. Moreover, minimal medium such as synthetic defined

47



(SD) medium causes severe growth delay in some strains, thus the use of SD medium was not
feasible. SC medium was prepared as follows: 20 g/L glucose, 6.7 g/LL Difco™ yeast nitrogen
base without amino acids (BD, MD, USA), 1.92 g/L yeast synthetic drop-out media supplement
without uracil (Sigma-Aldrich, MO, USA), 76 mg/L uracil (Sigma-Aldrich), with geneticin
G418 added to a final concentration of 200 pg/mL for knockout strains.

For pre-pre culture, cells were inoculated from the master plate into 3 mL of culture medium,
followed by incubation at 30 °C in a rotary shaker (200 rpm) for 18 h. Next, for pre-culture, a
portion of pre-pre-culture broth was diluted into 15 mL fresh culture medium so that the starting
optical density at 600 nm (ODsoo) = 0.01, and incubation with shaking was continued for 18 h.
For main culture, the pre-culture broth was diluted in 15 mL culture medium so that the starting
ODeoo = 0.1, and incubation with shaking was continued until desired optical density values are

reached. An iMark microplate reader (Bio-Rad, CA, USA) was used to monitor optical density.

For metabolome sampling, a fast filtration method based on Crutchfield et al. (2010) > was
applied with slight modifications. 5 mL of culture broth at ODsoo = 1 (approximately equivalent
to 5 x 107 cells) were rapidly filtered using a 0.45 um-pore size, 25 mm-diameter nylon
membrane (Millipore, MA, USA) under a vacuum filtration. The filter membrane was folded
and inserted into a 2-mL sampling tube filled with 1 mL single-phase extraction solvent
(methanol/chloroform/water = 5/2/2 v~v/~v %, with 1.2 pg/mL each of 1,4-piperazine
diethanesulfonic acid (PIPES) and ribitol as internal standards %) pre-cooled at -30 °C, after

which the tube was flash frozen in liquid nitrogen and stored at -80 °C until extraction.

3.2.2. Metabolite extraction and sample preparation

For extraction, the tubes filled with membrane-bound cells and extraction solvent were
placed in a thermomixer (Eppendorf, Hamburg, Germany) at 4 °C, 1200 rpm for 30 min. After
that, all liquid extract (900 puL) was transferred to a new tube filled with 400 puL water, vortexed
and centrifuged at 4 °C, 16100 rcf (relative centrifugal force) for 3 min to separate polar and
non-polar phases. Next, the upper polar phase was transferred to a new tube via syringe
filtration (0.2 nm PTFE hydrophilic membrane, Millipore, MA, USA) and divided into two,
300 pL for LC-MS and 600 puL for GC-MS. The extracts were concentrated five times from the
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initial volume under a vacuum centrifugation system (VC-96R, Taitec, Japan), transferred to
glass vials (Chromacol, Hertfordshire, UK) and ready for UHPLC-MS/MS analysis. Samples

were analyzed within 24 h after extraction.

For GC/MS samples, concentrated extracts were lyophilized overnight, followed by
derivatization by oximation and silylation °3. The oximation reagent, methoxyamine
hydrochloride (Sigma-Aldrich, MO, USA) was first dissolved in pyridine (Wako, Osaka, Japan)
to a concentration of 20 mg/mL and 75 pL added to each sample tube containing the lyophilized
extracts. After reaction at 30 °C, 1200 rpm for 90 min, 50 pL of N-methyl-N-
(trimethylsilyl)trifluoroacetamide (MSTFA) (GL Sciences, Tokyo, Japan) was added and the
silylation reaction was performed at 37 °C, 1200 rpm for 30 min. The derivatized samples were

transferred to glass vials (Chromacol, Hertfordshire, UK) and analyzed within 24 h.

3.2.3. LC/MS analysis

The analysis platform consists of Shimadzu Nexera series UHPLC system (Shimadzu,
Kyoto, Japan) coupled to a triple quadrupole mass spectrometer, LCMS-8030 with modification
to improve sensitivity (Shimadzu, Kyoto, Japan). The analytical conditions were as follows;
column: L-Column2 ODS (150 mm x 2.1 mm, 3 um, Chemicals Evaluation and Research
Institute Japan); flow rate: 0.3 mL/min; column temperature: 35 °C; mobile phase A: water
containing 10 mM tributylamine and 15 mM acetic acid; mobile phase B: methanol; gradient
program: 0% B (0-0.5 min) - 25% B (7.5 min) - 90% B (11-11.5 min) - 0% B (11.6-15 min);
sample cycle time: 15 min; injection volume: 3 pL. The mass spectrometric parameters were:
ESI negative mode; desolvation line (DL) temperature: 250 °C; nebulizer gas flow: 2 L/min;
heat block temperature: 400 °C; other parameters were optimized automatically by flow
injection analysis and auto-tuning. The MS/MS fragment for each analyte was determined using
authentic standards. Multiple reaction monitoring (MRM) transition parameters and retention
time for each metabolite are listed in Supplementary Table S1. All samples were kept in a 4 °C

autosampler during analysis. All reagents were of LC-MS grades (Wako, Osaka, Japan).
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3.2.4. GC/MS analysis

GC/MS was performed on a GCMS-QP2010 Ultra (Shimadzu, Kyoto, Japan) gas
chromatograph coupled with a quadrupole mass spectrometer equipped with an AOC-20i/s
autoinjector (Shimadzu, Kyoto, Japan). A CP-SIL 8 CB Low Bleed/MS column (Varian, CA,
USA) 30 m x 0.25 mm (0.25 pm) was used for the GC separation. The mass spectrometer was
auto-tuned and calibrated prior to analysis. 1 pL of sample was injected in split mode with a
split ratio of 1:25. The inlet temperature was set at 230 °C and the column flow rate was 1.12
mL/min (linear velocity 39 cm/s). The column temperature was held at 80 °C for 2 min, raised
by 15 °C/min to 330 °C, and held at 330 °C for 6 min. The transfer line and ion source
temperatures were 250 °C and 200 °C respectively. Electron ionization (EI) was performed at
70 eV. The mass range of the detector was set to m/z 85 to 500 and the detector voltage (set by
auto-tuning) was 0.93 kV.

An alkane standard mix was prepared from 25 pL each of C8-C20 and C21-C40 alkane
standard solutions, diluted with an addition of 25 pL pyridine and injected at the start of each
analytical run for calculating retention indices. In addition, a blank pyridine sample was injected

every 8 samples for diagnostic purposes (to check for column bleed and carryover).

3.2.5. Metabolite identification and validation procedure

The stability and reproducibility of the method were evaluated using pooled quality control
(QC) samples 399 QC samples were prepared by pooling an equal volume of yeast extracts
from each sample within the same analytical batch. The same QC aliquot from one injection
vial was used for each analytical batch, injected at least three times at the start of the analytical
batch after the system has stabilized, then at every sixth injection throughout the entire
analytical workflow. Additionally a standard mixture of 1 uM was routinely injected at the

beginning, middle and end of each analysis run.
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3.2.6. Dataset construction

For LC/MS, peak picking was conducted by LabSolutions (Shimadzu, Kyoto, Japan)
followed by manual inspection. The parameters were set as follows: integration: auto, max
peak: 3, width: 5 sec; smoothing: standard, counts: 5, width: 1 sec; identification: absolute RT
& closest peak, target window: 5%, reference window: 5%, process time: = 1 min. Obtained
peaks were identified as metabolites contained in yeast extracts by matching the extracted ion
chromatograms with in-house metabolite library (MS/MS fragment and retention time). The
identity was checked by spiking authentic standards to yeast extract and confirming that the
particular metabolite peak intensity increases with an added concentration. To correct for matrix
effect commonly observed in ESI-based LC/MS, the raw peaks were calibrated using the
external calibration method. Initially, primary stock solutions from authentic standards were
prepared in water at a concentration of 10-100 mM for each metabolite, from which standard
mixtures of various concentrations were made. Standard mixtures were spiked into yeast
extracts and used for making calibration curves. For analysis from different batches, the
calibrated peaks were then multiplied by a correction factor (peak intensity of a standard
mixture during calibration / peak intensity of a standard mixture during actual run), before

integrated into one dataset.

For GC/MS, raw data files were converted into netCDF (*.cdf) format according to the
ANDI (Analytical Data Interchange Protocol) specification using the proprietary software
GCMSsolution (Shimadzu, Kyoto, Japan) before peak detection, baseline correction and
retention time alignment using the freely available data processing tool MetAlign °°. Data
matrices from the alignment were then imported into Aloutput2 ver.1.29 °¢ for an automated

retention indices (RI)-based target compound identification and quantification.

3.2.7. Multivariate data analysis

Principal component analysis (PCA) was performed using SIMCA-P+ verl13 (Umetrics,
Umed, Sweden). Heat map and hierarchical clustering of fold-change normalized intensities
were performed on Cluster 3.0 3® and viewed on Java Treeview . Statistical difference (two-

tailed heteroscedastic #-test) was calculated using MS Excel.
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3.3. Results and discussion
3.3.1. Metabolites identification and quantification

In this study, due to the large number of strains, cultivation and analysis steps were
performed in four batches and included wild-type strain BY4742 as control in each batch.
Supplementary Table S5 lists all the strains used in this study, the maximum specific growth
rate, and the adenylate energy charge (EC). EC indicates the energy status of the cells, where
exponentially growing cells have an EC of ~0.8 while an EC of <0.5 is indicative of dead cells
97, Growth rates serve as a general measure of the effects of gene deletion. Wild-type strain
BY4742 grew at a maximum specific growth rate of 0.45-0.48 h'!. All deletion strains grew
well in SC medium except for six knockout strains (ino2A disruptant, ino4A disruptant, opilA
disruptant, gcr2A disruptant, aft/A disruptant, ada?A disruptant) that exhibited a growth defect
of > 20% compared to wild-type.

