
Title Software Product Line Adoption Process for
Legacy Embedded Control Systems

Author(s) Yoshimura, Kentaro

Citation 大阪大学, 2009, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/506

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Software Product Line Adoption Process for

Legacy Embedded Control Systems

Submitted to

Graduate School of Information Science and Technology

Osaka University

July 2009

Kentaro YOSHIMURA

ABSTRACT

The increasing functional requirements of embedded systems have led to an enormous

increase in software complexity and size. Key factors in successful software development

include short time to market, high product quality, and low development cost. More-

over, there are numerous software variations, since embedded control software is often

optimized for each product to improve its real-time performance.

Software Product Lines (SPL) is a software development approach with systematic

reuse throughout the development life cycle. The key idea of SPL is to exploit the reuse

potential of a product line based on reusable assets, which support both common and

variable product features in the product line. In recent years, much research has been

conducted on introducing SPL for embedded control systems. Many organizations have

reported success after SPL was adopted into their product lines. They have also, however,

found serious problems in adopting SPL for legacy embedded control systems.

One problem is the definition of a strategy for adopting SPL for legacy systems. To

adopt SPL, commonality and variability analysis must be conducted, and then platform

and variation points must be defined. Generally, existing products include hundreds of

functions specified in natural languages. Therefore, it takes a long time even for experts

on the product line to analyze the specifications.

This dissertation introduces a novel method to assess the commonality and variabil-

ity of existing systems introduced into a software product line. Refactoring an existing

i

ii ABSTRACT

implementation for future SPL is more reliable than introducing new SPL from scratch,

especially for safety-critical systems, like in the automotive domain. The proposed ap-

proach identifies code clones between different systems in order to assess the common-

ality and variability across two products. In assessing commonality and variability, we

classify code clones into four categories from the viewpoint of SPL variability. We also

apply hierarchical decomposition assessment of systems. By using the proposed method,

we can hierarchically assess the commonality and variability between existing systems

from the viewpoint of implementation. The method is examined through a case study on

engine management systems for vehicles.

Software componentization is also an issue to be solved. Some legacy software has

been used for more than a decade. Its architecture was designed when the software’s

size was very small and is not suitable for current software that is enormous and com-

plex. For effective reuse of software across product lines, a component-oriented software

architecture must be applied.

Hence, this dissertation presents a development method for software components in

embedded control systems. The development method integrates object-oriented software

development and model-based development. The key feature of this method is that a

wrapper wraps an automatically generated function, which is handled as an object, and

the wrapper is also automatically generated. A software tool was developed to generate

the wrapper from the automatically generated function. As a result, controller models can

be embedded efficiently as software components, without knowledge of object-oriented

design. The proposed development method was examined in terms of a control sub-

system of an engine management system.

Another problem is the complexity of dependency constraints across variable features.

Existing products include hundreds of “functionalities” and thousands of “features”. Even

if SPL is introduced, an effective configuration approach for variable features is required.

ABSTRACT iii

Therefore, a method is proposed to analyze crosscutting features in terms of logical

coupling of product release histories, for migration into SPL. Crosscutting features help

developers of large embedded systems to reduce the number of variable features. The

times for analysis and quantitative evaluation, however, are problems to be solved. This

dissertation focuses on the differences between existing products that can be extracted

from a product release history. The method applies precision and recall as metrics and de-

termines crosscutting feature candidates quantitatively and automatically. This proposed

method was also applied to engine management systems, and it successfully extracted

candidates with 97% precision and 31% recall.

The rest of the dissertation is organized as follows. In Chapter 2, we give an overview

of SPL and explain the problem of legacy embedded control systems.

In Chapter 3, we present the strategy for introducing SPL for legacy embedded control

systems. we first define inter-system code clones and then classify their variations. We

then show the results of a case study conducted with legacy automotive control systems.

Chapter 4 presents the development method for reusable software components. We

first define the software architecture of embedded control systems for SPL. Then, we

describe the model-based development process for software components, before giving

the results of a case study on the proposed method.

In Chapter 5, we describe the analysis method for crosscutting features. We first define

a product release history and then define logical coupling sets of variable features. Again,

we describe a case study on analyzing crosscutting features from existing products.

Chapter 6 gives the result of simulation experiments on introducing SPL for legacy

embedded control systems by using both the conventional approach and the proposed

approach, thus demonstrating the latter’s effectiveness.

Finally, Chapter 7 concludes the dissertation with a summary and directions for future

work.

L IST OF M AJOR PUBLICATIONS

(1) Kentaro Yoshimura, Taizo Miyazaki, Takanori Yokoyama, Toru Irie, and Shinya Fu-

jimoto, A development method for object-oriented automotive control software em-

bedded with automatically generated program from controller models,SAE World

Congress 2004: In-Vehicle Software Session, Document Number: 2004-01-09,

March 2004.

(2) Kentaro Yoshimura, Kohei Sakurai, Yuichiro Morita, Nobuyasu Kanekawa, Kenichi

Kurosawa, Yoshiaki Takahashi, Shigetoshi Sameshima, and Akitoshi Shimura, A

dependable and cost-effective vehicle control architecture for X-by-wire systems

based on autonomous decentralized concept, InSupplemental Volume of the 2005

International Conference on Dependable Systems and Networks (DSN-2005), pp.

130-138, June 2005.

(3) Kentaro Yoshimura, Taizo Miyazaki, and Takanori Yokoyama, A model-based de-

velopment method for object-oriented embedded control systems,IPSJ Journal,

vol. 46, no. 6, pp. 1436-1446, June 2005. (Japanese)

(4) Dharmalingam Ganesan, Dirk Muthig, and Kentaro Yoshimura, Predicting return-

on-investment for product line generations, InProceedings of the 10th International

Software Product Line Conference (SPLC 2006), pp. 13–22, August 2006.

(5) Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig, Defining a strategy

v

vi L IST OF M AJOR PUBLICATIONS

to introduce software product line using the existing embedded systems, InPro-

ceeding of the 6th ACM & IEEE International Conference on Embedded Software

(EMSOFT ’06), pp. 63–72, October 2006.

(6) Dharmalingam Ganesan, Dirk Muthig, Jens Knodel, and Kentaro Yoshimura, Dis-

covering organizational aspects from the source code history log during the product

line planning phase–A case study, InProceedings of the 13th Working Conference

on Reverse Engineering (WCRE 2006), pp. 211–220, October 2006.

(7) Kentaro Yoshimura, Dharmalingam Ganesan, and Dirk Muthig, A method to assess

commonality and variability of existing systems into a product line,IPSJ Journal,

vol. 48, no. 8, pp. 2482–2491, August 2007. (Japanese)

(8) Kentaro Yoshimura, Fumio Narisawa, Koji Hashimoto, and Tohru Kikuno, Factor

analysis based approach for detecting product line variability from change history,

In Proceedings of Working Conference on Mining Software Repositories (MSR ’08),

pp. 11-18, May 2008.

(9) Kentaro Yoshimura, Thomas Forster, Dirk Muthig, and Daniel Pech, Model-based

design of product line components in the automotive domain, InProceedings of the

12th International Software Product Line Conference (SPLC 2008), pp. 170-179,

September 2008.

(10) Kentaro Yoshimura, Fumio Narisawa, and Tohru Kikuno, A method to analyze

crosscutting features based on logical coupling sets of product release history,IPSJ

Journal(Submitted). (Japanese)

ACKNOWLEDGMENTS

During the course of this work, I have been fortunate to receive assistance from many

individuals. I would especially like to thank my supervisor Professor Tohru Kikuno for

his continuous support, encouragement, and guidance throughout this work.

I am also very grateful to the members of my thesis review committee, particularly

Professor Katsuto Inoue, Professor Shinji Kusumoto and Professor Takao Onoye for their

invaluable comments and helpful criticism of this thesis.

I would like to express my thanks to Associate Professor Kiyoshi Kiyokawa and As-

sistant Professor Yoshiki Higo for providing the valuable feedbacks, Associate Professor

Tatsuhiro Tsuchiya and Assistant Professor Osamu Mizuno for their assistance for com-

pleting this thesis.

I want to thank some members of Fraunhofer Institute of Experimental Software En-

gineering, namely Mr. Thomas Forster, Mr. Dharmaligam Ganesan, Dr. Dirk Muthig and

Mr. Daniel Pech for all the valuable discussions on the software product line engineering.

Some works I have engaged at Hitachi, Ltd. have been helpful in preparing this thesis.

I would like to express my thanks to Mr. Yasushi Fukunaga, Dr. Takashi Hotta, Dr. Koyo

Katsura, Mr. Shinobu Koizumi, Dr. Toshimichi Minowa, Mr. Mamoru Nemoto, Mr.

Takaomi Nishigaido, Dr. Toshiharu Nogi and Mr. Takashi Shiraishi for giving me the

opportunity of doing applied research in the interesting field of embedded software. I also

would like to acknowledge the guidance of Professor Takanori Yokoyama at Tokyo City

vii

viii ACKNOWLEDGMENTS

University who used to work at Hitachi, Ltd.

Thanks are also due to many colleagues in Hitachi Research Laboratory, especially

Dr. Masahiko Amano, Dr. Koji Hashimoto (currently George Mason University), Mr.

Tasuku Ishigooka, Dr. Nobuyasu Kanekawa, Mr. Taizo Miyazaki, Dr. Yuichiro Morita,

Mr. Fumio Narisawa, Mr. Kohei Sakurai and Mr. Kunihiko Tsunedomi for the fruit-

ful discussions on embedded control systems and for providing valuable feedbacks from

industrial perspectives.

CONTENTS ix

CONTENTS

Abstract . i

List of Major Publications . v

Acknowledgments . vii

1 Introduction 1

1.1 Background . 1

1.2 Main Results . 2

1.2.1 SPL Adoption Strategy . 2

1.2.2 Software Componentization . 4

1.2.3 Crosscutting Feature Extraction 5

1.3 Overview of the Dissertation . 6

2 Software Product Lines 7

2.1 Basic Concept of SPL . 7

2.2 Embedded Control Systems . 8

2.3 SPL Adoption for Legacy Systems . 9

2.3.1 Product life cycle model . 9

2.3.2 SPL Adoption . 10

3 SPL Adoption Strategy 13

3.1 Introduction . 13

x CONTENTS

3.2 Commonality and Variability Analysis 15

3.2.1 Concept of Proposed Method . 15

3.2.2 Hierarchical Mapping . 16

3.2.3 Inter-system Code Clone . 17

3.2.4 Clone Classification . 18

3.3 Case Study . 21

3.3.1 Overview . 21

3.3.2 Results . 22

3.3.3 Discussion . 28

3.4 Summary . 29

4 Software Componentization 31

4.1 Introduction . 31

4.2 Component Design for Embedded Software 33

4.2.1 Concept of Proposed Method . 33

4.2.2 Software Architecture . 37

4.2.3 Software Component Design . 39

4.2.4 Sub-Framework Design . 42

4.2.5 Development Process . 45

4.3 Case Study . 47

4.3.1 Overview . 47

4.3.2 Results . 48

4.3.3 Discussion . 48

4.4 Summary . 49

5 Crosscutting Feature Analysis 51

5.1 Introduction . 51

CONTENTS xi

5.2 Crosscutting Feature Analysis . 56

5.2.1 Concept of Proposed Method . 56

5.2.2 Product Release History . 57

5.2.3 Logical Coupling Sets . 61

5.3 Case Study . 67

5.3.1 Overview . 67

5.3.2 Results . 68

5.3.3 Discussion . 69

6 Evaluation of the Proposed Process 71

6.1 Introduction . 71

6.2 Cost Model . 72

6.2.1 Overview . 72

6.2.2 Conventional SPL Adoption Process 73

6.2.3 Proposed SPL Adoption Process 74

6.3 Experiments . 75

6.3.1 Conditions . 75

6.3.2 Results . 77

6.4 Summary . 79

7 Conclusion 81

7.1 Achievements . 81

7.2 Future Research . 83

Bibliography 85

SECTION 1.1 I NTRODUCTION 1

CHAPTER 1

I NTRODUCTION

1.1 Background

Embedded control systems are widely used in our society. They consist of microprocessor-

based controllers built into mechanical or electrical equipment. Examples include auto-

motive systems, train control systems, and flight control systems. Software is imple-

mented and executed in these systems.

The increasing functional requirements of embedded systems have led to an enormous

increase in software complexity and size. Key factors in successful software development

are short time to market, high product quality, and low development cost. Moreover, em-

bedded control software involves numerous software variations, since it is often optimized

for each product to improve its real-time performance.

Software product line (SPL) is a software development approach with systematic reuse

throughout the development lifecycle [5,7,22,29,37,39]. The key idea of SPL is to exploit

the reuse potential of a product line through reusable assets, which support both common

and variable features in the product line. In recent years, much research has focused on

introducing SPL for embedded control systems [27,31,33,34]. Many organizations have

2 I NTRODUCTION CHAPTER 1.

reported success adopting SPL into their product lines. They have also found serious

problems, however, in adopting SPL for legacy embedded control systems.

One problem is defining a strategy for adopting SPL for legacy systems. To adopt

SPL, commonality and variability analysis must be conducted, and then platform and

variation points must be defined. Generally, existing products include hundreds of func-

tions, which are specified in natural languages. Therefore, it takes a long time to analyze

the specifications, even for experts on the target product line.

Software componentization is also an issue to be solved. Some legacy software has

been used for more than a decade. The architecture was designed when the software’s size

was very small, and such architecture is not suitable for current software, which is large

and complex. For effective software reuse across a product line, a component-oriented

architecture must be applied.

Another problem is the complexity of dependency constraints across variable features.

Existing products can have hundreds of different functionalities and thousands of features.

Even if SPL is introduced, an effective configuration approach for variable features is

required.

Given these considerations, this dissertation addresses the problems of adopting SPL

for legacy embedded control systems.

1.2 Main Results

1.2.1 SPL Adoption Strategy

In this dissertation, I introduce a novel method to assess the commonality and variabil-

ity of existing systems introduced into a software product line. Refactoring an existing

implementation into a future SPL is more reliable than creating a new SPL from scratch,

especially for safety-critical systems like those in automotive domain.

SECTION 1.2 M AIN RESULTS 3

Research in SPL has mostly focused on constructing product line infrastructures and

activities by considering the requirements of future products: scoping, domain analysis,

architecture creation, and variability management [27,31,34]. On the other hand, existing

products contain much domain expertise and are reliable from an industry viewpoint.

