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Abstract 

De-ubiquitinaing enzymes (DUBs) are a large group of proteases that catalyze the release of 

ubiquitin from their substrates. DUBs involve in many cellular functions such as homeostasis, 

tumorigenesis and host defense, and anti-cancer drugs targeting to DUBs are now in clinical trials. In this 

study, I examined the roles of DUBs on the life cycle of hepatitis C virus (HCV). By using 

RNAi-based screening, I identified an ubiquitin specific protease 15 (USP15) crucial for HCV 

replication. The reduction of lipid droplets in USP15-knockdown cells was recovered by the 

overexpression of USP15, suggesting that USP15 is involved in the production of lipid droplets. 

These data suggest that USP15 participates in the HCV propagation through the regulation of lipid 

metabolisms in the liver. 
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General Introduction 

The liver is the largest organ in human body and weights 1KG-1.5 kg in adults. The various 

functions of the liver are performed by hepatocytes. For example, liver controls glucose 

concentration in the blood by glyconeogenesis, glycogenolysis or glycogenesis. The liver also 

regulates lipid metabolisms through production of cholesterol or triglycerides. Toxic compounds 

are modified or broken down by the liver. 

 Because liver is critical for survival and its function is multiple, there are several severe diseases 

in the liver. About 80% of liver diseases are caused by hepatitis virus infection (Fig. 3B). Human 

hepatitis viruses consist of 5 different viruses such as shown in Fig. 1 and 2. Before the discovery of 

hepatitis A virus (HAV) (1, 2) and hepatitis B virus (HBV) (3, 4) during the 1960s and 1970s, 

patients with viral hepatitis were classified based on epidemiological studies as having either 

infectious (transmitted person to person by the fecal-oral route) or serum (transmitted by 

transfusion of blood products) hepatitis (Fig. 1). When diagnostic tests for HAV and HBV 

infections were developed, HAV was found to be the major cause of infectious hepatitis and HBV 

was found to be the major cause of serum hepatitis. Hepatitis delta virus (HDV), discovered in 

1977, is a defective virus requiring the presence of HBV in order to replicate (5). However, some 

patients with typical signs and symptoms of viral hepatitis did not have serologic markers of HAV, 

HBV, or HDV infection and were categorized based on epidemiological characteristics as having 

either parenterally transmitted non-A, non-B (NANB) hepatitis or enterically transmitted NANB 
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hepatitis (6). Subsequently, two additional viruses were discovered: hepatitis C virus (HCV) (7) and 

hepatitis E virus (HEV) (8, 9). HCV is the major cause of parentally transmitted and HEV is the 

major cause of enterically transmitted NANB hepatitis. In addition, some patients with typical signs 

and symptoms of acute viral hepatitis do not have serologic markers of any of these types of viral 

hepatitis and can be classified as having non-ABCDE hepatitis.  

 HAV belongs to Picornaviridae family (1), has no envelope and possesses a single-stranded 

RNA as a genome. HAV can be transmitted by fecal oral infection. HAV is resistant to low pH (3.0), 

but would be inactivated by the treatment with 100°C for 10 minutes or chlorinated disinfective 

cleanser (10, 11). HAV is acutely infected and is normally excluded within 1-2 months. HBV 

belongs to Hepadonaviridae family (12), has envelope and a double-stranded partially circular 

DNA as a genome. HBV is transmitted by blood via perinatal and sexual routes. HBV infection is 

normally acute infection, however 1% of infected patients cause chronic infection as a carrier. 

Chronic infection leads to cirrhosis and hepatocellular carcinoma (HCC). HBV infects 240 million 

people worldwide and a million people in Japan. Reverse transcriptase inhibitors (Lamivudine or 

Entecavir) can be used for current therapy, however patients have to take them for their life and 

drug-resistant viruses are emerging. HDV belongs to Deltaviridae family (13). HDV has a single 

stranded RNA as a genome. HDV is a replication-deficient virus, which needs HBV infection for 

successful propagation. Therefore, HDV infection can be occurred by co-infection of HBV/HDV 

or in HBV carriers. HDV infection is mainly seen in South Europe and 1% of HBV carriers are 

co-infected with HDV in Japan. HEV belongs to Hepeviridae family (14). HEV has a single 
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stranded RNA as a genome and is transmitted by fecal oral routes. The symptoms of HEV are 

similar to HAV. Only difference is that the frequency of fulminant hepatitis in HEV infection is 

about 5 times higher than that in HAV infection. 

 HCV is a major causative agent of chronic liver diseases including steatosis, cirrhosis and HCC 

(15). In Japan, liver cancer is the 4th most common cancer (Fig. 3A). About 70% of liver cancers 

are caused by HCV infection and 20% are HBV infection (Fig. 3B). HCV has several genotypes. 

Genotype 1b of HCV is major among all genotypes. It occupies 70% in HCV patients (Fig. 3C). 

Current therapy such as combination of pegylated-interferon (IFN) and ribavirin (RBV) achieved 

about 50% sustained virological response (SVR) in patients infected with genotype 1b HCV with 

high viral load (Fig. 3D) (16). As novel potent therapeutics, direct-acting antivirals (DAA) 

including inhibitors for viral protease and polymerase have been recently developed (17). Clinical 

trials revealed that DAA treatment achieved SVR in over 80% of chronic hepatitis C patients (18, 

19). However, drug-resistant HCV against DAA had been already reported, suggesting that 

development of novel therapeutics with a low frequency of emergence of breakthrough viruses is needed. 

 HCV belongs to Flaviviridae family and possesses a positive and single-stranded RNA genome. 

The viral RNA is translated into a large single polyprotein (about 3000 amino acids) and processed 

into 10 viral proteins through cleavage by viral-encoded and host proteases (Fig. 4). Core protein is 

a component of viral capsids and E1 and E2 glycoproteins are envelope glycoproteins. The p7 

protein acts as a proton pump for an efficient virus release. Non-structural (NS) 2 and 3 proteins 

possess protease activity. NS4 is thought to be a scaffold for viral replication complex. NS5A 
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interacts with various host factors and regulates viral replication. NS5B has an RNA-dependent 

RNA polymerase activity (20, 21). HCV is trapped by glycosaminoglycans, like heparin and 

heparan sulfate on cell surface and then transferred to protein receptors. HCV enters via an 

endocytosi, replicates on the endoplasmic reticulum (ER) membrane, and buds into the ER lumen 

(Fig. 5). 

Molecular mechanisms of HCV pathogenesis 

Core protein of HCV is a multifunctional protein, which localizes in many cellular components 

such as nucleus, ER, lipid droplets (LDs), lipid rafts and mitochondria. Core protein plays roles in 

apoptosis, autophagy, cell cycles and oncogenesis. Chronic HCV infection leads to steatosis, 

cirrhosis and hepatocellular carcinoma in the liver (22). On the other hand, HCV infection 

epidemiologically correlated with extra-hepatic manifestations such as type 2 diabetes, mixed 

cryoglobulinemia and non-Hodgkin lymphoma (23). Although precise molecular mechanisms of 

HCV-induced pathogenesis remain unknown (24), the liver-specific HCV core transgenic 

(CoreTG) mice showed steatosis and hepatocellular carcinoma (25) (Fig. 6). Furthermore, the 

insulin resistance is occurred in the same mice (26) (Fig. 6). Sterol regulatory element binding 

transcription factor 1c (SREBP-1c), which positively regulates the production of saturated and 

monounsaturated fatty acids and triglycerides, is enhanced in CoreTG mice liver (27). It suggests 

that core protein plays a role in liver diseases and extra-hepatitis manifestations (Fig. 7). Yeast 

two-hybrid screening revealed HCV core proteins directly interacted to proteasome activator 28 γ 
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(PA28γ). PA28γ regulates cell cycles and protein expression through maintenance of proteasome 

in nucleus. Although core protein localizes at cytoplasm in CoreTG mice, majority of core protein 

was detected in nucleus in CoreTG/PA28γ-/- mice (28). Surprisingly, CoreTG/PA28γ-/- mice did 

not show any HCV-core induced phenotypes such as insulin resistance, steatosis and HCC even 

though this mice expresses core protein as same as CoreTG mice (28, 29). CoreTG/PA28γ-/- mice 

show no activation of SREBP-1c compared to CoreTG. These data suggests that degradation of 

HCV core protein in nucleus through PA28γ-dependent proteasome might be a key step to develop 

core-induced diseases (Fig. 7) (30). 

Maturation of HCV core protein 

Once HCV polyprotein is translated, core protein is firstly cleaved at the position of 191 amino 

acids by host signal peptidase and then further processed by signal peptide peptidase (SPP) (31, 32). 

Our laboratory tryied to identify the responsible regions in core protein for processing by SPP (33). 

Domain II of core protein, which has cluster of hydrophobic amino acid residues, was necessary for 

processing of core by SPP. Especially substitution of L139, V140 and L144 to alanin (M2 mutant) 

inhibited SPP cleavage. SPP recognizes the helix-breaking structure in the signal peptide of 

transmembrane region. Mutation of I176 to alanine and F177 to leucine (M1 mutant) to acquire the 

α-helix structure in the signal sequence was also impaired SPP cleavage (Fig. 8) (33). As we 

expected, the maturation of core protein by SPP is needed to localize to detergent-resistant 

membrane (DRM) (34). The recombinant viruses possessing either M1 or M2 mutation could not 
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release infectious particles into culture media (34), suggesting that processing of HCV core protein 

by SPP is essential for propagation of HCV.  

HCV infection and receptor candidates 

HCV need to bind appropriate host cell surface for an efficient infection. HCV binds to 

glycosaminoglycan such as heparin or heparan sulfate on cell surface and then binds to specific 

receptors. Many receptor candidates for HCV had been reported such as, CD81, dendritic cell-specific 

ICAM-3 grabbing non-integrin (DC-SIGN/L-SIGN), low density lipoprotein receptor (LDL-R), 

scavenger receptor class B type I (SR-BI), epidermal growth factor receptor (EGFR), claudin 1 

(CLDN1), occludin (OCLN), Niemann-Pick C1-like protein 1 (NPC1L1) (Fig. 9A)(35, 36). HCV 

can internalize into cells derived from human and chimpanzee but not from mice. CD81 was firstly 

identified to bind to HCV E2 glycoprotein. Human derived CD81 but not of mouse specifically 

bound to E2 protein, suggesting that CD81 was one of the species-specific receptors for HCV (37). 

Recently, human OCLN was also identified as a species-specific functional receptor for HCV by 

using expression-cloning method (38). Transgenic mice expressing human CD81 and human 

OCLN were susceptible to HCV infection, suggesting that CD81 and OCLD were restrict factors 

for species-specific infection of HCV (Fig. 9B) (39, 40).  

HCV replication and microRNA-122 

In 1993, microRNA (miRNA) was firstly identified in C. elegans (41). Over 2000 miRNAs have 
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been registered in the database so far (42). miRNA incorporated into RNA-induced silencing 

complex (RISC) interacts with a target mRNA via a specific recognition element (Fig. 10A). RISC 

contains argonaute 2 (Ago2), dicer, and TAR RNA binding protein (TRBP) (43, 44). In human, 

Ago2 plays a pivotal role in the repression of translation of target genes. It is now commonly 

believed that miRNAs play important roles in cell homeostasis and abnormality of miRNA 

expression participates in the development of several diseases including viral diseases. miRNAs 

encoded by Epstein-Barr virus (EBV) were identified in 2004 and over 200 viral miRNAs have 

been reported in several DNA viruses, especially in herpesviruses (45). miR-122 is a liver specific 

miRNA and is the most abundantly expressed in the liver (46, 47, 48). miR-122-deficient mice 

showed steatosis, inflammation, fibrosis and hepatocellular carcinoma (49, 50), suggesting that 

miR-122 plays a crucial roles in liver homeostasis. Jopling et al. reported for the first time that the 

inhibition of miR-122 dramatically decreased HCV RNA replication (51) (Fig. 10B). They 

identified the miR-122 binding site in the end of the 5’untranslated region (UTR) of HCV RNA. In 

addition, lack of enhancement of HCV replication by the expression of a mutant miR-122 

incapable of binding to the 5’UTR was canceled by the introduction of a complementary mutation 

in the 5’UTR, suggesting that direct interaction of miR-122 to the 5’UTR is crucial for an 

enhancement of HCV replication. In subsequent reports, they identified the second adjacent 

miR-122 binding site in the 5’UTR (52). 

 Although precise mechanisms of the miR-122 mediated enhancement of HCV replication have 

not fully elucidated yet, Henke et al. demonstrated that miR-122 might contribute to HCV liver 

tropism at the level of translation (53). Wilson et al. showed that knockdown of Ago2 in cells HCV 

RNA automonously replicating (HCV replicon) and in cells infected with HCV attenuates HCV 

replication, in addition, knockdown of Ago2 reduced translation of the polymerase defective HCV 

RNA (54). Shimakami et al. showed that miR-122 stabilizes viral RNA and reduces its decay in 
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concert with Ago2 and that miR-122-dependent stabilization of HCV RNA was not observed in 

Ago2 knockout murine embryonic fibroblasts (55). These results suggest that Ago2 is required for 

an efficient enhancement of both translation and replication of HCV. Furthermore, exogenous 

expression of miR-122 in non-hepatic cell lines (56) enhanced the efficiency of HCV replication, 

suggesting that miR-122 plays an important role in an efficient replication of HCV in the liver (Fig. 

10C). 

Membrane structure for HCV replication 

The viruses of Flaviviridae family including HCV utilize ER membrane to form replication 

machinery (57). Observation of electron microscope showed that HCV infection induced 

accumulation of folded membrane structures called membranous web (58, 59) (Fig. 11A). This 

structure contained viral proteins and viral genomes. A membrane structure was observed as a 

double membrane vesicle (DMV) by HCV infection and HCV RNA replication was occurred in 

DMV to prevent viral RNA replication from host antiviral responses (59) (Fig. 11B). Host lipids are 

well known to be essential components in the viral life cycle, including the assembly, budding, and 

replication of various viruses (60, 61, 62, 63). In the case of HCV, several types of lipids are 

required for the HCV life cycle. Saturated and monounsaturated fatty acids, but not polyunsaturated 

fatty acids, enhance HCV RNA replication (64), suggesting that lipid biogenesis is involved in 

HCV replication. HCV particles bind to lipoprotein receptors for entry (65, 66). It was shown that 

HCV uses assembly and secretion pathway of very low density lipoprotein (VLDL) for maturation 

and secretion of viral particles (67, 68). Cholesterol and sphingolipids are required for maturation 
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and infectivity of HCV, since depletion of cholesterol or down-regulation of sphingemyelin reduces 

infectivity (69). Accumulation of lipid components in the liver leads to liver steatosis, and is 

associated with progression to liver fibrosis and HCC as described above.

 Screening of a genome-wide siRNA library revealed that phosphatidylinositol 4-kinase III alpha 

(PI4KA) and COPI vesicle coat complex as a human gene associated with HCV replication (70, 71, 

72, 73, 74, 75). Phosphatidylinositol 4-phosphate, which is associated with OSBP and CERT (76, 

77) as described below, is increased by HCV infection (70, 78, 79, 80). PI4KA is co-localized with 

NS5A and double stranded RNA in the replication plate form composed of detergent-resistant lipid 

components, known as a membranous web, and is critical for HCV replication at posttranslational 

stages in the membranous web (81) (Fig. 11C).  

 Vesicle-associated membrane protein-associated proteins (VAPs) were originally identified as 

proteins that bind to vesicle-associated membrane protein (VAMP) in the nematode Aplysia and 

were designated as VAMP-associated protein 33 kDa (later renamed VAP-A) (82). Furthermore, 

one homologue and its splicing variant were reported as VAP-B and VAP-C, respectively (83). 

GST pull-down and immunoprecipitation analyses revealed that NS5A and NS5B interact with 

human VAP-A/B and that the N-terminal MSP domain and the coiled-coil domain of VAP-A/B are 

responsible for the binding to NS5B and NS5A, respectively (84, 85). In addition, systematic 

RNAi screening revealed that 62 target host genes are involved in HCV RNA or proteins including 

VAP-A/B (86). These findings suggest that VAP-A and -B positively regulate HCV replication by 

binding to NS5A/B (Fig. 12). 
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 The peptide bond cis/trans isomerase converts between cis and trans peptide bonds leading to 

correct folding of the protein substrate. Peptidyl prolyl cis/trans isomerase (PPIase) includes the 

families of cyclophilin (87), FK506-binding proteins (FKBP) (88, 89) and parvulins (90), and the 

secondary amide peptide bond cis/trans isomerase (91). Cyclophilin and FKBP are categorized as 

immunophilins, which are targeted by the immunosuppressants cyclosporin and FK506, 

respectively (92). Some cyclophilins and FKBP8 were shown to interact with NS5B and/or NS5A 

and to regulate HCV replication (93, 94, 95, 96, 97), suggesting that immunophilins could lead to 

promising therapies for chronic hepatitis C.  

Interferon therapy and IL28B 

IFN is a major agent for HCV therapy. However, 50% of patients infected with genotype 1b with 

high viral load are resistant to pegylated-IFN/RBV treatment. In 2009, SNPs in IL28B gene were 

identified as critical SNPs for determination of the efficacy for pegylated-IFN/RBV treatment (98, 

99, 100, 101). TT of rs8099917 SNP in IL28B genome was called as a major allele and TG/GG 

were called minor allele (Fig. 13). Patients possessing major allele were sensitive to 

pegylated-IFN/RBV treatment. 
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Introduction 

Ubiquitylation is a post-translational modification to regulate protein function in eukaryotes. 

Ubiquitin (Ub) is covalently attached to substrate proteins by using E1, E2 and E3 enzymes (102, 

103). Firstly, E1 enzyme activates Ub in ATP-dependent manner and transfers to E2 

Ub-conjugating enzyme. E3 Ub-ligases recognizes its substrate protein and E2, and activated Ub is 

transferred to substrate protein. So far, 2 E1 enzymes, 10 E2 enzymes, and hundreds of E3 

enzymes were identified. On the other hands, de-ubiquitinases (DUBs) catalyze the opposite 

reaction to ubiquitylation, which release ubiquitin from the substrates (104). In humans, nearly 100 

DUBs are reported and are classified into cysteine proteases and metalloproteases. The cysteine 

proteases comprise ubiquitin-specific proteases (USPs), ubiquitin C-terminal hydrolases (UCHs), 

Machado-Josephin domain proteases (MJDs) and ovarian tumour proteases (OTU). The 

metalloprotease group contains only the Jab1/Mov34/Mpr1 Pad1 N-terminal+ (MPN+) (JAMM) 

domain proteases. (105). DUBs regulate multi-cellular functions and participate in many diseases 

including cancer and immune disorders (106, 107). In addition, USP11 inhibits replication of 

influenza A virus through de-ubiquitination of NP protein (108). However, it remains unclear which 

DUBs control HCV life cycle.  

 In this study, I assessed the involvement of DUBs in the HCV propagation. The shRNA based 

screening revealed that USP15 is an essential host factor in HCV replication. USP15 gene 

knockout Huh7 cell lines exhibited reduction of lipid droplets formation and this suppression was 
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cancelled by the overexpression of USP15. Members of the PAT family of proteins, originally 

named for Perilipin, Adipose differentiation-related protein (ADRP) and Tail Interacting Protein 47, 

play conserved structural and functional roles on lipid droplets. Among the PAT family proteins, 

ADRP was ubiquitinated and specifically de-ubiquitinated by USP15, suggesting that USP15 

participates in the HCV propagation through the lipid storage in the liver.  
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Materials and Methods 

Plasmids.  

cDNAs of USP15 and USP20 were obtained from Dr. Wade Harper (Addgene, Plasmid #23217). 

USP15/USP20 DNA were amplified by Gflex DNA polymerase (Takara) and cloned into lentiviral 

transfer vector, FUGW obtained from Dr. David Baltimore (Addgene, Plasmid #14883) together 

with internal ribosomal entry site (IRES) sequence and puromycin N-acetyl-transferase genes and 

designated as FUIPW. The sequence was also inserted into pEFFLAGPGKpuro by In-Fusion 

cloning kit (Takara). The cDNAs of Perilipin, ADRP and TIP47 were obtained by PCR by using 

cDNA derived from Huh7 cells and cloned into pEFOSFPGKpuro. HA-ubiquitin expressing 

vector was obtained from Dr. Ikuo Shoji (109). The retroviral vectors expressing DUBs shRNA 

were obtained from (Takara). USP15 DNA was amplified by Gflex DNA polymerase (Takara) and 

cloned into pFastBac HTb (Lifetechnologies). The pCMV-VSV-G and pCMV-dR8.2 dvpr were 

obtained from Dr. Robert Weinberg (Addgene #8454 and #8455, respectively). For CRISPR/Cas9 

mediated gene targeting, pX330 and pCAGEGxxFP were obtained from Dr. Feng Zhang 

(Addgene, Plasmid #42230) and Dr. Masahito Ikawa (Addgene, Plasmid #50716), respectively. To 

target human USP15, the following oligonucleotides, 

5’-CACCGCGACTATCGACTAGGTACC-3’ and 

5’-AAACCGCTCCGGAAAGGGGACACC-3’, were annealed and cloned into pX330 and 

designed as pX330hsUSP15. To target mouse USP15, the following oligonucleotides, 
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5’-CACCGGTGTCCCCTTTCCGGAGCG-3’ and 

5’-AAACCGCTCCGGAAAGGGGACACC-3’, were annealed and cloned into pX330 and 

designed as pX330mmUSP15.  To target human USP20, the following oligonucleotides, 5’ 

-CACCGGCCAGGATGGGGGACTCCA-3’ and 

5’-AAACTGGAGTCCCCCATCCTGGCC-3’, were annealed and cloned into pX330 and 

designed as pX330hsUSP20. Genomic DNA derived from Huh7 cells or mouse embryonic 

fibroblasts (MEFs) were extracted by DirectPCR Lysis Reagents (Viagen Biotech Inc). The 

genomic DNA of human USP15, mouse USP15 or human USP20 targeting by sgRNA was 

amplified by PCR, and cloned into pCAG EGxxFP and designed as pCAG EGxxFP hsUSP15, 

pCAG EGxxFP mmUSP15 and pCAG EGxxFP hsUSP20, respectively. Plasmids 

pHH21-JFH1-E2p7NS2mt encoding a cDNA of a full-length RNA of JFH1 strain (110). 

pSGR-JFH1, which encodes a SGR of the JFH1 strain, was provided by Dr. Takaji Wakita. The 

plasmids used in this study were confirmed by sequencing with an ABI Prism 3130 genetic 

analyzer (Applied Biosystems). 

Cell lines.  

HEK293T, immortalized human embryonal kidney cell line, Plat-E, packaging cell lines for 

generating retrovirus, Huh7 and Huh7.5.1, human hepatocellular carcinoma cell lines, were 

cultured in Dulbecco’s Modified Eagles medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS), 100 U/ml penicillin and 100 µg/ml streptomycin.

Antibodies and reagents.  
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Antibodies to the following proteins were purchased from indicated manufactures: anti-USP15 

mouse monoclonal antibody (Abcam, ab56900), anti-ubiquitin mouse monoclonal antibody (Cell 

signaling, clone P4D1), anti-HCV NS5A mouse monoclonal antibody (Austral Biologicals, 

HCM-131-5), anti-β-actin mouse monoclonal antibody (Sigma, A2228), anti-HA rat monoclonal 

antibody (Roche, clone 3F10) and horseradish peroxidase (HRP) conjugated anti-FLAG mouse 

monoclonal antibody (Sigma, clone M2). Agarose conjugated Tandem Ubiquitin Binding Entity 

(TUBE) and PR-619, a non-selective, reversible inhibitor of DUBs and ubiquitin-like isopeptidases, 

were purchased from LifeSensors. Polyethylenimine (PEI, Linear, MW 25,000) was obtained from 

Polysciences inc. For lipid droplets imaging, HCS LipidTOXTM Red neutral lipid stain was 

obtained Lifetechnologies.

Generation of retro- and lenti-viruses and establishment of stable cell lines.  

Retroviruses expressing shRNAs against human DUBs were generated in Plat-E cells. Briefly, 

2x106 Plat-E cells were seeded on 10 cm dish and incubated at 37°C for 1 day. Five µg of retroviral 

transfer vector and 1µg of pCMVVSVG were mixed with 500 µl of Opti-MEM (Lifetechnologies) 

and 40 µl of PEI (1mg/ml) and incubated for 15 min. DNA complex was inoculated into seeded 

Plat-E cells and culture medium was changed at 4 h post-transfection. The culture supernatants 

collected at 3 days post-transfection were passed through 0.45 µm filter. In the case of lentivirus, 

2x106 HEK293T cells were seeded on 10 cm dish and incubated at 37°C for 1 day. Lentiviral 

transfer vector (FUIPW, 1.5 µg), 2.5 µg of pCMV-dR8.2 dvpr and 1µg of pCMV-VSV-G were 

mixed with 500 µl of Opti-MEM and 40µl of PEI and incubated for 15 min. DNA complex was 
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inoculated into HEK293T cells and culture medium was changed 4 h post-transfection. The culture 

supernatants 3 days post-transfection were passed through 0.45 µm filter. For infection of 

retrovirus/lentivirus into Huh7.5.1 or Huh7 cells, 2x105 cells (2 ml) were seeded on 6 well plates 

and incubated for 1 day. The virus containing culture supernatants (2 m) and 8 µl of polybrane 

(Sigma, 4mg/ml) were inoculated into cells and centrifuged at 2500 rpm for 45 min at 32°C. Cells 

were selected by puromycin at 2 days post-infection to select stable cell lines.

Preparation of HCV.  

HCV derived from the genotype 2a JFH-1 strain mutated in E2, p7 and NS2 as shown (110) was 

prepared by serial passages in Huh7.5.1 cells. Briefly, 1.5x106 of Huh7.5.1 cells were seeded on 10 

cm dish and incubated for 1 day. The culture supernatant containing HCV was inoculated at moi of 

1.0 and culture medium was changed to fresh medium at 2 h post-infection. Culture supernatants 

were collected at 4 days post-infection and infectious titers were determined.

RNAi screening.  

Huh7.5.1 cells expressing DUB shRNA were seeded on 24 well plates at 3x104 cells/well and 

incubated for 1 day. Cells were infected with HCV at moi of 0.5 and RNAs were extracted at 2 

days post-infection by adding Isogen II (Nippon Gene, 500 µl) following manufacture’s protocol. 

Intracellular HCV RNA was calculated by quantitative RT-PCR.

Quantitative RT-PCR (qPCR).  

qPCR for HCV RNA was performed by TaqMan RNA-to-CtTM 1-Step Kit and ViiA7TM real time 

PCR system (Lifetechnologies). The following primers were used, HCV: 5’- 
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GAGTGTCGTGCAGCCTCCA-3’ and 5’-CACTCGCAAGCACCCTATCA-3’, GAPDH: 

5’-TGTAGTTGAGGTCAATGAAGGG-3’ and 5’- ACATCGCTCAGACACCATG-3’. The 

following probes were used, HCV: 

5’-6-FAM/CTGCGGAAC/ZEN/CGGTGAGTACAC/-3’IABkFQ, GAPDH: 5’-6-FAM/AAG 

GTC GGA /ZEN/GTC AAC GGATTT GGT C/-3’IABkFQ. HCV RNA was determined by 

ddCt method by using GAPDH as internal control. The expression of miR-122 was determined by 

using miR-122-specific RT and PCR primers provided in the TaqMan microRNA assay 

(Lifetechnologies). U6 small nuclear RNA was used as an internal control. 

TGF-β targeting genes were quantified by Sybr Green qPCR. RNA was extracted by Isogen II and 

synthesized cDNA by using a High-Capacity RNA-to-cDNA kit (Lifetechnologies). qPCR was 

performed by SYBR Select Master Mix following manufacture’s protocol. The following primers 

were used, mouse PAI: 5’- GCCAACAAGAGCCAATCACA-3’ and 5’- 

AGGCAAGCAAGGGCTGAAG-3’, mouse CTGF: 5’- AACTGTGTACGGAGCGTGAC-3’ 

and 5’- GCTGCTTTGGAAGGACTCAC-3’, mouse SMAD: 5’- 

TGGATGGCGTGTGGGTTTA-3’ and 5’- TGGCGGACTTGATGAAGATG-3’, human 

SMAD: 5’- GGCCGGATCTCAGGCATTC-3’ and 5’- GAGTCGGCTAAGGTGATGGG-3’, 

HCV titration.  

Huh7.5.1 were seeded on 24 well plates (3x104 cells/well) and incubated for 1 day. The culture 

supernatants serially diluted by medium were inoculated and incubated for 2 h. The culture 

supernatants were removed and 1% methylcellulose containing DMEM supplemented with 10% 
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FBS, 100 U/ml penicillin and 100 µg/ml streptomycin was added and incubated for 2 days. The 

supernatants were removed, washed once with phosphate buffer saline (PBS) and then incubated 

with 4% paraformaldehyde (PFA) in PBS for 2 h. Cells were washed by PBS three times, and 

permeabilized by incubating with 0.2% TritonX-100 containing PBS for 15 min. After washed 

with PBS three times, cells were incubated with anti-NS5A antibody (1/2000) diluted by 2% 

FBS/PBS at room temperature for 1 h. After washed with PBS three times, cells were incubated 

with Alexa Flour (AF) 488 conjugated anti-rabbit antibody (1/2000) diluted by 2% FBS/PBS at 

room temperature for 1 h. After washed by PBS three times, viral proteins expressing focci were 

counted under immunofluorescent microscopy (Olympus).  

In vitro transcription, RNA transfection, and colony formation.  

The plasmid pSGR-JFH1 was linearized with XbaI and transcribed in vitro by using a 

MEGAscript T7 kit (Life Technologies) according to the manufacturer’s protocol. The in vitro

transcribed RNA (10 μg) was electroporated into Huh7 cells or its relative cells at 107 cells/0.4ml 

under conditions of 210 V and 960 μF using a Gene Pulser apparatus (Bio-Rad) and plated on 

DMEM containing 10 % FCS. The medium was replaced with fresh DMEM containing 10 % 

FCS and 1 mg/ml G418 at 24 h post-electroporation. Colonies were visualized by staining with 

Giemsa (Merck). at 3 weeks post-electroporation.

Subcellular localization of USP15.  

Huh7.5.1 cells cultured on glass slides for 1 day were fixed with 4% PFA in PBS for 2 h. Cells 

were washed by PBS three times and permeabilized by incubating with 0.2% TritonX-100 in PBS 
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for 15 min. After washing with PBS three times, cells were incubated with anti-USP15 antibody 

(1/1000) diluted by 2% FBS in PBS at room temperature for 1 h. After washing with PBS three 

times, cells were incubated with Alexa Flour (AF) 488 conjugated anti-mouse antibody (1/2000) 

and HCS LipidTOXTM Red neutral lipid stain diluted by 2% FBS in PBS at room temperature for 1 

h. The stained cells were covered with Prolong Gold AntiFade Reagent with DAPI 

(Lifetechnologies) and observed with FluoView FV1000 confocal microscopy (Olympus). 

Immunoblotting.  

Cell lysates were prepared by adding lysis buffer consisted of 20 mM Tris-HCl (pH 7.4), 135 mM 

NaCl, 1% Triton X-100, 1% glycerol and protease inhibitor cocktail tablets (Roche Molecular 

Biochemicals), incubation for 30 min at 4˚C, and centrifugation at 14,000 x g for 15 min at 4˚C. 

The supernatants were incubated at 95°C for 5 min. Proteins were resolved by SDS-PAGE (Novex 

gels, Invitrogen), transferred onto nitrocellulose membranes. These membranes were blocked with 

Tris-buffered saline containing 20 mM Tris-HCl (pH 7.4), 135 mM NaCl, 0.05% Tween 20 and 

5% skim milk, incubated with primary antibody at room temperature for 1 h, and then with 

HRP-conjugated secondary antibody at room temperature for 1 h. The immune complexes were 

visualized with Super Signal West Femto substrate (Pierce) and detected by an LAS-3000 image 

analyzer system (Fujifilm).

Generation of USP15 knockout Huh7 cells.  

Huh7 cells were transfected with pX330 hsUSP15 and pCAG EGxxFP hsUSP15 by PEI. 

GFP-positive cells were sorted by FACSAriaTM at 7 days post-transfection and incubated to form 
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single colonies. Genomic DNA extracted from each grown cell clones and their mutations were 

confirmed by sequencing. The lack of protein expression was confirmed by immunoblotting.  

In vitro ubiquitinating assay.  

HEK293T cells transfected with expression plasmids encoding FLAG-taggedUSP15, HA-tagged 

ubiquitin and OSF-tagged Perilipin, ADRP or TIP-47 were lysed at 2 days post-transfection, and 

the lysates were incubated with Strept-Tactin beads (IBA) for 1 h. After washing with lysis buffer 5 

times, beads were incubated with 1x sample buffer at 95˚C for 5 min. The protein samples were 

subjected to immunoblotting. 

HCV pseudovirues. 

HCV pseudovirus was generated as described elsewhere (111). Briefly, 1x106 cells of 293T cells 

were seeded on 10cm dish and incubated for overnight. 2 μg of pCAG C60E1/E2 (genotype 1b, 

strain con1), which expressed HCV E1 and E2 proteins or pCAG VSVG was transfected by PEI. 

After 6 hours, culture medium was changed, and incubated further for 24 hours. 

VSVΔG/Luciferase *G was infected in transfected 293T cells at moi=1 and adsorbed by incubated 

for 1 hour at 37°C. After washing 293T cells three times by warmed PBS(-), 5 mL of fresh culture 

media was added on infected cells and incubated for 24 hours. Culture supernatants were collected 

and filtered by 0.45 µm filter. 3x104 cells of Huh7 or its relatives were seeded on 24 well plates and 

incubated overnight. 50 µL of viral containing culture media was added on seeded cells and 

incubated for 1 hour. Cells were washed by warmed PBS and incubated for 24 hours. Luciferase 

activity was determined by Steady-Glo luciferase assay system (Promega). 

Generation of USP15 knockout mice. 

USP15 knockout mice were generated by collaboration with NPO for Biotechnology Research 
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Development in Research Institute for Microbial Diseases. Briefly, B6D2F1 female mice were 

superovulated and mated with B6D2F1 males, and fertilized eggs were collected from the oviduct. 

The pronuclear stage eggs were injected with pX330mmUSP15. The eggs were cultivated in 

kSOM overnight then transferred into the oviducts of pseudopregnant ICR females (112). The tails 

of F0 mice were used USP15 genotyping by using primer sets of 

5’-ATTTGGTACAGACCTGCCGG-3’ and 5’-TCGGAATAATGGGGAACTTGGG-3’. Mice 

mutated in USP15 genome were crossed with wild type mice and mice possessing 223 bp deletion 

in USP15 sgRNA targeting genome were further crossed with wild type 5 times.  

Preparation USP15-/- MEFs.

USP15+/- female and male mice were crossed and pregnant female mice were killed in E13.5 and 

obtained embryos. The embryos were extracted liver and brain and then filtered 100 µm cell 

strainers. Filtered cells were seeded on a collagen coated T25 flask per each embryo. After a few 

days, confluent MEFs were passaged all cells into T75 flask. Then they passed into 3 bottles of T75 

flask. Finally, all MEFs (Passage 3) were kept in -80˚C until use for experiments. In some cases, 

MEFs were immortalized by a lentivirus carrying the simian virus 40 (SV40) large T antigen. 

VSV infection and ELISA. 

3x104 cells of MEFs were seeded on 24 well plates. After 24 hours, moi=5 of VSV was infected for 

1 hours. Infected cells were washed by warmed PBS and incubated further. Culture supernatants 

were collected in each 4 hours and kept in -80˚C. The concentration of IFN-β was determined by 

ELISA (R&D system). 

TGF-β stimulation.  

3x104 cells of MEFs or Huh7 cells were seeded on 24 well plates. After 24 hours, 1ng/mL of 
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TGF-β was added and cells were collected in indicated time points.  

Production of recombinant USP15 by baculovirus expression system. 

DH10Bac E-coli competent cells were transformed by pFastBac HTb hsUSP15. LacZ negative 

colony were cultured and extracted Bacmid DNA. Sf-9 cells were maintained in SF900II 

supplemented with 100 U/ml penicillin and 100 µg/ml streptomycin. 5x105 cells of Sf-9 cells were 

seeded on 6 well plates and Bacmid DNA (5 µL of miniprep products) were transfected into Sf9 

cells by mixing with 5 µL of X-tremeGENE HP DNA transfection reagent (Roche) and 500 µL of 

antibiotics-free SF900II. After 4 days, culture supernatants were collected as P1 virus. Transfected 

cells were lysed and confirmed USP15 expression by western blotting. 500 µL of P1 virus was 

used to expand virus for a stock virus. 1x106 cells in 10 cm dish were infected with recombinant 

baculovirus expressing 6xHis-USP15 at moi=1. Infected cells were collected after 3 days infection. 

Cells were lysed by lysis buffer consisted of 20 mM Tris-HCl (pH 7.4), 135 mM NaCl, 1% Triton 

X-100, 1% glycerol, 10mM Imidazole and protease inhibitor cocktail tablets (Roche Molecular 

Biochemicals), incubation for 30 min at 4˚C, and centrifugation at 14,000 x g for 15 min at 4˚C. 

Supernatants were added by Ni beads and incubated at 4℃ for 1 hour. Beads were washed by lysis 

buffer three times and then eluted by lysis buffer containing 0.25M Imidazole. Eluted proteins were 

exchanged buffer to PBS by Slide-A-Lyzer Dialysis Cassettes (Pierce).  

In vitro DUBs enzymatic activity assay. 

Recombinant USP15 (rUSP15) was diluted to 400nM by using assay buffer (50mM Tris-HCl (pH 

8.0), 0.05% CHAPS, 10mM DTT). A DUB substrate, DiUb48-5 (Lifesensors) is a diubiquitin, 

which is K48-linked ubiquitin molecule. DiUb48-5 was also diluted to 400nM by using assay 

buffer. In 96-well black assay plates, rUSP15 and DiUb48 were mixed and performed a kinetic 

read to measure fluorescent of TAMRA for 1 hour.  

Statistical analysis.
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The data for statistical analyses are average of three independent experiments. Results were 

expressed as means ± standard deviation. The significance of differences in the means was 

determined by Student’s t test. 
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Results 

HCV infection suppresses ubiquitination of cellular proteins.  

Ubiquitylation is a post-translational system to control numerous cellular processes including 

protein degradation, signal transduction, endocytosis and gene expression. To examine the effect of 

HCV infection on the ubiquitination of cellular proteins, total ubiquitinated proteins in HCV 

infected Huh7.5.1 cells were purified by agarose-conjugated tandem ubiquitin binding entity 

(TUBE) (Fig. 14A). Ubiquitinated proteins in cells infected with HCV were decreased in accord 

with the increase of NS5 expression, suggesting that ubiquitinated proteins in cells infected with 

HCV were degraded by proteasome or ubiquitin was removed by DUBs. To examine the 

involvement of DUBs on the HCV replication, Huh7.5.1 cells infected with HCV were treated 

with a cell-permeable and broad-spectrum DUB inhibitor, PR-619 (113), at 24 h post-infection. 

Intracellular HCV RNA was significantly reduced by the treatment with PR-619 at a concentration 

exhibiting no cell toxicity (Fig. 14B). These data suggest that DUB activity is required for HCV 

replication.

RNAi screening to identify DUBs participate in HCV replication.  

The human genome encodes approximately 100 DUBs. DNA microarray data suggested that 

majority of DUBs is expressed in Huh7.5.1 cells (Fig. 15A). Next, I set up a screening system to 

identify DUBs involved in the regulation of HCV replication. Stable knockdown Huh7.5.1 cell 

lines established by infection with retroviruses expressing shRNA against 65 different DUBs were 
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infected with HCV and intracellular HCV RNA were determined by qPCR at 2 days post-infection. 

Screening data suggested that expression of shRNA against USP15 inhibited HCV replication in 

the same level with that against PI4KA reported to be involved in HCV replication (Fig. 15B). 

Interestingly, amounts of mRNA of USP15 were increased in HCV infected cells (Fig. 15C). 

Therefore, I focused on USP15 on the replication of HCV in this study.

USP15 specifically participates in the propagation of HCV.  

To clarify the roles of USP15 in the replication of HCV in more detail, I established 2 independent 

USP15 deficient Huh7 cell clones (#8 and #22) by using CRISPR/Cas9 system (114, 115) (Fig. 16). 

Lack of USP15 expression was confirmed by immunoblot analyses (Fig. 17A). These USP15 

knockout Huh7 cell lines exhibit similar growth curve and expression of miR-122, a critical 

microRNA for HCV replication, with parental Huh7 cells (Figs. 17B and 17C). Next, to determine 

the effect of knockout of USP15 on the HCV replication, subgenomic HCV RNA replicon of JFH1 

strain was electroporated into parent and USP15 knockout Huh7 cells and cultivated for 2 weeks in 

the presence of G418 to form drug-resistant colonies. Numbers of colony in USP15 knockout cells 

were significantly reduced than those in parental Huh7 cells (Fig. 18A), suggesting that USP15 

plays crucial roles in HCV replication. To further examine the roles of USP15 on HCV propagation, 

intracellular RNA and infectious titers in parental and USP15 knockout Huh7 cells at 4 days 

post-infection were determined by qPCR and plaque assay, respectively. Both intracellular viral 

RNA and infectious titers in the culture supernatants were drastically reduced in USP15 knockout 

cells in compared with parent Huh7 cells (Figs. 18B and 18C). To examine the specificity of the 
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participation of USP15 in the viral replication, parental and USP15 knockout Huh7 cells were 

infected with Japanese encephalitis virus (JEV). Intracellular JEV RNA and infectious titers in the 

culture supernatants were comparable between parental and USP15 knockout Huh7 cells (Figs. 

18D and 18E). I further examined the effect of USP15 knockout on the replication of hepatitis B 

virus (HBV). A plasmid encoding genotype C of HBV was transfected into parental and USP15 

knockout Huh7 cells and intracellular HBV DNA was quantified by qPCR at 3 days 

post-transfection. No significant difference between parental and USP15 knockout Huh7 cells was 

observed (Fig. 18F). Collectively, these data suggest that USP15 specifically participates in the 

propagation of HCV. 

USP15 participates in the lipid droplet formation.  

To examine the subcellular localization of USP15, Huh7 cells were examined by 

immunofluorescence observation by using anti-USP15 antibody. USP15 was detected as dot-like 

structure and co-localized with lipid droplets in parental Huh7 cells (Fig. 19A upper). Upon 

infection with HCV, co-localization of USP15 with large sizes of lipid droplets in compared with 

mock-infected cells were detected (Fig. 19A lower). Because lipid droplets were suggested to be 

important for HCV assembly (116), I hypothesized that USP15 participates in the regulation of 

biogenesis or function of lipid droplets. FACS analyses revealed that USP15 knockout Huh7 cell 

lines contain smaller amounts of lipid droplets than parental cells (Fig. 19B). In USP15 knockout 

Huh7 cells, amounts of lipid droplets were severely reduced and overexpression of USP15 in the 

USP15 knockout cells induced formation of larger size and number of lipid droplets (Fig. 19C). 
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These results suggest that USP15 participates in formation of lipid droplets. 

ADRP is a specific target for USP15.  

The PAT family proteins interact with intracellular lipid droplets and regulate biogenesis of lipid 

droplets (117). The PAT family consists of 5 proteins in human, Perilipin, ADRP, TIP47, S3-12 and 

OXPAD. OSF-tagged Perilipin, ADRP and TIP47 were co-expressed with HA-tagged ubiquitin in 

the presence or absence of FLAG-tagged USP15 in 293T cells and cell lysates were incubated with 

Strept-Tactin beads to purify OSF-tagged proteins. Purified proteins were subjected to immunoblot 

analysis by using anti-HA antibody to assess ubiquitination of the OSF-tagged proteins. ADRP but 

not Perilipin and TIP47 was clearly ubiquitinated in 293T cells and its ubiquitination were reduced 

by the expression of USP15 (Fig. 20A). To further examine the specific cleavage of ubiquitin from 

ADRP by USP15, OSF-tagged ADRP, HA-tagged ubiquitin and wild type or catalytically 

inactivated mutant of FLAG-tagged USP15 were expressed in 293T cells and ubiquitination status 

of ADRP was determined by immunoblotting. Overexpression of wild type but not of mutant of 

USP15 suppressed ubiquitination of ADRP in does dependent manner (Fig. 20B). Finally, I 

examined the interaction of ADRP with USP15 by immunoprecipitation analysis. OSF-tagged 

ADRP interacted with both wild type and mutant FLAG-tagged USP15, suggesting that ADRP is a 

specific substrate for USP15 (Fig. 20C).

HCV infection efficiency is equivalent in Huh7 and USP15 knockout cells. 

There is still possibility that HCV replication was inhibited in USP15 deficient Huh7 cells due to 

impairment of entry in USP15 deficient cells. To examine this possibility, Pseudotype v (Vesicular 
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stomatitis virus bearing HCV envelope proteins in place of VSV G protein (VSVΔG HCV) was 

infected to Huh7 cells and USP15 deficient Huh7 cells. Efficiency of infection was determined by 

measurement of luciferase activity. Expression of luciferase in cells infected with VSVΔG HCV 

was comparable to those infected with a control virus bearing VSV G protein (VSVΔG G) (Fig. 

21), suggesting that the reason of inhibited HCV replication in USP15 deficient Huh7 cells was not 

due to impairment of infection steps.  

Physiological significance of USP15 in vivo. 

To examine the physiological importance of USP15, I collaborated with NPO for Biotechnology 

Research Development in Research Institute for Microbial Diseases and generated USP15 

deficient mice by using CRISPR/Cas9 (Fig. 22A). One of offspring mice, which had 223 bp 

deletion of USP15 genome (Fig. 22B), was obtained. To avoid the risk of off-target mutation in 

CRISPR/Cas9 system, mutated mice were crossed with wild type mice 5 times (Fig. 22A). Primary 

mouse embryonic fibroblasts (MEFs) were prepared and confirmed the loss of USP15 protein by 

western blot (Fig. 22C). USP15-/- mice were viable and followed in Mendelian rules (Fig. 22D). 

However, the body weight of USP15-/- mice was smaller than that of USP15+/+ and USP15-/- mice 

until 2 month olds (Fig. 23). These data suggested that loss of USP15 affects on mice growth in 

unknown mechanisms.  

Effects of USP15 on innate immune responses. 

Pauli et al. reported that USP15 had a critical regulator of the TRIM25- and RIG-I-mediated innate 

immune response (118). They showed siRNA-mediated knockdown of USP15 suppressed IFN-β 
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production in HEK 293T cells and VSV infection was enhanced in USP15 knockdown HEK293T 

cells. They used siRNA-mediated gene knockdown strategy, therefore, I examined the effect of 

USP15 on innate immune response by using USP15-/- MEFs. VSV was infected to USP15+/+, 

USP15-/-, TBK1+/+ and TBK1-/- MEFs at moi of 5 and culture supernatants were collected in 

indicated time points. USP15-/- MEFs secreted IFN-β same levels of USP15+/+ MEFs. On the other 

hands, TBK1-/- MEFs did not secreted IFN-β, suggesting that USP15 did not affect on IFN-β 

production by VSV infection (Fig. 24A). Furthermore, VSV titers in USP15+/+, USP15-/- MEFs did 

not changed (Fig. 24B). These data suggested that USP15 did not play a role in RIG-I mediated 

innate immune response. 

Effects of USP15 on TGF-β signaling. 

Recently, USP15 had been reported to be critical for regulation of target promoters by SMAD, 

which is a transcriptional factor regulated by TGF-β signaling pathway (119, 120). Therefore, I next 

investigated the effect of USP15 on TGF-β signaling by using USP15-/- cells. In MEFs, TGF-β 

targeting transcriptional factors such as PAI (Fig. 25A), CTGF (Fig. 25B) and SMAD (Fig. 25C) 

were no significant difference between in USP15+/+ or in USP15-/- MEFs. However, SMAD 

activation through TGF-β stimulation was seen in Huh7 cells but not in USP15 deficient Huh7 

cells (Fig. 25D). These data suggested that the roles of USP15 in TGF-β stimulation were cell-type 

specific manner.  

Establishment of high-throughput screening (HTS) system for development of USP15 

inhibitors. 
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My data suggest that USP15 plays a role for HCV replication and lipid droplets formation. 

Therefore, USP15 inhibitors may be useful to control viral loads in HCV patients and metabolic 

diseases. So, I produced recombinant USP15 (rUSP15) in insect cells by using baculovirus 

expression system. Large amounts of rUSP15 were obtained by baculovirus system (Fig. 26A). 

DiUb48, the C-terminus of wild type ubiquitin is conjugated via an isopeptide bond to lysine 48 (K48) of a 

second ubiquitin molecule with the resultant diubiquitin forming an internally quenched fluorescent FRET pair 

(IQF). Each ubiquitin is labeled with a single molecule of either a fluorescent reporter (TAMRA). 

Once DiUb48 is cleaved by rUSP15, the intensity of TAMRA is increased following incubation 

(Fig. 26B). Adding rUSP15 enhanced the intensity of TAMRA fluorescent in time-dependent 

manner (Fig. 26C). On the other hand, DiUb48 alone did not enhance intensity (data not shown). 

These data suggested that DiUb48 was specifically cleaved by rUSP15 in vitro. This system may 

be useful system to develop USP15-specific inhibitors by HTS system.  

USP20 regulates not only HCV replication but also JEV replication. 

My shRNA screening data showed USP20 was also affected on HCV replication (Fig. 15B). So, I 

also investigated the role of USP20 by establishment of USP20 deficient Huh7 cells (Fig. 27A). To 

examine the roles of USP20 on HCV propagation, intracellular RNA and infectious titers in 

parental, USP20 knockout Huh7 cells and USP20 knockout Huh7 cells expressing exogenously 

Flag-USP20 were determined at 4 days post-infection. Both intracellular viral RNA and infectious 

titers in the culture supernatants were drastically reduced in USP20 knockout cells in compared 

with parent Huh7 cells (Figs. 27B and 27C). Interestingly, exogenously overexpression of USP20 
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in USP20 knockout Huh7 cells rescued HCV RNA and infectious titer (Figs. 27B and 27C). To 

examine the effect of the participation of USP20 in JEV infection, parental and USP20 knockout 

Huh7 cells were infected with JEV. Intracellular JEV RNA and infectious titers in the culture 

supernatants in USP20 knockout Huh7 cells were reduced compared to parental Huh7 cells (Figs. 

27D and 27E). These data suggested that USP20 played roles not only in HCV infection but also 

JEV infection.  
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Discussion 

HCV utilizes several cellular machineries to achieve an efficient propagation. For example, 

Hsp90-mediated protein folding system is required for an efficient HCV replication. NS5A 

interacts with FKBP8 and human butyrate-induced transcript 1 (hB-ind1) to recruit Hsp90 to viral 

replication complex (97, 121). To form viral replication complexes in the ER membrane, HCV 

recruits phosphatidylinositol 4 phosphates (PI4P) to ER from Golgi (70, 78, 79, 80). HCV NS5A 

and NS5B interact with vesicle-associated membrane protein (VAMP)-associated protein (VAP) 

subtype A (VAP-A) and B (VAP-B) (85), which transfer PI4P to ER membrane through their FFAT 

motif (122). Furthermore, lipid droplets and apolipoproteins are necessary for efficient viral releases 

(123). Therefore, I hypothesized that other unknown host machineries should be involved in HCV 

propagation. 

 DUBs regulate many cellular processes. For example, A20 regulates NFκΒ signaling pathway 

through its DUB and E3 ligase activity (124). USP9x controls ubiquitination of Mcl-1, which is a 

member of Bcl-2 protein family and regulates cell survival through DUB enzyme (125). The tumor 

suppressor cylindromatosis (CYLD) inhibits NFκΒ and mitogen-activated protein kinase (MAPK) 

through deubiquitination of NEMO, TRAF2, TRAF6 and TAK1. Liver specific CYLD deficiency 

leads to liver fibrosis, inflammation and hepatocellular carcinoma (126). USP33 and USP20 

modulate post-endocytic trafficking of the asthma β2 adrenergic receptor (β2AR) (127). AMSH 

regulates ESCRT proteins stability to control receptor trafficking (128). USP10 regulates p53 
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localization and stability (129). These reports indicate that the functions of DUBs cover almost all 

events in live cells. Although human genes encodes only less than 100 DUBs, identification of 

DUBs essential for HCV replication may discover new host machineries to be utilized by HCV or 

novel functions of DUBs through cellular components known to be used by HCV.  

 I established 65 different Huh7 cells stably expressing each of shDUBs. Although I did not 

check knockdown efficiency in all cells, I found that Huh7 cells expressing shRNA against USP15 

significantly inhibited HCV replication. USP15 had been reported to regulate in TGF-β signaling 

through stabilization of SMADs (119, 120). USP15 also regulates Nrf2, a master regulator of 

antioxidant response, through de-ubiquitination of Keap1 (130). Furthermore, USP15 stabilizes 

MDM2 in T cells, an E3 ubiquitin ligase to be essential for p53 stability and function (131). 

However, physiological roles of USP15 in the liver remain unknown.  

 In this study, I identified USP15 as a critical host factor for HCV life cycle. Although it is still 

needed to clarify how USP15 contributes to HCV life cycle, USP15 deficient cells clearly showed 

the reduction of the number of lipid droplets. Lipid droplet is a cytosolic lipid storage organelle 

playing central roles in energy and lipid metabolism. Lipid droplet is consisted of neutral lipids such 

as phospholipids, triacylglycerides and their intermediates. The surface of lipid droplet binds to 

several regulatory proteins. Among them, Perilipin and ADRP are located on the surface of lipid 

droplets. My in vitro data suggested that USP15 localizes on lipid droplets. Furthermore, ADRP but 

not Perilipin was an ubiquitinated proteins and USP15 specifically interacts with ADRP and 

de-ubiquitinates ADRP through its DUB activity. These data suggest that USP15 regulates 
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formation of lipid droplets in the liver.  

 Once HCV core proteins are synthesized in ER, some fraction of core proteins localize on lipid 

droplets. The localization of core proteins on lipid droplets is required for virus assembly and 

release. Lipid droplets also recruit non-structural proteins such as NS5A and lipid 

droplet-associated membrane including viral replication complexes (132). HCV infection was 

reported to accumulate lipid droplets around nucleus (133). Upregulation of USP15 expression in 

cells upon infection with HCV suggests that HCV utilizes USP15 in the formation of lipid droplets. 

Further studies are needed to clarify how USP15 regulates lipid metabolism in the liver. Further 

analysis of USP15 knockout mice will be clarified more detail roles of USP15 in the liver.  

 My data suggests that USP15 plays important roles in HCV replication through controls of lipid 

droplets. Therefore, USP15 inhibitors may impair HCV replication in patients and control 

metabolic diseases. So, USP15 targeting compounds are attractive in clinics. In vitro HTS system is 

needed for development of USP15 inhibitors. By using baculovirus expressing system, large 

amounts of rUSP15 were obtained. The rUSP15 and DiUb48 system will be useful and valuable 

tools to identify USP15 inhibitors. This rUSP15 may also be useful for determinant of 

three-dimensional structure by generating crystals.  

  I also found that USP20 was involved in HCV replication. USP20 was demonstrated to regulate 

recycling and resensitization of β2 adrenergic receptor (134). USP20 targets TRAF6 to regulate 

NF-κB signaling (135). USP20 also deubiquitinates and stabilizes hypoxia-inducible factor (HIF) 

-1α (136), which is a sequence-specific DNA-binding transcriptional complex with HIF-1β, HIF1 
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regulates genes involved in angiogenesis, glucose metabolism, cell proliferation and 

invasion/metastasis. Although I need to clarify how USP20 regulates HCV/JEV replication, USP20 

may be a good candidate for not only HCV but also JEV therapy.  
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Figure legends 

Fig. 1. Schematic of hepatitis viruses.  

Fig. 2. Classification of hepatitis viruses. 

Fig. 3. Current situation of liver cancer and HCV infection. (A) Rank of cancer incidence in 

Japan according to sex or total (2012). (B) About 70% patients of liver cancer were derived from 

HCV infection. (C) About 70% of HCV infected patients has genotype 1b typed HCV. (D) Current 

therapy such as PEG-IFN/RVB can achieve 50% SVR. However, the other 50% of patients cannot 

be effective to PEG-IFN/RVB therapy. 

Fig. 4. HCV genome and viral proteins. HCV encodes 10 different viral proteins in the genome.  

Fig. 5. HCV life cycles. 

Fig. 6. HCV core protein plays a major role in HCV induced liver diseases. Liver-specific core 

transgenic mice (CoreTG) develope steatosis and hepatocellular carcinoma. On the other hands, 

CoreTG show larger size of pancreatic islets showing as insulin resistance. 

Fig. 7. Molecular mechanisms of core induced liver diseases. Core protein upregulates 

SREBP-1c to enhance fatty acids synthesis. PA28γ mediated proteasomal degradation of core is 

required for core-induced diseases in transgenic mice.  

Fig. 8. Maturation of core protein by signal peptide peptidase (SPP). Core proteins are 

processed by SPP. Transmembrane domain and N-terminus hydrophobic region are necessary for 

recognition of SPP.  
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Fig. 9. HCV receptor candidates and species-specificity for HCV infection. (A) Reported HCV 

receptor candidates. (B) Human CD81 and human OCLD are essential for successful HCV 

infection in mice.  

Fig. 10. MicroRNA is involved in HCV replication. (A) Schematic diagram of microRNA 

production. MicroRNA plays a role in regulation of mRNA by suppression of translation or 

cleavage of RNA. (B) HCV genome contains 2 miR-122 binding sites in IRES region. (C) 

Non-hepatic cells introduced miR-122 can achieve HCV replication.  

Fig. 11. HCV replication alters morphology of ER membrane to prevent host antiviral 

responses. (A) HCV replicating cells show accumulation of small membrane cavity derived from 

ER membrane called membranous web. (B) One membrane cavity is formed by double membrane 

structure. DMV: double membrane vesicle (C) HCV infection induced phosphorylation of 

phosphatidylinositol through PI4KIIIα or PI4KIIIβ. Phosphatidylinositl-4-phosphate (PI4P) is 

essential for HCV replication. Lipid transfer proteins such as CERT and OSBP play a role in 

transfer PI4P to ER membrane.  

