

Title	Obstruction theory for finite group actions
Author(s)	Ku, Hsü Tung; Ku, Mei Chin
Citation	Osaka Journal of Mathematics. 1981, 18(2), p. 509-523
Version Type	VoR
URL	https://doi.org/10.18910/5069
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Ku, H.T. and Ku, M.C. Osaka J. Math. 18 (1981), 509-523

OBSTRUCTION THEORY FOR FINITE GROUP ACTIONS

Dedicated to Professor D. Montgomery on His 70th Birthday

HSU-TUNG KU AND MEI-CHIN KU

(Received December 15, 1979)

1. Introduction. Let G be a finite group, F and P be fixed finite G-complexes. In this paper we shall define a general obstruction theory for extending a 1-connected cellular G-map $f: F \rightarrow P$ to a cellular G-map $\phi: X \rightarrow P$ which is a homology or homotopy equivalence, where X is a finite G-complex.

Define a G-resolution of $f: F \to P$ to be an *n*-connected cellular G-map $\phi: X \to P$, $n = \dim X \ge \dim P$, which extends $f(n \ge 2)$ so that G acts freely outside F, F a G-subcomplex of X and $H_{n+1}(\phi)$ is a projective Z(G)-module. The obstruction $\gamma_G(f, \phi)$ of a G-resolution ϕ of f is defined as

$$\gamma_{G}(f, \phi) = (-1)^{n+1} [H_{n+1}(\phi)] \in \tilde{K}_{0}(Z(G)),$$

where $[H_{n+1}(\phi)]$ denotes the class of $H_{n+1}(\phi)$ in the projective class group $\tilde{K}_0(Z(G))$. Let $c: pt \to pt$ be the constant map and define

 $B(G) = \{\gamma_G(c, \phi): \phi \text{ is a } G \text{-resolution of } c\}$.

Then B(G) can be proved to be a subgroup of $\tilde{K}_0(Z(G))$. Assume the map $f: F \to P$ satisfies the following extension property:

(EP): Let $\phi_i: X_i \rightarrow P$ be any two G-resolutions of f, i=1, 2. Then

$$\phi_1 \cup \phi_2 \colon X_1 \bigcup_F X_2 \to P$$

extends to a G-resolution of f.

We shall show that for any such ϕ_i , i=1, 2,

$$\gamma_G(f, \phi_1) - \gamma_G(f, \phi_2) \in B(G)$$
,

hence if we let $[\gamma_c(f, \phi)]$ to be the equivalence class of $\gamma_c(f, \phi)$ for any G-resolution ϕ of f, then we can define the *obstruction* of f by

$$\gamma_{G}(f) = [\gamma_{G}(f, \phi)] \in \tilde{K}_{0}(Z(G))/B(G)$$

We will verify that the invariant $\gamma_{c}(f)$ is exactly the obstruction to extending

f to a homology or homotopy equivalence of G-map if the fixed point set F^{c} is not empty.

We shall also see that the extension property (EP) holds for many G-maps. Moreover we have the following equality

$$egin{aligned} &\gamma_{\scriptscriptstyle G}(f_2f_1) = \gamma_{\scriptscriptstyle G}(f_1) + \gamma_{\scriptscriptstyle G}(f_2) \,. \end{aligned}$$

Now let us consider the following:

Converse to the Smith fixed point set problem. Suppose the finite group G acts on a finite Poincré complex P with $P^{G} = \bigcup_{i} P_{i}(P_{i} \text{ is a component of } P^{G})$, and $F = \bigcup_{i} F_{i}$ a finite complex with $F_{i} \underset{L}{\sim} P_{i}$ (i.e., $H^{*}(F_{i}; L) \approx H^{*}(P_{i}; L)$) for all *i*. Can we find a finite complex X such that G acts on X with $X^{G} = F$ and $X \underset{L}{\sim} P$?

We are able to apply the obstruction theory to study this general problem. In particular we will prove the following results.

Theorem 1.1. Let $f: F \rightarrow P^c \subset P$ be a cellular map such that G acts semifreely on P and $f_*: H_*(F; Z) \approx H_*(P^c; Z)$. Suppose $f: F \rightarrow P$ is 1-connected. Then there is a finite complex X which is homology equivalent to P, and G acts semifreely on X with $X^c = F$. Moreover, if F is simply connected, X is homotopy equivalent to P.

Theorem 1.2 [4]. Let $G=Z_q$ (q is not necessarily prime) and F a finite Z_q -acyclic complex. Then there is a finite contractible G-complex X such that G acts semifreely on X with $X^{c}=F$.

