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0. Introduction

In this paper we establish analyticity in t of solutions to quasilinear evo-
lution equations

(0.1) d^+A(tyu)u=f(tyu), O^t^T,
at

(0.2) u(0) = u0.

The unknown, uy is a function of t with values in a Banach space X. For fixed
t and ?)Gl, the linear operator — A(ty v) is the generator of an analytic semi-
group in X and/(ί, Ϊ ) ) G I . In the case that the domain D(A(ty v)) of A(t, v)
does not depend on t and vy Massey [7] discussed analyticity in t for equation
of the form (0.1).

In the present paper, we consider analyticity for (0.1), (0.2) under the as-
sumptions that the domain D(A(ty v)h) of A(ty v)h is independent of t, v for
some h^=\jm where m is a positive integer and that A(t, A^"v)h is Holder con-
tinuous in v in the sense that \\A(ty Ao"v)hA(t, Aό*w)~h—I\\^C\\v—w\\v, while
in the previous papers [2], [3] we discussed the same problem in the case that
A(ty A^av)h is Lipschtz continuous. In order to prove the theorems we shall
make use of the linear theory of Kato [5].

In the following L(X, Y) is the space of linear operators from a normed
space X to another normed space Y, and B(X, Y) is the space of bounded
linear operators belonging to L(X, Y). L(X) = L(XyX) and B(X) = B(XyX).
|| || will be used for the norm in both X and B(X); it should be clear from the
context which is intended. Σ (φ T) = {t e C; |arg t\ <φy 0 < \t\ <T) U {0}
is the sector in the complex plane.

We shall make the following assumptions:
(A-l) There exist A— \\my where m is an integer, m^2y and 0^a<h/2 such
that A** is a well-defined operatorGfi(J) and uQ(=D(Al+") where A0=A(0y uo).
(A-2) AQ1 is a completely continuous operator.
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(A-3) There exist R>Oy M>0, Γ 0>0 and φo>O such that A(t, Afv) is a well-
defined operatorGi(Z) for each * e Σ ( φ 0 ; To) and^eiV== {V<=ΞX; \\V-A*OUQ\\<

R} Π FU {^z/0}, and the domain, D(A(t, Aϊ"v)), of A(tyAό*v) is dense in X
Where YΞΞ (J jfceX; | |u-( i4X+te) | |<fM} (0<M^| |β | | ) and we shall define

in the next section.

(A-4) For any * e Σ ( φ 0 ; To)9

( the resolvent set of A(t, AQ*V) contains the left half-plane and there
( ' I exists d such that ||(λ-i4(f, ^ ^ W Ί I ^ C ^ H - Iλl) ' 1, Λ^λ^O .

(A-5) The domain D(A(t, Aΐ*v)h) = D oϊ A(t, A**v)h is independent of

(A-6) There exist C2, C3, σy l-h+a<σ^ί, a'1\ a<a!'<h\2, v,
 1 ~ A + α <y

< 1 such that

(0.4)

(0.5)

ί, ^ Σ ( φ 0 ; Γo), z;,

(A-7) The map Φ: (ί, ϋ)h->^(ί, ^ ^ J M ί * is analytic from ( Σ ( φ 0 ; 71

0)\{0})X
(N\{AU0})toB(X).
(A-8) /(ί, i4ίΛϋ) is defined and belongs to X for each /eΣ(Φo*> Γo) and
/(0, Mo)Gfl(io), and there exists C4 such that

(0.6) \\f(t, Aϊ«)-f(s, Aϊ«
ί,

(A-9) The map Ψ: (ί, ϋ)H^/(ί, AΈ*v) is analytic from (Σ(φ 0 Γo)\{0}) XN into
X.

These constants C,- ( i=l , 2, 3, 4) do not depend on ί, s, v> w.

The main result of this paper is the following theorem.

Theorem 1. Let the assumptions (A-l)-(A-9) hold. Then there exist T,
0<T^T0, φ, 0 < φ ^ φ 0 , K>0, k, ί—h<k<l and at least one continuous func-
tion u mapping Σ ( φ ; T) into X such that u(0)=u0, u(t)<=D(A(t,u(t))) and
\\A*ou(t)-A«oUo\\<R far ί e Σ ( φ Γ), u: Σ ( Φ ; T)\{0}-+X is analytic, du\dt-\-
A(t,u(t))u(t)=f(t,u(t)) for ί e Σ ( ψ ; Γ ) \ { 0 } , and \\A«ou(t)-A»oUo\\^K\t\k for

REMARKS. (1) Under the assumption that D(A(ty u)h) is constant,
Sobolevskii [10] gave the existence of solutions to (0.1) with differentiable
coefficients. But, as far as the author knows, the proof of [10] (or similar
results) is not published yet.
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(2) From the assumptions (A-3) and (A-4), —A(t, AQ*V) generates an analytic

semigroup in X> and the fractional powers A(t, A^av)β are defined for β^R.

Properties of analytic semigroups and fractional powers, see Tanabe [11]

Sobolevskii [9] Krein [6] Friedman [1] etc.

(3) In the previous papers [2] [3] we proved similar results with 77=1. In

this case we need not the assumption (A-2).

The author wishes to express her hearty thanks to Professor Y. Kόmura

for his kind advices and encouragements.

1. Preliminaries

We shall make the following assumptions:

I) For each 2G[0, T], A(t) is a densely defined, closed linear operator in X

with its spectrum contained in a fixed sector Sθ={z^C; |arg#| < 0 ^ T T / 2 } .

The resolvent of A(t) satisfies the inequality

(1.1) \\[z-A(t)Γ\\^Mol\z\ for z$Sθ

where MQ is a constant independent of t. Furthermore, # = 0 also belongs to

the resolvent set of A(t) and

(1.2) \\A(t)-1\\£Mι

M1 being independent of t.

II) For some h=\Jm, where m is a positive integer ^ 2 , D(A(t)h) — D is in-

dependent of t, and there are constants k, M2 and M3 such that

(1.3) \\A(t)hA(s)'h\\^M2y O^t^T, O^s^

(1.4) \\A(t)hA(s)-h-I\\^M3\ts\k,

REMARK. From (1.2) there exists 0 0 such that

(1.2)' \\A(t)-h\\^C for t<Ξ[0,T]

C being independent of t.

Under these assumptions, we get the following theorems. They are due

to Kato.

Theorem A. Let the conditions I) and II) be satisfied. Then there exists

a unique evolution operator U(t,s)^B(X) defined for O^s^t^T, with the fol-

lowing properties. U(t, s) is strongly continuous for O^s^t^T and

(1.5) U{t,r)=U(t,s)U(s,r), r^s^t,

(1.6) U(t,t) = I.
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For s<t, the range of U(ty s) is a subset of D(A(t)) and

(1.7) A(t)U(t,s)EΞB(X), WAiήUfrsW^Mlt-sl-1,

where M is a constant depending only on θ> h, k, T, MOi Mly M2 and M3. Fur-
thermore, U(ty s) is strongly continuously differentiable in t for t>s and

(1.8) ^U(t,s)+A(t)U(t,s) = 0.

If u^D, U(t,s)u is strongly continuously differentiable in s for s<t. If in par-
ticular u^D(A(s0)), then

(1.9) H-U(t,s)uU0=U(t,s0)A(s0)u.

If f{t) is continuous in t, any strict solution of

(1.10) d^+A(t)u=f(t)

must be expressible in the form

(1.11) u(t) = U(t, 0)M(0)+ Γ U(t, s)f(s)ds .
Jo

Conversely, the u(t) given by (1.11) is a strict solution of (1.10) if f{i) is Holder
continuous on [0, T] here u(0) may be an arbitrary element of X.

Proof. See, [5].

Theorem B. Assume that A(i) can be continued to a complex neighborhood
Δ of the interval [0, T] in such a way that the conditions I), II) are satisfied for
t,s^;A. Furthermore, let A{t)~h be holomorphic for ί G Δ . Then the evolution
operator U(t, s) exists for s^t, satisfies the assertions of Theorem A and is holo-
morphic in s and t for s<t. (Here (es<t" should be interpreted as meaning
"t—s<=Σ"> where Σ & the sector \Άrgt\<πβ—θ of the t-plane, and"s^t" as
"s<t or s=t".) If f(i) is holomorphic for ί G Δ , £>0, and Holder continuous at
Z=0, every solution of (1.10) has a continuation holomorphic for ί G Δ , £>0.

Proof. See, [5].

It follows from I) and II) that

Proposition 1.

(1.12) | | ^ r e x p ( τ ^ ) ) | | ^ Λ ^ 6 | τ | - Λ : 0 ^ α ^ 2 , |argτ| rgτr/2-0

(1.13) | | i4(ί)β^(ί^)ll^(*+*-α)-W 1 8(ί-ί)-- :0<ίa<k+h
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(1.14) \\A(t)a+hU(t,s)A(s)-h\\^(k-a)-1N19(t-sya

Here the constants iVf (z^4, I'eiV) are determined by MOy Mly M2y MZy θ> hy

ky T. The above Proposition is essentially proved in [5]. In addition to these,
we need the following estimates in [3].

Proposition 2. If l—h<k<l, 0<a<a'<l—ky then for any 0^r<*s<^
^Ty the following inequalities hold:

(l.is) \\A(θ)«[U(t, θ)-u(

(1.16) \\A(0)*[U(t, r)-U(sy r)]\\<^C(t-sy-«Xs-r)-i,

where the constant C is determined by Mo, Mly M2, M3, θ, hy k, α, T.

