
Title コードクローンの複雑度メトリクスを用いた開発者の
特徴分析

Author(s) 東, 誠; 肥後, 芳樹; 早瀬, 康裕 他

Citation

Version Type VoR

URL https://hdl.handle.net/11094/50595

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



ードク民一ンの譲雑度メトワクスを罵いた

開発者の特徴分析

東 誠↑

松下

肥後芳樹f 早瀬康裕↑

誠↑井上克郎↑

ソフトウェアシステム内に存在する重複したコード片であるコードクローンは，単に取り除くので
はなく適切に管理する必婆がある.本研究では，コードクローンの管理を図的として，コードクロー
ンを編集した開発者に着Elしたコードクローンの編集{傾向分析を行う.異体的には，リポジトリに保
存されたソフトウェア編集今履歴から，コードクローンに対する変更そ取り出し，そのコードクローン
に対するメトリクス舷の変化を言j'J草する.そして，開発者によってメトリクス般の変化畿に差がある
かを分析する.提案する調王室方法を用いて，実際のソフトウェア開発腿E査を分析した結果，メトリク
スの変化は開発者ごとに差があることが分かつた.

Extracting Developers' Characteristics frorn 
Cornplexi匂TMetric Values on Code Clones 

MAKOTO HIGASHI，t YOSHIKI HIGO，t YASUHIRO HAYASE，t 
MAKOTO MATSUSHITAt and KATSURO INOUEt 

A duplicated cod巴会agmentin a software syst巴mis called code clone， or simply clone. Clones degrade 
software maintainability， but it is more practical 10 manage clones lhan to remove all of them. This paper 
proposes a method to analyze developers' tendencies to edit clones. At first， the snapshots of the source code 
of the target software system are checked out from its software repository. Then， clone metric values for each 
snapshot are computed. Next， differences of metric values between adjac巴ntsnapshots are calculated. Fi即
日ally，di汀'erencesof metric values are group巴dby developers and the developers are assessed statistically. 
Applying the method to an open software project shows that developers edit clones in di汀巴rentmann巴r.

1. はじめに
向とする)を調査する.各開発者は様々な役割や自的

に従って編集するため，それぞれの編集傾向は異なる

と考えられる.また，編集傾向によって各コードクロー

ンの複雑度の変化を予測できると考えられる.よって，

編集傾向を用いて，すべてのコードクローンの中から

将来複雑になって除去し難くなるものとそうでないも

のを産別できると考えられる.

ソフトウェアシステムの保守性を悪化させる鴎題の

っとして，ソフトウェアシステム内に移夜する重複し

とコード片(コードクローン)がある9) 例えば，ある

コード片に欠陥が存在する場合，そのコード片とコー

とクローンになっているコード片にも同様の修正そ検

せする必要があり，修正の労カを増大させるわ.

しかしすべてのコードクローンを除去することが

方果的なわけではない4) このため，すべてのコード

7ローンを取り除くのではなく，コードクローンを過

日に管理することが必要であるとされている4向.

そこで本研究では，コードクローン管理のための基

主として，各開発者の編集時に他の開発者に比べて

1ードクローンの複雑度に表れる特徴(以下，編集傾

↑大阪大学大学院l情報科学研究科

Graduate SchooJ of Information Science and TechnoJogy， Osaka 

University 

具体的には，版管理システムの 1つであるcvsJlに

管理されているリポジトリに保存されたソフトウェア

の編集履歴からコードクローンへの変更を取り出し，

そのコードクローンに対するメトリクス値の変化を計

算する.そして，開発者ごとにメトリクス値の変化に

差があるかを調資する.

以降，2重量では編集傾向の詳細な定義を述べる. 3 

芸者では手法の説明として，版管理システムからソフト

ウェアの編集履歴を取り出し，それを利用して開発者

の編集傾向の有無を検定する方法について述べる.4 

2きでは本手法を実際のソフトウェアに対して適用した

103 



104 ソフトウェアエンジニアリング最前線 2008

結果と，それに対する考察を述べる.最後に， 5 ~きで

本研究のまとめと今後の課題について述べる.

2. 編集領向の定義

本研究では，編集傾向を「ある開発者のソースコー

ドに対する編集作業の前後において，ソースコードに

含まれるコードクローンの謹雑度の変化に関する，他

の開発者と比べた傾向Jとして定義する.これは「複

雑度を大きくする傾向にあるJi複雑疫を小さくする

鰭出にあるJi傾向があるとはいえないJのいずれか

であり，それぞれ+，と表す.

本節では，編集傾向者E定義するために必要となる諸

定義について述べる.

2.1 クローン対応関係

編集によるコードクローンの複雑度の変化を取得す

るために，編集前後のソースファイル中で向じ位霞にあ

るコードクローンの対応関係を定義する.編集前後の

ソースファイルFt，F，トト1にそれぞれ存在するコードク

ローン Ct，Ct+lについて，以下の関係CR(Ct，Ct付)

が真である時 CtはCt付聞でクローン対応関係があ

るとする.

CS(F):ソースファイルFに存在するすべてのコー

ドクローンの集合

Sim(ca， Cb):コード片山A の類似度.詳細は後述

する

。(Cc，Cd， F) = (Sim(cc， Cd) > 0)八(VCαεCS(F)
Sim(cc，ca)三Sim(Cc， Cd)) 

CR(Ct， C.叫 1ぅFt，Ft+d O(Ct，Ct+l，Ft+l) V 
O(Ct+1，Ct，Ft) 

また.Ft，Ft+lにそれぞれ存在するコード片山，Cb 

の類似度Sim(ca，Cb)は以下のようにして求める.

まず.Ft，Ft+lをトークン9"1JPt. Pt+lに変換し，各
トークンに通し番号を振る.

次に.Pt，Pt+1にそれぞれ存在するトークンTc，Td 

がトークン列中で悶じ位置にあることを表す対応関係

TR(Tc，む)を求める.関係TR(Tc，1dlは以下の条件ー
をすべて満たす時に真とする.

Tc， Tdがそれぞれ，差分情報中の Pt.Pt十 1の変

更箇月ITに含まれていない

pt.pt十1中の各トークンの通し番号を対応付け

る5)と，Tc，むの通し番号が一致する

そして.TR(Tc， Td)の情報を用いて Sim(ca，Cblを

計算する.Sim(cα， Cb)は以下の式によって求められる.

TS(C):コード片C中に存在するすべてのトーク

ンの集合

Toぽair(ca，Cb):{(Cc， Cd) ITR(cc， Cd)ぅCcETS(ca)う

Cd εTS(Cb)} 
TokSum(Cc，Cd) =TokPair(cc，cd)の要素数

Sim(ca，Cb) =TokSum(ca，cb) X 2+(caのトーク

ン数十Cbのトークン数)

2.2 検定期データ

複雑度の変化と開発の相関を検定するために. F1持

発者を行，コードクローンの複雑さを表すメトリク

ス(以下，複雑度メトリクスとする)を列とする表を

検定用データとする.本研究では，複雑度メト 1)クス

をコードクローンの長さ (LEN).コードクローンの

トークンの種類数 (TKS) コードクローン中のルー

プの数 (LOOP).コードクローン中の条件分岐の数

(COND). LOOP十COND(McCabe) 2)とする.

行が開発者Aであり，子iJがメトリクス XであるJ+
Bの要素は，開発者Aが特定のソフトウェアのソース
コードに対して行ったすべての編集についてクローン

対応関係にあるコードクローンCt，Cμ1のメトリクス

Xの伎の差のうち，以下のいずれかの条件を渦ーたすも

ののリストとする.

CtとCt十1のメトリクス Xのイ践の差がOでない

開発者 Aが編集したファイルの変更差分と重複

する簡所に Ctが存在する

2.3 隠発者Aによるメトリクス Xの健の変化頻度

各メトリクス値と開発者の相関を表すために開発

者 Aの編集時に他の開発者と比べて表れることが多

いメトリクス Xの伎の変化を，開発者Aによるメト

リクスXの鑓の変化頻産として定義する.これは「大

きくなることが多いJi小さくなることが多いJi頻度

に有意差が見られないjのいずれかであり，それぞれ

十， .Nで表す.
検定用データ中でメトリクス Xの列に対し，開発

者Aが他の開発者と有意差がなければ開発者 Aによ

るメトリクス Xの{債の変化頻度そNとする.有意差

がある場合.Xの列の要素を開発者Aの群とそれ以

外の群に分け，各群の要素の!順位平均 Aa，Aγ を求め

る.Aα>Arなら開発者Aによるメトリクス Xの値
の変化頻度は+.そうでなければ とする.

2.4 開発者の編集傾向

開発者Aの編集傾向は，開発者Aによるすべての

複雑度メトリクスの{誌の変化頻度の中で.+が よ

り多い場合に+. が÷より多い場合に ，両者の

f回数が等しい場合に=とする.

3. 開発者ごとの嬬集傾向の調査手法

本節では，開発者ごとの編集傾向の調査手法につい

て述べる.調査手法の概要;;r僅 Iに示す.本手法は図



[論文]コードクローンの複雑度メトリクスを用いた関発者の特徴分析

(1) 
関琵者A 機琵者日

コミットトランザクション1 コミットトランザクション2

図 1 検定手法の織婆

Fig. J aostract 01' mcthod 10 lesl 

I十lにぷす(1)から (3)の3つのステップからなる.

ます¥(1)で'皮のコミット作業による}・群のファ

イルに対する変更(以下，コミットトランサクション

とする)の情報を抽出し，各コミットトランザクショ

ン前後の時点のソースコードからコードクローンを検

出する.次に.(2)で対応関係にあるコードクローン

から，検定用データを取得する.最後に. (3)で検定

府データを対象として検定する.

以降，各ステッブの詳細を説明する.

3.1 コミットトランザクション情報の抽出

まず，版管理システムのリポジトリに保存されてい

るソフトウェアの編集履歴から，コミットトランザク

ションの情報を抽出する(関 lのけ)).各コミットト

ランザクションには，編集されたファイルのパス名や

変更産分，編集後のリビジョン番号やファイルの状態，

およびコミットの日時やログ，開発者の情報が含まれ

る.また，コミットトランザクションはコミットの日

時が早い順に並べから順に通し怒号を張る.

そして，コミットトランザクション lの直前の時

点および各コミットトランザクションの直後の時点の

ソースコード(以下，スナップショットとする)を取得

し日時の早い順に通し漆号を撮る.その後，スナッフ。

ショット中のコードクローンを検出し，スナップショッ

トに存在するソースファイル障のクローン対応関係を

抽出する.

3.2 検定用データの取得

次に.3.1節で取得したすべてのコミットトランザ

クション中のクローン対応関係から，検定期データを

取得する(図 1の(2)).

鴎 lでは， ml発議 Aのコミットトランザクション
ではソースファイル Fα のコードクローンが編集され

ているため，メトリクス Xの値の差はすべて検定用

データの要素に含める.また，ソースファイルれの

コードクローンは編集されてないので，メトリクス X

の備の差のうち，十2だけを検定用データの要素に含

める.

」方，開発者Bのコミットトランザクションではす

べてのメトリクス Xの値の差がOだが，凡のコード

クローンは編集されているので，そのメトリクスXの

{伎の差は検定用データの要素に含める.

3.3 検定照データを対象とした検定

3.2節で取得した検定用データを対象として検定す

る(図 lの(3)).

検定用データの開発者 Aによる各メトリクスの{僚

の変化頻度を求めるため，まず¥各メトリクスを対象

として Kruskal机Tallis検定7)を用いる.これにより.1 

人以上の開発者が他の開発者と有意差があるかを調室長

する.

次に，手主意差があると判断されたメトリクスの列の

検定用データに対し，各開発者と他の開発者開の有意

差の有無を検定する，開発者AとメトリクスXに対す

るこの検定を行うには，メトリクスXのヂIJにある要素

を開発者Aの群とそれ以外の群に分け.Mann拘Whitney

のU検定8)(以下，単LこU検定とする)を行う.

4. ケーススタデ、イ

3 :!!きで説明した手If[買に従って.PostgreSQLの調

査を行った.PostgreSQLの CVSリポジトリから，

1997/0110 1 ~ 1999/06/30の2年半を半年間ずつに分

け，各期間中の編集燈肢を調査した.なお，各調査期

間は 1~5 の通し番号なつける. 2.1項のソースファイ

ルのトークンタj変換および3.1節のコードクローン検

出には CCFinderX2)を用いた.

各期間中の編集躍肢から得られた検定期データに対

l05 



106 ソフトウェアエンジニアリング、最前線 2008

し有意水準 59もでKruskal-WalIis検定を行った結泉を

表 Iに示す.

また， Kruskal-WaIIis検定によって有意差があると

判断されたメトリクスの検定期データに対し， 3.3節で

述べたU検定による方法を有意水準59もで用いて，各

開発者によるメトリクス値の変化を調べた結果を表2

に示す.

表2より，以下のことがわかる.