Theorem 1.3. Let G be a finite group of order q with periodic cohomology of period n, and let $d=(q, \phi(q))$, where ϕ is the Euler ϕ -function (i.e., $\phi(q)$ is the number of positive integers < q that are prime to q). Suppose F is a simply connected r-dimensional integral homology r-sphere. Then there exists a finite G-complex X which is homotopy equivalent to S^{r+dn} . Moreover, G acts semifreely on X with $X^{c}=F$.

In Swan [8], he proved that G can act freely on some finite complex X which is homotopy equivalent to S^{dn-1} , where G, d and n are as in 1.3.

We also can define another obstruction theory by using the \tilde{G} -resolution $\tilde{\phi}$ which is defined exactly as a *G*-resolution of *f* with $X^{G} = F^{G}$ except that *G* is not necessarily acting freely on X - F. Set

 $\tilde{B}(G) = \{\tilde{\phi} : \tilde{\phi} \text{ is a } G \text{-resolution of } c : pt \rightarrow pt\}$

which is again a subgroup of $\tilde{K}_0(Z(G))$. Thus if f satisfies (EP) for \tilde{G} -resolutions, $\tilde{\gamma}_G(f) = [\tilde{\gamma}_G(f, \tilde{\phi})] \in \tilde{K}_0(Z(G))/\tilde{B}(G)$ is well defined so that the obstruction

theory can be established as in γ_G -theory. The $\tilde{\gamma}_G(f)$ was defined by Oliver in [6] for the case $\chi(F)=1 \mod m(G)$, G acts trivially on F and P a point.

2. Preliminaries. Let X and W be finite G complexes, G finite, and $f: X \rightarrow W$ be an equivariant cellular map. There is an exact sequence of the map f:

$$\cdots \to \pi_{n+1}(X) \to \pi_{n+1}(W) \to \pi_{n+1}(f) \to \pi_n(X) \to \cdots$$

The element of $\pi_{n+1}(f)$ is represented by a pair (β, α) of cellular maps so that the diagram below is commutative:

$$\begin{array}{c} S^{n} \xrightarrow{\alpha} X \\ j \downarrow & \downarrow f \\ D^{n+1} \xrightarrow{\beta} W \end{array}$$

Define $\overline{\alpha}$: $G \times S^n \to X$ by $\overline{\alpha}(g, y) = g\alpha(y)$ for $(g, y) \in G \times S^n$, and let

$$Y = X \bigcup_{\overline{a}} G \times D^{n+1} = X \bigcup_{\overline{a}} (\bigcup_{g \in \mathcal{G}} g \times D^{n+1}) = X \cup (\bigcup_{g \notin g \in \mathcal{G}} D^{n+1}).$$

Then there is a naturally induced action of G on Y defined by

$$h(y) = \begin{cases} hx & \text{if } y = x \in X \\ (hg, x) & \text{if } y = (g, x) \in G \times D^{n+1} \end{cases}$$

where $h \in G$. Thus Y is a G-complex which is obtained from X be adding free orbits of (n+1)-cells. Define an equivariant map $f: Y \to W$ by

$$\bar{f}(y) = \begin{cases} f(x) & \text{if } y = x \in X \\ g\beta(z) & \text{if } y = (g, z) \in G \times D^{n+1}. \end{cases}$$

By construction, f is an equivariant map, and

$$\pi_i(\bar{f}) = \pi_i(f) \quad \text{for } i \le n$$

$$\pi_{n+1}(\bar{f}) = \pi_{n+1}(f)/K,$$

where K is the normal subgroup containing the Z(G)-submodule generated by the class (β, α) in $\pi_{n+1}(f)$.

Lemma 2.1. Let $f: X \to Y$ be an (n-1)-connected equivariant map with $H_n(f) = N \oplus M$, where M and N are Z(G)-modules, $n \ge 2$. Then we can add n-cells of free orbits to kill off M to produce an (n-1)-connected equivariant map $\hat{f}: \hat{X} \to Y$ such that (1) $H_i(\hat{f}) = H_i(f), i \ge n+2$, (2) 0→H_{n+1}(f)→H_{n+1}(f)→Ker ∂_{n+1}→0 and 0→Ker ∂_{n+1}→H_n(X, X)→M→0 exact.
(3) H_n(f)=N.
Moreover if M is Z(G)-projective (or Ker ∂_{n+1} is Z(G)-projective) then
(4) H_{n+1}(f)=H_{n+1}(f)⊕Ker ∂_{n+1}.
Furthermore if M is a free Z(G)-module, ∂_{n+1}: H_n(X, X)≈M and
(5) H_i(f)=H_i(f), i≥n+1.