Proposition 3. Let the function f{t) be continuous on [0, T]. Then for any
O^s^t^T, 0<a<a'<a"<h, the following inequality holds:

(1.17) \\At[Γ U(t} r)f(r)dr- \'u(s, r)f(r)dr]\\
Jo Jo

Proposition 4. If 0<α / <α / / <A, then for any O^r^t^T, the following
inequality holds:

(1.18) \\A(tfU(t, r)A(ry-»>\\?ZC(t-rγh-a"-i p=ί,2, ••; «

Proposition 5. Let the function f(t) be Holder continuous on [0, T\. Then
for any O^rr^T, the following inequality holds:

(1.19) \\A(ry Γ U(r, s)f(s)ds\\^Cr^ :p=l,2, -, »
.'0

Now we shall define a. We shall make the following assumptions;

(a-l)=(A-l)
(a-2) There exists T 0>0, such that AUQ(t)=A(ty u0) is a well-defined operator
from X to X for each t <Ξ [0, To).
(a-3) For any ίG[0, To) the resolvent of AUQ(t) contains the left half-plane and
there exists Cλ such that [|(X — ̂ 4Mo(ί))~ΊI ̂ CΊ(1 + | X | )"1, ReX^O, and the
domain, D(AUQ(t)), of AUQ(t) is dense in X.
(a-4) The domain D(AUQ(t)h)=D of AUQ(t)h is independent of *e[0, To) and
there exist C2y C3y σ, l—h+a<σ^l such that

\\AU0(t)hAU0(s)-h\\^C2 tysϊΞ[OyTo)y

\\AUQ(tyAU0(s)-h-I\\<^C3\t-s\* ty s(Ξ[0y T0).

(a-5) fUQ{t)=f(t, u0) is defined and belongs to X for each ίe[0, To) and there
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exists C4 such that

ί-ίr f' ίeto, r.)

These constants Ct ( i = l , 2, 3, 4) do not depend on ty s.

Then from the Theorem A, there is a unique solution of

(1.20)

With the solution of (1.20) set

(1.21) a = d^A%ύ{t)\^.
at

We can define a since by uo(=D(Al+*), fUQ(O)(=D(Aho) and 1— h+a<σ^ί. In
fact from (1.13), (a-5) and (a-4) we have

\\AΛ

Q\tUU0(tys)fU0(s)ds\\
Jo

^^\\AtUao(t,s)\\ \\fUΰ(s)-fUo(0)\\ds

+ \' \\A*0UU0{t, s)A^(s)-ψ\\AJsγA^\\'
Jo

^ (' (h+k-a)-1Nls(t-s)-aCis"ds+ Γ C{t-s
Jo Jo

^ ct1+h-*'.

2. Existence of solutions on the real axis

We consider the Cauchy problem

(2.1) duldt+A(t,u)u=f(t,u) O^t^T

(2.2) «(0) = «b.

We shall make the following assumptions:
(R-l) There exist h=\jmy where m is an integer, m^2, and 0^a<h/2 such
that Aό* is a well-defined operatorGδ(I) and uo<=D(Al+°) where A0=A(0, u0).
(R-2) A^1 is a completely continuous operator.
(R-3) There exist R>0 and M>0 such that A(t, A^*v) is a well-defined op-
erator e L(Z) for each / e [0, T] and « e ΛΓ = {v G X; 11«; - ^?wo| | < R} Π
y U {^?«0} where Y= [} {vGiX; \\v-(Aa

ouo+ta)\\<tM}f 0 < M ^ | | * | | , and the

domain, D(A(t, A^v)\ of A(t, Ao"v) is dense in X.
(R-4) For any tG [0, T] and
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.- - ί the resolvent set of A(t, AQ*V) contains the left half-plane and there
[ ' } I exists Cx such that I|(λ—^(ί, ^ V ) ) - 1 | | ^ C 1 ( 1 + | λ | ) - \ ReX^O.

(R-5) The domain D(A(t, Aό"v)h)=D of A(t, A**v)h is independent of t€Ξ[0, T]
and

(R-6) There exist C2, C3, σ, l-h + a<σ^l, a<art<h\2, 1~h+a"<v<l
asuch that a

(2.4) \\A(t, Aϊ«v)hA(s, Aoaw)-h\\^C2 t, s(Ξ[0, T], v,

(2.5) \\A(ΐ, Aϊ«v)hA{s, A-aw)-h-I\\^C3{\t-sr+\\v-w\n

t, ίe[0, Γ], Ό,

(R-7) /(ΐyAo^v) is denned and belongs to X for each *^[0, Γ] and
and there exists C4 such that

(2.6) \\f{t,A^%)-f{s,A^w)\\^CA{\t-s\σ+\\v-w\\^} t,st=[0,T], w,

Theorem 2. Let the assumptions (R-l)-(R-7) hold. Then there exists So,
0<S0^T, such that there exists at least one continuously differentiable solution of
(2.1) for 0<ί<S0 that is continuous for 0^t<S0 and satisfies (2.2).

Proof. Let a<a"<h\2, (l-h + a")lv<ζ<l-a, L>0 and 0<£<l.
We consider the set F(S) of all functions v(t), defined on [0, S) which satisfy
the following;

(2.7) v{0)

(2.8) IKίχ)-»(ίί)II^IΊίi-ί2l f for any ίlf f2e[0, S),

(2.9) \\v(t)-(A*ou0+tά)\\^Mt(l-ε) for ίe[0, S)

Suppose ^ 6 ( 0 , T]. Then for any c e ^ S j )

MQ-AtiioW = \\v(t)-v{0)\\gL\t\S for ίe[0, 5,).

So if 0 < 5 2 < m i n {Slt (RL-1)1'*}, then

(2.10) ||ϋ(0-^M0ll<^(Λi>-1) = ^ for ίS[0, 5 2).

Therefore from (2.9) we have v(t)eN for ίe(0, 52). Hence the operator

(2.11) Aυ{t) = 4(f, Afv{t))

is well defined for *e[0, 52) and, by (2.3)

IKλ-ΛWΠI^^l+lλl) if ReX^O, ίe[0,52).

From (2.4) we obtain
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\\Av(t)hAv(s)-h\\^C2 if t,s<=[0,S2).

From (2.5) and (2.8) we also get

\\Aχt)hAv(s)-h-I\\^Cd\t-s\σ+\\v(t)-v(sm

where &=min {σ, ζη}. *' ί G C 0 > ^

Note that 1— h+a<σ^l and ( 1 — λ + α " ) / ? 7 < C < l — α imply 1—h<k<\.

By Theorem A, there exists a fundamental solution Uυ(t, s) corresponding

to Aυ(t) and all the estimates for fundamental solutions in the previous section

hold uniformly with respect to v in F(S2). In particular, from (1.15) and (1.16)

we get for 0<a<a'<l-ζ> 0^r^s^t^S2

(2.12) \\A«0[Uϋ(t, O)-Uv(s,

(2.13) \\At[Uj(t, r)-Uv(s,

where C is a constant depending on θ, h, ζ, α, CΊ, C2, C3, S2.

Setting fv(t)=f(t, Ao°v(ί))> it follows from (2.6) and (2.8) that

(2.14) IIΛ(ί)—ΛWH^c4{l^—^Γ+IKO—«WΊI}^c4{Γ'-*+^r^-*}lί

Since/β(0)=/(0, ^5"^(0))=/(0,2/0) is independent of ©, (2.14) implies that

(2.15) max ||/,(OII^ 11/(0, uo)\\+C4{Sσ

2-
k+LvS?-k}Sk

2^C5.

Set wv{X(t)=Atwv(t), where wυ is the unique solution of

(2.16) <ko.ldt+A,(t)zD.=f.(t) t(Ξ[0,S2)

(2.17)

Then from (2.14) and Theorem A, wva is given by

(2.18) to.a(t) = A*0Uv(t, O)uo+Aΐ Γ Uv(t, s)fυ(s)ds .
Jo

In view of (2.18), for any tly t2 in [0, S2) we obtain

(2.19) \\wt,Jit1)-tot^t2)\\^\\Ai[Uj(t1, 0)-Uv(t2, O)]J^|| |IΛ«oll

+ \\At[ ί'1 UJ&, s)f,(s)ds- Γ2 Uv(t2, s)fv(s)ds]\\ .
Jo Jo

Making use of (2.14), (2.15) and (1.17), we find that

(2.20) \\At[ Γ 1 UJit,, s)fa(s)ds- Γ2 Uv(t2, s)fv(s)ds]\\
Jo Jo)f)

o Jo
^ <? I *!—ί21 ̂ " ί I log (ίi—ί2) 1+1) where
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Therefore from (2.19), (2.12) and (2.20) it follows that

^ ,—ί21 ̂ "^ I log (^—ί2) I + 1 ) .

Hence if a positive number S3 satisfies

X(|log (ti—t2)\+l)^L where 0 < £ < l — ζ — a and if S3^S2y the inequality

(2.21) Ww^it^-w^t^W^Llt.-i^ for tu ί2e[0, S3)

holds.

We shall prove that if AS4 is sufficiently small, the following inequality holds

(2.22) \\wv>a(t)-(A"ouo+ta)\\^Mt(l-ε) for all fe[0, S4).

First, if S5, 0<S5^S3, is sufficiently small, for any 0^t<S5 the following

inequality holds;

(2.23) \\wΰ,a(t)-A«0ύ(t)\\^Mt(l-S)l2 for f€Ξ[0,S5).

1) The case of bounded A(t, A*Ό).

If A(tly A^%ι) is assumed to be bounded for some ^G[0, *S4) and some

^EJV, in addition to the assumption (R-4) and (R-5), it follows that A(t, A^av)

G ΰ ( I ) for all ίe[0, SA) and v<=N. In fact the boundedness of A(tl9 AO'ΌJ

implies that of A(tl9 Aόav^h so that the constant domain D = D(A(tu A^v^)

must coincide with X. Thus from closed graph theorem A(t> A^<Λv)h

and hence A(ty AQ*V)<=B{X) for all t and v.

Let vl9 v2 belong to F(S4) and set

= A(t, Aζ vjf))

& s) = UVi(t, s)

. wι(t) = ΛΓV,..(f) ί = 1, 2 .

Thus, for ί = 1,2,

(2.25)

Note that τv1(t)eD(A2(t)), w2{t)eD(A1(ή) since A{(t)^B(X) (i=ί, 2), and we get

(2.26) ί- (to1-to2)+A1{t)(tc1-fo^ = [A2(t)-A1 (t)]w2+[fi (t)-
at

Now, we shall show the following,

Lemma 1. [A2(t)—A1(t)]w2(t) is Holder continuous in t for 0 ^

Proof of Lemma. Write
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(2.27) [4,(ί)-A(0H(*)-W)-^i(*)M*)

= [A2(t)-A2(s)]w2(t)+A2(s)[w2(t)-w2(s)]

First we verify the following two inequalities:

(2.28) ||[^,.(ί)-A(ί)]« 2WII^A(ί-ί)* O^s^t<St, i=\,2,

(2.29) |K.( ί )K(0-α>2M]II^A(*-ίΓ* O^s^t<S4, ί = l , 2 ,

where the constants D1} D2 do not depend on vh s, t but depend on ||.<4o||.
From (2.4), (2.5), (1.13) and (2.15) we have

^ Σ \\A{ty-»[Ai(t)>Atίs)- '-I]Ai{,γ>{UJt, 0)«0+Γ £/2(ί,
/>-i Jo

^ ί l I Wί)*ll""Ίl^ι(*)^<(*)'*-^ll lW*)*ll'[ll^2(ί, 0)«0|| + Γ||[/2(ί, r)f2(r)\\dr]
/ » i Joo

W18 | K | I+t(h+k)~ W 1 8 C 5 ]P* 0 |

From (2.4), (2.12) and (2.20) we have

'Z72(/, r)Ur)dr-U2(s,0)u0-\SU2(s, ήf
o Jo

, 0)-U2 (s, O)]^^||.|IΛ«oll

+ \\Aΐ[\' U2(t, r)f2(r)dr-\S U2(s, r)f2(r)ar]\\}
Jo Jo

Thus using (2.27), (2.28) and (2.29) we obtain

(2.30) ||[Λ(0-^i(0]^2(0-[ΛW-^iW]^)

^2D1\t-s\σ+2D2\ts\1-h

so that [A2(t)—Aι(t)]w2(t) is Holder continuous. q.e.d.
From (2.6) for any 0<^s<,t<S4 it follows that

(2.31) IIL/Ϊ(ί)—Λ(*)]—LAW—Λ(*)]l!^2C|ί—*|*.

Hence from (2.30) and (2.31) the right-hand of (2.26) is Holder continuous.
Then applying Theorem A to (2.25) and ^(0)—w2(0)=0 we can write
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(2.32)
Jo

Therefore from the definition of wυJU we get the identity

(2.33) wVi>a(t)-wV2,a(t)

= A*ow1{t)-A"ow2(t)

= -A"o\'o U&, r){[Alr)-A2{r)]w2{r)+U2{r)-h{r)]}dr

= -A'S U,{t, r)±A1{rγ- "'[Aι{r)'Ά2{r)->'-I]A2{rγ''w2{r)dr
JO p*Ί

+A*0\'ui{t,r)[f1(r)-f2(r)]dr
Jo

= - ± \tAtU1(t,r)A1(rγ-^[A1(r)kA2(r)-l -I]A2(rγ>'w2(r)dr

+ \Ά*0U1(t,r)[f1(r)-f2(r)]dr.
Jo

In the following the constants Elf E2y ••• do not depend on sy ΐy vh \\Ao\

So, put υλ=v and v2=A(

0

iύ;

(2.34)

Σ [Wύt, r)A1(rγ-"l [A1(rfA2(r)-' -I]A2(ryw2(r)dr
ρ=ι Jo

Jo

From (2.8), (2.7), (2.18), (1.17) and (1.15) we get

(2.35) \\v{r)-A%ύ(r)\\

It Γ Uua(r9 s)fu(s)άs\\ + \\A«o[Uu(r, O)—UU(O,
Jo

'[ |logr| +1] max IIΛ0(ί)lI+ Cfr1"3

where ζ<ί— όc<l— a

For any 0<^t<S5 the following inequality holds;

i t ,

Δ<*TJ (f r\\f(r\ f^WrlKΓ/1"*^'

o

We see this, using (1.13), (2.6) and (2.35) for 0<a<af<hβy as follows;

(2.37) \\\! AtU^U
Jo

S t

o **'
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We cite (1.18) for A=AX, U=Uλ;

(2.38) | |Att fUt (t, r)A1(rγ-pkW^E2(t-rγ>>-a"-i.