Commonality and variability analysis for existing software is one of the most important

issues in defining a future product line while reusing existing software.

Kang et al. [16] proposed a method to adopt SPL for a legacy system through feature-

oriented analysis. This technique recovers the implemented architecture from the depen-

dencies of the system’s functions and then improves the architecture by using the analyzed

features. This approach, however, can only be applied to a single legacy system, yet even

legacy systems can consist of several existing products. Knodel et al. [17] and Arciniegas

et al. [1] proposed methods to compare an existing architecture to a reference architecture

for SPL, but their approaches analyze only the dependencies of the component interfaces.

Therefore, implemented source code cannot be migrated to an SPL.

In the approach introduced here, I identify code clones between different systems in

order to assess the commonality and variability across two products. In this assessment,

the code clones are classified into four categories from the viewpoint of SPL variability.

Higo et al. [14] and Kolb et al. [19] proposed methods to analyze code clones for refac-

toring a software system, but their methods can be applied only to code clones in a single

system. Balazinska [3] et al. proposed a method to classify code clones into several types

in order to refactor existing systems, but they applied this technique only for multiple

product versions, not for product variations in parallel. Clements et al. [8] and Krueger

et al. [21] presented approaches for improving software architecture by analyzing code

clones at variation points in a reference architecture. Their focuses, however, were on im-

proving SPL architecture, not on adopting SPL into an existing architecture. Yamamoto et

al. [40] introduced metrics to evaluate the similarity between different systems, but these

4 I NTRODUCTION CHAPTER 1.

metrics characterize only the system-level similarity.

In contrast, I apply hierarchical decomposition assessment of systems. By using this

method, we can hierarchically assess the commonality and variability between existing

systems, from the viewpoint of implementation. I also examine the method with a case

study on engine management systems for vehicles.

1.2.2 Software Componentization

Next, I present a development method for software components for embedded control

systems. This development method integrates object-oriented software development and

model-based development.

In general, software componentization is a prerequisite for adopting SPL [29]. Com-

ponent technology enables developers to package software as loosely coupled parts. There-

fore, object-oriented software development, which excels in the reuse of software compo-

nents, has been attracting attention in this domain [13].

In the field of control systems, model-based design is becoming more important. For

example, an automotive engine controller is designed in a domain-specific language with

a computer-aided design (CAD) tool, and the controller model is checked by simulation

on the CAD tool. C code can also be generated from the controller model. Recently, the

quality and efficiency of such code is reaching a level suitable for production [35], but

development methods have not been established for generating embedded code automat-

ically for production.

Methods for developing software components for embedded control systems by using

block diagrams have been presented [11, 30]. These methods extend block diagrams to

the design of objects on modeling tools. This requires not only software engineers but

also control engineers to understand object-oriented design.

In contrast, one feature of my development method is that an automatically gener-

SECTION 1.2 M AIN RESULTS 5

ated function, which is handled as an object, is contained in a wrapper, which is also

automatically generated. I describe software developed to generate the wrapper from the

automatically generated function. As a result, controller models can be efficiently em-

bedded as software components, without knowledge of object-oriented design. I examine

application of the proposed development method for a control sub-system of an engine

management system for vehicles.

1.2.3 Crosscutting Feature Extraction

Lastly, I propose a method to analyze crosscutting features in terms of logical coupling of

product release histories, for migration into SPL. Crosscutting features help developers of

large embedded systems to reduce the number of variable features. The analysis time and

quantitative evaluation of crosscutting features, however, are problems to be solved.

The concept of a logical coupling set has been applied for recovering software archi-

tecture [12] and guiding software changes [42] in the field of software maintenance. The

approaches, however, are limited to analyzing linear change history and cannot be applied

to software variations developed in parallel.

Loesch et al. [23] and Conejero et al. [9] proposed a method for reducing the number

of variable features by introducing the concept of crosscutting features. Their approaches

analyze SPL infrastructure, however, rather than legacy systems. Some embedded control

systems, such as automotive control systems, are safety critical. These systems require

dependability, and developers are thus eager to reuse legacy systems. Therefore, cross-

cutting features should be analyzed and extracted from product release histories.

Hence, I introduce a novel analysis method for crosscutting features, which uses the

product release history. I focus on the differences between existing products that can be

extracted from product release histories. This method also uses the precision and recall

as metrics and determines candidate features quantitatively and automatically. I have

6 I NTRODUCTION CHAPTER 1.

applied the proposed method to engine management systems and found that it successfully

extracted candidates with 97% precision and 31% recall.

1.3 Overview of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, I give an overview of

SPL and also explain the problems of adopting it for legacy embedded control systems.

In Chapter 3, I present the strategy for introducing SPL into such legacy systems. I

first define inter-system code clones and classify variations of the clone types. I then show

the results of a case study conducted with legacy automotive control systems.

In Chapter 4, I present the development method for reusable software components.

I first define a software architecture for embedded control systems with SPL, and then

describe a model-based development process for software components. Results are given

for a case study on developing software components with the proposed method.

Chapter 5 describes the analysis method for crosscutting features. I first define the

product release history, and then the logical coupling set of variable features. I also show

the results of a case study on analyzing crosscutting features of existing products.

Chapter 6 gives the results of a simulation of introducing SPL into legacy embedded

control systems, using both conventional approaches and the approach presented here,

demonstrating the effectiveness of the proposed methods.

Finally, in Chapter 7, I conclude this dissertation with a summary and directions for

future work.

SECTION 2.1 SOFTWARE PRODUCT L INES 7

CHAPTER 2

SOFTWARE PRODUCT L INES

2.1 Basic Concept of SPL

Software product line engineering is a paradigm for developing software systems by us-

ing platforms and customization. A software product line consists of a family of software

systems that have both some common functionalities and some variable features. A func-

tionality is an objective that a system should achieve, and a feature is a characteristic of

the system. The following is a definition of a software product line by Clements and

Northrop [7].

A software product lineis a set of software-intensive systems sharing a

common, managed set of features that satisfy the specific needs of a particular

market segment or mission and that are developed from a common set of core

assets in a prescribed way.

Commonalities are characteristics that are common to all possible products of a prod-

uct line. For example, an operating system (OS) can be a commonality when an organi-

zation decides to provide a solution for only one particular OS for a product line.

8 SOFTWARE PRODUCT L INES CHAPTER 2.

System
Controller(Embedded Control System)Actuator Sensor

Figure 2.1: Embedded control systems

Variabilities are characteristics that can vary from one product to another in a product

line. A variability represents a subset of all possible configurations of the product line.

Variabilities are referred from all kinds of development artifacts: requirements, architec-

ture, design, source code, and tests. Managing variabilities is a major goal of SPL.

2.2 Embedded Control Systems

In this dissertation, we define embedded control systems as microprocessor-based con-

trollers built into mechanical or electrical equipment. Figure 2.1 shows an example of

embedded control system. Examples of embedded control systems include automotive

components, train control systems and flight control systems.

The embedded software is implemented and executed in a microprocessor. The auto-

motive industry recognized that electronics and software developments would represent

90% of all new-vehicle innovations, with embedded software controlling a variety of me-

chanical functions. The increasing functional requirements of embedded control systems

have led to an enormous increase in software complexity and size.

SECTION 2.3 SPL ADOPTION FOR L EGACY SYSTEMS 9

Introduction

Sa
les

In
no

va
tio

n

Time

Growth Mature Decline

Product
Process

Pr
od

uc
t

One Variations Product Line Best Sellers

Figure 2.2: Product life cycle model

2.3 SPL Adoption for Legacy Systems

2.3.1 Product life cycle model

In general, a product life cycle goes through four phases, namely, the market introduction

stage, the growth stage, the mature stage, and the decline stage. Figure 2.2 shows an

overview of the product life cycle model [36].

The product life cycle starts from the introduction stage. The market is almost nonex-

istent, and sales volume is limited. At this stage, product innovation is essential for creat-

ing a new market. On the other hand, process innovation is less important, since there is

only one or a few product variations.

Next, the cycle moves to the growth stage. Sales volume increases significantly, and

profitability begins to rise. Competition begins and establishes the market players. Prod-

uct innovation is still important for achieving requirements from the new customers ac-

companying market extension. Process innovations like cost reduction begin because of

economies of scale. Product variations are introduced to satisfy the diverse requirements

10 SOFTWARE PRODUCT L INES CHAPTER 2.

of different customers.

Then the cycle goes to the mature stage. The sales volume peaks, and market satura-

tion is reached. Costs are lowered as a result of production volumes increasing. Brand

differentiation and feature diversification are emphasized to maintain market share. Prod-

uct innovation becomes less important, since the basic design has been standardized by de

facto market forces or an international standard. Product line infrastructure is introduced

to achieve process innovation in the mature stage.

Finally, the cycle enters the decline stage. Generally, product innovation based on an

emerging technology triggers this transition. The sales volume declines, prices drop, and

profit decreases.

2.3.2 SPL Adoption

Although SPL is an effective approach in the mature stage, the product life cycle must

first go through the introduction and growth stages. Especially in the growth stage, prod-

ucts evolve gradually to achieve the increasing requirements from new customers and to

compete with other players in the growing market. As a result, many product variations

have been developed as legacy systems when SPL is introduced.

Figure 2.3 shows a conceptual schematic of SPL adaption for legacy systems. First,

there are legacy systems developed during the growth stage of the product life cycle. The

SPL approach is introduced into the organization for these legacy systems. As a result

of SPL adoption, SPL core assets are set up. These core assets include feature models,

a reference architecture, reusable components, and so on. Then, the organization derives

new products by reusing the core assets, i.e., by binding variable features, resolving the

reference architecture, and implementing components for a specific product.

In this dissertation, we propose a novel SPL adoption process for legacy embedded

systems. Figure 2.4 shows an overview of the proposed process. Legacy systems are the

SECTION 2.3 SPL ADOPTION FOR L EGACY SYSTEMS 11

Legacy Systems

Product A Product B

Product a

A C E

B D

Reference Architecture

SPL Core Asset
ComponentsFeature ModelSystemFeature A Feature CFeature Feature Feature B Feature D Feature EFeature Feature FeatureFeature Feature Feature

Product b Product n…

SPL Adoption

Product Derivation

Product N

Figure 2.3: SPL adaption for legacy systems

12 SOFTWARE PRODUCT L INES CHAPTER 2.

Legacy
systems

A) Variability
analysis

B) Software
componenti-

zation
C) Crosscutting

feature
analysis

Product
releases

Crosscutting
features

SPL
adoption
strategy

Figure 2.4: Overview of the SPL adoption process

inputs of the process.

First, we present a method to analyze the commonality and variability of legacy sys-

tems in order to define an adoption strategy. Through the strategy, the organization defines

which parts of a system should be a platform for common requirements and which should

be reusable components for variable requirements. Product-specific components should

be also defined in order to match certain product-specific requirements.

Next, we describe a development method to componentize software, especially for

embedded control systems. This method integrates object-oriented software development

and automatic program generation from the domain-specific language of control systems.

Finally, we introduce a method to analyze crosscutting features in terms of logical

coupling of product release histories, for migration into SPL. Crosscutting features help

developers of large embedded systems to reduce the number of variable features.

SECTION 3.1 SPL ADOPTION STRATEGY 13

CHAPTER 3

SPL ADOPTION STRATEGY

3.1 Introduction

The goal of the SPL adoption strategy is to determine how to introduce SPL into a set

of existing embedded control systems. The basic approach in achieving the adaption

strategy is to compare the implementations of existing legacy systems and assess their

commonality and variability.

Variability analysis for existing systems must be automated. These systems consist

of an enormous amount of software. For example, automotive systems can have 100 MB

of software. Even a sub-system, like an engine management system, can have more than

500,000 lines of code. The specifications are also huge and consist of hundreds of pages.

Moreover, specification formats differ among car manufacturers and are written in natural

languages like English and Japanese. Automated variability analysis of specifications

is not practical, even at the state of the art. Therefore, source code analysis should be

automated for variability assessment.

In the domain of embedded control systems, reuse of legacy source code is essen-

tial, because safety-critical systems like automotive systems and flight control systems

14 SPL ADOPTION STRATEGY CHAPTER 3.

must have reliability. Reused software is considered more reliable than newly developed

software [4]. Therefore, SPL adoption should be based on variability analysis of legacy

source code.

In this chapter, we propose a method to analyze the commonality and variability of

existing systems for introduction into a product line. The proposed method hierarchically

analyzes the commonality and variability of legacy software and classifies the variability

according to code clone metrics.

First, we introduce an efficient analysis process for large-scale software variations.

The process applies a reference architecture for the product line and hierarchically an-

alyzes the variability among legacy products by referring to the reference architecture,

e.g., at the system level, sub-system level, and component level. Through such hierarchi-

cal analysis, the common parts and varying parts of the software are sorted in a systematic

way.

Next, we propose a metric to evaluate the similarity of code clones between existing

products. Code clone analysis is used here as an approach for finding the common por-

tions of source code, but previous approaches detect intra-system code clones to improve

the maintainability of a system. The metric proposed here is for inter-system code clones,

to evaluate the similarity between existing systems.

In addition, classification is required in order to understand whether code clone por-

tions have commonality or variability in the context of SPL. In adopting SPL, inter-system

code clone portions should be classified in terms of commonality or variability and refac-

tored to common sub-systems or variants. We thus introduce a classification for code

clones, which is based on the proposed metric and the interfaces of functions. This ap-

proach enables organizations to understand the potential for adopting SPL with legacy

software.

SECTION 3.2 COMMONALITY AND VARIABILITY ANALYSIS 15

ExpertExpert

Commonality/Variability Analysis
ExpertExpert

Scope of this chapter
ExpertExpert

(a) ArchitectureRecoveryProductRoadmap ReferenceArchitectureExistingSpecifications
ReengineeringPlan(b) Map SourceCode (c) AnalyzeInter-SystemClone Coverage (d) ClassifyCommonality (e) AssessCommonality/Variability

Figure 3.1: Overview of the commonality and variability assessment approach

3.2 Commonality and Variability Analysis

3.2.1 Concept of Proposed Method

An overview of the proposed approach is shown in 3.1. We assume that the target existing

systems consist of sets of functions implemented as source code and developed by a single

organization.

First, a reference architecture of the target systems is developed by domain experts.

The reference architecture is a core architecture that captures the high-level design for the

products of the product line and is commonly used by all products. The experts design

the reference architecture according to the specifications of the existing products and a

product roadmap that defines future products (3.1(a)). The experts must have technical

understanding of the products. At this step, the reference architecture does not yet include

variability.

Next, the commonality and variability of the legacy software are analyzed. This chap-

ter focuses on the steps involved in analyzing commonality and variability. The functions

of the legacy systems are mapped to sub-systems in the reference architecture, and sets of

functions are formed (step (b)). Then, the functions are analyzed and evaluated in terms

of a metric for inter-system code clones (step (c)). The functions are classified according

16 SPL ADOPTION STRATEGY CHAPTER 3.

System

Sub-System

Component

Commonality AnalysisReference ArchitectureHierarchic

System

Sub-System

Component

Commonality AnalysisReference ArchitectureHierarchic
Engine

Management
System

Control
ApplicationI/O Driver

Cruise
Control

Idle Speed
Control

Analyze
inter-systems

Analyze
I/O Driver

inter-Systems AnalyzeCruise Controlinter-Systems AnalyzeIdle Speed Cont.inter-Systems
Analyze

Control Appl.
inter-Systems

Figure 3.2: Commonality and variability analysis using decomposition hierarchy

to the metric into four types of code clones, as characterized from the viewpoint of SPL

(step (d)). Finally, the domain experts determine whether the software sub-systems are

common parts or variable parts, by referring to the distribution of the code clone classifi-

cations among the sub-systems (step (e)). If a sub-system consists of more finely grained

sub-systems, it can be decomposed and analyzed again at a lower level in the reference

architecture hierarchy.

The output of the proposed method is an SPL adoption strategy for the legacy systems.

This strategy includes the decision to adopt SPL, lists of the common parts and variable

parts of the reference architecture, and a reengineering plan for the legacy software.

3.2.2 Hierarchical Mapping

One goal of the proposed method is analysis of clone data from product A to product B.

In order to interpret the collected clone data and assess merge potential, we propose a

hierarchical clone analysis approach. Figure 3.2 shows an overview of this approach.

First, we assume that both products A and B have one monolithic sub-system, and we

analyze the clone classification. Next, we analyze the clone classification of each sub-

system from product A to product B, based on a reference. Then, we continue to analyze

SECTION 3.2 COMMONALITY AND VARIABILITY ANALYSIS 17

Function J
System X

Function K
System Y

Length of
code in
system Y

Length of
clone code
between
systems X, Y

Inter-system
clone pair

Figure 3.3: Inter-system code clone pair

the sub-sub-systems within a sub-system. In short, this clone analysis for merge potential

assessment is carried out at different levels of abstraction by using the decomposition

hierarchy shown in Figure 3.2.

3.2.3 Inter-system Code Clone

We first define code clones and clone coverage before explaining the details behind clone

analysis to assess the merge potential of software product variants.

In the field of code clone analysis, there are different definitions of code clone [20].

In this approach, we define a code clone as an exact copy without modifications.

Generally, a code clone means a code fragment that is similar or identical to another

code fragment [2]. Figure 3.3 shows an inter-system clone pair. Two code fragments

form a clone pair if their program text is similar. In the proposed approach, we restrict

this to clones of functions, that is, clones from a function in product A to a function in

product B. The main reason for this restriction is that later, in order to resolve clones, we

can replace existing cloned functions with generic functions that can be instantiated for

each product. A commercial tool called CloneFinder [32] is used to find cloned functions.

18 SPL ADOPTION STRATEGY CHAPTER 3.

CloneFinder can find clones that are either an exact copy from one product to another or

a copy with some modifications (e.g., a renamed function). This tool does not, however,

classify clones into the different types defined below. Hence, we wrote some wrappers

around the tool to extract the different types of clones. It is worth clarifying that the level

of granularity for reuse is not at the function level, but at the sub-system level. Using the

clone coverage metric, we measure the commonality level among sub-systems of existing

products.

Clone coverage means the similarity of two sub-systems in two different products. J

and K are two sub-systems and K have branched from J. Then the clone coverage in K

from J is defined as follows:

CloneCoverage(J,K)

=
Lines of Cloned Code from J to K

Lines of Code in J

If CloneCoverage(J, K) is near 100%, then nearly all the lines of code in K are cloned

from J, while if it is near 0%, then there is hardly any code similar to that in J. This clone

coverage metric can be applied at any level of abstraction. That is, we can compute clone

coverage from one product to another product, and then to the next level of the product

decomposition hierarchy. From this point on, the number of lines of code (LOC) in a sub-

system is defined as the sum of the numbers of non-commented lines in each function

within the sub-system.

3.2.4 Clone Classification

To facilitate merge potential assessment, we propose classifying clones from product A

to product B into the following different types. Note that we do not discuss clones within

product A or product B but only consider analysis of clones from A to B.

SECTION 3.2 COMMONALITY AND VARIABILITY ANALYSIS 19

int foo(int j){
if(j<0)
return j;

else
return j++;

}

int foo(int j){
if(j<0)

return j;
else

return j++;
}

System X System Y

Figure 3.4: Example of a type 1 clone

int foo(int j){
if(j<0)
return j;

else
return j++;

}

int foo(int j){
if(j<=0 && j>=-5)

return j;
else

return j++;
}

System X System Y

Figure 3.5: Example of a type 2 clone

Also note that we define the clone classifications for variability analysis, different

from the types of clones classified by Koschke in a survey of software clones [20].

Type 1: Exact interface and implementation copy from product A to product B (Figure

3.4).

Type 2: Interface copy, but the implementation differ to satisfy product-specific require-

ments (Figure 3.5).

Type 3: Only the interface is copied, but the implementation differs sufficiently that

common sense regards it as different code (Figure 3.6). The difference between

type 2 and type 3 clones lies in the choice of the threshold for the clone coverage

rate. The type 3 clone is introduced especially to identify variable parts in imple-

mentations.

Type 4: The interface is renamed, but the implementation is cloned (Figure 3.7).

20 SPL ADOPTION STRATEGY CHAPTER 3.

int foo(int j){
if(j<0)
return j;

else
return j++;

}

int foo(int j){
return j--;

}

System X System Y

Figure 3.6: Example of a type 3 clone

int foo(int j){
if(j<0)
return j;

else
return j++;

}

int bar(int j){
if(j<0)
return j;

else
return j+2;

}

System X System Y

Figure 3.7: Example of a type 4 clone

Note that the above four types account for all possible function clones. The motivation

for classifying clones into types 1, 2, and 3 was to quickly understand and identify the

common and variable parts in the implementations of products A and B. Type 4 was

defined for cases in which programmers rename interfaces but clone implementations

from one product to another. To merge existing systems, we need to increase the number

of type 1 clones, reduce the number of type 2 clones, keep type 3 clones only if a product

needs the same interface but a different implementation, and modify type 4 clones to type

1. Figure 3.8 shows an example of the distribution of code clones of the four types.

SECTION 3.3 CASE STUDY 21

System Y

Function L Function M

Set of functions (System, sub systems or components)

Function K

…

Type 2
clone function

Type 1
clone function

Type 3
clone function

Total LOC of the
functions in the
set

LOC of Type 1
functions

LOC of Type 2
functions

LOC of Type 3
functions

LOC of Type 4
functions

LOC of non-clone
functions

0%

20%

40%

60%

80%

100%

0%

20%

40%

60%

80%

100%

Clone distribution
of the set

Figure 3.8: Example of clone distribution

3.3 Case Study

3.3.1 Overview

In this section, we apply the proposed process through a case study to assess the merge po-

tential of two automotive products, specifically, two engine management systems (EMSs),

for customers A and B. The current products were derived from an initial version, and

different groups were formed to address the needs of the global market. Although these

products share a common conceptual architecture, their implementation and maintenance

are controlled by different groups. Hence, it was a wise decision to develop a merge

strategy before introducing a product line.

To assess the merge potential of the EMS products, we use the software architecture

as a reference point. The target EMS products are assumed to share the architecture

shown in Figure 3.9 [10]. A sub-system in product A is compared with the same sub-

system in product B, and the merge potential is assessed. To support this assessment, the

product level is analyzed. Next, the sub-system and sub-sub-system level commonalities

22 SPL ADOPTION STRATEGY CHAPTER 3.

Application Layer

Hardware Abstraction Layer

Peripheral Abstraction Layer

Micro Controller Abstraction Layer Co
mp

lex
 I/
O

Application Sensor & Actuator

System

Memory Communication

Processor I/O

:Layer
:Components

Figure 3.9: Reference architecture for the case study

are analyzed. At this point, a merge strategy can be developed for each sub-sub-system.

Finally, we discuss the results of the clone analysis from the domain viewpoint, in terms

of the proposed method.

In this case study, if the clone coverage rate of function f for product B from product

A is less than 20%, we consider function f to be a type 3 clone.

3.3.2 Results

Clone Coverage: System View

Figure 3.10 shows the distribution of clone coverage at the system level. In the case of

the analyzed EMS products, the lines of code for type 1 clones in product B from A

cover around 9% of all function code in B. On the other hand, type 2 clones in product

B from A cover around 19% of all function code in B. Ultimately, we would like to

reduce the number of type 2 clones by separating common and variable parts, thereby

reducing code duplication and introducing systematic reuse. Type 3 clones also exist in

SECTION 3.3 CASE STUDY 23

0% 20% 40% 60% 80% 100%

Type 1
Type 2
Type 3
Type 4
Non Clone

Figure 3.10: Clone distribution at the system level

these products, in this case, for two reasons: (a) certain portions of the EMS products

were implemented by different groups, but the interface was reused from the initial root

version; and (b) implementation of product-specific functionality was needed, but with the

same interface for both products. For product line migration, to avoid code duplication,

type 3 clones should be kept only if products require different implementations with the

same interface. There are very few type 4 clones, which means that programmers have

not changed function names from product A to B. For product B, 55% of the function

code was not cloned at all. That is, 55% of the function code in product B has a different

implementation than in product A.

We can observe from Figure 3.10 that the type 1 and type 2 clone coverage from

product A to B is around 28%. This result confirms that parts of the EMS products can be

merged and other parts cannot be merged. To understand this issue more clearly, we use

the hierarchical clone coverage view introduced earlier. The next step is to analyze which

sub-systems of the architecture are implemented in a different style in each product, and

which sub-systems have high clone coverage from product A to B.

Clone Coverage: Sub-System View

we previously showed the system view of the clone coverage from product A to product B.

This view is at a high level of abstraction and is only useful for understanding the merge

24 SPL ADOPTION STRATEGY CHAPTER 3.

0% 20% 40% 60% 80% 100%

SystemCommunicationSensor & ActuatorApplicationMemoryComplex I/O Type 1Type 2Type 3Type 4Non Clone
Figure 3.11: Clone distribution at the sub-system level

potential from the system level. That is, Figure 3.10 does not contain any information

about the architectural sub-systems of the EMS products. Ideally, we would like to know

the clone coverage for each sub-system so that the sub-system merge potential can be

assessed. The difficulty with this, however, lies in the abstraction level: architectural sub-

systems are not directly visible in source code, but the clone detection results are always

at the code level and not at the sub-system level.

To solve this problem, we use mappings. That is, we map the abstract sub-systems

to source code for both products from the domain viewpoint. For example, as shown

in Figure 3.9, the reference architecture indicates that every file under the IODriver di-

rectory belongs to the IODriver sub-system. This mapping can be applied to lift the

collected clone data to the sub-system level. Note that this reference architecture is based

on AUTOSAR (Automotive Open System Architecture) [10].

Figure 3.11 shows the clone coverage for all sub-systems from product A to product B.

Using this view and the domain knowledge of the architect, we can reason about the clone

coverage for each EMS sub-system. Hence, we present the analysis of clone coverage at

the sub-system level for all sub-systems of the EMS products.

The Memory Service, Sensor Actuator, and Communication Driver sub-systems im-

plement product-specific functionalities, resulting in low type 1 clone coverage (below

SECTION 3.3 CASE STUDY 25

15%).

The Memory Service sub-system has type 1 clone coverage of around 5%, because

it implements a functionality related to flash memory operations, which are mainly sup-

plier dependent. As a result, the implementation of Memory Service in product A is

significantly different from that in product B. Also, around 50% of the Memory Service

sub-system code consists of type 3 clones. This is because for both products, the external

interfaces of Memory Service are the same, and hence, the interface was reused from the

initial root version of the EMS.

For the Complex I/O Driver sub-system, the type 1 clone coverage is around 25%.

This matches expectations, because this sub-system is “complex” and the developers tried

to maintain commonality. Note, however, that the type 2 clone coverage is around 35%.

We plan to work on resolving type 2 clones in the future.

The System Service sub-system implements system-level service routines and hence

is mostly product specific. We can see from the clone coverage view that around 80% of

System Service code is not clones.

There are also some unexpected surprises in the clone coverage results. For example,

the Application sub-system has type 1 clone coverage of only 5%, whereas we expected

around 30% to 40%. From the domain viewpoint, the Application sub-systems in both

products contain common domain concepts, but the clone coverage metric does not show

high commonality. The reason for this difference can be understood by analyzing the

clone coverage for all sub-sub-systems within the Application sub-system.

Clone Coverage: Component View

Figure 3.12 shows the clone coverage for components in the Application sub-system. The

figure thus indicates the clone distribution for the nine components in the sub-system.

At this point, we can proceed to develop a merge strategy for software components,

26 SPL ADOPTION STRATEGY CHAPTER 3.

0% 20% 40% 60% 80% 100%

Learning
Correction Algorithm

Lambda_Control
Torque_Control

Gas_Ignition_Control
Cruise_Control

Misfire_Detection
Idle_Speed_Control
Catalyst_Diagnosis Type 1Type 2Type 3Type 4Non Clone

Figure 3.12: Clone distribution at the component level

according to these assessment results.

Reengineering Plan for Components

The Engine Gas Injection Control is a traditional component with stable requirements for

engine control systems, but it also has differences or variations from one car model to

another model. Nevertheless, this component should be merged and transformed into a

generic component, with variation points. In Figure 3.12 we can notice that the type 1

and type 2 clone coverage for the Engine Gas Injection Control component are low: at

least 50% was expected from the domain viewpoint. In this case, the merge plan is to

transform the Engine Gas Injection Control component from the latest version, which is

product A, into a generic component with variation points, which can be instantiated for

product B and other future products.

Similarly, the requirements of the Idle Speed Control component are stable for engine

control systems. The type 1 and type 2 clone coverage for this component from product

A to product B is around 50%, which already indicates that this component can be trans-

formed into a generic component. Here, the strategy is to merge this component from

SECTION 3.3 CASE STUDY 27

product A and product B by first separating the common and variable parts from both

implementations.

The functionality of the Torque Base Control component shares significant common-

alities between products A and B. The clone coverage, however, is low (around 80%

non-clone) because the root version of the EMS did not contain this component, and later,

it was implemented in different styles by developers belonging to different groups. To

merge this component, it is not rational to compare code because there is much more

code difference than there is functionality difference. Therefore, the merge strategy is the

same as for the Engine Gas Injection Control component.

The Cruise Control component has no type 1 clones and around 60% non-clone lines

of code. The Cruise Control is an unstable component and not traditional with respect to

engine control software; rather, it belongs to the vehicle control domain. Therefore, it is

not a priority to merge the implementations of this component into a generic component.

For the Misfire Detection component, the type 3 clone coverage is around 35%. This

means that the same application framework is used in both products A and B, but the

implementations are different for specific customers. In this case, only the application

framework will be integrated. The implementations of these components will not be

merged into generic reusable components.

The Learning component does not have any clones from product A to B, because

the learning behavior is different from one car model to another. Hence, this component

also is not a candidate for merging into generic reusable components. In this case, the

variability at the component level will be maintained (i.e., different learning components

will be selected for different car models).

In summary, then, the merge strategy is to transform the Idle Speed Control, Torque

Base Control, and Engine Gas Injection Control components into generic reusable com-

ponents for the EMS products.

28 SPL ADOPTION STRATEGY CHAPTER 3.

3.3.3 Discussion

We have shown that for the two EMS products, the type 1 and type 2 clone coverage from

product A to product B was only 28%. Although these products have a significant degree

of commonality, the clone coverage does not reflect the domain view. As mentioned

earlier, products A and B have a common origin but started evolving separately to address

different market segments. In addition, these products are controlled by developers who

belong to different groups.

The clone analysis was performed on the two latest versions of products A and B,

and analysis of the evolution history was not in the scope of the project for organizational

reasons. We performed some additional analysis to understand the reasons for low clone

coverage and found two characteristics with respect to product A: (a) around 30% of

product A’s code was generated automatically through model-driven development, and (b)

some portion of the existing assembly code in product A was migrated to the C language.

These two activities were not performed for product B. As a result, the code textually

differs between products A and B, resulting in low clone coverage.

Another reason for the low clone coverage from product A to B is the nature of the

EMS domain itself. An EMS is a mixture of multiple mechanical, electronic hardware,

and software components. There are also market-specific regulations; for example, emis-

sion rules differ among Japan, Europe, and the United States. To handle all these issues,

developers in different groups have tended to change existing code in various ways, and

when more and more requirements have to be handled in a sequence of releases, the code

commonality among similar products of the same origin tends to shrink.

Finally, we disscuss the validity of the case study. In this case study, we have applied

the proposed method to products in one domain, and the products are developed by same

organization, because one organization such as a company or a business division develops

several products for a domain in general. The proposed approach does not depend on the

SECTION 3.4 SUMMARY 29

clone analysis tool, since we employ the general definition of “code clone” and most of

clone analysis tool can extract this type of code clone. We assume that two products

have same roots. In the case of two products are developed independently, the proposed

approach is not applicable.

3.4 Summary

In this chapter, we have proposed an approach to assess the potential to merge existing

systems into a product line. In order to adopt SPL for legacy embedded control systems,

the adoption strategy must be planned through variability analysis of the implemented

source code of different products.

Code clones between different systems are identified to assess the commonality and

variability across products. In assessing commonality and variability, code clones are

classified into four categories from the viewpoint of SPL variability. We also apply a hi-

erarchical decomposition assessment of systems. With this method, we can hierarchically

assess the commonality and variability between existing systems from the viewpoint of

implementation.

We have also examine the proposed method in the context of a case study of engine

management systems for vehicles, leading to an adoption strategy for the product line. In

the case study, two legacy systems were analyzed hierarchically and sorted into common

parts and variable parts. As a result, a reengineering plan was successfully derived.

SECTION 4.1 SOFTWARE COMPONENTIZATION 31

CHAPTER 4

SOFTWARE COMPONENTIZATION

4.1 Introduction

In adopting SPL for legacy embedded control systems, software must be implemented

as reusable software components. In this chapter, we describe a method to develop em-

bedded control software that integrates object-oriented software development and model-

based software development with automatic program generation.

In general, embedded control software is developed in two phases. The first is the con-

trol design phase, in which control engineers design specifications (control algorithms) for

the software. The second is the software development phase, in which software engineers

implement software according to the specifications.

Conventionally, specifications are described in natural language during the control de-

sign phase, and the software engineers program according to the specifications. Specifica-

tions written in natural language, however, are often vague and missing details. Therefore,

it is not an easy task for software engineers to implement the control software designed by

the control engineers during the control design phase. Moreover, the software engineers

cannot reuse the implementation for a specific product.

32 SOFTWARE COMPONENTIZATION CHAPTER 4.

In the field of control design, model-based design is becoming practical. For example,

an engine controller model can be designed with a domain-specific language (DSL) tool,

and the model is then verified through simulation on the DSL tool. Since the controller

model is written as a formal model, model-based design helps developers to avoid mis-

understanding between the control engineers and the software engineers. C code can also

be generated from a controller model. Recently, the quality and efficiency of such code

has reached a level suitable for production [35].

There are still issues, however, in applying model-based development for industrial

production. Automatically generated code is not structured for implementing an embed-

ded control system and not componentized for reuse across a product line. Therefore,

model-based development is mainly applied for prototyping, not for production.

On the other hand, object-oriented modeling, which improves the reusability of soft-

ware components, has also attracted attention [13]. Controller models, however, are de-

signed with domain-specific languages, such as block diagrams for classical control the-

ory and ladder logic for programmable logic controllers, so the object-oriented approach

has not been applied for model-based designs for controllers.

The objective of our research is to formulate a development method that integrates

object-oriented software design and model-based control design. This chapter describes a

way to develop object-oriented embedded control software generated automatically from

controller models.

We first propose a software architecture for embedded control systems. We define the

granularity of a component as a state variable of a controller. Since a state variable is an

element of a dynamical system, we can map a state variable to a software component that

is an element of a software architecture. Then, we introduce an application framework in

order to integrate components as a control system. Through this approach, a controller

model designed using a domain-specific language for control theory can be transformed

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 33

to a software architecture designed by the object-oriented approach.

Second, we introduce a method to implement an automatically generated function as

an encapsulated software component. A function for calculating a state variable is auto-

matically generated from the controller model, and the function is wrapped by a wrapper

interface for encapsulation as a component. The wrapper has update and get functions.

Finally, we have developed tools for generating the above framework and wrappers.

Previous tools can generate a function for calculating a state variable from a controller

model. To improve development efficiency, we should also automatically generate the

framework and the wrapper for a function. The framework tool extracts the calculation

order of state variables and generates the application framework. The wrapper tools ana-

lyzes a generated function and generates a wrapper for it. In the proposed approach, most

application software can be automatically generated.

The rest of this chaper is organized as follows. In Section 4.2, we present the method

to develop embedded control software as a set of reusable components. In Section 4.3, we

examine the proposed method in the context of a a case study of an automotive system.

4.2 Component Design for Embedded Software

4.2.1 Concept of Proposed Method

Control Design Phase

In general, an embedded controller includes several control functions, so control engi-

neers design controller models separately for the control functions. A controller model is

designed using a DSL tool for control theory and for simulation of the model’s behavior.

In Figure 4.1, the block shows a calculation, and the arrows show the direction of data

flow. This example shows calculations for the target engine torque and the target throttle

34 SOFTWARE COMPONENTIZATION CHAPTER 4.

Target
Torque
Calculation

Throttle
Opening
Calculation

Target
TorqueAccelerator

Opening

Engine
Status

Throttle
Opening

Engine
Revolution

Figure 4.1: Example of block diagram

opening. The details of the calculations are described inside each block. The engine

revolution, engine status, and throttle opening are input values, which are calculated by

other control functions. Control is achieving by executing the control logic periodically,

as described by the controller model.

A controller model is represented hierarchically so that control engineers can under-

stand the control algorithm. In Figure 4.1, the detailed control algorithm for the target

torque calculation is represented by the block diagram in the lower level of the hierar-

chy. The aims of hierarchical decomposition are to establish a common understanding for

control engineers and to encapsulate controller models for reusable components.

Here, we introduce a data-centered method to decompose a controller model. In other

words, we choose the controller system’s state variables as the granularity of the com-

ponents, such as the input/output values, system’s observed state variable, and the target

values of the system. These data are rarely deleted or added when the control logic is

changed. Therefore, we can build a stable structure of components and modify the con-

trol logic by exchanging them.

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 35

Application FrameworkControl ASub-framework Control BSub-framework Control NSub-framework
…ExecTask Exec Exec

Sampling Period:T

Figure 4.2: Structure of application software

Software Development Phase

In the software development phase, a software engineer implements the software compo-

nents and application framework according to the controller model designed in the control

design phase.

We use the concept of an “application framework” for constructing the control soft-

ware architecture. An application framework is a standard pattern of objects to implement

the functions of an application [15]. Our research group has proposed a model of time-

triggered, object-oriented software for embedded control systems [26,41]. The framework

presented in this chapter is based on this model.

Figure 4.2 shows a basic example of an application framework. A control function

is a combination of control sub-systems that defines a detailed functionality. As the fig-

ure shows, a framework consists of several “sub-frameworks”, and each sub-framework

defines a control function in detail.

A sub-framework defines a composition of software components for a control func-

tion. We decompose a control function into software components according to the hierar-

chical decomposition of the controller model. The aim of the decomposition is to improve

36 SOFTWARE COMPONENTIZATION CHAPTER 4.

Argument a Equation 1
Equation3 Equation4

Equation 2
Argument b Intermediate variable

State variableVariable B
Variable C

Function component Global variables

Figure 4.3: Conventional software component

the reusability and exchangeability of the software components.

The application software is usually decomposed into components by focusing on func-

tionality from the viewpoint of control design. This is why several items of data process-

ing and variables are combined in a component, as shown in Figure 4.3. The decomposi-

tion into control functionality is one reason why control software is complicated and not

especially reusable.

In contrast, we propose a data-centered method to build an application from reusable

components. As shown in Figure 4.4, a state variable of the control system is decomposed,

and a component is defined in order to calculate and store the variable. Intermediate

variables for calculating the state variable are encapsulated in the component, since they

are often added and deleted in modifying a control algorithm.

In this approach, we can reuse an application framework for several products in a

product line by exchanging software components. Moreover, we can seamlessly map

the controller model to the software architecture, since we define the granularity of the

software components as the state variables of the control systems.

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 37

Equation3 Equation4
State variable A

State variable C
State variable BEquation1 Equation2State variable component A

Intermediatevariable a
State variable component B

State variable component C
Figure 4.4: Proposed software component

4.2.2 Software Architecture

In the following sections, we describe our method with the example of an automotive

engine control system. Figure 4.5 shows the software architecture for this example. The

software consists of application software and platform software.

The platform software consists of a real-time OS and an input/output driver. We have

adapted OSEK-OS [28] for the real-time OS, since it is one of the de facto standards for

automotive systems. To enhance the portability of the application software, the interface

of the I/O driver is independent of the hardware.

The application framework has periodic tasks (e.g., 10 ms, 4 ms) and event-triggered

tasks (e.g., engine synchronous task). Control functions are implemented as sub-framework

and executed from the tasks.

Figure 4.5 thus outlines the behavior of the proposed system. First, the real-time OS

activates a periodic task when a timer interrupt occurs (e.g., 10 ms). At the beginning,

38 SOFTWARE COMPONENTIZATION CHAPTER 4.

10[ms] periodic task
4[ms] periodic task

Hardware

ActivateTask Input/Output Driver Platform
software

Application
Software

Software

StatusObserverSub-framework ThrottleControllerSub-framework CorrectionSub-framework
Status Observer

Exec()

…

Update (Input)Exec Update (Output)Get_EngineRevolution()
Real-time OS (OSek)

Task Exec ExecCorrection

Exec()

Engine syncronous task

TargetTorque

TargetTorque

Update()
Get()

ThrottleOpening

ThrottleOpening

Update()
Get()

ThrottleController

Exec()

Figure 4.5: Example of proposed software architecture

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 39

the task requests the input driver to measure the external input data. Next, the task calls

the “Exec()” methods of the sub-framework controller objects in this order: “Status Ob-

server”, “Throttle Controller”,… , “Compensation”. Each sub-framework object calls

the “Update()” methods of software components. Each software component then refers

to input data, which are attributes of the other software components and external input

data. The software components calculate and update their attributes. At the end, the task

requests the output driver to control an actuator.

4.2.3 Software Component Design

Software components are written in the C language, which is not an object-oriented lan-

guage, for efficiency of implementation size [25]. In this subsection, we describe the

proposed software component design with an example of the component shown in Figure

4.6. This is a software component for the state variable TargetTorque. The TargetTorque

component thus has an attribute “TargetTorque” to store the variable, a method “Update()”

to calculate the variable, and a method “Get()” to access the variable.

A method for calculating the attributes of a software component is automatically gen-

erated as a C function by commercial code generation software [35], from the block di-

agram models of the DSL tool. The calculation methods are generated as functions with

the syntax “Variable Calculate()”. Input values are assigned as arguments of the C func-

tion. The output value’s address is assigned the argument pointer of the C function. In the

example of Figure 4.6, a C function “TargetTorque Calculate()” is generated.

To implement automatically generated functions as software components, we use

wrappers. Each wrapper corresponds to a function. A wrapper declares a public attribute

of the corresponding component and defines the data update and data access methods.