In microbial metabolome experiments, it is important to ensure that metabolites are rapidly
quenched at the time of sampling. A fast filtration method followed by subsequently dipping
the cells into cold extraction solvent °> was used, which usually takes ~30 s from taking out
samples from liquid culture to quenching. Adenylate energy charge, EC, calculated as ([ATP]
+ 0.5[ADP])/(|JAMP] + [ADP] + [ATP]), was in the range of 0.72 to 0.88 (Supplementary Table

28,97,98

S5), which is typical of exponentially growing cells , suggesting that quenching was

sufficient.

A total of 84 metabolites were successfully identified and quantified from LC/MS and
GC/MS (Table 3-1). Similar to the previous chapter, selection of metabolites was based on <
30% of RSD of QC samples >°. The median RSD for Batch 1-4 were 6.6%, 8.1%, 10.9%, 9.5%,

respectively.
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Table 3-1. List of metabolites obtained from the metabolic profiling of 154 TF-deletion strains.

Amino acids Bases, Sugar and Organic acids Others, co-
nucleotides derivatives factors
LC-  Arginine Guanine G6P Nicotinate Acetyl CoA
MS Histidine Inosine R5P Pantothenate NAD
(67) Serine Guanosine  S7P Succinate NADP
Asparagine CMP FoP Fumarate FMN
Glutamine UMP DHAP Oxalacetate FAD
Homoserine GMP GAP Malate NADPH
Threonine AMP Ru5P 2-Oxoglutarate
Trehalose cAMP F1P Isocitrate
Proline CDP UDP-Glu Citrate
Valine GDP F2,6P PEP
Methionine ADP F1,6P 2-
Isoleucine CTP 1,3-BPG Isopropylmalate
Tyrosine GTP o- Orotate
Amino adipic UTP Glycerophosphate ~ Pyruvate
acid ATP (Glycerol 3P)
Glutamate
Aspartate
Phenylalanine
Pyroglutamate
Tryptophan
Glutathione
GC-  Alanine Uracil Inositol 2-Aminoethanol
MS Glycine Adenine Glycerol Urea
a7 Leucine Glucose Phosphate
Lysine B-Lactose Octadecanoate
Cysteine+Cystine Melibiose (Stearic acid)
Citrulline

Abbreviations: G6P: glucose 6-phosphate; R5P: ribose 5-phosphate; S7P: sedoheptulose 7-phosphate; FO6P:

fructose 6-phosphate; DHAP: dihydroxyacetone phosphate; GAP: glyceraldehyde 3-phosphate; RuSP:

ribulose 5-phosphate; F1P: fructose 1-phosphate; UDP-Glu: uridine diphosphate-glucose; F2,6P: fructose
2,6-bisphosphate; F1,6P: fructose 1,6-bisphosphate; 1,3-BPG: 1,3 bisphosphoglycerate; PEP:

phosphoenolpyruvate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine dinucleotide

phosphate; FMN: flavin mononucleotide; FAD: flavin adenine dinucleotide; NADPH: reduced

nicotinamide adenine dinucleotide phosphate; ATP: adenosine 5’-triphosphate; ADP: adenosine 5°-

diphosphate; AMP: adenosine 5’-monophosphate; GTP: guanosine 5’-triphosphate; GDP: guanosine 5°-

diphosphate; GMP: guanosine 5’-monophosphate; CTP: cytidine 5’-triphosphate; CDP: cytidine 5°-

diphosphate; UMP: uridine 5’-monophosphate; cAMP: adenosine 3',5'-cyclic monophosphate.
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3.3.2. Validation of analytical performance and data normalization

Medium- to large- scale metabolomics studies often suffer from batch-to-batch
reproducibility problem. To demonstrate the degree of batch-to-batch variation, first only wild-
type BY4742 strains were plotted in PCA (Fig. 3-1). It was found that normalization to an
internal standard (calculated as the ratio of the peak intensity of each metabolite to the peak
intensity of the internal standard) was not sufficient for eliminating batch-to-batch variation.
The same wild-type strain (BY4742) was used in each batch, thus technically the wild-type
samples should all be clustered together on PCA. However, from Fig. 3-1, while Batch 1 and
Batch 3 were clustered together, Batch 2 and 4 were separated, showing that batch-to-batch

variation is inevitable.

To further examine this problem, QC samples were used as a benchmark. The use of QC
samples from pooled test extracts to monitor analytical performance has been demonstrated in
metabolome studies for urine *°° and plasma or serum '%°. QC samples prepared from aliquots
of test samples provide ‘mean’ representative of all the metabolites contained and thus
considered appropriate for the evaluation of reproducibility and sample stability. It was
observed that QC samples were clustered together on the PCA plot (Fig. 3-2 (A)),

demonstrating that the analysis platform is sufficiently stable throughout the run.

However, in terms of between-batch reproducibility, a clear separation between different
batches can be seen (Fig. 3-2 (B) and Fig. 3-3 (A)). While ion pairing LC-MS has the advantage
of wide coverage of metabolites of various species, including polar metabolites from central
metabolism, with relatively stable retention time %3101 it lacks reproducibility of different
batch analysis. Peak intensities tend to deteriorate over time, while there is a need for regular
cleaning due to accumulation of residual ion pairing reagent in the analysis line. As reported
previously, day-to-day analytical variation was inevitable, accounting for the major portion of
data variability . Therefore, integration of data from different analytical runs and different
batches needs a thorough consideration and a proper normalization method. It is important to
minimize these differences so that the true interpretation of biological phenomena can be

derived, which reflects strain differences instead of batch differences.
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Fig. 3-1. Batch-to-batch variation observed in wild-type samples BY4742. Data was normalized to
internal standard and Pareto-scaled (mean-centered and divided by the square root of standard deviation).
Numbers 1-4 indicate batch number. Ellipse indicates 95% confidence border based on Hotelling’s T?

statistics. One control sample was identified as an outlier and removed from the dataset.
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Fig. 3-2. (A) Stability and reproducibility of the analysis method within the same analytical run. The
peaks were normalized to internal standard and Pareto-scaled. QC samples injected periodically were
clustered together, showing that the method is stable and reproducible within the same analysis run.
Data were taken from Batch 1 from ion pairing-LC-MS/MS data. Ellipse indicates 95% confidence

border based on Hotelling’s T? statistics.
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Fig. 3-2. (B) Stability and reproducibility of the analysis method between two separate analytical runs.
The peaks were normalized to internal standard and Pareto-scaled. When two separate runs were
combined, batch separation can be observed along PC1, indicating that an alternative normalization
procedure is necessary. Data were taken from Batch 1 and 2 from ion pairing-LC-MS/MS data. Ellipse

indicates 95% confidence border based on Hotelling’s T? statistics.
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These observations are consistent with a previous study of long-term human serum
metabolomics which reported that longitudinal variations cannot be easily compensated for
with internal standards >*. As a solution, a normalization method using wild-type strain as a
reference was employed. This method is frequently used in microarray analysis (relative
transcript expression). As a result, the variation was remarkably reduced when normalization
to wild-type strain (calculated as log>-transformed fold-change, i.e., ratio of metabolite in the
disruptant strain vs. wild-type) was performed (Fig. 3-3 (B)). For LC/MS, because of a narrow
linear range possibly caused by ion pairing reagent, the peaks were first calibrated using
external calibration curves and corrected by a correction factor (see Section 3.2.6) before
calculation of fold-change, while for GC/MS, peak areas normalized to ribitol (the internal
standard) were used directly. Peaks from LC/MS and GC/MS were integrated after

normalization.
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Fig. 3-3. (A) Normalization to internal standard, followed by Pareto-scaling. Numbers 1-4 indicate batch
number. Batch-to-batch variation cannot be eliminated using this normalization method. Ellipse

indicates 95% confidence border based on Hotelling’s T? statistics.
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Fig. 3-3. (B) Normalization to wild-type strain (log,-transformed fold-change of the metabolites relative
to wild-type). Numbers 1-4 indicate batch number. Batch-to-batch variation was greatly reduced and

data were evenly distributed. Ellipse indicates 95% confidence border based on Hotelling’s T? statistics.
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3.3.3. Clustering analysis of TF deletion strains

The objectives of this chapter are to characterize transcription factors according to their
metabolic profiles and derive possible metabolite-TF and TF-TF correlations, which can deepen
our knowledge regarding transcriptional regulation. To classify TF deletion strains according
to their metabolic profiles, hierarchical clustering analysis (HCA) was performed. HCA is a
method which finds a hierarchy of clusters that share similar characteristics based on distance
or similarity measure. Compared to other methods such as K-means clustering and self-
organizing map (SOM), HCA does not require a priori information about the data structure
such as cluster number, thus it serves as a convenient unsupervised tool for interpreting complex

experimental data 102,

Several algorithms are available for HCA. However, selection of a proper algorithm is
subjective and depends on the purpose of the classification and whether or not the classification
result satisfies a pre-determined criterion. In this chapter, the clustering algorithm was chosen
based on two criteria; 1) ability to keep the original structure of the data matrix as close as
possible, in which differential strains with strong characteristics (large fold change values) and
outliers can be distinguished from the rest, and 2) having reasonably distributed clusters when
the hierarchical tree is cut at a certain cut-point. Euclidean distance is appropriate for this
purpose, as it gives a direct measure of magnitude and thus was able to separate differential
strains. In contrast, Pearson’s correlation provides a relative distance measure independent with
magnitude, which made it fail to isolate differential strains. When comparing different linkage
methods, single linkage could not generate an appropriate cut interpretation, with many small
distorted clusters having few members. Average and complete linkages performed comparably,
but the former had an overall structure closer to the original data matrix. Ward’s minimum
linkage was efficient in finding compact, homogenized clusters, but incapable of filtering
outliers. Based on these findings, Euclidean distance with average linkage was chosen as the

clustering algorithm in this study.

The main purpose for performing HCA is to identify differential strains and clusters. The
procedures to identify differential strains and clusters are depicted in Fig. 3-4. First, the cut-off
value was determined by taking into account the average fold-change value of > 1.3 with p <

0.05, to separate between “differential” and “non-differential” strains. Then, strain clusters with

61



correlation values of 0.85 or more were identified. Differential strains here refer to the strains

that have large differences in metabolic profiles compared with wild-type.

Using the metabolome dataset of logz fold-change values, hierarchical clustering analysis
was performed (Fig. 3-5). Here, the farther a strain is located on the outer hierarchy, the more
differential it is relative to the control. Table 3-2 summarizes cluster sets obtained from HCA.
Here, the 154 transcription factor deletion strains can mainly be categorized into four groups;
1) differential, no clusters, 2) differential and formed clusters, 3) not differential and formed
clusters, and 4) not differential, no clusters. A total of 27 strain clusters and two sets of no-

cluster were obtained.

Euclidean distance

Differentkal

1) Determine cut-off value (average 1| =2 Non-
fold-change 2 1.3, p < 0.05) MIIT &
2) Separate between “differential” . H =
and “non-differential” [—

3) Determine “cluster” (Pearson's | [le=
correlation = 0.835) . [} 2

——————y =
} | Diiferential

Fig. 3-4. Schematic diagram showing the procedures to determine differential strains as well as clusters.
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Fig. 3-5. Heat map showing metabolite changes in 154 transcription factor-related mutant strains
analyzed in this study. Clustering was based on hierarchical clustering analysis, HCA using log,
normalized to the wild-type strain (fold-change) dataset. The clustering parameters were as follows:
Euclidean distance and average linkage for strain clustering; Pearson’s » and average linkage for
metabolite clustering. The more differential a strain is, the farther it is located from the center and closer

to the outer hierarchy.
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Table 3-2 List of differential strain clusters obtained from hierarchical clustering. Strains were

listed in hierarchical importance (i.e., from outer to inner hierarchy).

Group Cluster Members Correlation
1: Differential, no - arg82A, adaA, seflA, swibA, aftIA, -
clusters cbfIA, ger2A, ada3A, sin3A, gin3A,

stbSA, rpnd4A

2: Differential 1 ino2A, ino4A, opilA, riclA 0.85
and formed 2 pho23A, stp2A 0.86
clusters 3 mksIA, rrnlOA, rtg3A, rtglA 0.87
4 maclA, sumlIA 0.89
5 cstOA, sds3A 0.92
6 SflIA, usvIA, azfIA, rimIA 0.92
7 sas2A, ccr4A 0.91
8 gendA, hap3A, met3 1A 0.89
9 vaplA, hirlA, tecIA 0.91
10 ixrIA, hal9A, rim101A, tufiA 0.91
11 ace2A, dal8IA, tealA, ashIA 0.92
12 ppriA, skn7A 0.95
3: Not differential 13 ecm22A, hap4A, aro80A, fzfIA, 0.95
and formed arg80A, uga3A
clusters 14 met28A, oaflA 0.95
15 bas2A, basliA, imelA, lys14A, leu3A, 0.96
cadlA/yap2A, dal80A, yap6A, mot3A,
phodA, stplA
16 hap2A, hap5A, thi2A 0.95
17 msnlA, aft?A, arrlA, yap3SA, cindA, 0.96
crzIA, pdr8A, cha4A, msndA, rgtiA,
pdr3A, msn2A, cat8A, skolA, yap7A,
xbpIA, wtm2A, mig2A, pdriIA, sutlA,
ume6bA, tye7A, yrrlA
18 nrglA, yap3A 0.95
19 adriA, haclA, smpIA, yrmIA 0.95
20 gat3A, gat?A, put3A, gatlA, gisiA, 0.94

gatdA, spt23A, mal33A, dal82A, rsf2A,
zapIA, miglA, mig3A, mall3A, rgmIA
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21 cup9A, argr2A, gal3A, galdA, 0.96
acelN/cup2A, mgalA, galSOA, ssno6A,

sut2A
22 sir3A, sirdA, sirlA, zds2A 0.96
23 hms A, fkh2A, yhpIA 0.95
24 roxIA, hir2A, hir3A 0.96
25 ezlIA, ndt8OA, fkhiA, rixIA, phdIA, 0.94

flo8A, wtm A, zdsIA, yoxIA, kardA,
rphlIA, swi4A, swiSA

26 hemIA, mbpIA 0.95
27 sir2A, tspIA 0.94
4: Not differential, - gzf3A, sip4A, not3A, uaf30A -

no clusters

The cut-point for “differential” in HCA 1is justified by average deviation from the mutant
median and Hotelling's T? values (Table 3-3). A strain is defined as differential if it is located
outside the confidence border of 95% based on T? statistics on PCA plot or having an average
deviation from the mutant median of > 1.3. The Hotelling’s T? is the multivariate extension of
the common two group Student’s #-test. In a t-test, differences in the mean response between
two populations are studied. T? is used when the number of response variables is two or more,
although it can be used when there is only one response variable. The null hypothesis is that the

group means for all response variables are equal.

Average deviation from the mutant median specifically denotes the average deviation from
the median of mutant measurement, and was employed as an alternative measure of difference,
independent from the wild-type strain BY4742, since there is a possibility that the wild-type
profile is distorted in some metabolites. Average deviation from the mutant median was
calculated as follows: the concentration of each metabolite in individual sample was divided by
the median value of the metabolite concentration across all mutants, summed over all
metabolites, and averaged over the number of metabolites. Division, instead of subtraction was
used considering the different magnitudes of metabolite intensity values, to avoid

overrepresentation of metabolites with large magnitude/highly abundant metabolites.
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Table 3-3. List of differential strains based on average deviation from mutant values and

Hotelling’s T? statistics.

Average deviation .
Hotelling's T?

No. Strain from the mutant Group*
. Range®
median®
1 arg82A 3.16 96.77 1
2 ada2A 1.85 69.95 1
3 aftiA 1.50 40.62 1
4 gendA 1.44 11.31 2
5 azfIA 1.43 22.83 2
6 SWIOA 1.37 54.94 1
7 usviA 1.37 19.70 2
8 ino2A 1.37 35.02 2
9 sumiIA 1.37 25.15 2
10 maclA 1.32 13.86 2
11 ada3A 1.32 50.20 1
12 gin3A 1.31 15.62 1
13 rimIA 1.30 15.04 2
14 tealA 1.30 5.19 2
15 cbfIA 1.30 12.82 1
16 sin3A 1.30 13.68 1
17 sas2A 1.30 6.96 2
18 ace2A 1.29 13.76 2
19 cStoA 1.28 30.21 2
20 dal8IA 1.26 7.75 2
a M, X: metabolite concentration in individual mutant, A/: median of metabolite

concentration across all mutants, i, ..., n: metabolite ID. This value was averaged over
replicate number (3) for each strain, and > 1.3 is defined as differential.

b based on PCA with eleven significant principal components (SIMCA-P+ verl3, Umetrics,
Umead, Sweden) (Supplementary Table S6). Italicized values indicate less than 95%
confidence range (< 21.85).

¢ refers to the group designation in HCA (Table 3-2).
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Moreover, clustering of metabolites based on correlation on Fig. 3-5 revealed that
metabolites that share similar pathway (e.g., amino acids biosynthesis) or having similar
chemical structure (e.g., nucleotides, sugar phosphates) tended to be grouped together or closely
positioned with each other. Five metabolites, namely arginine, histidine, guanine, inosine and
guanosine indicated significant changes (p < 0.05) in more than 70% of the mutant strains,
which could possibly be a unique characteristic of BY4742 derivatives, whereas pyroglutamate,
fructose 6-phosphate and melibiose were altered in only 2 out of 154 mutants (Supplementary
Table S7). In terms of between-metabolite correlations, the highest correlation (Pearson’s r
0.922) was observed between 1,3-bisphosphoglycerate and phosphoenolpyruvate which are two
intermediates of glycolysis. Other strong correlations were mainly exhibited by amino acids

and nucleotides (Table 3-4).

Table 3-4. Between-metabolite correlations (>0.6).

Positive correlation Negative correlation
Metabolites Pearson’s r  Metabolites Pearson’s r
1,3-BPG-PEP 0.922 Phenylalanine-NADP -0.653
Phosphate-glucose 0.902 Methionine-NADP -0.643
F1,6-F2,6P 0.858 Phenylalanine-F2,6P -0.629
Methionine-tyrosine 0.838 Methionine-F2,6P -0.608
Tyrosine-phenylalanine 0.837 Citrate-PEP -0.601
Alanine-glycine 0.813 Phenylalanine-GDP -0.601
Glutamate-2-oxoglutarate 0.802
Isoleucine-phenylalanine 0.794
Methionine-isoleucine 0.776
NADP-F2,6P 0.776
Isoleucine-tyrosine 0.775
Phenylalanine-tryptophan 0.775
CTP-GTP 0.770
CTP-UTP 0.768
Glycine-leucine 0.761
Uracil-inositol 0.753
UMP-2-isopropylmalate 0.752
Methionine-phenylalanine 0.751
AMP-ADP 0.745
3-aminoethanol-glucose 0.744
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Inosine-guanosine
GTP-ATP
R5P-Ru5P

Uracil-melibiose

Asparagine-methionine

Proline-methionine

Alanine-leucine

2-aminoethanol-phosphate

F6P-F1P

CDP-ADP
Asparagine-tyrosine
Tyrosine-asparagine
Serine-aspartate
Serine-asparagine
Pyruvate-UMP
NAD-ATP
GMP-ADP
Asparagine-aspartate
Tyrosine-tryptophan
Arginine-histidine
GAP-DHAP
UMP-PEP
GMP-AMP
Guanine-guanosine