Note that

(2.39) A2(ryzc2(r) = AJr)»UJr, O)uo+A2(ry Γ U2{r, s)f2(s)ds
Jo

(2.40) \\A2(ryU2 (r, OKH^||^2(rrC/2(r, O)Aόh\\Ί\Ah

ouo\\

by (1.14).
From (1.19) we find that

(2.41) \\A2(r)"h Γ U2(r, s)Us)
Jo

Hence using (2.39), (2.40) and (2.41) we have

(2.42) 1 1 ^ ( 0 ^

Therefore from (2.38), (2.5), (2.42) and (2.35) it follows that

(2.43) 11 (' AW,{t, r)A, (ry-^A^rYA^^-ηA^r^to
Jo

^ Γ E2{t-ryι-a"-1\\v(r)-Aa

0ύ(r)\ΓE5r
!'-» dr

Jo

Then from (2.34), (2.43) and (2.36) we have

(2.44) ι | ^ , ^ - - ^ < /

Put v1=Atu0 and v2=A"oύ(t), from (2.18) and (1.15) it follows that

(2.45) ||d(r)-ι<oll

^ H [ ^ o ( ^ 0 ) - t / J O , O)]i4iΓ1Λttol|+ \[ \\U
C1* ° where 0<S<a

Then as we get (2.44), we have

(2.46) \ \ t D A . A J t ) - " ΐ
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Note that (\-h+a")lη<ζ<l-a implies h-a?'+η{\-£)>h-a" + ζri>\.

Therefore from (2.44) and (2.46)

(*) I \wVtΛ(t)-AΛ

oύ(t)\ I ̂  tt*-""^"1 X t

^CSΪ-""***-1 X t for any *e [0, Ss).

So if 0<S 5 ^min(5 3 > {M(l-£)/2C }1+β"-*-0 ), then

Thus (2.23) is obtained.

2) The general case.

We now turn to general case in which A(ty A^"v) is not necessarily bound-

ed. We first construct a sequence of bounded operators An(t, AQΛV) that ap-

proximate A(t, A^"v) in a certain sense. We set

( An{t, Ao"v) = A(ί, Aϊ«v)Jn(t, Aoav)
{ * M J.(t, Aϊ"v) = [l+B-'^ί, Aoav)Tm n = .1, 2, - .

Obviously ^4M(ί, ̂ 4o"Λ )̂ belongs to B{X) and satisfy the assumptions I), II).

Therefore, all the estimates deduced in the preceding section are valid, whose

constants do not depend on n. Hence from I) there exists a fundamental so-

lution Uifn(t, s) corresponding to An(t> A^v^t)) and a solution win of

St), ί = l , 2 .

Then we get by (*)

( 2 . 4 8 ) \ \ A u ( 0 , u o ) a [ w l t n ( t ) - w "

Due to Kato [5], we obtained that At(0, uo)Ui>n(t, 0)-»^J£/, (ί, 0) as »->oo.

Thus (2.23) is obtained.

Next, from (1.21) for any δ > 0 there is a ίo>O such that

\\±[Aa

oά(t)-Atuo]-a\\<δ for any ίe(0, *„].

Then choose δ=M(l— £)/2 there is a ίo>O such that

(2.49) \\Aa

oύ(t)-[A«ouo+ta]\\

for ί e ( 0 , ίo]

Hence if 0 < 5 4 ^ min {S5, t0], then from (2.23) and (2.49)
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(2.50) IK.(')-[^«b+to]H
t*\\wVta{t)-Aΐύ{t)\\ + \\Atύ{t)-[A%uo+ta]\\

S) for any «Ξ[0, St)

holds. Thus (2.22) is proved.
Since (2.17) implies

(2.51) to.^O) = AfaJiP) = A*ouo,

we get wκa(ΞF(St).
We defined a transformation T:v\-^wp>a for v^F(Si). Then from (2.51)

(2.21) and (2.50) we have

^ for fx, ί,e[0, S4)

ε) for ίe=(0, S4)

that is, T maps -F(S4) into itself.
We now consider F(S4) as a subset of the Banach space Ϋ=C([0, 54); X)

consisting of all the continuous functions v(t) from [0, S4) into X with norm

11 kill = sup \\v{t)\\ .

We shall prove that T is a continuous mapping in F(54) (with the topol-
ogy induced by Ϋ).

1) The case of bounded A(t, Aό*v).
Let vx and v2 belong to F(S4). From (2.33)

(2.52) ^ ^ ( ί ) - ^ υ2tM

ί-i Jo

Jo

For any 0 ^ ί < 5 4 , the following inequality holds:

(2.53)
o

We see this, using (1.13) and (2.6) for 0<a<a'<h, as follows;

Γ | | ^ Λ ( ί ) " Λ

Jo
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Therefore from (2.33), (2.38), (2.5), (2.42) and (2.53) it follows that

(2.54) ||w.1>.(ί)-w.I.-(ί)ll

g ± [ \\AiUtf, r)Aι(rγ-P' \\ \\A1(r)l A2{r)-''~I\\.\\A2(ryw2(r)\\dr
P=>1 J o

\\Ά*0U1(t,r)[f1(r)-f2(r)]dr\\
Jo

Σ ( ( )
ί-i Jo

^E4(t'-a"+t1-'')\\\υι-v2\

Hence

(2.55) \\\TV^TΌ2\\\ = sup \\wϋitΛ{f)-wV2t<Λ{t)\\
o£t<s4

^^^-""Hl^-^l ir Vl,vtf=F(S4).