40 SOFTWARE COMPONENTIZATION CHAPTER 4.

BYTE TargetTorque;

void TargetTorque_Update(void)
{

TargetTorque_Calculate
(

AcceleratorOpening_Get(),
EngineStatus_Get(),
*TargetTorque

);
}

#define TargetTorque_Get() (TargetTorque)

TargetTorqueTargetTorqueUpdate()Get()

void TargetTorque_Calculate
(

BYTE AcceleratorOpening,
BYTE EngineStatus,
*TargetTorque

)
{

…
}

Generatedcode WrapperObjectGeneratedcode WrapperObject=

Figure 4.6: Example of a component

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 41

Declaring an attribute

Each wrapper declares a public attribute (data) of a component to store the result of a

calculation. The attribute is a variable with the name of the value. In the example of

Figure 4.6, an attribute “TargetTorque” is declared by the wrapper.

Data update method

The data update method executes a calculation for the attribute of a component. The

data update method is a function named “VariableUpdate()”. This method gets input

argument(s) from automatically generated functions by calling the data access methods

of the software components that calculate the variables as arguments. This method also

assigns the variables as input arguments of the function “Variable Calculate()”, and it

assigns the pointer of an attribute as the output argument of the function.

In the example of Figure 4.6, the method “TargetTorque Update” accesses the at-

tributes “AccleratorOpening” and “EngineStatus” by calling the data access methods

“AccleratorOpeningGet()” and “EngineStatusGet()”. It then assigns the variables as

input arguments of the function “TargetTorqueCalculate()”. The method also assigns the

pointer of the attribute “TargetTorque” as the output argument of the function.

Data access method

The data access method is called when another software component refers to the result of

the software component’s calculation. This method is implemented as the macro “Vari-

ableGet()” for efficiency of size and execution.

In the example of 4.6, the macro “TargetTorqueGet()” is defined as the data access

method.

One of the features of the proposed approached is that the interface of the data update

method has no arguments. When control logic is modified, a set of data is often added

42 SOFTWARE COMPONENTIZATION CHAPTER 4.

A’: Local variable within a
sub-framework

Variable A: Synchronicity guaranteed
within sub-framework

Variable B: Non-synchronicity guaranteed
within sub-framework

Execution
timing

Exchangeable

Generated
Code 1

Object 1

Sub-framework

Sub-framework
object

Object 2 Object 3

Object 3’

Figure 4.7: Sub-framework

or deleted, where such data can be referred to by each software component during calcu-

lations. This implementation method can hide the modification of the data set inside the

wrapper’s data update method, which is generated automatically. Therefore, it is not nec-

essary to modify a sub-framework object that calls the data update methods of software

components; that is, we can reuse the sub-framework object without any modification.

4.2.4 Sub-Framework Design

Figure 4.7 shows an overview of a sub-framework. It consists of software components, as

described in the previous section, and a sub-framework object that executes the compo-

nents. The aim of the sub-framework object is to perform a control function by executing

software components in the order specified by a control engineer.

Figure 4.8 shows composition of a sub-framework object and software components. In

this example, a sub-framework object “ThrottleController” calls the data update methods

of the “TargetTorque” component and the “ThrottleOpening” component.

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 43

TargetTorqueTargetTorqueUpdate()Get()

ThrottleOpeningThrottleOpeningUpdate()Get()EngineStatus (Local)EngineStatus (Local)Get()

ThrottleControllerExec()

EngineRevolutionEngineRevolutionGet()
AcceleratorOpeningAcceleratorOpeningGet()
TargetTorque_Update();
ThrottleOpening_Update();

Figure 4.8: Example of sub-framework composition

44 SOFTWARE COMPONENTIZATION CHAPTER 4.

ThrottleControllerExec() void ThrottleController_Exec(void)
{
/* Set local object value */

BYTE EngineStatus;
EngineStatus = EngineStatus_Get_Global();

/* Execute Control */
TargetTorque_Update();
ThrottleOpening_Update();

}

EngineStatus (Local)EngineStatus (Local)Get() BYTE EngineStatus_Get_Global(void)
{

return EngineStatus;
}

Figure 4.9: Example of a sub-framework object

Figure 4.9 shows an example consisting of the sub-framework object and a local com-

ponent. The sub-framework object “ThrottleController” calls the update methods “Tar-

getTorqueUpdate()” and “ThrottleOpeningUpdate()” in turn. “TargetTorqueUpdate()”

calls the access methods “EngineStatusGet()” (Local) and “AcceleratorOpeningGet()”,

and then calculates the value of “TargetTorque”. “ThrottleOpeningUpdate()” calls the

access methods “EngineRevolutionGet()”, “EngineStatusGet()” (Local), and “Target-

TorqueGet()”, and then calculates the value of “ThrottleOpening”.

The order of execution is based on the data flow specified in the controller design, as

shown in Figure 4.1. The sub-framework object has to activate the software components

through a procedure that does not contradict the data flow specified in the block diagram

of the controller model. The sub-framework object thus calls the data update methods

from the head to the tail of the block diagram.

The sub-framework also guarantees the synchronicity of the variables. An embedded

control system is generally a multi-tasking system consisting of several control functions.

SECTION 4.2 COMPONENT DESIGN FOR EMBEDDED SOFTWARE 45

Each function has sampling periods and priorities. The sub-framework object maintains

the synchronicity of data values, in case multiple software components in the same sub-

framework refer to the same value of a software component. Hence, the sub-framework

can operate control functions under preemption control.

A local component is also generated for data that is managed to maintain the syn-

chronicity of a variable. In Figure 4.8, although “EngineStatus” is updated in other sub-

frameworks, it is referred to by two components in this sub-framework. If the priority of

the sub-framework that updates “EngineStatus” is higher than that of the sub-framework

shown in the figure, “EngineStatus” could be updated, interrupting the execution of the

sub-framework. Therefore, a local component of “EngineStatus(Local)” is generated to

manage the synchronicity of values. The local component declares a local variable “En-

gineStatus(Local)” and copies the attribute “EngineStatus” to the local variable. The ac-

cess method “Get()” is a macro, so the scope of the access method “EngineStatusGet()”

is moved to the local variable. As a result, all components in this sub-framework can

access the local variable “EngineStatus(Local)”, and synchronicity is guaranteed.

4.2.5 Development Process

In this section, we describe a development process to implement the proposed software

architecture.

Controller Model Design and Function Generation

Controller models are designed with DSL tools for control [24]. The resulting controller

models can also be simulated with DSL tools, enabling control engineers to check the fea-

sibility of the control logic. After validating the control logic, they design a quantization

of fixed-point numbers.

Next, software engineers generate software components automatically with code gen-

46 SOFTWARE COMPONENTIZATION CHAPTER 4.

eration tools. The granularity of the component is the state variables of the controller sys-

tem, such as input/output values, the system’s observed state variables, and the system’s

target values. In Figure 4.1, “TargetTorque” and “ThrottleOpening” are the variables

mapped to software components.

Figure 4.6 shows the Target Torque component as an example of an automatically

generated function. A code generation tool automatically generates a calculation function

from a block in the controller model. The calculation function is an C function imple-

mented as “TargetTorqueCalculate()”, with the input values “AcceleratorOpening” and

“Engine Status”, and it outputs a calculated value to “TargetTorque”, which is assigned as

a pointer. Calculation functions can also be generated automatically for the other blocks

of the controller model.

Wrapper Generation

Next, a software engineer encapsulates a component from an automatically generated

function with a wrapper. We have developed a tool for generating wrappers, called “Wrap-

per Maker”, which generates a wrapper by analyzing a function.

Sub-Framework Generation

Basically, a sub-framework object activates software components by calling their update

methods in turn, according to the data flow specified in the block diagram. A sub-

framework also, however, guarantees synchronicity among the software components in

the sub-framework. For a sub-framework to guarantee synchronicity for all variables, it

must have a large amount of stack memory for local variables. The memory sizes of

processors for embedded control systems are relatively small, so the number of local vari-

ables must be limited.

We have also developed a tool for generating sub-framework objects that only define

SECTION 4.3 CASE STUDY 47

order for execution. Local variables requiring synchronicity are selected and added to

the sub-framework by a software engineer. In the example of Figure 4.9, the software

engineer adds the declaration of the local variable for “EngineStatus” and the fragment

for copying the data “EngineStatus” into the local variable.

In industrial applications, strict data synchronicity is rarely required (e.g., state tran-

sition management). Therefore, our approach is applicable for most embedded control

systems.

Software Reuse

Until now, we have explained how to develop software as a set of software components.

We now also describe how software engineers reuse components.

A new product is often developed on the basis of an existing product, and only the

addition and modification parts of the control algorithm are changed. In our approach, a

software engineer can develop new control software by reusing the application framework

and exchanging software components. This is because most changes are encapsulated into

components, and sub-framework objects can be reused as is.

In the case of adding new controls and variables, a sub-framework object might have

to be changed. That is, the sub-framework object might be modified to define the order

in which to call a new software component. In this case, only the sub-framework for the

modified control function and a wrapper for the added variable must be generated.

4.3 Case Study

4.3.1 Overview

In this case study, we apply the proposed system to certain engine controls and evaluated

the rate of automatic code generation and the reusability. The target controls are esti-

48 SOFTWARE COMPONENTIZATION CHAPTER 4.

mation of the quantity of intake air, wall flow compensation control, and torque-based

control.

4.3.2 Results

We generated the implementation code from a controller model and evaluated the rate of

automatic code generation. Only the sub-framework object required manual coding for

data synchronicity. In this case study, we can automatic generate more than 96% of source

code for all target control functions.

Furthermore, to evaluate reusability, we changed the control logic of the torque-based

control, whose development was already complete, since the software components were

developed at the unit of the variable, which is meaningful in a control with few additional

changes. Modifications are mainly needed inside components, so they are encapsulated

from the architecture viewpoint. As a result of changing the torque-based control logic,

we needed to modify only a few software components, and changing the composition of

the software components was unnecessary. As a result, the sub-framework object and

most software components could be reused.

4.3.3 Discussion

We disscuss the validity of the case study. In this case study, we have applied the proposed

method only to functionality of the engine control systems that are designed with the

block diagram. Embedded control systems has numerous functionality that are designed

by the block diagram. For example, more than half of functionality for the engine control

systems are designed by the block diagram. So the proposed method is effective for many

embedded control systems.

SECTION 4.4 SUMMARY 49

4.4 Summary

In this chapter, we have proposed a development method for software components in

embedded control systems. The development method integrates object-oriented software

development and model-based development.

We introduced a method to decompose a control function into a set of software compo-

nents based on the state variables of the control system. Each component is automatically

generated from a DSL tool for control logic. We have also developed code generation

tools for wrapping an automatically generated function as a component and for generat-

ing a sub-framework.

We conducted a case study for automotive engine control systems. More than 96% of

the control function source code was successfully generated with the proposed approach.

Additionally, most of the developed control software could be reused for deriving new

products.

The proposed approach improves the development efficiency of software components

for a core asset. This also improves the reusability of the software components, for devel-

oping a new product based on the core asset.

SECTION 5.1 CROSSCUTTING FEATURE ANALYSIS 51

CHAPTER 5

CROSSCUTTING FEATURE ANALYSIS

5.1 Introduction

Combinatorial explosion due to variable features is a serious problem for SPL in real ap-

plications. For example, the automotive industry reported that automotive control systems

consist of thousands of variable features [31]. This combinatorial explosion has led to in-

creasing configuration workloads. Verifying the dependency constraints among variable

features is also a problem to be solved. Reducing the number of variable features is one

of the simplest, most effective solutions.

A crosscutting feature is a high-level conceptual feature that affects (crosscuts) mul-

tiple variable features. Loesch et al. [23] and Conejero et al. [9] proposed a method for

reducing the number of variable features by introducing the concept of crosscutting fea-

tures. Figure 5.1 shows an example of a crosscutting feature for automotive systems. A

Distance radarfi and aBraking controlfj are defined as variable features. Sincefi and

fj are independent variable features, they are separately configurable, but for products A,

B, C, D, and E,fi andfj are simultaneously either selected or not selected . This means

that the variable featuresfi andfj are combined by introducing a crosscutting feature,

52 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

-
X
-
X
X
-
X

fj
（Braking control）

-
X
-
X
X
-
X

fi
(Distance radar)

Variable features

E
D

A
B

Pattern 1

C

Product

Pattern 2 -
X
-
X
X
-
X

fj
（Braking control）

-
X
-
X
X
-
X

fi
(Distance radar)

Variable features

E
D

A
B

Pattern 1

C

Product

Pattern 2 -
X

Crosscutting feature
Xｋ

(Adaptive cruise control)

-
X

Crosscutting feature
Xｋ

(Adaptive cruise control)

X：Selected
-：Not selected
X：Selected
-：Not selected

Figure 5.1: Crosscutting feature

Adaptive cruise controlXk. As a result, the number of options is reduced, and then the

productivity of product variations can be improved.

Figure 5.2 illustrates the scope of the SPL approach through adopting crosscutting

features. Previous reuse of software was the reuse of implementation, e.g. software com-

ponents and modules. Unfortunately, such reusability has not been fully effective, since

there is a gap between requirement specifications and implementation specifications, with

a lack of traceability. The SPL approach bridges this gap by introducing variable fea-

tures that relate requirements and software components. A developer can then select soft-

ware components by selecting variable features. Moreover, crosscutting features improve

reusability by reducing the number of variable features for industrial product lines with

thousands of variable features.

The above approach using crosscutting features cannot be applied to SPL adoption for

legacy systems, because it analyzes the SPL infrastructure. Embedded control systems

such as automotive control systems are safety critical. These systems require dependabil-

ity, and developers are thus eager to reuse legacy systems with actual results. Therefore,

for legacy systems, crosscutting features should be analyzed and extracted from the prod-

uct release history.

SECTION 5.1 I NTRODUCTION 53

Proposed SPL approach applying crosscutting features

Crosscutting
feature
selection

Crosscutting
feature DB

Conventional software product line

Previous software reuse

Product
specification

Software
system

Variable
feature
selection

Software
components
selection

Software
integration

Software
component DB

Variable
feature DB

Figure 5.2: Scope of the proposed method

On the other hand, the concept of a logical coupling set has been applied for recover-

ing software architectures [12] and guiding software changes [42] in the field of software

maintenance. A logical coupling set is a set of development artifacts, such as files, func-

tions, variables, and components, that are changed simultaneously during software devel-

opment. These approaches are limited, however, to analyzing linear change histories and

cannot be applied to software variations developed in parallel.

In this chapter, we introduce a novel analysis method for crosscutting features, which

is based on the product release history. Figure 5.3 shows an overview of the proposed

approach. First, (a) the product repository is preprocessed and change sets are extracted.

Then, logical coupling sets are (b) extracted from the change sets and (c) evaluated as

candidate crosscutting features. Crosscutting features are defined according to the logical

coupling features, and finally, (e) the crosscutting features are reused as SPL core assets.

First, we present a preprocessing method for a product release history with a diverse

range of variations. Related works have also proposed methods for preprocessing change

54 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

Product release history

CBA
D

Logical coupling sets
l1 ={f1, f2, f10, f22},l2 ={f5, f8}

SPL core asset

Crosscutting features
X1 = {f1, f2, f10, f22}X2 = {f5, f8}

(d) Define
(b) Analyze
(c) Evaluate

Exiting product
repository

(a) Pre-process

Change C1
Change sets
C1 = {f1, f2, f5, f8, …},…,
Cn = {f5, f8, …}

(e) Register

Figure 5.3: Extracting crosscutting features from product release history

SECTION 5.2 I NTRODUCTION 55

histories by using repository data, but these approaches are of limited application for

parallel development of product variations. In contrast, in the case of a branching product

release history, our approach extracts the modifications between product release timings.

This enables analysis on product domains developed in parallel.

Next, we describe threshold metrics for extracting candidate crosscutting features

from a product release history. To analyze a large-scale repository of a product release his-

tory, such threshold metrics must be defined for automatically calculating and extracting

candidates. The proposed metrics consist are the minimum frequency and the minimum

confidence of co-change patterns. With these metrics, candidate crosscutting features can

be extracted automatically.

Finally, we propose evaluation metrics for the extracted candidates. After the candi-

dates are extracted using the proposed threshold metrics, they must be evaluated quantita-

tively from the viewpoint of SPL adoption. Therefore, we extend precision and recall to

evaluate SPL. These are measures for evaluating the performance of information retrieval

systems. Precision is defined as the number of relevant logical coupling sets divided by

the total number of logical coupling sets extracted by the proposed method. Recall is de-

fined as the number of extracted logical coupling sets divided by the total number of varied

software components. The logical coupling sets can thus be evaluated quantitatively with

the proposed evaluation metrics.

Through the proposed approach, candidate crosscutting features can be extracted au-

tomatically and quantitatively from an existing product repository. Note that the input of

the proposed approach is limited to a product release history consisting of products that

have evolved incrementally with the same software architecture. Linden et al. [38] men-

tioned, however, that the SPL approach is generally adopted for products in the mature

stage of the product life cycle model. Therefore, the proposed approach is sufficiently

useful even with this limitation.

56 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

Product
repository

Crosscutting
features

(a)Pre-
processing (b) Analysis (d) Definition

Experts

Product
specification+

(ｃ) Evaluation

Figure 5.4: Overview of the proposed method

5.2 Crosscutting Feature Analysis

5.2.1 Concept of Proposed Method

In this section, we describe the details of the method for analyzing crosscutting features

by extracting the logical coupling sets of the software components in the product release

history. Figure 5.4 shows an overview of the proposed method.

First, in step (a), a product repository is preprocessed, and change sets are extracted. In

our approach to extracting the crosscutting features, the variability between existing prod-

ucts is analyzed. Branching in software development is also considered, since branches

occur frequently in parallel development of product variations. The input of the prepro-

cessing is the version information of the software components composing the embedded

control systems. The output is the sets of changes (modify, add, remove) of the software

components between product releases. Each change set is divided into a learning set and

an evaluation set.

Then, in step (b), logical coupling sets are extracted from the change sets for learn-

ing. We define two types of threshold metrics for extraction. The first is the minimum

frequency of co-changes, while the second is the minimum confidence of co-changes be-

tween software components. The threshold metrics are varied gradually to extract the

SECTION 5.2 CROSSCUTTING FEATURE ANALYSIS 57

logical coupling sets of crosscutting features.

The extracted logical coupling sets are evaluated next, in step (c), as the validity of

the extracted candidates is evaluated. Here, we extend performance measures used in

information retrieval systems, namely, precision and recall. Precision is defined as the

number of relevant logical coupling sets divided by the total number of logical coupling

sets extracted by the proposed method. Recall is defined as the number of extracted

logical coupling sets divided by the total number of varied software components. The

logical coupling sets can thus be evaluated quantitatively with the proposed evaluation

metrics.

Finally, in step (d), the extracted candidates are defined as crosscutting features by

domain experts. The experts relate software components consisting of a logical coupling

set and a feature in the product line, by analyzing product specifications.

5.2.2 Product Release History

The product release history is used as the input of the proposed method. Figure 5.5 shows

an example of a product release history．It consists of new product IDs, corresponding

base product IDs, and the software components used for each new product. From the

product release history, change sets of software components are determined from the dif-

ferences between the base product and each new product.

Here, we introduce a notation for software componentsfi and a set of software com-

ponentsF :

F = {f1, f2, · · · , fn} (5.1)

A change setCi is a set of software components changed in product release historyi

58 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

1.11.3-1.31.21.3EF
1.11.2-1.11.11.3BC

-1.21.01.11.11.2AB
-1.01.01.01.01.0-A 1.11.21.1f2 2.11.32.0f1Software components ---f4 2.01.21.2f3 1.11.1-f6 2.01.31.3f5

DCBBase GEDNewProduct
1.11.3-1.31.21.3EF

1.11.2-1.11.11.3BC
-1.21.01.11.11.2AB

-1.01.01.01.01.0-A 1.11.21.1f2 2.11.32.0f1Software components ---f4 2.01.21.2f3 1.11.1-f6 2.01.31.3f5
DCBBase GEDNewProduct

Figure 5.5: Product release history

Product
release

Requirements of
Product B

f1, f5Modify
f2, f3 f1, f5 f4 f6 f1, f6

BranchProduct A
f1, f3, f5

Delete Add Modify

: Product release
: Event

n : Components

Product B
Change set：{f1, f2, f3, f5}

Modify Modify

Requirements of
Product C

Modify

Requirements of
Product D

Product B Product C Product E Product F

Product GProduct D

Figure 5.6: Product development flow

(i.e. for new producti), and it belongs to the power set ofF (Power(F)):

Ci = {fj, fk, · · · , fl} , Ci ∈ Power(F) (5.2)

In the example of Figure.5.5, the change setC1 is as follows:

C1 = {f1, f2, f3, f5}

Figure 5.6 shows an overview of the product development flow of parallel develop-

ment for product variations. In general, a new product is developed through many mod-

ifications of multiple software components. For example, in the case of adding a new

SECTION 5.2 CROSSCUTTING FEATURE ANALYSIS 59

software component, it must be updated more than once to fix bugs. Note that the goal

of the proposed method is adoption of SPL, so we should concentrate on the differences

between released products. Therefore, we deal equally with a single modification and

multiple modifications.

In developing new products in parallel, several new products will have the same base

product. This is known as a branch in software development. In Figure 5.6, when new

product C was developed from product B, another new product D was branched. In this

case, the change set is generated from the differences between the new product and the

product released just before the branch.

The approach can be explained through the example shown in figure 5.6. We assume

that SPL has not yet been introduced, so a variable feature of the product line is the

functionality of each software component. When SPL has already been introduced, a

variable feature can consist of several software components, in which case a change in a

software component causes a change in the variable feature.

For the example of Figure 5.6, the change setC3 between products B and

D is the following:

C3 = {f1, f3, f4, f5}

The following definition specifies the product line change setC, which belongs to

power set of the power set ofF :

C = {C1, C2, · · · , Cn} , (5.3)

C ∈ Power(Power(F))

The proposed approach applies the k-fold cross validation [18] to evaluate the logical

coupling sets extracted from the change set. The change set is divided intok subsets.

60 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

One of thesek subsets is used as an evaluation set, while the otherk − 1 subsets are used

together as a learning set. The learning and evaluation processes are repeated k times, as

every subset eventually becomes the evaluation set.

Here, we denote the evaluation set asCE and put the other sets together to form the

learning set,CL:

CL ⊂ C (5.4)

CE = C − CL (5.5)

We use the notationsCLi ∈ CL to indicate an element ofCL andCEj ∈ CE to indicate

an element ofCE.

Let the product line change setC consist of the following:

C = {C1, C2, C3, C4, C5, C6}

C1 = {f1, f2, f3, f5}

C2 = {f1, f4, f6}

C3 = {f1, f3, f4, f5}

C4 = {f2, f3, f5}

C5 = {f3}

C6 = {f1, f3, f5, f6}

Then, for the k-fold cross validation, let k equals 2 and define the learning

change setCL and the evaluation change setCE as follows:

CL = {CL1, CL2, CL3} , CL1 = C1, CL2 = C2, CL3 = C3

CE = {CE1, CE2, CE3} , CE1 = C4, CE2 = C5, CE3 = C6

SECTION 5.2 CROSSCUTTING FEATURE ANALYSIS 61

5.2.3 Logical Coupling Sets

A logical coupling set is a set of development artifacts such as files, functions, variables,

and components that are changed simultaneously during software development. We in-

troduce the co-change frequencyfreq and co-change confidenceconf as metrics for

extracting logical coupling sets from the learning change setCL.

The co-change frequencyfreq is the number of occurrences of co-changes with re-

spect to every software component in a set of components,x.:

x = {fj, fk, · · · , fl} , x ∈ Power(F) (5.6)

freq(x) = |{CLi | CLi ∈ CL, x ⊆ CLi}| (5.7)

The co-change confidenceconf is the number of occurrences of co-changes with re-

spect to every software component inx, divided by the number of occurrences of changes

with respect to the software components in the set:

conf(x) =
freq(x)

|{CLi | CLi ∈ CL, x ∩ CLi 6= φ}|
(5.8)

We then introduce an extraction metricλ combining the co-change frequencyfreq

and the co-change confidenceconf :

λ(x) = [freq(x), conf(x)] (5.9)

Consider the following example set of software components:

xex = {f1, f4}

The componentsf1 andf4 were changed together twice in the learning change

setC2, C3. Therefore, we have the following:

freq(xex) = |{C2, C3}|

= 2

62 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

In the learning change setC1, C2, C3, at least one of the software components

in xex was changed. Therefore, we have this:

conf(xex) =
freq(xex)

|{C1, C2, C3}|

=
2

3

= 0.66

As a result, the extraction metricsλ for the set of software components is

obtained as follows:

λ(xex) = [2, 0.66]

Threshold Metrics

Next, we introduce a threshold metricθ for extracting candidates for the logical coupling

set. The minimum co-change frequency freqmin is the minimum co-change frequency

among the candidates for the logical coupling set. Similarly, the minimum co-change

confidence confmin is the minimum co-change confidence among the candidates. The

threshold metricθ is thus based on freqmin and confmin, as follows:

θ = [freqmin, confmin] (5.10)

The logical coupling setL(θ) is the set of software componentsx such that the extrac-

tion metricssλ is greater equal than the threshold metricθ:

L(θ) = {x | freq(x) ≥ freqmin, conf(x) ≥ confmin}

= {l1(θ), l2(θ), · · · , lk(θ)} , (5.11)

L(θ) ∈ Power(Power(F))

SECTION 5.2 CROSSCUTTING FEATURE ANALYSIS 63

Consider the following example of the threshold metricθex where the

minimum co-change frequency freqmin is 2 and the minimum co-change con-

fidence confmin is 0.75:

θex = [2, 0.75]

First, the sets of software components{f1, f4}, {f1, f3, f5}, {f3, f5} are ex-

tracted, since their co-change frequencies freq are greater than or equal to the

minimum co-change frequency:

λ({f1, f4}) = [2, 0.66]

λ({f3, f5}) = [2, 1.0]

λ({f1, f3, f5}) = [2, 0.66]

Then, the set{f3, f5} is extracted, since its co-change confidence is greater

than or equal to the minimum co-change confidence:

L(θex) = {x | freq(x) ≥ 2, conf(x) ≥ 0.75}

= {l1(θex)}

= {{f3, f5}}

Evaluation of Logical Coupling Set

Next, we introduce a metric to evaluate the logical coupling setL(θ) extracted from the

learning change setCL. The evaluation metric usesprecisionandrecall.

The precisionP is the probability that an extracted logical coupling set is in the eval-

uation change set. For a product releaseCEj, the precisionPj is defined formally as

follows:

Pj(θ) =
|{li(θ) ∈ L(θ) | CEj ∈ CE, li(θ) ⊆ CEj}|

|{li(θ) ∈ L(θ) | CEj ∈ CE, li(θ) ∩ CEj 6= φ}|
(5.12)

64 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

The total precision of the evaluation change setCE is defined as the average of thePj:

P (θ) =
1

|CE|
∑
j

Pj(θ) (5.13)

The recallR is the probability that the evaluation change set is covered by an extracted

logical coupling set. For product releaseCEj, the recallRj is defined formally as follows:

Rj(θ) =
|{li(θ) ∈ L(θ) | CEj ∈ CE, li(θ) ⊆ CEj}|

|CEj|
(5.14)

The total recallR of the evaluation change setCE is defined as the average of theRj:

R(θ) =
1

|CE|
∑
j

Rj(θ) (5.15)

The harmonic meanH of the precision and recall is used to average of the evaluation

metrics:

H(θ) =
2

1
P (θ)

+ 1
R(θ)

(5.16)

The precision of the evaluation change setC4 is denoted asP4. In this

case, if there is one logical coupling set ({f3, f5}), thenP4 is defined as fol-

lows:

P4(θex) =
|{f3, f5}|
|{f3, f5}|

=
2

2

= 1.0

P (θex) is then defined as follows, in terms of the arithmetic mean ofC4, C5, C6:

P (θex) =
1

|CE|
∑
j

Pj(θex)

=
P4(θex) + P5(θex) + P6(θex)

|{C4, C5, C6}|

=
1.0 + 0 + 1.0

3

= 0.66

SECTION 5.2 CROSSCUTTING FEATURE ANALYSIS 65

For the change setC4, the logical coupling setL(θex) has the following recall

R4(θex):

R4(θex) =
|{f3, f5}|

|{f2, f3, f5}|

=
2

3

= 0.66

ThenR(θex) is the mean ofC4, C5, C6:

R(θex) =
1

|CE|
∑
j

Rj(θex)

=
R4(θex) + R5(θex) + R6(θex)

|{C4, C5, C6}|

=
0.66 + 0 + 0.5

3

= 0.39

Finally, the harmonic mean H(θex) is obtained as follows:

H(θex) =
2

1
P (θex)

+ 1
R(θex)

= 0.49

Sampling of threshold metrics

Different logical coupling sets are extracted by using different threshold metric values.

The extraction process for the logical coupling sets is thus repeated and evaluated. One

set of threshold metric values is then selected so as to obtain the best evaluation metric

values for the extracted logical coupling sets.

Figure 5.7 shows an example of sampling the threshold metrics. In this

example, the minimum co-change frequency is 2, 3, 4, or 5, and the minimum

66 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

freq min

confmin

2 3 4 5

0.25
0.50
0.75
1.0 mining

P([2, 0.75]) = 0.66
R([2, 0.75]) = 0.39
H([2, 0.75]) = 0.49

P([2, 0.75]) = 0.66
R([2, 0.75]) = 0.39
H([2, 0.75]) = 0.49

Figure 5.7: Sampling of threshold metrics

co-change confidence is 0.25, 0.50, 0.75, and 1.0. The extraction process

for the logical coupling sets is repeated 16 times, with the evaluation metrics

calculated each time. Next, the set of threshold metric values with the highest

harmonic mean of the recall and precision is selected. Finally, the extracted

logical coupling set with the selected threshold metric valuesli(θmax) is taken

to define the crosscutting featuresXi.

Xi = li(θmax) (5.17)

Definition of Crosscutting Features

Finally, the extracted logical coupling set is used to define the crosscutting features. This

step must be done by a domain expert who has knowledge of the product line from the

requirement viewpoint.

The domain expert analyzes the specifications of the software components in the logi-

cal coupling set. The expert then assumes common functional and non-functional features

of the components. An example is given in the next section.

SECTION 5.3 CASE STUDY 67

Table 5.1: Case study example

Product line Electronic Gasoline Injection sub-system

Number of products 37

Number of software components 63

Next, the expert confirms whether each supposition is true by checking the product

specifications when the software components of the logical coupling set were changed. If

the supposition is true, the supposed feature is defined as a crosscutting feature. If not,

the expert analyzes the component specifications again.

5.3 Case Study

5.3.1 Overview

In this section, we evaluate the proposed method by examining its application to embed-

ded control software for an engine control system.

Table5.1 gives an overview of the case study. We applied the proposed method to

software with more than 500,000 lines of code. We selected one particular sub-system,

the Electronic Gasoline Injection sub-system. This sub-system is modified frequently,

since its specification must be modified to support variable features, such as the number

of cylinders and the emission control regulations of markets. The sub-system consists

of 63 software components. Each component can be related to a fine-grained variable

feature, ranging fromf1 to f63. The product release history consists of 37 individual

products.

First, change sets are calculated from the product release history, obtaining a product

line change setC with 36 change sets from the 37 product releases. Then, we apply

leave-one-out cross validation to divide the change setC into a learning change setCL

68 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

freqmin

co
nf

min
1.0

0.0

0.75

0.50

0.25

2 3 4 5

P = 0.46
R = 0.43
H = 0.45

P = 0.46
R = 0.43
H = 0.45

P = 0.54
R = 0.38
H = 0.45

P = 0.54
R = 0.38
H = 0.45

P = 0.97
R = 0.31
H = 0.47

P = 0.97
R = 0.31
H = 0.47

P = 1.00
R = 0.25
H = 0.39

P = 1.00
R = 0.25
H = 0.39

P = 1.00
R = 0.19
H = 0.32

P = 1.00
R = 0.19
H = 0.32
P = 0.97
R = 0.25
H = 0.40

P = 0.97
R = 0.25
H = 0.40
P = 0.69
R = 0.33
H = 0.44

P = 0.69
R = 0.33
H = 0.44
P = 0.61
R = 0.34
H = 0.44

P = 0.61
R = 0.34
H = 0.44

P = 0.60
R = 0.24
H = 0.34

P = 0.60
R = 0.24
H = 0.34

P = 0.89
R = 0.20
H = 0.33

P = 0.89
R = 0.20
H = 0.33

P = 0.97
R = 0.15
H = 0.25

P = 0.97
R = 0.15
H = 0.25

P = 1.00
R = 0.12
H = 0.21

P = 1.00
R = 0.12
H = 0.21

P = 1.00
R = 0.12
H = 0.21

P = 1.00
R = 0.12
H = 0.21
P = 0.97
R = 0.15
H = 0.25

P = 0.97
R = 0.15
H = 0.25
P = 0.92
R = 0.15
H = 0.25

P = 0.92
R = 0.15
H = 0.25
P = 0.78
R = 0.15
H = 0.25

P = 0.78
R = 0.15
H = 0.25

Figure 5.8: Evaluation metrics results

and an evaluation change setCE. The leave-one-out cross validation is performed as k-

fold cross validation with k equal to 1. Next, the logical coupling sets are extracted with

the threshold metrics and evaluated with the evaluation metrics. This step is repeated for

sampling of the threshold metrics. Finally, the evaluation metrics are calculated for each

set of threshold metric values.

5.3.2 Results

The evaluation metrics are shown in Figure 5.8. For example, when the minimum co-

change frequency is 2 and the minimum co-change confidence is 0.75, the precision is

0.97 and the recall is 0.31.

Next, the crosscutting features with the highest harmonic means of the precision and

recall are selected. In this case study, the highest harmonic mean of 0.47 is obtained

when the minimum co-change frequency is 2 and the minimum co-change confidence is

0.75. Finally, the crosscutting features are defined by domain experts. The results are

SECTION 5.3 CASE STUDY 69

Table 5.2: Results of crosscutting feature definition

Crosscutting featuresVariable features

X1 f21, f31

X2 f25, f26, f27

X3 f28, f29, f30

X4 (Fuel type) f32 (Ignition timing),f39 (Fuel factor)

X5 f50, f51

X6 f52, f53

listed in 5.2. The crosscutting features are defined according to the variable features of

the software components in the logical coupling sets.

For example, the crosscutting featureX4 affects two variable features,Ignition Timing

f32 andFuel factorf39. We can suppose that the crosscutting feature is the fuel type, since

a difference in fuel type affects both the ignition timing (f32) and the correction variable

for the fuel (f39). We can then confirm that the fuel type was changed in the product

specification when the logical coupling set is the subset of the change sets of the product

releases.

We thus define six crosscutting featuresX1, X2, X3, X4, X5, X6, representing fuel

types and variable valve timing, for example.

5.3.3 Discussion

Since automotive engine control systems are developed in parallel, there are branches in

their product development history. In this case study, the branches were preprocessed to

form change sets by the proposed method.

The logical coupling sets were extracted automatically by this method with the thresh-

old metrics and evaluation metrics. Therefore, the proposed approach can be applied to a

70 CROSSCUTTING FEATURE ANALYSIS CHAPTER 5.

large-scale product release history.

We interviewed domain experts about the validity of the definition of the crosscutting

features. They agreed that five of the six definitions are appropriate, while the other differs

from their empirical knowledge. We examined this exception carefully and found that it

should be recognized as a new crosscutting feature in the product line.

In this case study, we extracted six crosscutting features consisting of two or three

variable features each. Since the sub-system consists of 63 software components, there

are 1,953 possible combinations of two components and 39,711 possible combinations of

three components. If domain experts were to analyze all 41,644 possible combinations,

the workload would be too heavy for any real application. On the other hand, the proposed

method successfully extracted 6 combinations from among the 41,644 possible combina-

tion. Therefore, the workload of the domain experts could be reduced significantly by

applying this method.

We have applied the proposed method to the product release history consisting 37

products. If only a couple of products are released, crosscutting features can not be ex-

tracted by the proposed method. Defining the limitation of the proposed approach is a

future topic.

SECTION 6.1 EVALUATION OF THE PROPOSED PROCESS 71

CHAPTER 6

EVALUATION OF THE PROPOSED

PROCESS

6.1 Introduction

In this chapter, we evaluate the proposed approach through simulation experiments. To

evaluate the resulting improvements, we compare the costs of adopting SPL for legacy

systems by the conventional approach and by the proposed approach. The total cost of

adopting SPL and releasing several products is evaluated.

Figures 6.1 and 6.2 illustrate the SPL adoption process. In the conventional approach

shown in Figure 6.1, the commonality and variability of the legacy systems are considered

in terms of the specifications. If a product manager judges that SPL is applicable to

the products, then the crosscutting features are analyzed to determine combinations of

variable features. Then, the variable features and crosscutting features are implemented

as software components through hand coding. Once the core asset base is established,

software engineers develop new products by reusing the software components.

In the proposed approach shown in Figure 6.2, variability is analyzed in terms of the

72 EVALUATION OF THE PROPOSED PROCESS CHAPTER 6.

Legacysystems Variabilityanalysis(Specification) Softwarecomponenti-zation(Hand coding)Crosscuttingfeatureanalysis(Combination) ProductreleasesCrosscuttingfeaturesSPL adoptionstrategy Core assets
Figure 6.1: SPL adoption process (conventional)

Legacysystems Variabilityanalysis(Code clones) Softwarecomponenti-zation(Model-based) ProductreleasesSPL adoptionstrategy Core assets Crosscuttingfeatureanalysis(Logical coupling sets) Crosscuttingfeatures
Figure 6.2: SPL adoption process (proposed)

code clone ratio of the implementation. If the product manager judges that SPL is appli-

cable for the products, then the variable features are implemented through model-based

development and automatic code generation. Once the core asset base is established, soft-

ware engineers develop new products by reusing software components. After the products

are released from the core asset base, the crosscutting features are extracted according to

logical coupling sets.

6.2 Cost Model

6.2.1 Overview

We use the general cost model proposed by Bockle et al. [6], to compare the costs of

introducing SPL with the conventional approach and the proposed approach. This cost

model determines the general cost C of introducing SPL forn productspi according to

the following formula:

C = Corg + Ccab +
n∑

i=1

(Creuse(pi) + Cunique(pi)) (6.1)

Corg is the cost for the organization to adopt SPL, including the costs of reorganiza-

tion, training, and so on.Corg is much the same for the conventional approach and the

SECTION 6.2 COST M ODEL 73

proposed approach, so we eliminated this factor in the simulation experiments.

Ccab is the cost to develop the platform of a product line. It includes the costs of devel-

opment activities, such as commonality and variability analysis, development of software

components, and so on.

Creuse is the cost of reusing core assets in the platform. This includes the costs of

locating, checking out, binding variability, and configuring software components.

Cunique is the cost of developing unique pieces of software that are not based on the

platform. This concerns the costs of developing product-specific software components

and developing new software components that were not planned before introducing the

SPL.

6.2.2 Conventional SPL Adoption Process

Figure 6.1 illustrates the SPL adoption process with the conventional approach.Ccab in-

cludes activities for analyzing variability and developing software components. In the

conventional approach, the crosscutting features are included inCcab, since they are ana-

lyzed upfront.

We defineCcab as follows:

Ccab = Avar × Nvar + Across × Ncombination + Dnew × Ncomp (6.2)

For analyzing variable features,Avar is the work effort for analysis andNvar is the number

of variable features. For analyzing crosscutting features,Across is the work effort for

analysis andNcombination is the number of combinations of software components. For

developing software components,Dnew is the work effort for development andNcomp is

the number of software components.

Creuse is the cost of reusing software components. It is obtained as follows, where

Dreuse is the work effort for locating and configuring a reusable software component, and

74 EVALUATION OF THE PROPOSED PROCESS CHAPTER 6.

Nreuse is the number of software components for reuse:

Creuse = Dreuse × Nreuse (6.3)

Cunique is the cost of developing software components for specific products and is

obtained as follows, whereNunique is the number of new software components:

Cunique = Dnew × Nunique (6.4)

Thus, the total work effortCconv for the conventional approach to releaseNproduct

products is the following:

Cconv = Ccab +
n∑

i=1

(Creuse(pi) + Cunique(pi))

= Avar × Nvar + Across × Ncombination + Dnew × Ncomp + (6.5)

(Dreuse × Nreuse + Dnew × Nunique) × Nproduct

6.2.3 Proposed SPL Adoption Process

Figure 6.2 shows the SPL adoption process proposed in this dissertation. In the proposed

approach, the crosscutting features are defined afterNproduct products have been released

from the platform.

Hence, we defineCcab as follows:

Ccab = Avar × Nvar + Dnew × Ncomp (6.6)

The definitions ofCreuse andCunique are the same as for the conventional approach.

We also introduceCevo for the cost of evolving a core asset. Specifically,Cevo is the

cost of extracting crosscutting features from a product release history:

Cevo = Across × Ncross + Dnew × Ncross (6.7)

SECTION 6.3 EXPERIMENTS 75

Thus, the total work effortCproposed for the proposed approach to releasingNproduct

products is the following:

Cproposed = Ccab +
n∑

i=1

(Creuse(pi) + Cunique(pi)) + Cevo

= Avar × Nvar + Dnew × Ncomp

+(Dreuse × Nreuse + Dnew × Nunique) × Nproduct (6.8)

+Across × Ncross + Dnew × Ncross

6.3 Experiments

6.3.1 Conditions

We conducted three sets of simulations to evaluate the conventional and proposed SPL

adoption approaches. We also evaluated the conventional SPL adoption approach with

the software componentization method (Model-Based Development: MBD) proposed in

Chapter 4.

Table 6.1 lists the parameters of the simulation experiments. We definedNproduct and

Ncross according to the case study results given in Chapter 5.Nreuse, Nunique were defined

by applying expert knowledge of automotive engine management systems.

We normalized the work effort by defining the unit of effort for analyzing a variable

feature with specifications as having a value of one. A domain expert estimated the work

effortsAcross, Dnew andDreuse through comparison withAvar.

Note that the esitimated work effort for the conventional approach is the worst case

for analyzing the crosscutting features. We assume thatNcombination is the number of all

possible combination for two or three software components.

76 EVALUATION OF THE PROPOSED PROCESS CHAPTER 6.

Table 6.1: Simulation parameters

Parameter Conventional Conventional (MBD) Proposed

Nvar 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60

Ncombination NvarC2 +Nvar C3 -

Ncross 0.1 × Nvar

Ncomp Nvar − Ncross × 2.5 Nvar

Nreuse 0.9 × Ncomp

Nunique 0.1 × Ncomp

Nproduct 37

Avar 1 0.5

Across 0.5

Dnew 40 8

Dreuse 0.5

SECTION 6.3 EXPERIMENTS 77

050001000015000200002500030000

5 10 15 20 25 30 35 40 45 50 55 60# of Variable Features
Normalized Work
 Effort ConventionalConventional (MBD)Proposed

Figure 6.3: Experimental results

6.3.2 Results

Figure 6.3 shows the results of the simulation experiments. The horizontal axis represents

the number of software components, and the vertical axis represents the normalized work

effort.

