
Title 類似メソッド集約支援ツールの開発

Author(s) 政井, 智雄; 吉田, 則裕; 松下, 誠 他

Citation ウインターワークショップ2011・イン・修善寺 論文
集. 2011, p. 19-20

Version Type VoR

URL https://hdl.handle.net/11094/50639

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

「プログラム解析j ウインターワークショップ2011・ィン・修善寺論文集 (2011年1月) 【01-ANA-09]

類似メソッド集約支援ツールの開発

政井智雄tl 吉田則裕↑2

松下 誠tl 井上克郎tI

ソフトウェア保守のコストを増大させる主主因として，コードクローンが指摘されている.類似メソッ
ド対(コードクローンを共有するメソッドの対)間のコードクローンは，“テンプレートメソッドの
形成"リファクタリングを行うことで集約できる.本論文では，乙のリファクタリングを支援する手
法，およびその手法を実装したツールを紹介し，今後の課題について議論する.

Developing a Tool for Merging Similar Methods

TOMOO MASAI，tI NORIHIRO YOSHIDA，t2 MAKOTO MATSUSHITAt1
and KATSURO INOUEtI

Code clone is pointed out as one of factors to increase cost for software maintainance.“Form
Template Method" refactoring can merge code clones between a pair of similar methods. In
this paper， we introduce a technique which supports refactoring， and a tool that we have
developed.

1.はじめに

ソフトウェア保守を臨難にする要菌の 1っとして

コードクローンが指摘されている1)-3) コードクロー

ンとは，ソースコード中に含まれる一致もしくは類

似したコード片そ持つコード片のことである.類似メ

ソッド対(コードクローンを共有するメソッドの対)

を集約する方法の 1つとして，“テンプレートメソッ

ドの形成"リファクタリング4)が挙げられる.このリ

ファクタリングそ行う開発者は， (1)類似メソッド対

を各メソッドの菌有処理と共通処理に分割し， (2)共

通処理を親クラスのメソッドに実装し， (3)国有処理

を各子クラスのメソッドに委譲するように書き換える.

しかし，入手で手順 (1)を行うことは容易ではない.

なぜなら， (A)一方のメソッドの共通処理は，他方の

メソッドの共通処理と同ーであり，かつ CB)屈有処

理として特定された部分はメソッド抽出可能である必

要がある.条件 (B)については，通常のメソッド抽

出リファクタリングについても同じであるが，あわせ

て条件 (A)を満たす必要がある点が異なる.開発者

は条件 CA)(B)を同時に満たすために，試行錯誤を繰

tl大阪大学
Osaka University

↑2奈良先端科学技術大学続大学

Nara Institute Of Science And Technology

19

り返しながら閲有処理と共通処理の範囲そ決めること

になる.本論文では，手順 (1)を支援するために提案

した，画有処理として切りだすコード片の候補者E提示

する手法5)を紹介し，今後の課題について議論する.

2. 提案手法

文献5)で提案した手法は，類似メソッド対聞の構文

上の差分を検出し，その後差分を含みかつメソッド抽

出に適したコード片を囲有処理として切りだす候補と

して検出する.候補の検出では，まず差分と同一の範

囲に対してメソッド抽出に適しているか判定し，その

後段階的に範囲を拡大させながら，同様の判定そ行う.

また，闇有処理を各子クラスのメソッドとして切りだ

したとしても，それらのメソッドを呼び出す親クラス

のテンプレートメソッド中の呼び出し文に差異がある

と，その差異を吸収しながら集約を行う必要があり，

集約作業が比較的盟難になる.そこで，それらメソッ

ド呼び出し文の差異の有無により候補を分類し，集約

が比較的容易な候補と比較的圏難な候補に分類した.

3.実装

この手法は，開発の過程において利用出来るように，

統合開発環境Eclipseの Java開発キットのプラグイ

ンとして実装している.このプラグインを利用する場

合は，リファクタリングの対象とする類似メソッド対

平成23年1fil

「プログラム解析j ウインターワークショップ2011・イン・修善寺論文集(2011年1月) 【01-ANA-Q9]

随 1 表示爾面

Fig. 1 Snapshot of proposed tool

を決定した上で， Eclipseのメニューからプラグイン

により追加された機能を選択する.その後ウィザード

の指示に従い，類似メソッド対を選択し，函 lのよう

にウィザードに表示される候補を確認した上で，開発

者はリファクタリングを行うべきかを判断する.

閲覧する分類および候補はタブアイテムそ切り替え

ることで選択できる.候補の検出や分類の際にいくつ

かのおclipseの既存の機能そ用いているため， ζれら

の候補を用いたリファクタリングは， Eclipseの既存

のリファクタリング機能を利用することで効率的に行

うことが可能である.

4. 許価実験

評価実験では，オープンソースソフトウェアANTLR

に含まれている 5つの類似メソッド対に対して，本手

法の適用を行った.検出された候補の一部に対して実

際にリファクタリングを行ったところ，外部的振る舞

いが変化しないことを確認でき，候補の有用性そ確認

できた.また，候補の検出数については，ある類似メ

ソッド対については 102，144個の候擦が検出された，

その全てがメソッド呼び出し文が一致しない集約作業

が比較的困難な候補であった.他の4つの類似メソッ

ド対については 9~695 倒の候補が検出され，うちメ

ソッド呼び出し文が一致する集約作業が比較的容易な

候補は， 9~150 個であった.よって，それら 4 つの

メソッド対については，現実的に閲覧が可能な数の有

用な候掃が検出できたと考えられる.

5. 今後の課題

今後の課題としては以下の内容が挙げられる.

(1) 一部の類似メソッド対から検出される候補の数

は，現実的に関覧が不可能で、あった.したがっ

て，検出された候補の中から有意性の高い候補

を，関覧可能と考えられる数だけに厳選するな

20

どの対策が必要である.厳選基準として考えら

れるものは，抽出するコード片や抽出後の各メ

ソッドから算出できる凝集度の値などがある.

また，検出数そのものを減らすために，検出前

に基準そ設定することで検出する候補を制限す

る方法も考えられる.

(2) 一部の類似メソッド対からは，集約作業が比較

的容易な候補そ検出できなかった.この問題を

解決するためには，抽出範囲の拡大とは異なる

新たな候補の検出方法を考案する必要がある.

ステートメントの入替えそ行うなどの方法が考

えられるが，候補数の増加が懸念される.

(3) 現時点では提示された候補の有用性及び分類の

有用性を確かめる実験のみを行っている.した

がって，提示された候補が支援として有効であ

るか確かめる実験が必要である. 例えば，被

験者に実際に“テンプレートメソッドの形成"

リファクタリングを行ってもらい， ツールを

用いる場合と用いない場合において作業効率や

品質にどのような差が生じるかを調査する，と

いった方法が考えられる.

(4) 検出される差分や候補によっては，“テンプレー

トメソッドの形成"リファクタリングよりも，別

のリファクタリングが適している場合があるの

ではないかという意見を得た. 他のリファクタ

ングの支援を考慮する場合，類似メソッドの集

約に効果的であるリファクタリングについて調

査しその適用可能性を考察する必要がある.

参考文献

1) Ji阻 g，L.， Misherghi， G.， Su， Z. and Glondu，
S.: DECKARD: Scalable and Accurate τ'ree-
Based Detection of Code Clones， Proc. of
ICSE 2007， Minneapolis， MN ，USA， pp.96-105
(2007).

2) Kamiya， T.， Kusumoto， S. 阻 d Inoue，
K.: CCFinder: A Multilinguistic Token-Based

Code Clone Det邑ctionSystem for Large Scale

Source Code， IEEE Trans. Softw. Eng・，Vo1.28，
No.7， pp.654-670 (2002).
3) Komondoor， R. and Horwitz， S.: Using slicing
to identiちTduplication in source code， Proc. of
SAS 2001， Paris， Fr担ce，pp.4G-56 (2001).
4) Fowler， M.: Refactorirψ Improvi吋 theDesign
of Existi吋 Code，Addison Wesley (2000).
5)政井智雄，吉田則裕， 松下誠，井上克郎:テ
ンプレートメソッドの形成に基づく類似メソッド

の集約支援， FOSE2010， pp.125-130 (2010).

平成23年1月