Fig. 12. Host factors involved in HCV replication.  

Fig. 13. IL28B SNPs can predict outcome of PEG-IFN/RVB therapy. 

Fig. 14. HCV infection suppresses ubiquitination of cellular proteins. (A) Huh7.5.1 cells were 

infected with HCV at moi of 1 and harvested at indicated time points. Ubiquitinated proteins were 

purified by TUBE agarose beads and subjected to immunoblot analysis by using anti-ubiquitin 

antibody. (B) Huh7.5.1 cells infected with HCV were treated with PR-619 or DMSO at 24h 
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post-infection and intracellular viral RNA and cell viability at 24h post-treatment were determined 

by qPCR and PI exclusion, respectively. Data represent means ± SD from 2 independent 

experiments. 

Fig. 15. RNAi screening to identify DUBs participate in HCV replication. (A) DNA 

microarray analysis of the expression of DUBs in Huh7.5.1 cells. (B) Sixty five DUB-knockdown 

Huh7.5.1 cell lines were infected with HCV at moi of 1 and intracellular HCV RNA were 

determined by qPCR at 2 days post-infection. Data were presented as relative value compared to 

Huh7.5.1 cells expressing shRNA against LacZ. (C) Huh7.5.1 cells infected with HCV at moi of 1 

were harvested at indicated time points and expression of USP15 mRNA (left) and HCV RNA 

(right) was determined by qPCR. Data represent means ± SD from 2 independent experiments. 

Fig. 16. Establishment of USP15 knockout Huh7 cells by CRISPR/Cas9 system. Schematic 

representation of strategy to generate USP15 knockout Huh7 cells. Target sequence for USP15 

sgRNA was inserted into EGFP coding sequence and designated as pCAG EGxxFP hsUSP15. In 

cells co-transfected with pX330 hsUSP15 and pCAG EGxxFP hsUSP15, sgRNA binds to the 

target sequences in both genomic USP15 and pCAG EGxxFP hsUSP15, and then Cas9 cleaves 

both target sequences. Cells in which USP15 target sequence were efficiently cleaved, EGFP gene 

was rescued by the homologous recombination and express EGFP. In EGFP strong positive cell 

population sorted by FACS, high level of USP15 knockdown cells were concentrated. Huh7 cells 

transfected with pCAG EGxxFP hsUSP15 together with pX330 hsUSP15 or pX330 empty were 

collected by using FACS at 7 days post-transfection and seeded on culture dishes to form single 
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colonies. Cellular DNAs were isolated from each cell clones and mutation was confirmed by 

sequencing. USP15 knockout Huh7 cell lines #8 has one nucleotide (T) insertion into sgRNA 

targeting genome. #22 has 11 nucleotides (gctccggaaa) deletion in one chromosome and one 

nucleotide (T) insertion in the other chromosome. 

Fig. 17. Characterization of USP15 knockout Huh7 cells. (A) Expression of USP15 in parental, 

USP15knockout clone #8 and #22 Huh7 cells was determined by specific antibody. (B) Cell 

growth curves of parental, USP15knockout clone #8 and #22 Huh7 cells were determined by MTT 

assay. (C) Expression of miR-122 in parental, USP15knockout clone #8 and #22 Huh7 cells was 

determined by qPCR. 

Fig. 18. USP15 specifically participates in the propagation of HCV. (A) In vitro transcribed 

HCV subgenomic replicon RNA was electroporated into parental, USP15 knockout clone #8, and 

#22 Huh7 cells, incubated for 3 weeks in the presence of 1mg/ml of G418. Colonies were 

visualized by staining with Giemsa (Merck) at 3 weeks post-electroporation. Parental, USP15 

knockout clone #8, and #22 Huh7 cells were infected with HCV at moi of 5 and intracellular viral 

RNA (B) and infectious titers in the culture supernatants (C) were determined by qPCR and plaque 

assay at 4 days post-infection. Parental, USP15 knockout clone #8, and #22 Huh7 cells were 

infected with JEV at moi of 3 and intracellular viral RNA (D) and infectious titers in the culture 

supernatants (E) were determined by qPCR and plaque assay at 2 days post-infection. Parental, 

USP15 knockout clone #8, and #22 Huh7 cells were transfected with a plasmid encoding HBV and 

intracellular viral DNA was determined by qPCR at 3 days post-transfection. 



70 

Fig. 19. USP15 participates in the lipid droplet formation. (A) Huh7.5.1 infected with HCV at 

moi of 5 and permeabilized after fixation. Subcellular localization of USP15 and LDs was 

determined by immunofluorescence after staining with anti-USP15 antibody and HCS LipidTOX 

Red neutral lipid, respectively. (B) Parental, USP15 knockout clone #8, and #22 Huh7 cells 

infected HCV were trypsinized, fixed with 4% PFA, permealized with 0.3% Saponin in PBS 

together with HCS LipidTOX Red neutral lipid, and analyzed by FACS. (C) Parental and USP15 

knockout Huh7 clone #8 with or without exogenous expression of FLAG-USP15 were 

permeabilized after fixation and stained with HCS LipidTOX Red neutral lipid. 

Fig. 20. ADRP is a specific target for USP15. (A) In vitro ubiquitination assay. HA-tagged 

ubiquitin was expressed in HEK293T together with OSF-tagged PAT family proteins, Perilipin, 

ADRP or TIP-47 in the presence or absence of FLAG-tagged USP15 and OSF-tagged PAT family 

proteins were precipitated by Strept-Tactin Beads. Purified proteins were subjected to immunoblot 

analysis by using anti-HA antibody to assess ubiquitination of the OSF-tagged proteins. (B) 

HEK293T cells were transfected with expression plasmids encoding HA-tagged ubiquitin, 

OSF-tagged ADRP and various amounts of FLAG-tagged USP15 of wild type (WT) or C/S 

mutant (C/S). OSF-tagged ADRP precipitated by Strept-Tactin Beads was assessed by 

immunoblotting. (C) Interactions between OSF-tagged ADRP and FLAG-tagged USP15 of wild 

type (WT) or C/S mutant (C/S) was determined by immunoprecipitation analysis. Cell lysates were 

immunoprecipitated by Strept-Tactin beads and subjected to immnoblotting by using anti-FLAG 

antibody. 
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Fig. 21. USP15 does not involve in HCV infection steps. VSVΔG HCV or VSVΔG G was 

infected with Huh7 or USP15 knockout Huh7 cells. After 24 hours, luciferase activity was 

determined.  

Fig. 22. Generation of USP15 knockout mice (A) Schematic diagram of generation of USP15 

knockout mice. (B) PCR can confirm USP15 deletion. (C) MEFs were prepared by USP15+/+ or 

USP15-/- embryos and confirmed protein expression by western blot. (D) Numbers of offspring 

derived from USP15+/- parents. 

Fig. 23. Body weight of USP15-/- female mice. (N=3)  

Fig. 24. USP15 does not involve in RIG-I mediated innate immune response. (A) MEFs 

derived from USP15+/+, USP15-/-, TBK1+/+ or TBK1-/- embryos were infected with VSV (moi=5). 

Culture supernatants were quantified IFN-β concentration by ELISA. (B) VSV was infected with 

USP15+/+ or USP15-/- MEFs. After 24 hours, viral titers were determined by plaque assay.  

Fig. 25. USP15 may involve in TGF-β signaling in cell type specific manner. 1ng/mL of TGF-β 

was stimulated with USP15-/-, USP15+/+ MEFs, Huh7 and USP15 knockout Huh7 cells. RNAs 

were extracted and mRNA expression of PAI (A), CTGF (B) and SMAD (C, D) was determined 

by qPCR.  

Fig. 26. Establishment of USP15 DUB activity in vitro. (A) Purified recombinant USP15 

(rUSP15) by baculovirus expression system. (B) Schematic diagram of DiUb48 substrate (C) 

rUSP15 has a DUB activity in vitro. Fluorescent intensity of TAMRA was determined by plate 

reader.  
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Fig. 27. USP20 involved in HCV/JEV replication. (A) Generation of USP20 knockout Huh7 

cells by CRISPR/Cas9 system. (B, C) Huh7 cells were infected with HCV at moi of 5 and 

intracellular viral RNA and infectious titers in the culture supernatants were determined by qPCR 

and plaque assay at 4 days post-infection. (D, E) Parental, USP15 knockout clone #8, and #22 

Huh7 cells were infected with JEV at moi of 3 and intracellular viral RNA and infectious titers in 

the culture supernatants were determined by qPCR and plaque assay at 2 days post-infection. 
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