This means that T is a continuous operator.

2) The general case,

we get by (2.54)

(2.56) 114,(0, ttbΓK. W - ^ . n ^ H ^ ^ ^ - ^ Ί l l ^ - ^ l i r ΠEΞN+ .

Due to Kato [5], we obtain that An(0, uo)"Uitn(t, 0)->A%Ui(ty 0) as w-»oo.

Thus T is a continuous operator.

We now claim that the set TF(S4) is contained in a compact subset of Y.

Indeed, the functions v(t) of F(S4) are uniformly bounded (by (2.10)) and equi-

continuous (by (2.8)). If we can show that for each t the set {wva{t)\ v^F(SA)}

is contained in a compact subset of X, then by applying Ascoli's Theorem we

can prove that TF(S4) is contained in a compact set of Y.

We can write, for each *e[0, S4), wVfa(t)=AόyAy

owVta(t) whereθ<γ<λ—a.

From (2.12) and (2.41), we have

[ Uΰ(t, s)fv(s)ds]\\
o

, 0)-Uv(0, O)]^4o«oll+ll^+

+ \\AVaAχt)-»\\'\\AΌ{t)h \' Uυ(t, s)fv(s)ds\)
Jo

Thus {AoWva(t);vGF(S4)} is a bounded subset of X. And by assumption

(A-2), A^ is completely continuous. Therefore {u\a(t);ve.F(S4)} is indeed

contained in a compact subset of X.
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We can now apply Schauder's fixed point theorem and deduce that T has

a fixed point υ in F(SA). Noting Tv = wv><Λ and w99*(t) = A"w9(t), we have

Atwυ(t)=v(t) or ϊ09(t)=Aό"v(t). Applying (2.16) we find that

4A^v{t)+A(tf Arv{t))A^v{t) =f(t, Aϊ*v(ή).
at

This finishes the proof of Theorem 2 for S=SA and u=Ao*v.

3. Proof of Theorem 1

From (0.3) there are constants C5, φi>0, Γj>0 such that for t^^fa; Tλ),

v^N and |0 |<φi , the resolvent set of eiθA(t, A^υ) contains the left half-

plane and

(3.1) \\(χ-eiQA(ty A^v))-'\\^C,{1+\X\Y' ReX^O,

We let φ=min{φ0, φj-, {\-h+a")lη<ζ<\-a, 0<<S<l and L>0.

We consider the set E(S) of all functions ϋ(t)y defined on Σ(Φ> *5) which

satisfy the following;

(3.2) v: Σ ( φ ; S)\{0} -> X is analytic,

(3.3) ϋ(0) = Atu0,

(3.4) | |i)(ί)-β(0)||^L|/K for any ί e Σ ( φ ; S)

(3.5) 11^0—^2)11^^1 *r-*2 K for any real tly ί2e[0, 5) ,

(3.6) | |»(ί)-(i4S^+ία) | |^M|ί | ( l-a) for

If 0<S 2 < min {TO, (ΛL"1)1^}, then

\\ϋ(t)-AU0\\^L\t\ζ<L(RL-1) = R for

Let us note that if Sλ is small enough to ϋ(t)^N for *e(0, SO the operator

iίf-(ί) = A(t, Ao«ϋ(t))

and the function

are well defined for * e Σ ( Φ ; ^1), since Σ(Φ; S0<=Σ(Φ<,; Γo).

We first restrict t to be real in (0.1), *e[0, *S0. Then it follows from

(0.3)-(0.6) that the family {^(f); 0^f<51} and the function f~v:[0, SJ-+X

satisfy the hypotheses of Theorem A. Thus there is a continuous function w:

[0, SJ-+X which is the unique solution of

1 '
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For 0<β<S1/2 we consider the sector Σ ( Φ ; S1—2£)\{0}+£. Since the
function t\->Az(t)hA(0)~h and t\^>f~υ{i) are analytic in a neighborhood of the
closure of Σ(Φ'> Sx—2S)\ {0}+£ and by (0.6) f~v(t) is Holder continuous, we
can apply Theorem B w^ has an extention to U {Σ(φ Sλ—2£)\ {0} + £ £>0} =
Σ(Φ;Si)\{0} such that &?: Σ ( Φ ; *SΊ)\{0} -*X is analytic, w;(t)t£D(A;(t))
and dwϊ(t)ldt+Aϊ(t)wϊ(t)=fϊ(t) for ίeΣ(Φ; £i)\{0}.

