
Title 「Kellner のソフトウェアプロセス問題」の記述の試
み

Author(s) 岡田, 世志彦; 松永, 泰明; 飯田, 元 他

Citation 情報処理学会第43回全国大会講演論文集. 1991, 5,
p. 365-366

Version Type VoR

URL https://hdl.handle.net/11094/50594

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

情報処理学会第43肘(平成 3if.後期)全ド!大会 5-365

fKellner のソフトウェアプロセス問題Jの記述の試み
7J-l 岡田i止志彦l松永泰明1飯田元1井上SlJls1鳥居宏次1永阿波2梅本認?頭弁緩魁

1大阪大学基礎工学部 2日立西部ソフトウエア(株) 3 (株)日立製作所

1. はじめに

ソブトウェアの開発i断主(ソフトウェアプロセス)の記述}j'rlを，iHuli
するための例題としてI¥1nrcKcllnerの「ソフトウェアプロセスモデリン

グのための例題J(けが提案されている.本総ではこの問題について，ソ
ブトウェアプロセスにおける後数の作業の流れとその!日JJUJに終に稲川し，
パトリネットや開発~おそ記述:議ffPD じ (Proc.t" ;S nescriJ汁ionLanguage)

l'lゆを用いて記述した.

2. Kdlnerの問題の概要

Kellnerの例題はソフトウェアの変誕作業の・古11を14ページにわたっ

て英文で規定している.この作業をいろいろな)i法でモデル化/記述す

ることによって，それぞれの方法の翌日解や犯採をすることができる.こ

とでは，その中の“核問題"と呼ばれる部分についての記述を行なう.こ

の!羽題全体が規定する作業には DewlopChangc ancl Te5t llnitという

名前がつけられており，次の8つのサブステップに分けられている.

図 i 各ステップ隠の関係の概絡

(1) SdlCd111e and Assign Tasks (タスクのスケジューリングおよび

WiJり当て)ソフトウェアの変更に関する作業のスケジュールをw成
し，個々のタスクをメンバに割りき当てる.

(2) Modify Design (デザイン変吏)要求変更により彩斡を受ける単

体コードユニットのデザインの修正を行なう.

(3) Review Desigll (デザインレビュー)修正されたデザインのレピ

ユーを行なう.結果によってはデザインの変廷のステップをやり院す

(4) Modify Code (コード変支)デザインの変災をコードに尖J.Jl.し，

コンパイルを行ないオブジェクトコードを生成する.

(5) Modify Test Plall (試験官i聞の変史)~求変更に関する機能の試

験を行:なうための試験7汁溜の変!，[を1i"なう.
A Description of Kellne内 Soflwa.reProc田sProblem
Yoshihiko OKADA!_ Yasuaki MATSUNAQA! Hajimu IlD哨!Ka~su問問OUE:Koji Torii;
I Wataru NAGAOKA; Hajimu UMEMOTO・~and M叫 uoSAKAl;>
laculty of Engin町、ngSCience， O.;;aka Unive澗 'y-
-Hitachi Seibu Software Co.. Ltd. ~Hitachi ， Ltd

(6) Modify Ullit T.円 tPackagc (Ip_体ρ切実パッケージの変!lL)試験

計]Ihjの変死に従って，試験パッケージの変9lをれなう.

(7) Te5t Ullit (ifi体試験)修正されたコードについて試験パッケージ
を尖行し，その車f15長の解析を行なう。試験が不令係である場介は，

ソースコードの修正， Jp体試験の修IEのー)jまたはi刈)jを行なった
後， I年試験を行なう.

(8) MOllitor Progrc55 (進捗状況符:mD1-_記の各ステップの進捗状
況を計二.!!p.する.スケジュールからの逸脱が深刻な場合には， II}スケ

ジューリングを行なう.

各ステップにはそれぞれ様々な開始・終了条約などが付加されている.ま

た，ここで行なう変9lは比較的局所的で，あるモジュールを変更しでも

他のモジュールには彩務を与えない.別のモジューjレについて新たに変

吏作業を行なったり.1児i車するモジュールの整合伎を議]べるというw業
は必要ない.プロジェクトマネージヤカすスケジューリングし.{j・'Jrを古IJ
り当てることでこのプロセスは開始され，車rrしいコードがテストに令絡
すると終了する.各ステップ問の関係の概略を~l に示す.

3. ステップ間の同期の記述

まず，この桜問題について，特に!司自寺に並行して行なわれる複数のス

テップの問郊に着目することにし，これらのステップのタイムチャート

を記述してみた(関2).このようなタイムチャートでは，以下の点につ

タスクの 1
スケジ品目リング 1
および割りIIIて胴開閉『

ヂザイン，.J! ・幽圃・ -・・ 1

デザインレピュー }-_.: }._.;
:目・ 2. ・ 白白

2 目

コード夜更 ;一一一?? !-1
脚閣の変更 ト一一司

車体品股パフクークの欄幽削剛刷'-.~ ~..-刊1
変更

脚崎 一一… r---i・ 2 ・・ ez 白

透喜多状況管理 ・

1i!l2 各ステップのタイムチャート

いて明確に記述することが関空控である.

験ーt

・タスクのスケジューリングおよび計り当てが終了した後であれば，い

つ始めてもよいようなステップ(例えばコード変受)についての記述.

・どちらが先に終了しでも良いが，そのI品ij)jが終了しないと，つぎの

ステップに移れないコード変i1iと単体試験パッケージの変受のようなス

テップの記述.

・デザインが認可されてからでなければ終fできないコード変吏など

のステップの記述.

.1M本試験がij'令絡であるときのように，コード変更， 1p.体試験パァ
ケージの変更のjJ，jガまたはパ }jが繰り返されるような場合のプロセスの

記迩.

そこで、ステッ7・のfiiJWJをより明確に記述するために. 4市ーでは，ペ
トリネット(-1)を月]いてii己主Eを試みた(1;'113).

5-366

'""ステ γ プ 1 の鯛鎗を示~
10"ステョJプ1の鍵7を示す

a混血妙状況腎理

一

関3 ペトリネットによる記述

4. ペトリネットによる記述

依13において，トランジシヨン(縦終)はステップの閲始・終了を意

味する.また，プレース(内)はステップの開始・終了のための前提条

件・完了条1'1'を示す.

ペトリネットを用いることにより，次のようなことが明確に言己主できた.

・タスクのスケジューリングおよび;切りと月てが終fとlu]l時に，デザイ
ン変立i， 進捗状況符述!が初i始される.また，この時点でコード変!Ifと;試

験詩]'jlfljの変更が開始可能になるが.rii:ちに始める必要はない.
・デザイン変更，デザインレピューの終了には，デザイン認可後の終

了と，さらに変更の繰り返しの場合の終fがある.

・JI1:体試験パッケージの変則立， .~J噸百 l'lñljの変更の終f後に開始される.

・コード変災，試験?I'lIfljの変受.t~:イ本試験パッケージの変廷はデザイン

が認可されていなくても開始できるが，コード~~在，単体試験パッケー

ジの変廷については，デザインが認可されていなければ終了できない.

.lji体試験は，コード変更.fii.体試験パッケージの変更の終了後1m始
され，試験の紡泉によってコード変更.1界体試験パッケージの変更がと

もに繰りi話される場合と，どちらかヅiが繰り返される場合の3通りが
考えられる.

.ljt体f，;~験が成功して終了した場合には，進捗状況管理I!が終γ可能と

なり全ステップが終了する.

5. P D Lによる記述

ペトリネットによる記述から.IJlI発過科記述言詑PDLへの変換を行
ない，動作の確認を行なった.

PDLは関数型'g-g詩であり，ツールの起動，ウインドウのオーブン・ク

ローズなどの捻作を行なうための必本関数を備えており，これらの関数

を組み合わせてソフトウェアプロセスを記述する.また. PDLインタ

ブリタによってその記述が尖行可能である.

ここでは，次のような変換を行なった(関4).

~'tl a のプレースの変換において， トークンは l偶ずつ処明ーするこ

とを仮定する.したがってフ・レースに入る矢印の本数は関数の記述には

関係しない.プレースから出ていく矢印の本数についてのか妓だけを考

えればよい.ここではメニュー関数を用いて人間が選択することにした

が，適おな状態遜移確率を与えて，自動的にシミュレートするような関

数に変吏することもできる.

凶，tlb.のトランジションの変換において，入力カミ複数ある場合には，

会ての前提条件をみたすかどうかを判定している.また，出力が複数あ

る場合には会ての処理が並:>illに笑行される.すなわち，トランジション

に 111例のプレースからの入力があり n俄のプレースへの出カがある場

図中の S.Tは，
システム状態を
示している

a. プレースの変換

:xJ
p(S) == menuむranch((["11ヘll(exec_p(S):ηJ.

["12". 12(T)].

["ln". tn(1)] J. T);

b トランジションの変換

3、 T _1

2¥¥./ 2

一一一一一… : ト¥s
I(S) == if condilionl & condilion2

&・・・&condilion m
lhcn pl(eXeC_l(S)・T)@ p2(T)
@. . .@ pn伺

else S;

?主14 ペトリネットから PDLへの変換

合には.m 1mの条件'r.u定がずiなわれ11ロiだけ n倒の関数カfsiT.:>iリに丈千iさ
れる. PDLでは@で結ぶことにより放列に実行することを示す.

これらの変換は汲もJι本的なものであり，前提・完了条件が常にみた
されることがわかっている場合や，分岐しないような場合には，もっと

筒賂化して!潟数を記述している.また，あるトランジションについて前

提条件がみたされでもすぐに発火する必姿がない場合には，待ち状態と

なる関数を加えて記述している.

このようにしてイ守成されたPDLの記述をPDLインタプリタでif(接
実行し，適切な動作が得られた.兵体的には，限1面上でプロセスの尖行
が持目安告されるとウインドウがr，flき，終了した場合には閉じる.また，選
択が必要な場合にはメニューが表示される.また，この記述をもとに各

ステップをより詳細に記述すれば，実際に開発支援を行なうことも可能

である.

6. おわりに

KellnNのソフトウェアプロセスモデリングのための例題の核問題につ

いてプロセスの間期に務自した記述を行なった.今後は，視点を変えて，

ソフトウェアプロセスの中で現れるプロダクトに着目した記述や，拡孫

問題の記述についても取り緩むことを考えている.

文献

(1) M arc KellnN: "Software Process Mooeling F.xample Prohlem";

I'rivatc :-Ioto， Angust， (1990)
(2)荻原潟IJ志，井上克郎pおfiii:ti次:“ソフトウェア開発を支援するツ日
jレ起動自動制御システム¥信学論(D-l)，J72-D-I， 10， pp.742-749

(平 1-10)

(3)稲問良造z荻原剣;fE，井上克郎守鳥股宏次.“ソフトウェア側発i量殺
の形式化とその詳細化による支援システムの作成-]SDを例と

してーへ信学識(D-I)， J72心 -1，12， pp.874-882 (平 1-12).

(4) Jan日sL. Peterson:“Petri N et Theory and t，he Modoling of Sys-

tems"， Prentice-Hall (1981).