Methionine-aspartate

0.731
0.717
0.713
0.701
0.698
0.695
0.686
0.679
0.678
0.674
0.673
0.673
0.648
0.636
0.634
0.633
0.615
0.614
0.611
0.610
0.604
0.602
0.602
0.601
0.601

Abbreviations: 1,3BPG: 1,3 bisphosphoglycerate; PEP: phosphoenolpyruvate; F1,6P: fructose 1,6-
bisphosphate; F2,6P: fructose 2,6-bisphosphate; R5P: ribose 5-phosphate; RuSP: ribulose 5-phosphate;
F6P: fructose 6-phosphate; F1P: fructose 1-phosphate; GAP: glyceraldehyde 3-phosphate; DHAP:
dihydroxyacetone phosphate; NAD: nicotinamide adenine dinucleotide; NADP: nicotinamide adenine
dinucleotide phosphate; ATP: adenosine 5’-triphosphate; ADP: adenosine 5’-diphosphate; AMP: adenosine
5’-monophosphate; GTP: guanosine 5’-triphosphate; GDP: guanosine 5’-diphosphate; GMP: guanosine 5’-
monophosphate; CTP: cytidine 5’-triphosphate; CDP: cytidine 5’-diphosphate; UMP: uridine 5°-

monophosphate.
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3.3.4. Analysis of differential strains

Characterization of deletion strains based on HCA (Fig. 3-5 and Table 3-2) revealed that
twelve strains have differential and unique metabolic profiles. 36 more strains showed
differential profile and formed clusters. HCA result is in accordance with differential analysis
as depicted in Table 3-3, in which strains with high average deviation from the mutant median
and T? values were located at the outer hierarchy of HCA, and thus belong to Group 1 or 2.
Within these two groups, six disruptants strains (gcr2A disruptant, afi/A disruptant, ada?A
disruptant, ino2A disruptant, ino4A disruptant, opilA disruptant) showed growth defect of >
20% and six (rpn4A disruptant, arg82A disruptant, sin3A disruptant, swi6A disruptant, cbfIA
disruptant, ada3A disruptant) had somewhat lower maximum specific growth rate compared to
control, suggesting that altered metabolism is likely to be related with poor growth. To test
whether the metabolic phenotype is a function of growth rate, Pearson’s correlation coefficient
was calculated between maximum specific growth rate (iu) and average deviation from the
mutant median and Hotelling’s T? range, and between p and each metabolite in these twelve
strains. If the transcription factors have an indirect effect on metabolite distributions via reduced
growth rates in the deletion mutants, a correlation between mutant growth rates and the
metabolic profile (expressed as the average deviation from the mutant median and Hotelling’s
T?) is expected 3*. As a result, average deviation from the mutant median and Hotelling’s T2
were not correlated with growth rate (correlation coefficients were 0.17 and -0.08 respectively),
indicating that metabolic profile alteration was directly due to the gene deletion and not
indirectly influenced by poor growth. Almost all metabolites also showed no correlation with
the maximum specific growth rate, with the exception of four metabolites i.e., trehalose,
glyceraldehyde 3-phosphate (GAP) and its isomer dihydroxyacetone phosphate (DHAP), and
2-oxoglutarate, in which the correlation coefficients were -0.72, 0.72, 0.64, and 0.68
respectively. It was reported that trehalose and glycogen accumulate in S. cerevisiae when
growth condition deteriorates, suggesting that these carbohydrates may be required for cell
cycle progression at low growth rates ', In a separate study, intracellular DHAP+GAP was
found to increase in response to an increase in growth rate in E. coli '°*. However the association

between 2-oxoglutarate with growth rate is presently unclear.

In this study, arg82A disruptant was identified as the most differential strain with the highest

values of the average deviation from the mutant median and Hotelling’s T? (Table 3-3). Arg82
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was originally identified as a regulator of arginine biosynthesis '%. Arg82 is also an inositol
polyphosphate multikinase (IPMK), a global regulator involved in the regulation of arginine-,
phosphate-, and nitrogen-responsive genes '%. Arginine level was increased (fold-change=1.5)
in arg82A disruptant, in agreement with a previous study that reported mutation in ARGS2 leads
to constitutive production of the arginine biosynthetic enzymes encoded by the ARG, ARG3,
ARGS5,6 and ARGS genes '%7. Deletion of ARGS2 also caused altered levels of various
metabolites, mainly amino acids but includes TCA cycle intermediates and co-factors such as
UTP and ATP. The most apparent was 370-fold change in citrate level. TF association search
using YEASTRACT ' (Yeast Search for Transcriptional Regulators And Consensus
Tracking) showed no association between Arg82 and the genes encoding citrate synthase.
However, two regulatory proteins, Arg80 and Mcml, that have been reported to be stabilized
by Arg82 1%, showed positive association with CITI 2!. This observation suggests that Arg82
might regulate citrate metabolism indirectly through the interaction with other TFs. More
importantly, arg82A disruptant showed a great level of metabolic alteration, with an average
deviation from the mutant median of 3.16 vs. 1.85 in the second most differential strain, ada2A
disruptant. Arg82 has been described as a global regulator %7, thus this finding suggests that

ARGS2 may take part in more metabolic regulations than previously reported.

In addition, differential profile in ada2A disruptant and ada3A disruptant was also observed.
Ada2 and Ada3 are dual function regulators involved in the regulation of many other
transcription factors, and component of three chromatin modifying histone acetyltransferase
(HAT) complexes: SAGA, SLIK and ADA complexes (reviewed in Sterner and Berger (2000)
110y Between these two strains, ada2A disruptant exhibited a larger variation in metabolic
profile compared to ada3A disruptant (average deviation from mutant median of 1.85 and 1.32
respectively). While both shared similar metabolic pattern in some metabolites such as amino
adipic acid, inosine, orotate, succinate, malate (increased) and alpha-glycerophosphate,
glutathione, CMP, pyruvate, nicotinate (decreased), only ada?A disruptant showed a marked
change in citrate, 1,3-bisphosphoglycerate and phosphoenolpyruvate levels. Besides, there was
no strong correlation in metabolic profile between ada?A and ada3A disruptants (correlation
coefficient was 0.59). The different degree and configuration of metabolic alteration between
adaA disruptant and ada3A disruptant suggests that, while Ada2 and Ada3 share a common
function in some regulations (i.e., in the histone modification ''%), there might be additional

pathways exclusively affected by only one of the TFs.
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3.3.5. Analysis of functionally related strains

Another interesting feature observed from HCA based on metabolome dataset was the
ability to screen a specific group of strains with related functions. From Table 3-2, ino2A, ino4A,
opilA, riclA cluster (correlation coefficient 0.85) can be found. This cluster is characterized by
a marked increase in trehalose, succinate and citrate, as well as decrease in proline, guanosine
and 1,3-bisphosphoglycerate (Fig. 3-6 (A)). Ino2, Ino4 and Opil engage in inositol metabolism
and glycerolipids regulation "!-!3, Interestingly, ino2A, ino4A and opilA disruptants all
showed growth defect of >20% compared to control, with remarkably high correlation in
metabolic profile, while the association of Ricl with these three regulators has not been
described yet. Similarly, mksIA, rtg3A, rtgIA and rrnl0A disruptants formed a cluster with
high correlation (0.87). This cluster share a similar feature of decreased amino adipic acid,
glutamate and 2-oxoglutarate (Fig. 3-6 (B)). While Mks1, Rtgl and Rtg3 have been previously
demonstrated to be involved in mitochondrial retrograde response (RTG) in yeast 41421, there
was no report about the involvement of Rrnl10. Here, mks/A disruptant showed the same
metabolic profile as rtg/A and rtg3A disruptants, contradicted to its purported role as a negative
regulator of RTG pathway °'. Interestingly, large-scale transcriptomics data from Kemmeren et
al. (2014) 7° also revealed a similar transcript pattern between mksIA and rtgIA or rtg3A
disruptants. The discrepancy in MKSI deletion was probably due to the difference in the

background strain as reported previously !4,

The findings in this chapter demonstrated the possibility of novel gene function exploration
based on metabolic phenotype that can be unraveled by metabolomics. Further studies
regarding these uncharacterized roles of transcription factors would be an interesting topic for
future studies. Overall, more metabolic change was found in terms of the number of correlations
and significantly altered metabolites compared to previous reports 8485, and thus verified the
high resolution approach of metabolomics employed in this study. However, it is important to
note that transcriptional regulation is condition-specific and tightly controlled. In this chapter,
only a ‘standard’ growth condition is examined. Therefore, investigation of regulations that are
activated or repressed only during a specific condition should be performed under a defined

experimental set-up and might involve time-series profiling. Moreover, some transcription
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factors can take part in multiple pathways, resulting in compounding effects in the final
metabolic profile. Un-assembling of these pathways requires thorough consideration and
further experiments, such as flux measurement and kinetic modeling to investigate allosteric

protein-metabolite interactions 13,

Additionally, BY4742 derivatives which carry multiple gene deletions were used here. Use

of a prototrophic strain collection '

may yield less bias caused by auxotrophic markers and
feasible with minimal media, thereby reducing the compounding factors posed by additional
nutrient supplementation. Nonetheless, useful TF-metabolites correlations were obtained which
can be used to predict or generate new working hypotheses regarding the function of the TFs.
For future studies, researchers can select only cluster of interest and conduct further
experiments under a more defined condition based on the hints provided by metabolic profile
similarity. Further examination of less differential clusters but share highly similar metabolic

pattern (i.e., clusters in Group 3 in Table 3-2) might also reveal other previously unknown

correlations and lead to better understanding of transcriptional regulations.

3.3.6. Comparison with transcriptomics analysis

Transcriptomics analysis using microarrays has been the leading approach for functional
characterization of TFs, by which the gene expression levels are examined (up-regulated or
down-regulated), usually under the deletion of the TF. Currently, the YEASTRACT !
repository provides a convenient platform for researchers to find TF-gene associations, based
on more than 1300 bibliographic references. Many researchers also deposit their raw microarray
data into public repositories such as the Gene Expression Omnibus (GEO) ''7 and ArrayExpress
18 However, the most widely recognized limitation of microarrays is the low reproducibility
observed when using different array platforms ''°. This is usually the result of probe-specific

effects such as oligonucleotide probes versus PCR product probes, and array-synthesis effects

such as on-slide synthesis versus robotic spotting.

When studying the effects of TF deletion towards metabolism, transcriptomics data alone
may not be sufficient. While the interpretation of genes encoding an enzyme that catalyzes

specific metabolic pathways is rather straightforward, for genes encoding a permease, for

72



example, it might be difficult to judge what happens to the cell by only looking at the transcript
levels. For instance, in Section 2.3.5., the deletion of Rtgl and Rtg3 resulted in the decreased
concentrations of TCA cycle intermediates, in agreement with the decrease in transcript levels
of the genes encoding TCA cycle enzymes. However, for amino acids, it is difficult to predict
the intracellular concentrations based on transcript levels only, because apart from de novo
synthesis and degradation, they may also be up taken from the medium by a general (non-
specific) transporter. Moreover, metabolic alteration may also occur even when the TF does not
seem to have gene targets in that pathway through transcriptional cascade, i.e., via the
interaction with other TFs. For example, in Section 3.3.4., the change in citrate in arg§2A
disruptant was not seen at the transcript level and is likely due to the interaction of Arg82 with

Arg80 and Mcm1 proteins.

In transcriptomics analysis, a standard RNA extraction protocol can practically extract all
the RNAs at one time. In contrast, metabolites are composed of molecules with diverse
chemical properties (polarity, water-solubility, volatility, etc.) that necessitate different
extraction techniques, making comprehensive metabolite profiling very challenging. In addition,
raw mass spectral data are huge in size and difficult to manage in a repository, and require large
funding and trained specialists to extract the data. However, some research groups (e.g., Fiechn
group from UC Davis, USA %) already started the initiative of making a metabolomics data
repository, so that datasets from various researchers under various conditions and extraction
methods can be combined and analyzed simultaneously. The availability of public cumulated

data is expected to lead to new discoveries that are only possible with large diverse datasets.
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the role of Ricl in these regulatory pathways has not been reported. Clustering of strains that share similar

3

Cluster 3 (mksIA, rtgIA, rtg3A, rrnl0A). For example, in Cluster 1, although Ino2, Ino4 and Opil genes have been associated with inositol

and phospholipid regulation

metabolic profiles proves to be useful in finding both known and new gene/TF-metabolite correlations.
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3.4. Conclusions

A global analysis of gene-metabolite correlations in 154 transcription factor deletion strains
was conducted. Metabolome dataset provides useful insights into the effects of transcription
factor deletion towards metabolic pathway rearrangement. Metabolites as the final readouts of
gene transcription process can help delineate the complex rearrangement of metabolism under
TF deletion which may not be always evident in transcript levels. Characterization of deletion
strains using principal component analysis and hierarchical clustering analysis proved to be
useful for the screening of differential and functionally related strains/genes. Both previously
reported and possibly new correlations were obtained. This information can be used to open the
doors to deeper investigations. The metabolome dataset presented in this chapter does not only
provide information about key metabolites but also represents a useful resource for future

transcriptional regulation studies.
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Chapter 4 Conclusions and perspectives

The complete elucidation of cellular functions is an enormous effort and requires various
strategies to capture the entire system. Metabolomics-based gene-metabolite correlation
analysis is a practical and useful method to unravel new working hypotheses on the basis of
metabolic phenotype. In this study, the application of metabolomics in studying metabolic

alteration caused by TF deletion was investigated.

By comprehensive metabolic profiling, the differences between wild type and mutant
strains defective in specific transcription factor-encoding genes were observed. Relative
comparison of metabolic profiles using wild-type and knock-out strains proved to be useful in
deriving possible regulatory pathways controlled by the transcription factors. In the first part of
the thesis, I demonstrated the application of metabolic profiling in understanding retrograde
regulation in yeast, by two bHLH regulators Rtgl and Rtg3. The remarkable decrease in 2-
oxogluratarate was reported to be the hallmark of RTG-gene perturbation. Additionally, a

change in polyamine biosynthesis was also observed.

In the second part, I applied metabolomics-based screening for the characterization of 154
disruptant strains each defective in a gene encoding a transcription factor. Using two
multivariate data analysis methods, principal component analysis and hierarchical clustering
analysis, | assigned the deletion strains into several clusters according to their metabolic
signatures. Several TF-gene and TF-TF correlations were discussed, covering both known and

previously unreported observations.

At present, functional assignment of TFs is not yet complete 78182 There are also
inductions or repressions of pathways that do not seem to be the direct target of the TF, which
are probably due to transcriptional cascades 2. In silico sequence homology analysis using
computational methods has been the main tool for annotation and contributes vastly to our
understanding of TF/gene regulation, but this approach cannot assign orphan genes with little
or no homology to existing databases, and misannotation may occur since two genes can have
very similar sequences but function differently '?!. For example, a gene sequence with a gene

identifier, gi: 71915096 (GenBank:AAZ54998) was annotated as an o-succinylbenzoate
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synthase (OSBS) in GenBank database '*?> based on its high score against OSBS family,
although this sequence contains a number of additional substitutions in sequence motifs
conserved in authentic members of the OSBS family, an error known as ‘MRF’ (Missing
Functionally important Residue(s)) '?*. This gene sequence was later shown to likely represent
a new and unknown function in the enolase superfamily, rather than an OSBS 24, In this regard,
a global approach such as metabolomics is a more advanced option since not only it directly
measures the effect of a gene deletion and allows characterization of genes according to
metabolic profile similarity, but may also lead to novel discovery of biochemical pathways,

such as demonstrated previously by the discovery of riboneogenesis in yeast '2°.

To enable genome-wide metabolic profiling, specifically these factors must be taken into
account; 1) areliable and reproducible high-throughput analysis platform which covers as many
metabolites as possible, 2) a reproducible and stable sample extraction protocol that ensures
efficient recovery of various metabolites, 3) a robust peak-picking and alignment algorithm,
and 4) a sophisticated data analysis software and curated database that allows cross-referencing

with up-to-date research finding.

Ultimately, functional assignment of all genes is desirable, but this task requires huge and
concerted effort from various researchers, as validation experiments (‘omics’ and other systems
biology approaches) are laborious, highly sophisticated and technologically demanding.
Moreover, the massive data from omics approaches require careful selection of candidate
targets, and an appropriate statistical analysis must be performed to minimize false negatives
and false positives. This study represents a small, but nonetheless, a significant portion of this
effort. Undoubtedly, metabolomics, together with other omics, can aid the identification of
important target genes and/or proteins, to be applied for example in the engineering of strains
with improved phenotype (by overexpression or knockout of the identified target genes) or
screening of target molecules for drug development. It is expected that metabolomics will be
routinely performed, whether as a primary or complementary means in many gene regulation

studies.
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Appendices

Supplementary Table S1. Optimized multiple reaction monitoring (MRM) parameters and
retention time for each metabolite, measured by LC-MS/MS.

Target Target Target

. LC-MS Precursor Product Retgntlon Ql Collision Q3

Metabolite . . Time Pre Pre

Method*/mode  ionm/z  ionm/z . . Energy .

(min) Bias V) Bias

. M) %)

1 Arginine lon-pair RP/EST 193 15 13120 1039 13 15 24
negative

2 Histidine lon-pair RP/EST 15400 9315 1038 12 21 16
negative

3 Serine lon-pair RP/EST 10400 7415 1138 12 16 13
negative

4 Asparagine lon-pair RP/ESL 13109 11345 1151 10 15 21
negative

5 Glutamine lon-pair RP/EST 14500 12705 1160 12 18 18
negative

6 Threonine lon-pair RP/EST 41000 7405 1186 11 15 13
negative

7 Trehalose lon-pair RP/EST 341 09 8900 1302 15 23 16
negative

8 Proline lon-pair RP/EST 11400 6810 1331 10 15 11
negative

9 Methionine lon-pair RP/EST 140 00 4705 1987 11 14 16
negative

10 Isoleucine lon-pair RP/EST 13515 4500 2578 11 15 15
negative

11 Adenine lon-pair RP/EST 13,4 05 10735 2820 28 20 20
negative

12 Tyrosine lon-pair RP/EST 100 00 163.05 2834 12 18 18
negative

13 Xanthine Ton-pair RP/EST 151 90 10815 3.000 16 20 19
negative

14 Amino adipic acid lon-pair RP/EST 46000 11620 3171 12 17 21
negative

15 Glutamate Ton-pair RP/EST 14600 10220 3273 11 15 18
negative

16 Aspartate lon-pair RP/EST 135 0y 8305 3467 10 14 15
negative

17 Inosine lon-pair RP/EST 56700 13515 4550 21 23 24
negative

18 Guanosine lon-pair RP/EST 505 19 15020 4706 22 21 28
negative

19 Phenylalanine lon-pair RP/ESL 464 00 10315 4854 13 18 19
negative

20 Glycolate lon-pair RP/EST 9500 7500 5001 16 15 15
negative

21 Glycerate lon-pair RP/EST 10500 7515 5088 12 15 26
negative

22 Adenosine lon-pair RP/EST 56610 13415 5385 18 20 26
negative
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13

18

16

19

13

14

28

21

18

11

12

24

28

11

38

32

15

14

15

10

27

15

15

17

21

17

17

18

21

13

26

17

20

13

17

26

14

17

17

13

27

14

14

13

16

12

12

24



50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73
74
75
76
77
78
79
80

Malate
UDP-glucose
2-Oxoglutarate
CDP

UDP

NADP

3Phosphoglycerate

Fructose 2,6-
bisphosphate
Fructose 1,6-
bisphosphate

NADH

Isocitrate

Citrate

ADP
Bisphosphoglycerate
Phosphoenolpyruvate
2-Isopropylmalate
FAD

CTP

GTP

NADPH

UTP

ATP

Acetyl-coA

Cystine
Hydroxyproline
Cysteine
Homoserine
Alanine
Citrulline
Ornithine
Lysine

Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
Ion-pair RP/ESI
negative
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive

132.90

564.80

145.00

401.80

402.90

741.80

184.90

338.90

338.90

664.00

190.90

190.90

425.90

265.00

167.00

175.00

783.90

481.90

521.90

744.00

482.90

505.90

808.00

241.05
131.70
122.00
119.70

90.05
175.60
132.70
146.70

115.20

323.10

101.20

79.05

79.05

620.10

97.05

241.15

97.10

78.95

73.20

87.00

79.10

167.15

78.95

115.20

97.10

159.10

159.05

159.00

159.10

159.10

408.00

74.00
85.95
59.00
74.15
44.05
70.00
69.75
83.95

10.578

10.712

10.745

10.753

10.807

10.811

10.829

10.834

10.838

10.876

10.891

10.892

10.913

10.919

10.928

10.998

11.155

11.171

11.185

11.201

11.206

11.226

11.382

1.349
1.437
1.482
1.514
1.563
1.572
1.721
1.783

10

24

11

16

26

26

24

13

13

17

15

13

20

19

20

26

20

20

-25
-30
-29
-30
-16
-30
-30
-30

17

26

13

43

48

18

16

19

22

57

22

18

47

18

13

16

51

36

32

60

36

-20
-30
-30
-25

91

21

15

18

13

13

30

17

27

17

13

26

14

13

29

13

21

17

29

29

30

29

29

28

-14
-14
-13
-12
-19
-30
-30
-13



81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

b-Alanine

Uracil
4-Aminobutyrate
Putrescine
Glycine

Valine
Spermidine
Hypoxanthine
Uridine

Guanine
S-Adenosylmethionine
Cytidine
Deoxycytidine
Leucine
Deoxyguanosine
Thymidine
Deoxyadenosine

RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive
RP/ESI positive

89.90
113.15
103.70

88.80
118.05
118.10
145.70
137.05
244.90
151.95
398.50
244.00
228.10
131.70
268.00
243.10
252.10

30.15
70.05
87.05
71.70
43.05
72.10
72.20
55.05
113.05
135.05
250.20
112.05
112.10
43.05
152.00
127.05
136.10

1.850
2.278
2.302
2.375
2.829
2.857
3.130
3.236
3.322
3.619
3.632
4.224
5.629
6.203
6.222
6.436
6.890

-14

-15

-16
-20
-40
-10
-20
-40
-10

-17
-20
-10

-10
-10
-20

-30

-15
-30
-13

-30
-28
-15
-16
-25
-16

-17
-15
-29

*RP: reversed phase
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Supplementary Table S2. Summary of PCA with five significant components performed for
metabolome dataset from metabolic profiling of BY4742 and RTG deletion strains.

R2X Eigen 2

Component R2X Q2 Limit Significance Iterations
(cum) value (cum)

0 Cent.

1 0.537  0.537 19.3 0.507 0.0378 0.507 RI 9

2 0.135 0.672 4.87 0.182  0.0387 0.597 RI1 75

3 0.122  0.794 4.39 0.324  0.0396 0.728 RI1 13

4 0.0618 0.856 2.23 0.237  0.0406 0.792 Rl 30

5 0.0417 0.897 1.5 0.209  0.0417 0.835 RI 14

Supplementary Table S3. Loading values on principal component 1 (PC1) and principal
component 2 (PC2) for each metabolite (intracellular: from the yeast extract and extracellular:

from the growth medium).

Metabolite PC1 PC2 Metabolite PC1 PC2

(intracellular) Loading Loading (extracellular) Loading Loading
2-Isopropylmalate -0.00209  0.22745 2-Isopropylmalate -0.16400  0.07362
2-Oxoglutarate 0.00588  0.24828 2-Oxoglutarate -0.11752  0.05733
3Phosphoglycerate 0.11976  0.00749 4-Aminobutyrate -0.14398  0.14484
4-Aminobutyrate -0.11829  0.05978 Adenine 0.14294  0.18411
Acetyl-coA 0.13741  0.01074 Adenosine -0.12229  0.08622
Adenine 0.09936  -0.04542 a-Glycerophosphate -0.17368  -0.02441
Adenosine -0.10064 -0.03844 Alanine 0.11893  -0.04041
ADP 0.09370  0.03354 Amino adipic acid -0.15262  0.14734
a-Glycerophosphate 0.13798 -0.00768 AMP -0.15113  0.12424
Alanine 0.01347 -0.06582 Arginine 0.14229  0.18760
Amino adipic acid -0.07215  0.22560 Asparagine 0.15189  0.16691
AMP -0.10022  -0.03836 Aspartate 0.14460  0.18242
Arginine 0.11712  0.08488 Citrate -0.13431  0.17177
Asparagine 0.10135 -0.04259 Cystine 0.10505 -0.10305
Aspartate 0.12016  -0.06230 Deoxyadenosine -0.17569  0.00762
ATP 0.13473  0.05739 Deoxyguanosine -0.12206  -0.18288
b-Alanine 0.02704  0.14669 DHAP -0.14678  -0.07630
Bisphosphoglycerate 0.11485  0.07410 Glutamate 0.13630  0.20084
cAMP 0.10106  -0.13327 Glutamine 0.10919  0.22477
CDP 0.09910  -0.02309 Glutathione -0.15461  0.13571
Citrate -0.07668  0.20449 Glycine 0.04117  0.05761
Citrulline 0.07007  0.07924 Glycolate -0.12834  0.16408
CMP -0.08741 -0.08178 Glyoxylate -0.08650  0.18133
CTP 0.13086  0.05169 Guanosine -0.11670  0.07474
Cysteine -0.06774  0.21267 Histidine 0.16084  0.04404
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Cystine
Cytidine
Deoxyadenosine
Deoxycytidine
Deoxyguanosine
DHAP

FAD

Fructose 1,6-
bisphosphate
Fructose 1-phosphate
Fructose 2,6-
bisphosphate
Fructose 6-phosphate
Fumarate
Glucose 6-phosphate
Glutamate
Glutamine
Glutathione
Glycerate
Glycine
Glycolate
Glyoxylate
GMP

GTP

Guanine
Guanosine
Histidine
Homoserine
Hydroxyproline
Hypoxanthine
Inosine
Isocitrate
Isoleucine
Leucine

Lysine

Malate
Methionine
NAD

NADH

NADP

NADPH
Nicotinate
Ornithine
Orotate
Oxalacetate
Pantothenate
Phenylalanine
Phosphoenolpyruvate
Proline
Putrescine

94

0.13480
-0.07314
-0.08935

0.07273

0.10825

0.13796

0.11104

0.13499
0.13737
0.12608

0.13058
0.12440
0.13294
0.11327
0.08882
0.11373
0.08263
0.08802
-0.04132
0.00639
-0.08884
0.13770
0.07134
-0.06730
-0.02338
0.10027
0.09716
0.09569
0.09335
-0.06356
0.12724
0.12801
0.11374
0.01816
0.12383
0.09416
0.12883
0.09754
0.13540
0.09883
-0.03392
0.05678
0.12304
0.09640
0.13560
0.12118
-0.04735
0.02963

-0.02100
0.01314
0.05245

-0.02977

-0.03625

-0.00388
0.03701

-0.01370
-0.01639
-0.00098

0.03167
0.07301
0.04489
0.07720
0.13960
0.10429
0.14066
0.15103
0.23183
0.24135
-0.07027
0.00852
0.00928
0.00043
0.23441
-0.05115
0.06096
-0.02078
0.00044
0.22648
-0.02595
-0.04393
-0.04160
0.22764
-0.05087
0.05793
0.01969
0.03847
0.02288
-0.04632
-0.12659
0.13618
-0.02171
0.01449
-0.04245
0.03853
-0.11264
-0.16010

Hypoxanthine
Inosine
Isocitrate
Leucine
Lysine
Malate
Methionine

NAD
Nicotinate
Orotate

Oxalacetate
Pantothenate
Phenylalanine
Phosphoenolpyruvate
Proline
Pyroglutamate
Pyruvate
Serine
Succinate
Threonine
Thymidine
Trehalose
Tryptophan
Tyrosine
Uracil

Uridine
Valine
Xanthine

0.13818
-0.16559
-0.12434

0.17279

0.14266
-0.17103

0.17403

-0.14924
0.14247
-0.15549

0.06816
-0.00519
0.17340
-0.13665
-0.13749
0.03414
0.05378
0.15543
-0.16794
0.11451
-0.17320
0.14937
0.15976
0.13203
0.07631
-0.15427
0.02936
-0.16286

0.18256
-0.02855
0.17564
-0.06298
0.18386
0.08345
-0.04695

0.12477
0.18098
-0.11610

-0.15088
0.26084
0.02699
0.16323

-0.02614

-0.02368

-0.24100
0.15707
0.08129
0.22466
0.04120

-0.02877

-0.13349
0.15300
0.17593
0.09296
0.07420
0.10989



Pyroglutamate
Pyruvate

Ribose 5-phosphate
Ribulose 5-phosphate
S-Adenosylmethionine
Sedoheptulose 7-

phosphate
Serine
Spermidine
Succinate
Threonine
Thymidine
TMP
Trehalose
Tryptophan
Tyrosine
UDP
UDP-glucose
UMP
Uracil
Uridine
UTP
Valine
Xanthine

0.13187
0.12589
0.11655
0.12525
-0.10702

0.13532

0.11174
-0.06151
-0.08868

0.05368
-0.12763
-0.08416
-0.06462

0.12819

0.10120

0.01583

0.08317
-0.10538

0.12805
-0.10055

0.13373

0.10324
-0.10614

0.04943
-0.04248
0.05339
0.04431
0.05528

0.02000

-0.02229
-0.08182
0.17453
-0.12654
0.06990
-0.04919
0.16862
-0.08465
0.02960
0.04811
0.17915
-0.05556
-0.01441
0.07235
0.03512
0.10526
0.15427
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Supplementary Fig. S1. (A) PCA score plot for time-course extracellular metabolic profiling
(from growth media) of wild-type strain BY4742, and rtg/A and rtg3A disruptants (n=3). The
metabolites were scaled to unit variance. Ellipse indicate 95% confidence border based on
Hotelling” s T2. (B) The corresponding loading plot illustrating metabolites that contribute to
the separation on PC1 and PC2 (see Supplementary Table S3 for the loading values).
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Supplementary Table S4. Cell growth on YPD (1% yeast extract, 2% peptone, 2% dextrose,
2% agar (% w/v)) and YPG (1% yeast extract, 2% peptone, 2% glycerol, 2% agar (% w/))
plates, expressed as the number of colonies. Cell cultures were diluted to approximately 103
cells/ mL, 100 uLL were spread on YPD or YPG plates, and the colony number was counted

after 2-4 days. Measurement was done in duplicate (separated by a comma) for each sampling

point.

Strain Plate Day 1 Day 3 Day 5
BY4742 YPD 86, 115 100, 100 68, 53
YPG 81, 151 96, 112 66, 54
rtgl A disruptant YPD 53,52 31,34 25,28
YPG 61, 62 39,43 29, 28

rtg3A disruptant YPD 23,16 27,45 6, 8
YPG 28,15 25,40 10,11
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Supplementary Fig. S2. Intracellular (from cell extracts) and extracellular (from the growth

medium) concentrations of glutamate and glutamine in BY4742, and r#g/A and rtg3A mutants

(n=13). Y-axis indicates relative intensity while x-axis indicates time. The metabolite intensities

were relative to that of BY4742 at time 5 h.
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Supplementary Table S5. List of disruptant strains used in this study, maximum specific

growth rate p (h'') in synthetic complete medium and adenylate energy charge (EC). The
mutants are isogenic derivatives of wild-type BY4742 (MATo leu2A0 Iys2A0 ura3A0 his3A1).

Strain Batch n (h, n (h), EC (), EC (),
average stdev average stdev
BY4742(1) 1 0.47 0.04 0.75 0.02
ace2A 1 0.48 0.04 0.81 0.02
arg80A 1 0.49 0.05 0.72 0.06
arg82A 1 0.39 0.05 0.84 0.04
aro80A 1 0.52 0.03 0.76 0.02
basIA 1 0.55 0.05 0.72 0.05
bas2/grfl10/pho2A 1 0.51 0.02 0.76 0.03
cadl/yap2A 1 0.50 0.05 0.75 0.04
dal80A 1 0.52 0.04 0.78 0.03
dal8IA 1 0.52 0.04 0.76 0.03
ecm22A 1 0.49 0.04 0.78 0.02
JZfIA 1 0.48 0.06 0.76 0.04
gcndA 1 0.51 0.02 0.74 0.06
gln3A 1 0.50 0.06 0.77 0.01
2zf3A 1 0.47 0.04 0.74 0.04
hap2A 1 0.47 0.04 0.78 0.02
hap3A 1 0.50 0.05 0.76 0.04
hap4A 1 0.50 0.01 0.74 0.05
hap5A 1 0.52 0.08 0.79 0.00
imelA 1 0.50 0.05 0.76 0.04
ino2A 1 0.30 0.02 0.86 0.00
ino4A 1 0.28 0.03 0.83 0.02
ixriA 1 0.45 0.01 0.74 0.02
leu3A 1 0.53 0.01 0.74 0.05
lys14A 1 0.53 0.02 0.74 0.06
met28A 1 0.53 0.06 0.77 0.05
met3 1A 1 0.52 0.06 0.79 0.01
mksIA 1 0.46 0.04 0.74 0.00
mot3A 1 0.56 0.04 0.79 0.03
oaflA 1 0.48 0.07 0.76 0.04
opilA 1 0.24 0.01 0.83 0.02
pho23A 1 0.43 0.01 0.76 0.01
pho4A 1 0.51 0.03 0.79 0.02
riclA 1 0.37 0.03 0.75 0.01
rpnd4A 1 0.41 0.02 0.83 0.02
sin3A 1 0.41 0.02 0.72 0.04
stpIA 1 0.52 0.02 0.74 0.06
Stp2A 1 0.45 0.09 0.78 0.02
thi2A 1 0.54 0.06 0.77 0.02
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100

uga3A
yap6A
BY4742(2)
adriA
aft2A
arriA
cat8A
cha4A
cinSA
crzIA
gcr2A
haclA
hal9A
mig2A
msniA
msn2A
msn4A
nrglA
pdriA
pdr3A
pdr8A
ppriA
rgtiA
riml0IA
sflIA
Sip4A
skn7A
skolA
smplA
stb5A
sutlA
SWIOA
tye7A
umeO6A
usviA
witm2A
xbpIA
yaplA
yap3A
yap3SA
yap7A
yrmiA
yrriA
BY4742(3)

W N NN NN DN DN DN DN DNDNDNDNDNDDDNDDNDDDNDDDNDNDNDDNDNDNDNDNDDNDNDDNDDNDDNDDNDNDDNDND = —

0.52
0.56
0.45
0.43
0.46
0.45
0.47
0.49
0.49
0.49
0.35
0.45
0.50
0.49
0.49
0.51
0.48
0.50
0.47
0.42
0.47
0.48
0.49
0.44
0.49
0.49
0.49
0.48
0.49
0.45
0.45
0.40
0.45
0.45
0.46
0.48
0.46
0.49
0.47
0.43
0.49
0.49
0.47
0.48

0.02
0.02
0.05
0.06
0.03
0.03
0.02
0.02
0.02
0.02
0.05
0.04
0.02
0.02
0.07
0.07
0.04
0.01
0.04
0.05
0.03
0.04
0.05
0.04
0.05
0.02
0.03
0.04
0.02
0.06
0.04
0.01
0.03
0.03
0.02
0.06
0.05
0.03
0.05
0.02
0.09
0.02
0.01
0.03

0.75
0.78
0.84
0.85
0.86
0.83
0.85
0.84
0.82
0.84
0.77
0.86
0.84
0.86
0.84
0.80
0.84
0.84
0.85
0.85
0.80
0.85
0.82
0.84
0.84
0.83
0.84
0.85
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0.83
0.84
0.84
0.84
0.85
0.83
0.83
0.84
0.80
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0.87
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0.83

0.03
0.02
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0.01
0.02
0.01
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0.02
0.02
0.02
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0.01
0.02
0.04
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0.02
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0.03
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0.05
0.02
0.01
0.02
0.02
0.01
0.03
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0.04
0.02
0.02
0.02
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0.04
0.03
0.03
0.03
0.02
0.07
0.01
0.01
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acel/cup2A
ada2A
ada3A
aftiA
argr2A
azflA
cbfIA
cStoA
cup9A
dal82A
gal3A
gal4A
gal80A
gatiIA
gat2A
gat3A
gat4A
gisIA
maclA
mall3A
mal33A
mgalA
miglA
mig3A
not3A
put3A
rgmiA
rimIA
roxIA
rsf2A
rtglA
sas2A
seflA
spt23A
SSnOA
sut2A
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tufIA
zapIA
BY4742(4)
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0.52
0.34
0.41
0.28
0.51
0.57
0.37
0.48
0.51
0.50
0.52
0.49
0.52
0.47
0.53
0.44
0.43
0.48
0.46
0.47
0.53
0.54
0.43
0.47
0.45
0.44
0.51
0.53
0.50
0.45
0.45
0.46
0.44
0.50
0.49
0.50
0.49
0.46
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0.45
0.45
0.47
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0.50

0.01
0.01
0.01
0.05
0.02
0.04
0.04
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0.02
0.02
0.01
0.02
0.02
0.09
0.06
0.02
0.04
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0.03
0.07
0.04
0.05
0.06
0.06
0.04
0.03
0.03
0.01
0.03
0.03
0.02
0.01
0.01
0.04
0.01
0.01
0.04
0.03
0.06
0.03
0.05
0.03
0.05
0.02

0.84
0.88
0.87
0.82
0.83
0.82
0.84
0.83
0.83
0.82
0.83
0.85
0.83
0.82
0.82
0.82
0.81
0.82
0.81
0.81
0.82
0.83
0.81
0.83
0.84
0.82
0.81
0.82
0.82
0.82
0.80
0.81
0.84
0.83
0.83
0.84
0.84
0.84
0.81
0.76
0.78
0.77
0.77
0.78

0.01
0.01
0.01
0.01
0.01
0.01
0.01
0.02
0.02
0.01
0.01
0.01
0.02
0.03
0.02
0.02
0.03
0.01
0.01
0.02
0.00
0.02
0.02
0.01
0.02
0.01
0.01
0.02
0.01
0.01
0.02
0.02
0.02
0.01
0.02
0.00
0.02
0.01
0.00
0.04
0.02
0.03
0.03
0.03
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fkh2A
flo8SA
hemiIA
hirlA
hir2A
hir3A
hmsIA
kar4A
mbpIA
ndt80A
phdIA
rfxIA
rphlIA
rrnlOA
rtg3A
sds3A
sirlA
Sir2A
Sir3A
Sir4A
sumiA
SWI4A
SWISA
tecIA
tspIA
uaf30A
wimlIA
vhpIA
yoxIA
zdsIA
zds2A

I I S T T = T T S e S S S S S e e T e T T = T T T ST S~ S

0.57
0.49
0.48
0.49
0.48
0.52
0.61
0.52
0.42
0.53
0.54
0.54
0.49
0.51
0.47
0.56
0.49
0.55
0.52
0.54
0.46
0.47
0.50
0.48
0.50
0.49
0.54
0.52
0.52
0.50
0.51

0.03
0.01
0.09
0.07
0.02
0.02
0.02
0.05
0.02
0.02
0.03
0.03
0.04
0.09
0.07
0.07
0.03
0.07
0.03
0.06
0.11
0.05
0.02
0.07
0.05
0.04
0.07
0.03
0.03
0.03
0.01

0.79
0.80
0.79
0.76
0.81
0.77
0.79
0.78
0.79
0.74
0.79
0.75
0.76
0.73
0.74
0.77
0.81
0.78
0.81
0.80
0.74
0.77
0.77
0.80
0.77
0.78
0.77
0.78
0.79
0.78
0.79

0.01
0.00
0.04
0.04
0.01
0.02
0.02
0.02
0.01
0.04
0.01
0.08
0.07
0.02
0.06
0.05
0.01
0.02
0.01
0.02
0.08
0.02
0.02
0.02
0.03
0.01
0.02
0.04
0.01
0.03
0.02
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Supplementary Table S6. Summary of PCA with eleven significant components performed

for metabolome dataset from metabolic profiling of 154 deletion strains.

Component R2X R2x Eigen Q2 Limit Q Significance Iterations
(cum) value (cum)
0 Non-Cent.
1 0.366 0.366 11.5 0.252 0.0118 0.252 RI 16
2 0.173 0.539 18.1 0.155 0.0119 0.368 RI 12
3 0.0696  0.608 8.25 0.00218 0.012 037 R2 52
4 0.0576  0.666 6.8 0.07 0.0122 0.414 RI 37
5 0.0425  0.708 4.92 -0.035 0.0123 0.393 R2 52
6 0.036 0.744 4.24 0.0349 0.0125 0.414 RI1 40
7 0.0303  0.775 3.58 0.0432 0.0127 0.44 RI1 60
8 0.0241  0.799 2.83 -8.74x10° 0.0128 0.44 R2 46
9 0.0203  0.819 2.39 -0.00329 0.013 0.438 R2 117
10 0.0186  0.838 221 0.0157 0.0132 0.447 RI 70
11 0.0158  0.853 1.87 -0.0157 0.0133 0.438 R2 39
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Supplementary Table S7. List of metabolites and the number of deletion strains (out of 154)
that were significantly changed or unchanged compared with wild-type BY4742 (p-value <
0.05).

No. of strains No. of strains

Metabolite Changed Unchanged Metabolite Changed Unchanged
Arginine 111 43 | Succinate 63 91
Histidine 115 39 | Fumarate 4 150
Serine 15 139 | cAMP 7 147
Asparagine 5 149 | Malate 44 110
Glutamine 21 133 | UDP-Glucose 59 95
Homoserine 25 129 | 2-Oxoglutarate 49 105
Threonine 41 113 CDP 16 138
Trehalose 3 151 , GDP 3 151
Proline 23 131 NADP 7 147
Valine 8 146 | F2,6P 9 145
Methionine 5 149 | F1,6P 8 146
Guanine 126 28 Isocitrate 16 138
Isoleucine 12 142 | Citrate 19 135
Tyrosine 5 149 ADP 9 145
Amino adipic acid 22 132 | 1,3-BPG 15 139
Glutamate 16 138 | Phosphoenolpyruvate 12 142
Aspartate 16 138 FMN 10 144
Inosine 135 19 | 2-Isopropylmalate 32 122
Guanosine 132 22 FAD 3 151
Phenylalanine 3 151 CTP 45 109
Pyroglutamate 2 152 ; GTP 14 140
Glucose 6-phosphate 11 143 | NADPH 5 149
Ribose 5-phosphate 19 135 UTP 54 100
Sedoheptulose 7P 21 133  ATP 14 140
Fructose 6-phosphate 2 152 Acetyl CoA 20 134
Tryptophan 14 140 Alanine 12 142
a-Glycerophosphate 39 115 | Glycine 7 147
Glutathione 7 147 | 2-Aminoethanol 5 149
GAP 11 143  Urea 3 151
Ribulose 5-phosphate 18 136 | Phosphate 13 141
Orotate 32 122 | Glycerol 27 127
Fructose 1-phosphate 19 135  Leucine 6 148
CMP 10 144 Uracil 6 148
NAD 8 146 | Lysine 92 62
Pyruvate 27 127 : Adenine 45 109
DHAP 14 140  Inositol 9 145
UMP 24 130 | Octadecanoate 4 150
GMP 11 143 | Cysteine+Cystine 6 148
Oxalacetate 29 125 | Citrulline 48 106
AMP 14 140  Glucose 15 139
Nicotinate 40 114 B-Lactose 14 140
Pantothenate 26 128 | Melibiose 2 152

104



List of publications

Conferences

1) Zanariah Hashim, Takeshi Bamba and Eiichiro Fukusaki. “Metabolome on stress-free
condition involves stress tolerance of S. cerevisiae” (Oral). Society for Biotechnology Japan
(SBJ) 63rd Annual Meeting, Tokyo, Japan. 26-28 September 2011.

2) Zanariah Hashim, Yudai Dempo, Tairo Ogura, Ichiro Hirano, Junko lida, Takeshi Bamba
and FEiichiro Fukusaki. “Quantitative analysis of hydrophilic metabolite using ionpairing
chromatography with a high-speed triple quadrupole mass spectrometer” (Poster). 60th
American Society for Mass Spectrometry (ASMS) Conference on Mass Spectrometry and
Allied Topics, Vancouver, Canada. 20-24 May 2012.

3) Zanariah Hashim, Yudai Dempo, Tairo Ogura, Ichiro Hirano, Takeshi Bamba and Eiichiro
Fukusaki. “Development of accelerate quantification analysis for hydrophilic metabolites using
ionpairing chromatography with a high-speed triple quadrupole mass spectrometer” (Poster).
19th International Mass Spectrometry Conference (IMSC 2012), Kyoto, Japan. 15-21
September 2012.

4) Zanariah Hashim, Shao Thing Teoh, Takeshi Bamba and Eiichiro Fukusaki. “Metabolic
profiling of Saccharomyces cerevisiae transcription factor-related single gene mutants” (Oral).
Biological and Chemical Methods for Selective Catalysis Symposium (SeleCa 2012), RWTH
Aachen, Germany. 2-8 December 2012.

5) Zanariah Hashim, Shao Thing Teoh, Takeshi Bamba and Eiichiro Fukusaki. “Metabolomics-
based screening of transcription factor deletion strains reveals discrimination of RTG-related
genes in yeast” (Poster). Society for Biotechnology Japan (SBJ) 65th Annual Meeting,
Hiroshima, Japan. 18-20 September 2013.

6) Zanariah Hashim, Shao Thing Teoh, Takeshi Bamba and Eiichiro Fukusaki. “Construction
of a metabolome library for transcription factor-related single gene mutants of Saccharomyces
cerevisiae” (Oral -selected for 2014 Metabolomics Society Student Travel Award). 10th
International Conference of the Metabolomics Society, Tsuruoka, Japan. 23-26 June 2014.

Original Articles

1) Zanariah Hashim, Yukio Mukai, Takeshi Bamba and Eiichiro Fukusaki. Metabolic profiling
of retrograde pathway transcription factors Rtgl and Rtg3 knockout yeast. Metabolites 4,
580-598 (2014).

2) Zanariah Hashim, Shao Thing Teoh, Takeshi Bamba and Eiichiro Fukusaki. Construction
of a metabolome library for transcription factor-related single gene mutants of
Saccharomyces cerevisiae. J. Chromatogr. B 966, 83-92 (2014).

105



Acknowledgment

I sincerely thank Prof. Eiichiro Fukusaki for introducing me to the wonderful world of
metabolomics and for his guidance and supervision. I thank my thesis committee Prof. Satoshi
Harashima and Prof. Kazuhito Fujiyama for their critical comments and valuable advice for my
thesis. I also thank Assoc. Prof. Yukio Mukai from Nagahama Institute of Bio-Science and
Technology for helpful discussions and teaching me about yeasts. I also acknowledge Assoc.

Prof. Takeshi Bamba and Assist. Prof. Hisayo Ono for their assistance in the laboratory.

Special thanks to the Hitachi Scholarship Foundation (HSF), which provided me financial
support for five years for my Masters and Doctorate degrees. I thank previous and current
members of HSF, Mr. Sasamori, Mr. Miyanaga, Dr. Homma, Mr. Miyake, Mr. Kawamoto, Ms.
Nunokami, Ms. Masuda, Ms. Namiki and Ms. Kimura, for their tireless support and hospitality.
I also appreciate friendship and moral support from fellow HSF recipients from Malaysia,

Thailand, Indonesia, Philippines and Vietnam.

To my employer Universiti Teknologi Malaysia, especially the staff at the Faculty of
Chemical Engineering and Human Capital Development for assistance during my study leave

and financial support.

To Japanese-German Graduate Externship Program and the members from Osaka
University and RWTH Aachen, for the chance to visit Germany and participate in a graduate

exchange program.

To all my lab mates, especially Shao, Udi, An, Hanghang, Jae, Yang, Nagasawa-san,
Dempo, Mitsunaga, Noguchi, Teruko, Risa and Dr. Tsugawa for making my lab life cheerful
and keeping me positive. | am very grateful to be able to work at a laboratory with state-of-the-
art equipment and colleagues who are always eager to help, both in studies and personal matters.
Also, thanks to my Malaysian friends in Japan for sharing food and ‘home’ stories, visiting me

when I feel sick and keeping me company.

Finally, my heartfelt appreciation goes to my family: my parents, husband and son, who
always believe in me, even when I myself have little faith. You taught me patience and the most

important thing in life: family. I am forever thankful to God for His guidance and blessings.

106