開発者 Gの編集傾向はすべての期間で+だが，

開発者Aの編集傾向は各期間で と=のいずれ

かである.これより，開発者G，開発者Aの編集

するコードクローンはそれぞれ複雑，簡単になる

{頃向があるといえる.

開発者B，開発者Eの編集傾向は期賠によって十

と の両方があり，正反対になっている.

これらの観察と，開発者が近傍のソースコードを連

続して編集することが多いことから，以下のような方

法でコードクローンを管理することが考えられる.

開発者G，開発者Aが最近編集した所の近傍にあ

るコードクローンは，それぞれ今後複雑，簡単に

表 1 Kruskal-Wallis検定の総菜

Tablc 1 The rcsult of Kruskal-Wallis lCSl 

湿盟
LEN 
TKS 
LOOP 
COND 
McCabe 

5
一
五
五
五
五
有

表 2 U検定の結果

Tablc 2 The resull of Mann-Whilney U Tesl 

ノ、 期間 LEN TKS LOOP COND McCabe 傾向

A ?ぜ N N N 
2 + N N N 
3 N N N N N 
4 N N N 
5 十 N N 

日 N mト

つ“ ?官 + N N N 」一

3 N N N N 
4 ωト N + + 
5 N N N N 

C N N N + ート
2 N ?ぜ ?、J N N 
3 ωト N N N N ωL也

4 ?ぜ N N ?ぜ
5 N + ?ぜ ?守

D mト N N N 
2 N N 」山岳 N 
3 N N 
4 N N 

5 N 十 + + + 
E 3 N ?マ ート + + 
4 N 司L N + ωト Jω 

5 N N 

F 4 ?ぜ N N N N ?ぜ
5 

G 4 ゆト N ?、; N N + 
5 ート + ート + + 

日 N N N N N 

I 3 N N N N N 

J 5 N 」一 N N ト; 」一

K 5 ?ミ N ?マ N N 

L 5 ?、J N 

なる可能性が高い.そのため，前者の除去は優先

し，後者の除去は後回しにすべきだと考えられる.

開発者Bや開発者Eは時期によって編集傾向が

異なっているため，今後も継続して編集傾向を識

資すべきだと考えられる.

5. まとめと今後の課題

本研究では，複雑度メトリクス値の変化を用いて，

コードクローンの編集傾向を調査した.その結泉，メ

トリクスの変化は開発者ごとに差があり，各開発者の

編集傾向によるコードクローン管理方法が提案できる

ことが分かつた.

今後の課題としては，他のメトリクス値を用いた編

集傾向の調査や，モジ、ュールや開発時期といった開発

者以外の要閣による影響の除外が挙げられる.

参考文献

1) BerIiner， B.: CVS II: Parallelizing Software Dev巴ト

oprnent， Proc. USENIX Winter 1990 Technical CO/ト

ference， pp. 341-352 (1990). 

2) Karniya， T.: CCFinder Official Site， available from 

<http://www.ccfinder.netl) (accessed 2008δ叩20).

3) Geiger， R.， Fluri， B.， Gall， H. C. and Pinzger， M.: 

Relation of code cIones and change couplings， ln 
Proc.お4.SE2006， pp. 411-425 (2006). 

4) Kaps巴r，C. and Godfrey， M. w.:“Cloning Con司
sidered Harrnful" Consider・edHarrnful， Proc. 13th 

恥 rkingConference on Reverse Engineering， pp. 19“ 

28 (2006) 

5) )11口実司，松下誠，井上克郎，飯田元:コード

クローン躍控閲覧環境を用いたクローン評価の試

み，情報処理学会研究報告， VoI. 2006， No. 125， 

pp. 49-56 (2006). 

6) Kirn， M. and Notkin， D.: Using a cIone genealogy 
extractor for und巴rstandingand supporting evolution 

of code cIon巴s，Proc. 2nd lnt. Workshop on Mining 

So.βware Repositories， pp. 17-21 (2005). 
7) Kruskal， W. H. and WaIIis， W. A.: Use of ranks 
in one-criterion v邑rianceanalysis， J.Am.Stat.Assoc.， 
Vol. 47， No. 260， pp. 583-621 (1952). 

8) Mann， H. B. and Whitney， D. R.: On a test of 

whether one of two randorn variables is stochasti-

cally larg巴rthan the other， Annals of Mathematical 

Statistics， VoI. 18， pp. 5ふ60(1947). 

9) Roy， C. K. and Cordy， J. R.: A Survey on Software 
Clone Detection Research， Technical Report 2007回

54] (2007). 