Next we shall show that A*w;: Σ ( Φ ; *SΊ)\{0} -*-X" is analytic. Actually

seeing that *^4;r(*)M(0)~A is analytic, *F-^4(0)Mir(*)'Λ is analytic. By rewrit-

ing the equation as Az{t)wz{t)=f~v(i)—vbf~{ϊ) and using the fact that t\-^w^(t)

and th^>f~v(t) are analytic, we have that ίh->^[-(ί);ιw;~(ί)=^4-(ί)A-1[/-(/)—w~(ή] is

analytic. Then t H* ̂ ^ ( f ) = AΛ

o~
hAh

oA^(t)-hA^(t)hw^(t) is analytic from

Σ(Φ;^i)\{0} t o X
Set aϊtΛ(t)=Aΐaϊ(t).
Let us restrict t to be real, £G[0, 5^). From assumptions (A-l)-(A-6)

and (A-8), assumptions (R-l)-(R-7) hold. Therefore if ^ X ) is small enough,
as we get (2.21), we can show that

WtOvA^-^A^W^Liti-^ for t19 /2e[o, sλ).

We shall show that

for

for

In order to prove it, in (3.7) we make the change of variable t—τeiθ

7 τG[0, <
I θ I < φ , so equations (3.7) become

dv
(3.9)

where Ό(T, eiθ)=Wy(τeiθ)y Wϊ(t)=v(\t\, tj\t\).

We hold \θ\<φ fixed and let

B(τ, ϋ, θ) = eiθA(τeiθ, ϋ), g(τ, ϋ, θ) = eiθf(τeiθ, v)

for r e [ 0 , 5 0 , A&eN, \θ\<φ. We shall show that for fixed θ, B(τ,ϋ,θ)
and £(τ, ϋ, θ) satisfy the assumptions (R-l)-(R-7) with constants independent
of θ.

First, note that

Bo1 = 5(0, uOi θγι = e-iθA(0, Wo)"1 = e'i9Aόι,

and (R-2) is verified.
Since A(t, Aό*w) is well defined for any w(ΞN and *<=Σ(Φ; T)y and
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B(r, Bz*w, θ) = B(τ, B(0, u,, θ)-*w, θ) = ei9A(τeiβ, Aoa(e-"">w))

B(τ, Bo*w, θ) is well defined for w^Nθ and τe[0, Γj), which verifies (R-3) where
Nβ=eiaβN.

(R-4) is verified since by (3.1) and D(B(τ, B-aw, θ) = D(A(τeiθ, Ao"
X(e-iaβw))).

For any we.Nβ and τ ε [ 0 , Γj) we have

D(B(r, Bό"zo, θf) = D(e">hA(r, A-a(e-"*βw))h) = D ,

and (R-5) is verified.
From (0.4) and (0.5) it follows that

1( Bό"w, θ)"B(r2, Bfv, θyh\\

We'^A^e19, Aόae-ίaβw)he-il>θA{τ2e
iβ, A^ae-mv)h\\

and

\\Bir,, B;*w, θfB{τ2, Bo"v, θ)-h-I\\

^C3{\τ1e
iβ-τ2e">\'r+\\eia<>w-e-i*l>v\\r'}

-rJ'+Wto-vW*} w,vf=N,,τlt τ 2 e[0, T,)

Thus (R-6) is verified.
Finally, from (0.6) we get

\\g(τl9 Bϊ«w, θ)-g(τ2f Bϊ«v, θ)\\

eP, Aϊ"e-iaθw)-eiθf(τ2e
iθ,

which verifies (R-7).
Hence as we get (2.21), we can show that there exists a unique solution

v(τ, eiθ) of (3.9) defined for T G [ 0 , SΊ), \θ\<φ, which satifies

\\AiΌ(τl9 e
iΘ)-A"0v(τ2y eiθ)\\^L\Tl-τ21* for τly τ 2 e[0, S,)

and

\\Aΐv(τ, eiθ)-(A«ouo+ta)\\^M\t\(l-6) for τe[0, St).

Therefore we obtain (3.8).
Since (3.7) implies

w e get a>pt4Λ

We define a transformation T:ϋ-^w for ϋ^E(S1). Then f maps E φ )
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into itself.

Denote by F0(S) the set of the restrictions v(t) of all functions v(t) in E(S)
to [0,5). And we define a transformation To in the way (TQv)(t) = (Tv)(t)
for *<= [0, Sλ). Then To maps F^S,) into itself.

Therefore we can use the argument in §2 with F^SJ in stead of F(SA).
And we can show that wυ is a unique solution of

dwv/dt+A(t, Ao%(έ))wv = /(*, Aoav(t))

wv(0) = u0

where ^eF 0(5Ί), ZOV=AQ*TV and T is the map which is defined in §2.
Since the functions ϋ(t) of E(Si) are uniformly bounded.

closed convex subset of the Banach space Ϋ=C([0, *SΊ); X).
On the other hand from the definitions of To, T and (3.7) it follows that

AQ^TQV^AO^TV by uniqueness. It follows from Theorem 2 that there is a
fixed point vtΞF^SJ such that Tv=v. Therefore

(Tϋ)(t) = (2»(f) = (Tv)(t) = v(t) = v(ΐ) for ίe[0, S,).

Noting v and Tz) are analytic from Σ ( φ ; .S^X^to X, we have Tϋ=ϋ.
This finishes the proof of Theorem 1 for T=Sλ and w=^4^ί).
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