Proof. Since f is (n-1)-connected, $\pi_n(f) \to H_n(f)$ is surjective by the Hurewicz Theorem. Hence there exist pairs of cellular maps (β_i, α_i) , $\alpha_i \colon S^{n-1} \to X$, $1 \le i \le v$ such that $\sum_{i=1}^{v} (\beta_i, \alpha_i)_* \{H_n(D^n, S^{n-1})\}$ generates M as Z(G)-module. Let

$$\hat{X} = X \bigcup_{\bigcup \bar{\alpha}_i} \{\bigcup G \times D_i^n\}.$$

By the construction above f extends to an equivariant map $\hat{f}: \hat{X} \rightarrow Y$. There is an exact sequence

$$0 \to H_{n+1}(f) \to H_{n+1}(\hat{f}) \to H_n(\hat{X}, X) \xrightarrow{\partial_{n+1}} H_n(f) \xrightarrow{j_*} H_n(\hat{f}) \to 0.$$

This can be easily obtained by looking at the algebraic mapping cones of $f_*: C_*(X) \to C_*(Y)$ and $\hat{f}_*: C_*(\hat{X}) \to C_*(Y)$. Now $\operatorname{Ker} j_* = M$ by construction, hence $H_n(\hat{f}) \approx H_n(f)/M \approx N$, and

$$0 \to H_{n+1}(f) \to H_{n+1}(\hat{f}) \to H_n(\hat{X}, X) \xrightarrow{\partial_{n+1}} M \to 0$$

is exact. The results follow easily.

Lemma 2.2. Let G be a finite group of order q, and $f: M \rightarrow P \oplus T$ be a surjective map of Z(G)-modules. Suppose M is Z(G)-free, P Z(G)-projective and T torsion prime to q. Then Ker f is Z(G)-projective.

Proof. Let L be any Sylow subgroup of G. Then both M and P are Z(L)-projective. Since we have exact sequence of Z(L)-modules

$$0 \to \operatorname{Ker} f \to M \to P \oplus T \to 0,$$

we obtain an exact sequence

$$\hat{H}^{i}(L: M) = 0 \to \hat{H}^{i}(L: T) \approx \hat{H}^{i}(L: P \oplus T) \to \hat{H}^{i+1}(L: \operatorname{Ker} f)$$
$$\to \hat{H}^{i+1}(L: M) = 0,$$

where $\hat{H}^{i}(L: M) = \hat{H}^{i+1}(L: M) = 0$ and $\hat{H}^{i}(L: P \oplus T) \approx \hat{H}^{i}(L: T)$ because M and P are both Z(L)-projective. Since T is torsion prime to |L|, the map $|L|: T \rightarrow T$ which is a multiplication by |L| is an isomorphism. Thus it

induces an isomorphism $|L|: \hat{H}^{i}(L; T) \rightarrow \hat{H}^{i}(L; T)$. But $|L| \hat{H}^{i}(L; T) = 0$, hence $\hat{H}^{i}(L; T) = 0$, and so

$$\hat{H}^{i+1}(L;\operatorname{Ker} f)=0,$$

for any Sylow subgroup L of G and any i. It follows from [7] that Ker f is cohomologically trivial. Therefore Ker f is Z(G)-projective by [7]. The proof extends the idea due to Oliver (cf. [3]).

Lemma 2.3. Let $G=Z_q$, (n, q)=1, M and N be free Z(G)-modules and $P_1: N \oplus Z_n \to Z_n$ the projection. Suppose $h: M \to N \oplus Z_n$ is an epimorphism such that $p_1h: M \to Z_n$ is an augmentation map. Then Ker h is stably Z(G)-free.

Proof. Let $p: N \oplus Z_n \to N$ be the projection. Since N is Z(G)-free, there is a Z(G)-homomorphism $\phi: N \to M$ such that $(ph)\phi=1$. Thus $M=K\oplus\phi(N)$ as Z(G)-modules and $h|\phi(N):\phi(N)\approx N$, where K=Ker(ph). It follows that h induces an epimorphism $\bar{h}: K \to Z_n$ with Ker $\bar{h}=\text{Ker } h$. Note that we have exact sequence

$$0 \to \operatorname{Ker} h \oplus \phi(N) \to M = K \oplus \phi(N) \xrightarrow{p_1 h = (h, 0)} Z_n \to 0.$$

Hence Ker $h \oplus \phi(N)$ is Z(G)-free by applying [4, Lemma 1.1] inductively on the rank of M. As $\phi(N)$ is Z(G)-free, Ker h is stably Z(G)-free.

3. An obstruction theory for finite group actions

Lemma 3.1. Let $\psi: Y \rightarrow P$ be an equivariant map and $n = \dim Y \geq P$ such that $\psi|F=f$ and ψ is 1-connected. Assume that $H_i(\psi)$ is Z(G)-projective for $i\geq 2$. Then ψ can be embedded in a G-resolution $\phi: X \rightarrow P$ of f such that

$$\gamma_{G}(f, \phi) = \sum_{i=2}^{n+1} (-1)^{i} [H_{i}(\psi)].$$

Proof. Let k be the smallest integer such that $H_{k+1}(\psi) \neq 0$. If k=n, $\phi=\psi$ is a G-resolution of f.

Suppose k < n. Since the Hurewitz homomorphism $h: \pi_{k+1}(\psi) \rightarrow H_{k+1}(\psi)$ is an epimorphism by the Hurewitz theorem, we can add free orbits of (k+1)cells to kill off $H_{k+1}(\psi)$. This creates an equivariant map $f_k: X_k \rightarrow P$. According to 2.1 we have

$$egin{aligned} & \hat{H}_i(f_k) = 0\,, \qquad i \leq k+1\,. \ & H_i(f_k) = H_i(\psi)\,, \qquad i \geq k+3\,. \ & H_{k+2}(f_k) = H_{k+2}(\psi) \oplus M\,, \qquad M = \operatorname{Ker} \partial_{k+2}\,, ext{ and } \ & H_{k+1}(X_k,\,Y) = M \oplus H_{k+1}(\psi)\,, \end{aligned}$$

where $H_{k+1}(X_k, Y)$ is Z(G)-free. Thus $[M] = -[H_{k+1}(\psi)] \in \tilde{K}_0[(Z(G))$. It follows that

H.T. KU AND M.C. KU

$$\sum_{i=k+2}^{n+1} (-1)^{i} [H_{i}(f_{k})] = \sum_{i=2}^{n+1} (-1)^{i} [H_{i}(\psi)].$$

By repeating this process, eventually we will produce a G-resolutiont ϕ of f with

$$\gamma_G(f, \phi) = (-1)^{n+1} [H_{n+1}(\phi)] = \sum_{i=2}^{n+1} (-1)^i [(H_i(\psi)]].$$

Lemma 3.2. Let $B(G) = \{\gamma_G(c, \phi) : \phi \text{ is a } G \text{-resolution of } c\}$, where $c : pt \rightarrow pt$ is the constant map. Then B(G) is a subgroup of $\tilde{K}_0(Z(G))$.

Proof. Let $\gamma_G(c, \phi_i) \in B(G)$, where $\phi_i: X_i \to pt$ are two G-resolutions of c, and dim $X_i = n_i$, i = 1, 2. Then

$$H_{j+1}(\phi_1 \lor \phi_2) = H_{j+1}(\phi_1) \oplus H_{j+1}(\phi_2)$$
, for all *j*,

where $\phi_1 \lor \phi_2$: $X_1 \bigvee_{p_t} X_2 \to pt$. Thus $\hat{H}_*(\phi_1 \lor \phi_2)$ is Z(G)-projective. It follows from this and 3.1 that there is a G-resolution ϕ of c such that

$$\begin{split} \gamma_G(c, \phi) &= (-1)^{n_1+1} [H_{n_1+1}(\phi_1 \vee \phi_2)] + (-1)^{n_2+1} [H_{n_2+1}(\phi_1 \vee \phi_2)] \\ &= (-1)^{n_1+1} [H_{n_1+1}(\phi_1)] + (-1)^{n_2+1} [H_{n_2+1}(\phi_2)] \,, \end{split}$$

that is, $\gamma_G(c, \phi_1) + \gamma_G(c, \phi_2) \in B(G)$.

Suppose now that $\gamma_c(c, \phi) \in B(G)$, $\phi: X \to pt$ is a G-resolution of $c \pmod{X=n}$. Then $\tilde{\phi}: \Sigma X \to pt$ is also a G-resolution of c, where ΣX denotes the reduced suspension of X. This implies that

$$-\gamma_{G}(c, \phi) = (-1)^{n+2}[H_{n+1}(\phi)] = (-1)^{n+2}[H_{n+2}(\tilde{\phi})] = \gamma_{G}(c, \tilde{\phi}) \in B(G).$$

Proposition 3.3. Suppose the map $f: F \to P$ satisfies (EP). Then for any two G-resolutions ