
Title オープンソースソフトウェアに対するコーディングパ
ターン分析の適用

Author(s) 伊達, 浩典; 石尾, 隆; 井上, 克郎

Citation

Version Type VoR

URL https://hdl.handle.net/11094/50627

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

173

オーブンソースソフトウェアに対するコーデイングパターン分析の適用

伊達浩典↑石尾 隆↑井 克郎↑

コーデイングパターンとは，ソースコード中に頻出する定型的なコード片のことである.ロギング
や同期処理など，ソフトウェア中でモジ、ュール化することが困難な機能や，プログラミングにおける
定型勾などが，コーデイングパターンとしてソフトウェアから抽出される
本研究では，開発者が分析したいコーテ、イングパターンのみを自動的に抽出することを目指し，コー
ディングパターンの特徴の評価尺度として， 6つのメトリクスを選定， 4つのオープンソースソフト
ウェアに対して分析を行った.メトリクス問の{債の関係と，実際のパターンの特徴を分析した結果，
パターンのインスタンス数，インスタンスの分布の広さ，パターンの要素中に含まれる繰り返し構造
の比率というメトリクスが，分析すべきパターンの選択にとって有用であることを確認した.

Analyzing Coding Patterns of Open-source Software

HIRONORI DATE，t TAKASHI ISHIot and KATSURO INouEt

Coding patterns are idiomatic code fragments. Logging and synchronization are well known
features， which are hard to modularize， to be extrac七edas coding p乱.tterns
In this research， We h乱.veselected six software metrics to evaluate coding patterns' char-
acteristics and analyzed coding patterns extracted from four open source programs. This
analysis revealed that the number of instances of a pattern， the radius of pattern ins七ances
and the ratio of loop elements in a pattern are effective software metrics to select coding
patterns worth investigating

1.まえがき

オブジ、ェクト指向の枠組みでは，モジ、ュールfヒが圏

~lffiな機能が存在し，これらの機能の実装はソースコー

ド中に繰り返し登場する7) このような機能の代表例

としては，ロギングや間期処理が挙げられており，機

能に該当するソースコードが複数のモジ、ュールに横断

的に出現することから，横断的関心事とも呼ばれる6)

このような複数のモジ、ュールに分散配置されるコー

ドは，元となるソースコード片を複製し，配置先の状

泊に応じて適宜改変を加えるという方式で作成される

ことが多く，一群の定型的なコード片，すなわちコー

デイングパターンをi構成する.コーデイング、パターン

に属するコード片は，多くは!弓ーの機能を実現してい

る.そのため，コード片の 1つを変更する場合，開発

者は，問ーのパターンに属する他のコード片に対して

も同様の変更を適用すべきか検討する必要がある1)ユ

これまで，我々の研究グループでは，ソースコード

に対するパターンマイニング、そ用いたコーデ、イングパ

?大阪大学大学院情報科学研究科

Grduate School of Infor‘111atIon Science and Technolog)ヘ

Osaka University

ターン検出手法を提案し，いくつかのオープンソース

ソフトウェアに対して適用を行ってきた.1)，9) その結

果，コーデ、イングパターンには，横断的関心事に該当

するパターンだけでなく，ライブ、ラリの定型的な使い

方なども含まれていることが判明している.

しかし，大規模なソフトウェアから多数のコーデ、イ

ングパターンが検出されるが，従来はその分析を手作

業に頼っていたため，調査可能なパターンの総数が限

られていた.Marinらによる，被呼び出し回数が多い

メソッドには横断的関心事との関連性があるという指

摘8)に基づき，パターンに該当するソースコード片の

数が多いものほど重要なパターンであると考え，分析

対象を選択していた.パターンに該当するソースコー

ド片の数は，しばしば有用なパターンの発見に役立つ

が，有用でないパターンも多く選択していた.

本研究では，開発者が注目したいパターンのみを効

率的に分析可能な環境を構築するため，新たな評価

尺度として導入可能なメトリクスの評価を行った.パ

ターンの長さやインスタンス数といった単純なメトリ

クス以外に，コードクローン検出法5)で用いたソース

コード片の出現位置に関するメトリクス3)について

も評価を行った.メト 1)クス聞の値の関係と，実際の

174 ソフトウェアエンジニアリング最前線 2009

Itel'atol' it = list滋滋知;立;
思泌jg(it註必鐙主立){

i

Ite田 item= (Item)比辺道立，
if (item.isActiveOl {
item.deactivateO;

必r(Iterator it = list.i!;は益虫立;it註必祭主Q;){
Item item = (Item)沈辺道且，
if(ite田.isEnabledO){
item.setEnabled(false);

i

図 1 Iteratorを使用したループ処理のパターン

パターンの特徴を分析した結果，パターンのインスタ

ンス数，インスタンスの分布の広さ，パターンの要素

中に含まれる繰り返し構造の比率といったメトリクス

が，分析すべきパターンの選択に有用であることを縫

認した.

2. コーデイングパターン抽出法

我々は，コーデ、イングパターンを，メソッド呼び出

し要素とそれに付随する制御構造要素の定型的な列と

捉えたパターンマイニング、手法を提案しているめ.

コーテ、イングパターンの例として， Iterator f吏用し
たループ処理のパターンを閤 1に示す.コレクショ

ンからIteratorオブ、ジ、ェクトを取得し，内部の要素

をルーフ。により順次処理する，という一連の処理が，

Iteratorを便用したループ処理として抽出される.

本研究で扱うコーデイングパターンは，複数のメソッ

ドに分散したコード片を表現する.コーディング、パター

ンの抽出で、は，まず解析対象のソースコードをメソッ

ド単位に分割し，各メソッドに対して正規化ルールを

適用する.その結果， 1つのメソッドが lつの正規化

された要素列に対応した，要素列データベースが得ら

れる.この要素列データベースに対してパターンマイ

ニングを適用し，コーデ、イングパターンを抽出する.

本研究では，プログラミング言語Javaで記述された

ソースコードを対象としているが，正規化ルールを適

宜改変する事で，提案手法を{自の言語にも適用できる.

2.1 ソースコードの正規化

ソースコードの正規化では，各メソッドをそれぞれ

独立したコード片とみなし，メソッド単位で，メソッ

ド呼び出し要素と制御構造要素の安IJへと変換する.メ

ソッドの正規化処理では，ソースコードの詳細である

ローカル変数や算術演算などそ取り除き，iメソッド呼

び出しJと「条件分岐JJ繰り返し処理」の 3つの特

Statemcnt: if (<cond>) <then> e!sc <clsc>:
Scquence: <cond>， IF， <then>， ELSE， <elsc>， ENO'IF

Expression: (<cond>)ワ <then>: <e1se>
Sequence: <cOl1d>， IF， <then>， ELSE， <e150>， END'IF

Statemcnt:ゐl'(<init>; <cond>; <updatc>) <body>
Scquence: <init>， <cond>， L口OP，<body>， <update>， <cond>， END-LOOP

Stn.temcnt: fol' (<dccl> : <expr>) <body>;
Scqucnce: <expr>， LOOP， <body>， END'LOOP

Statement: while (<cond>) <body>;
Scquence: <cond汽 LOOP，<body>， <cond>，担ND'LOOP

Statement: do <body> wh泣c(<，ιond>);
Sequence: LOOP， <body>， <cond>， END'LOOP

図 2 条件分d皮の正規化と綴り返し処理の正規化ルール

徴を正規化して抽出する.条件分岐と繰り返し処理の

正規化には，函 2に示す正規化ルールを使用する.

メソッド呼び出しの正規化では，ソースコード中の

メソッド呼び出し式を，メソッド呼び出し要素へ変換

する.メソッド呼び出し要素は，メソッド名，戻り値

の型，引数の型名の列を保持する.しかし，メソッド

が所属するクラス名は保持しない.メソッド呼び出し

は動的束縛により解決されるため，ソースコードから

得たクラス名を保持していても，実際に呼び出される

クラス名と一致しないことがある.データフロー解析

により動的束縛を解決できるが，計算コストが大きい

ため，クラス名を持たないという解決策を採用してい

る.この解決策により，継承関係にないクラスに同一

のコードが複製されている場合にも対処できる4)

条件分岐の正規化では，ソースコード中の if文と三

項演算子を条件分岐として正規化ルールに従い変換す

る.条件分岐の正規化を行うことで， if文により表現

された条件分岐と，三項演算子により表現された条件

分岐を向一視してパターンを抽出できる.

繰り返し処理の正規化では，メソッド中に登場した

for文， while文， do司while文を正規化ルールにより変

換する.この正規化ルールは，同一のループ構造を異

なる制御文により形式で表現した場合も対応できる.

2.2 シーケンシャルパターンマイニング

シーケンシャルパターンマイニングとは，要素列か

ら順序を考慮して頻出部分列を検出する手法である.

本研究では，ソースコードの正規化を行い作成した

特徴データベースに対して，シーケンシャルパターンマ

イニングのアルゴリズムの lつである PrefixSpal1刊

を適用し，コーディングパターンを抽出する.

3. コーデイングパターンの分析用メト 1)クス

過去の研究では，開発者が部品化することが困難な

「横断的関心事」に該当する機能を発晃するためにコー

デ、イング、パターンの分析を行ったが， 1つのプログラ

[~í命文]オーフ。ンソースソフトウェアに対するコーディング、パターン分析の適用

ムからは数百，数千のコーデイングパターンが抽出さ

れるため，その分析対象として，インスタンス数が多

いパターンから順番に 10件程度を選択していた4)

コーデイングパターンを効果的に分析するためには，

分析者が注目すべきコーディングパターンやそのイン

スタンスだけを自動抽出することが重要である.本研

究では，その基盤として使用できるソフトウェアメト

リクスの候補として6種類を選定し，メトリクス間の

相関や，コーディングパターンの特徴を調査した.

メトリクス{直は，パターン分析に利用できるように，

すべて，パターン Pを引数に取り，整数あるいは実

数値を返す関数 f(P): Pattern→ uαlueという形式

で定義した.以下，各トリクスの定義を述べるが，パ

ターン Pに対して，それらのインスタンス ZはiE P

というように集合 Pの要素として記載し，パターン

Pのインスタンス数は IPIという形式で記述する.
3.1 パターン長:LEN (Pattern Length)

コーディングパターンPのパターン長LEN(P)は，

パターン P~こ含まれる要素数を示す整数値である.

3.2 パターンのインスタンス数:NOI (Number

of Instances)

コーデイング、パターンPのインスタンス数NOI(P)=
IPIは，パターンPに該当する要素列がマイニング対
象のソースコード中に出現した田数(メソッド数)を

示す整数値である.本研究で使用しているパターンマ

イニングのアルゴリズム Pre良xSpanでは，パターン

検出のしきい値としても使用される.

3.3 制御構造要素の割合:RCE (Ratio of Con悶

trol Elements)

コーデイングパターン Pの制御構造要素の割合

RCE(P)は，パターン?に含まれる全要素数に対す

る，制御要素数の割合として計算される実数値であ

る.RCE(P)の値が大きいパターンは，メソッド呼び

出しを含まない if文や for文の単純な入れ子関係を

表現している可能性が高いため，経験的なしきい値

RCE(P):::; 0.7によりパターンをフィルタリングする.

3.4 パターンの密度:DEN (Density)

コーディングパターン Pの密度 DEN(P)は，パ

ターンPの各要素が，ソースコード上でどれだけ密に

配題されているかを示す実数値である.具体的には，
γ 川 sdi)

DEN(P)之江 4J45PlP| によって計算する.

ただし，DENinst(i)は，パターンのインスタン

スに対して定義される密度である.パターンに該当

する要素を含むメソッドの要素列が与えられたとき，

DENinst(i) = iの末尾要素位み始要素f立霞+1

175

冒ト JL[
(，，) R主D~O (b) R ぇD~ 1 (c) RAD~2

門

〕

川
口口

函 3 メトリクス RADの計算法

となる.

3.5 非繰り返し要素の割合:RNR (Ratio of

Non-repeated Elements)

パターンPの「非繰り返しjを意味する RNR(P)

は，パターンPの要素中の繰り返しを絞り除いた後に

残る要素の割合を示した実数値である.本研究では，

繰り返しの検出には， SEQUITURアルゴリズム10)を

用いた.このアルゴリズムは，ある要素子IJが与えられ

たときに，連続した2要素の組が2田以上出現した場

合を繰り返しとして検出する.8要素のコーデ、イング

パターン rX，A，B，A，B，A，B，YJ中では， rA，BJ

という組が3回繰り返されているため，その2回目以

降の出現を繰り返しと認識し， RNRは0.5となる.

3.6 パターンインスタンスの分散 :RAD(Rか

dius)

パターンインスタンスの分散RAD(P)は，インス

タンスが登場するソースコードの範囲を示す整数値で

ある.

RADは，パッケージ階層中でのパターンインスタ

ンスの分散度合いを表すメトリクスである.間 3(a)

では，すべてのインスタンスが同一ファイル内に存在

しているため， RAD値は Oとする.また，悶 3(b)

のように，インスタンスが同一パッケージ内の複数の

ファイルに分散している場合には， RAD11僚は lとす

る.さらに，インスタンスが援数パッケージに分散し

ている場合には，それぞれのインスタンスの存在する

ノふyケージをルートノード方向にたどり，すべてのイ

ンスタンスを子孫として持つパッケージにたどり

たら，そのパッケージを基準として，すべてのインス

タンスまでの距離を計測し最大のものをRADとする.

図3(c)の例では， RADは2となる.

4. メトリクスを用いたコーデイングパターン

分析

調査対象として，圏形描顕ソフトウェア JHot“

176 ソフトウェアエンジニアリンク守最前線 2009

0.9

朝 0.8i

き0.7号
機 0.6 重量

豊0.5き
綬 0.4'1

S雲 0.3'I
株 0.2

0.1

O

A
V

A
V

A
V

av

φ

hl ~ ~ M ~ M ~

劉昔章構造塁悪畿白書課合

図 4 [JHotDraw] 制御構造要素の割合と非繰り返し要素の割合

Draw官 1，テキストエディタ jEdit叫，アプリケーショ

ンサーバ ApacheTomcat刊，パーサジ、エネレータ

SableCC叫を用いた.調査対象のソフトウェア一覧

と実験に用いたパージ、ヨン，ソフトウェアの規模，抽

出されたコーデイングパターンの数を表 1に示す.

コーデイングパターンを抽出する擦のパラメータ設

定は，過去の実験の経験により，インスタンス数のし

きい値を 10，パターン長のしきい値を 4とした.

コーデイングパターンの特徴を調査するために 3

で定義した 6種類のメトリクスを，調査対象から抽出

したコーデ、イングパターンに対して適用した.

本研究では， 6種類のメトリクスのすべての組み合

わせに対して関連性の調査した.その結果，関連性の

認められたメトリクスの組み合わせを本意で述べる.

4.1 非繰り返し要素の割合と制御構造要素の割合

間 4~図 7 に.X 軸に制御構造要素の割合.Y軸に

非繰り返し要素の割合をとった散布図を示す.

制御構造要素を含まないパターンは，非繰り返し要

素の割合に偏りがなく広く分布しているため，制御

構造要素を含むパターンのみに着目する.JHotDraw

(図 4).jEdit (図的.SableCC (図 7)に関しては，

制御構造要素を含むパターンは，グラフの上部に集中

して登場する頗向がある.しかし.Apache Tomcat

(関 6)の場合には，制御構造要素を含むパターンの

Y軸方向への偏りは小さい.

主宰 1 対象ソウトウ γア

ソフトウェア パージョン LOC

.JHotDr品v 7.0.9 90166

jEdit 4.3pre10 168335

Apache Tomcat 6.0.14 313479

SableCC 3.2 35388

2902

8782

450

，，，，， u
b

r

o

e

f

J

h

u

作る

c

r

a

n

v

n

w

-

.

a

w

為

抽

命

i
M

-

j

毛
‘
，
，
，
，

出

/

口

宮

+
i
w
σ

。
m

z

o

r

o

o

h

o

t

L

j

-

/

〈

ー‘

t
λ

氾

w

ェ
:

e

w

d

p
斗

w
e
t
-山

川

f

J

訪

日

u

w

l

j

p

u

L

/

t
w
a
v
h

t

/

C

M

a

h

/

:
口
市
山

h
P
A
o
t

n

v

t

p

A

a

t

r

コ

凡
山

j
M
α

ーt
t
-
c
e

h
ド山

M

U
訓

託

mh川
h

tla

今

向

。

ο

e味

一

F

V

一
-
、
“
何

9

8

3

5

5

4

3

2

1

0

0

0

0

0

0

0

0

0

0

担
額
号
機
隊
J
M
哨
》
馨
執

今《参φ4多

4診
@

争ゆ 4診 φ

⑫

毛診
争

hl ~ ~ M ~ M U

童書書類構造喜霊祭の著書合

関 5 (jEdit]制御檎造主霊祭の都合と非繰り返し婆言葉の割合

1

0.9

0.4

~ 0.3
務執 0.2量 φ
0.1

。
hl ~ ~ M ~ M U

劉書事構造喜喜棄の望書官

図 6 [Apache TOl11cat]制御構造要素の刻合と非繰り返し袈裟の

割合

姻 8「てア
;; n， 撃す φ
自 0.7裏 金診 ?

緩 0.6

童書 0.3

撤 0.2 酌

φ φA
参

考参

受診

hl ~ ~ M ~ M ~

iI!書事檎滋聖霊祭の劉古

@ 7 [SableCC]制御機造要素の割合と非繰り返し婆奈の古IJ合

ここで.Apache Tomcat に関する事例についてさら

に分析する.制御構造要素は，条件分岐の要素と繰り

返し処理の要素の2種類に分かれる.そこで.Apache

Tomcatから検出されたコーデイング、パターン中から，

条件分岐の要素を含むパターンと，繰り迭し処理の要

素を含むパターンを別々にプロットした(図的.

圏8の結果では，条件分岐の要素を含む要素は全体

に広がっているが，繰り返し要素は，非繰り返し要素

の割合が 1に近い側に偏って分布している.

これらのことから，制御構造要素，特にその中でも

LOOP構造を含むパターンは，非繰り返し要素の割
合が高くなるftJi向がある.パターン内に LOOP俄造
を持つということは，繰り返し処理がそのLOOP構

[論文]オーフ。ンソースソフトウェアに対するコーディング‘パターン分析の適用

9

8

7

6

5

4

3

2

1

0

0

0

0

0

0

0

0

0

朝
慈
邑
酬
情
感
J
M附
ひ
醐
掛
川
帯

XIFを吉む

.LQOPを宮む

警窓m X _

ifJ議
滋おv"" X

喜正弘X
X 内 xx
x XX
x

0.1 0.2 0.3 0.4 0.5 0.6 0.7

童書留檎遺要量詩的割合

医8 [Apache Tomcat]号制御機造要素の割合と非繰り返し一要素の
割合(IF，LOOP分離版)

造により集約されることを意味するので，非繰り返し

要素の割合が高くなると考えられる.

函 8中で，非繰り返し要素の割合が小ざし制御

構造嬰素の割合が大きいパターンは，パターン内に多

くの繰り返しを含むため，冗長で保守性が悪い.この

ようなパターンとして.fisDebugEnabledO， IF， de-

bug(String)， END-IF Jの要素列が繰り返すパターン

がある.このパターンでは.debugメソッドの引数と

して渡す文字列が，各呼び出しごとに異なり，単純に

繰り返し構造を導入するだけでは集約できない.しか

し，同一構造の繰り返しが続くためソースコードの可

読性が低く改議ーすることが望ましい.

4.2 インスタンス数と出現位置の関連

コーデイングパターン分析では.Marinらにより，

インスタンス数が多いものほど横断的関心事である可

能性が高と指摘されていため.しかし，この指標だけ

では.Iteratorに代表される，頻繁に使われるライブ

ラリを区別で、きなかった.本節では，それに代わる指

標となりうるパターンの分散RADについて調査した.

本研究における調査では，パターンのインスタン

ス数NOI.パターンの分散RAD.そしてパターンが

Iteratorの操作に該当するかどうかを調査した.

Iteratorの利用は.Javaのプログラマ簡では既知

の事項であり重要度は低い.しかし，表2によると，

Iteratorを含むパターンの割合は最高で29.3%に達す

る.Iteratorの利用を取り除く指擦を作成することで，

プログラム理解に有用な，ソフトウェア酉有の機能実

装のようなパターンそ発見しやすくできる.

Iteratorの利用では，メソッド名に fnextJや fhas崎

NextJという特徴的な文字列を持つメソッド呼び出し

ている.また.It巴ratorの利用では，捜数のオブ、ジェク

トに対して処理を繰り迭す必要がある.そこで，コー

デイングパターン中から，次の条件を満たすものを

Iteratorを利用しているパターンとして抽出した.

@メソッド名に fn巴xtJ;を含むメソッド呼び出しと，

177

。多 命令

争イテレータ

aそ由他

10 30 40 20

インスタンス数

rrm 9 [JHotDraw]パターンの分散とインスタンス数の関連性

@令

。イチレータ

@その他

10 20 30 40 SO 60

インスタンス数

図 10 [jEdit]パターンの分散とインスタンス数の関連性

fhasNextJ 'l!:含むメソッド呼び出しを持つ.

@制御構造として，繰り返し処理を含む.

その結果，抱出されたパターン数とコーディング、パ

ターンの総数に対する割合を表2に示す.

また，コーデ、イング、パターンをIteratorの利用パ

ターンと.Iteratolの利用に関係がないその他のパ

ターンに分類し，図 9~図 12 ~こパターンの分散とイ

ンスタンス数の関連を示した.

図9.10に示すように.JHotDrawとjEditに含ま

れる.Iteratorを利用しているパターンは，パターン

の分散が大きい.また.Iter叫 01'、そ利用したパターン

の中にもインスタンス数が多いものが存在する.

図12に示した SableCCの場合は，パッケージ階層

が浅く. 1つのパッケージに多数のソースファイルが

格納されていた.そのため，パターンの分散について

は，パターンの種類閤で、の差異が判断で、きなかった.

函 11に示した ApacheTomcatでは，傾向はみら

れなかった.これは.Iteratorとプログラム閤有の機

至予て Tt.PT'Atrwの壬11閉が合計パターンの効
ソフトウェア パターン数 Iterator利用 都合

JHotDraw 3i5 S 2.1 %

jEclit 2902 28 0.9%

Apache Tomcat 8i82 434 4.9%

SableCC 450 132 29.3%

178 ソフトウェアエンジニアリング最前線 2009

勢叩多糊時紛争命日 目

議陶師会欄 e .6 ~帥
修議繋諮参傘機部鋭結措翰 鈎傍線

傘場噛鵠争@

争舘悶

20 40

インスタンス数

60 80

@イテレータ

毎その他

図 11 [Apache TomcatJパターンの分散とインスタンス数の関
適性

3.5

議 2.51
~ 2 i問令
λ
I 1.5
号、

τ 1 ~ 時場

0.5

50 100

インスタンス数

150

。イテレータ

@その他

図 12 [SableCC]パターンの分散とインスタンス数の関連性

能実装の両方を含むパターンが，パッケージ階層中で

局所的に現れていることが原因と考えられる.

コーデイング、パターンの従来の調査手法で、は，イン

スタンス数が多いものから調査を行っていた.しかし，

JHotDrawやjEditでは.Iteratorを利用しているパ

ターンがインスタンス数の上位に登場し，有益なパ

ターンが多数のパターン中に埋もれてしまう.この問

題を回避するには，パターンの分散が小さいパターン，

つまり，特定のパッケージやファイルにのみ登場する

パターンから調査するという方法をとる必要がある.

5. まとめ

コーデイングパターンの検出結果は膨大になり，

用なパターンを発見することが困難となっている.こ

れを解決するために，コーデイングパターンを分類し，

閲覧者が必要なものを選び出し提示する必要がある.

そこで，本研究では，コーディングパターンの特徴

を計測するためのメトリクスを提案し，その特徴間の

関連と，コーディングパターンの種類との龍係につい

て分析を行った.その結果，パターンのインスタンス

数，インスタンスの分布の法さ，パターンの要素中に

含まれる繰り返し構造の割合といったメトリクスが，

分析すべきパターンの選択に有用であると確認できた.

謝辞本研究は，日本学術振興会科学研究費補助金

基盤研究 (A)(課題番号:21240002)および、文部科学省

科学研究費補助金若手研究 (B)(課題番号・21700030)

の助成を得た.

参考文献

1) Baker， B. S.: A Program for 1dentifying Dupli_

cated Code， Computing Scienceαnd Statistics会
Vol. 6， pp. 49-57 (1992).
2) Fowler， M.: Refactoring: Improving the Desりn
of Existi吋 Code，Addison羽Tesley(1999).
3)服部鮒之?把後芳樹，橋本真二，井上克郎コード

クローンの分布情報を用いた特徴抽出手法の提案、

ソフトウェア信頼性研究会第3回ワークショッブ

論文集， pp. 9-17 (2006).

4)石尾隆，伊達浩典ヲ三宅達也，井上克郎:シーケ
ンシャルパターンマイニング、を用いたコーテ、イン

グパターン抽出，情報処理学会論文誌， Vol. 50，
No. 2， pp. 860-871 (2009).
5) Kamiya， T.， Kusumoto， S. and 1nou久K.:

CCF日i加ndeぽr: A Multi-Linguistic Token.句-七a鎚se佼吋d l
Cod巴 CloneDetection System foωr Large Scale

Source Cod 巴伐，IEEE Tn白ns α ctiorη1S 0 η Sof，ρt ω 品T陀E
En吋9♂inη附巴巴nη吋g，Vol. 28， No. 7， pp. 654-670 (2002)
6) Kiczales， G.， Lamping， J.， Mendhekar， A.，

Maeda， C.， Lopes， C. V.， Loingtier， J. and Ir、
win， J.: Aspect Oriented Programming， Pro-
ceedings of thε11th European ConJerence on
Object-Ori巴ntedProgramming， pp. 220-242
(1997).

7) Marin， M.: Reasoning about Assessi時 and
1mproving the Seed Quality of a Generative

Aspect Mining Technique， Proceedings of the
2nd Internαtionα1 Linking Aspect Technology

αnd Evolution Workshop (2006)

8) Marin， M.， van Deursen， A. ancl Moonen， L.:

1dentifying Aspects using Fan哨inAnalysis， Pro-
ceedings of the 11th Working Conference on

Reverse Eng'ine巴ring，pp. 132-141 (200L1).
9町)叫拍1ザyak王巴鳥，T.， 1s油hiぬo，T.，Ta凶g♂引uchi叫i，K.an紅凶ld1nou
K.: Towa叙rcl出s叫a心in凶t巴nanceSuppoαrt foωr 1cliぬom-

based Code Us討ingSequential Pattern乱1iningふ?
As幻1品nV防v匂orkshopon Aspect-Oriented Software
Dev巴lopment(AOASIA3)(2007).
10) Nevill-Manning， C. and Witten， I.: Identifying
Hierarchical Structure in Sequences: A linear-

tim巴algorith，Journal of Artificiα1 Intelligence
Research， pp. 67-82 (1997)
11) Pei， J.， Han， J.， Mortazavi-Asl， B.， Pinto、

H.， Chen， Q.， Dayal， U. and Hsu， M.: Pre-
fixSpan:恥IiningSequential Patt段、nsby Pre員x-

Projected Growth， Proceedings of th巴 17thIn-
ternαtional Coηjerence on DatαEηgineenng，
pp‘215-224 (2001).