When the number of variable features is small, the difference in total work effort

between the conventional and proposed approaches is not significant. As the number

of variable features increases, however, the work effort for the conventional approach

increases exponentially. In contrast, the work effort for the proposed approach increases

linearly.

Figure 6.4 shows the detailed distribution of work effort in the case of 30 variable

features. With the conventional approach, the costCcab for analyzing the variable features

and crosscutting features is a large part of the total work effort, since the number of

possible combinations of variable features increases exponentially with the number of

78 EVALUATION OF THE PROPOSED PROCESS CHAPTER 6.

010002000300040005000600070008000

Conventional Conventional(MBD) Proposed
Normalized Work Eff
ort CevoCuniqueCreuseCcab(Development)Ccab(Analysis)

Figure 6.4: Work effort distribution (30 variable features)

SECTION 6.4 SUMMARY 79

variable features in the worst case. Moreover, the costCunique for developing product-

specific or new software components is almost half the total work effort.

If we introduce the model-based approach with the conventional approach, we can

improveCunique andCcab for developing software components. Even so,Ccab still has an

enormous overhead for introducing crosscutting features upfront.

With the proposed approach,Ccab decreases significantly, since the crosscutting fea-

ture analysis is postponed until several products have been released. As compared with

the conventional approach with MBD,Creuse andCunique increase, since the crosscutting

concern has not yet been introduced.Cevo is also included for extracting the crosscutting

features and refactoring them as new software components. For a product line with 30

variable features, the total work effort for the proposed method is estimated as almost a

quarter of that for the conventional approach and half that for the conventional approach

with MBD.

6.4 Summary

In this chapter, we have evaluated the conventional and proposed SPL adoption approaches

through simulation experiments. We used a general cost model and estimated the cost of

adopting SPL for legacy systems. The experiments demonstrated that the gap between

the conventional and proposed approaches widens as the number of variable features in-

creases. In general, legacy embedded control systems have large numbers of features. My

proposed approach is thus effective for adopting SPL with large-scale legacy embedded

control systems.

SECTION 7.1 CONCLUSION 81

CHAPTER 7

CONCLUSION

7.1 Achievements

In this dissertation, I have addressed the problems of adopting SPL for legacy embedded

control systems. First, I focused on the strategy for introducing SPL, and then I discussed

software componentization and crosscutting feature analysis.

Regarding the strategy for introducing SPL, I first proposed a method to assess the

commonality and variability of existing systems introduced into a software product line.

In developing core assets from existing systems, analyzing and reusing existing imple-

mented behavior are effective.

To assess commonality, I identify code clones between different systems. In assessing

commonality and variability, I classify the clones into categories from the viewpoint of

SPL variability. I also apply hierarchical decomposition assessment of systems. By using

this method, we can assess commonality and variability between existing systems from

the viewpoint of implementation. I also examined the proposed method through a case

study on engine management systems for vehicles.

Next, I discussed a development method for reusable software components. This

82 CONCLUSION CHAPTER 7.

method integrates object-oriented software development and automatic program genera-

tion.

The amount of embedded software is increasing dramatically, and there is an increas-

ing demand for improving development efficiency. Object-oriented software develop-

ment, which excels in the reuse of software components, has been gaining a great deal

of attention. Recently, the quality and efficiency of automatic program generation from

a controller model has reached production level. Therefore, the objective of the pro-

posed development method is to establish a model-based development method for object-

oriented embedded control systems adopting automatically generated software. The key

feature of this method is that a wrapper wraps an automatically generated function that

is handled as an object, and the wrapper is also automatically generated. I have devel-

oped software for such automatic wrapper generation, enabling an automatically gen-

erated function to be embedded efficiently. I also examined the proposed development

method in terms of a control sub-system in an engine management systems.

Finally, I proposed a method to analyze crosscutting features in terms of logical cou-

pling of product release histories, for migration into SPL. Crosscutting features help de-

velopers of large embedded systems to reduce the number of variable features. The times

needed for analysis and quantitative evaluation, however, are problems to be solved.

The proposed method mines candidates for crosscutting features from a product re-

lease history, according to the logical coupling of software components. The method

applies precision and recall as metrics and determines candidates quantitatively and auto-

matically. I applied the proposed method to engine management systems and found that

it successfully extracted candidates with 97% precision and 31% recall.

SECTION 7.2 FUTURE RESEARCH 83

7.2 Future Research

In this dissertation, I have introduced an adoption strategy for SPL by analyzing inter-

system code clones between two product implementations. The results of a case study

showed that this approach was effective, but it is not applicable for many products. Further

extension of the proposed approach is an important research topic.

I also discussed a model-based development approach for developing software com-

ponents in SPL. Model-based development is of key importance for domain specialists to

increase their productivity. I have not introduced this approach for an SPL-specific phase,

however, such as variability decision. Integrating model-based development and SPL is

another important research topic.

In this dissertation, I have focused on crosscutting feature analysis in terms of product

release histories. To improve the development efficiency of SPL, traceability links be-

tween the variability of requirements and the variability of implementations are needed.

By selecting a variant of a requirement variation point, a connecting variant of an imple-

mentation variation point could be automatically selected. From the results of preliminary

experiments, however, I have found that most related works focus on a single develop-

ment phase, i.e. the requirement or implementation phase. Therefore, analysis methods

for traceability represent a third important future research topic.

BIBLIOGRAPHY

[1] J. L. Arciniegas, J. C. Duenas, J. L. Ruiz, R. Ceron, J. Bermejo, and M. Oltra. Ar-

chitecture reasoning for supporting product line evolution: An example on security.

In Software Product Lines: Research Issues in Engineering and Management, chap-

ter 9, pp. 327–372. Springer Verlag, 2006.

[2] B. S. Baker. A program for identifying duplicated code. InProceedings of Comput-

ing Science and Statistics: 24th Symposium on the Interface, pp. 49–57, 1992.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and K. Kontogiannis. Measuring

clone based reengineering opportunities. InProceedings of the Sixth International

Software Metrics Symposium, pp. 292–303, 1999.

[4] V. R. Basili, L. C. Briand, and W. L. Melo. How reuse influences productivity in

object-oriented systems.Communications of the ACM, vol. 39, no. 10, pp. 104–116,

1996.

[5] J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M.

DeBaud. PuLSE: A methodology to develop software product line. InProceedings

of the Fifth ACM SIGSOFT Symposium on Software Reusability (SSR’99), pp. 122–

131, 1999.

[6] G. Bockle, P. Clements, J. McGregor, D. Muthig, and K. Schmid. Calculating ROI

for software product lines.IEEE Software, vol. 21, no. 3, pp. 23–31, 2004.

85

86 BIBLIOGRAPHY

[7] P. Clements and L. M. Northrop.Software Product Lines: Practices and Patterns.

Addison-Wesley, 2001.

[8] P. Clements and L. M. Northrop. Sailon, Inc. - A software product line case study.

Technical Report CMU/SEI-2002-TR-038, 2002.

[9] J. M. Conejero and J. Hernandez. Analysis of crosscutting features in software prod-

uct lines. InProceeding of Early Aspects at ICSE: Aspect-Oriented Requirements

Engineering and Architecture Design (EA 2008), pp. 3–10, 2008.

[10] H. Fennel, S. Bunzel, H. Heinecke, J. Bielefeld, S. Fuerst, K.-P. Schnelle, W. Grote,

N. Maldener, T. Weber, F. Wohlgemuth, J. Ruh, L. Lundh, T. Sanden, P. Heitkaem-

per, R. Rimkus, J. Leflour, A. Gilberg, U. Virnich, S. Voget, K. Nishikawa, K. Ka-

jio, K. Lange, T. Scharnhorst, and B. Kunkel. Achievements and exploitation of the

AUTOSAR development partnership. InSAE Convergence 2006, no. 2006-21-0019,

2006.

[11] M. Fuchs, D. Nazareth, D. Daniel, and B. Rumpe. BMWROOM - an object-

oriented method for ASCET. In1998 SAE International Congress & Exposition,

no. 981014, 1998.

[12] H. Gall, K. Hajek, and M. Jazayeri. Detection of logical coupling based on product

release history. InProceedings of the International Conference on Software Main-

tenance (ICSM ’98), pp. 190–198, 1998.

[13] W. Hermsen and K. J. Neumann. Application of the object-oriented modeling con-

cept OMOS for signal conditioning of vehicle control units.SAE technical paper

series, no. 2000-01-0717, 2000.

BIBLIOGRAPHY 87

[14] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue. On software maintenance

process improvement based on code clone analysis.IPSJ Journal, vol. 45, no. 5, pp.

1357–1366, 2004. (Japanese).

[15] R. E. Johnson. Frameworks = (components + patterns).Communications of the

ACM, vol. 40, no. 10, pp. 39–42, 1997.

[16] K. C. Kang, M. Kim, J. Lee, and B. Kim. Feature-oriented re-engineering of legacy

systems into product line assets - A case study. InProceedings of 9th International-

Software Product Line Conference (SPLC 2005), pp. 45–56, 2005.

[17] J. Knodel, I. John, D. Ganesan, M. Pinzger, F. Usero, J. L. Arciniegas, and C. Riva.

Asset recovery and their incorporation into product lines. InProceedings of the 12th

Working Conference on Reverse Engineering (WCRE ’05), pp. 120–129, 2005.

[18] R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation and

model selection. InProceedings of the International Joint Conference on Artificial

Intelligence (IJCAI’95), pp. 1137–1143, 1995.

[19] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. A case study in refactoring a

legacy component for reuse in a product line. InProceedings of IEEE International

Conference on Software Maintenance (ICSM’05), pp. 369–378, 2005.

[20] R. Koschke. Survey of Research on Software Clones. InProceedings of Dagstuhl

Seminar 06301: Duplication, Redundancy, and Similarity in Software, 2007.

[21] C. W. Krueger and D. Churchett. Eliciting abstractions from a software product line.

In Proceedings of International Workshop on Product Line Engineering The Early

Steps (PLEES), pp. 43–48, 2002.

88 BIBLIOGRAPHY

[22] J. Lee and D. Muthig. Feature-oriented variability management in product line en-

gineering.Communications of the ACM, vol. 49, no. 12, pp. 55–59, 2006.

[23] F. Loesch and E. Ploedereder. Optimization of variability in software product lines.

In Proceedings of 11th International Software Product Line Conference (SPLC

2007), pp. 151–162, 2007.

[24] J. Moscinski.Advanced Control with MATLAB and Simulink. Ellis Horwood, Ltd.,

1995.

[25] F. Narisawa, H. Naya, and T. Yokoyama. A code generator with application-oriented

size optimization for object-oriented embedded control software. InObject-Oriented

Technology: ECOOP’98 Workshop Reader, LNCS-1543, pp. 507–510. Springer,

1998.

[26] H. Naya, F. Narisawa, T. Yokoyama, K. Ohkawa, and M. Amano. Object-oriented

development based on polymorphism patterns and optimization to reduce executable

code size. InTechnology of Object-Oriented Languages and Systems - Tools-25,

November 1997.

[27] R. V. Ommering and J. Bosch. Widening the scope of software product lines - from

variation to composition. InProceeding of the 2nd International Conference on

Software Product Lines (SPLC2), pp. 328–347, 2002.

[28] OSEK-VDX. OSEK-VDX Operating System Ver 2.2.1, January 2002.

[29] K. Pohl, G. Bockle, and F. van der Linden.Software Product Line Engineering:

Foundations, Principles and Techniques. Springer-Verlag New York, Inc., 2005.

[30] B. Selic, G. Gullekson, and P. T. Ward.Real-Time Object-Oriented Modeling. John

Wiley & Sons, 1994.

BIBLIOGRAPHY 89

[31] M. Steger, C. Tischer, B. Boss, A. Mueller, O. Pertler, W. Stolz, and S. Ferber. Intro-

ducing PLA at Bosch Gasoline Systems : Experiences and practices. InProceedings

of the Third Software Product Line Conference (SPLC 2004), pp. 34–50, 2004.

[32] Studio501. CloneFinder Webpage. http://www.studio501.com/products.htm (visited

on June 2009).

[33] S. Thiel, S. Ferber, T. Fischer, A. Hein, and M. Schlick. A case study in applying a

product line approach for car periphery supervision systems. InSAE World Congress

2001: In-Vehicle Software Session, no. 2001-01-0025, 2001.

[34] S. Thiel and A. Hein. Modeling and using product line variability in automotive

systems.IEEE Software, vol. 19, no. 4, pp. 66–72, 2002.

[35] T. Thomsen. Integration of international standards for production code generation.

SAE technical paper series, no. 2003-01-0855, 2003.

[36] J. Utterback. Mastering the Dynamics of Innovation. Harvard Business School

Press, 1994.

[37] F. van der Linden. Software product families in Europe: The Esaps & Cafe projects.

IEEE Software, vol. 19, no. 4, pp. 41–49 , 2002.

[38] F. van der Linden, J. Bosch, E. Kamsties, K. Kansala, and H. Obbink. Software

product family evaluation. InProceedings of the 5th International Workshop on

Software Product Family Engineering (PFE 2003), pp. 352–369, 2004.

[39] D. M. Weiss and C. T. R. Lai.Software Product Line Engineering: A Family-Based

Software Development Process. Addison-Wesley, 1999.

90 BIBLIOGRAPHY

[40] T. Yamamoto, M. Matsushita, T. Kamiya, and K. Inoue. Similarity of software

system and its measurement tool smmt.Transactions of the IEICE(D-I), vol. 85, no.

6, pp. 503–511, 2002. (Japanese).

[41] K. Yoshimura, T. Miyazaki, T. Yokoyama, T. Irie, and S. Fujimoto. A development

method for object-oriented automotive control software embedded with automati-

cally generated program from controller models. In2004 SAE World Congress, no.

2004-01-0709, 2004.

[42] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining version histories to

guide software changes.IEEE Transactions on Software Engineering, vol. 31, no.

6, pp. 429–445, 2005.

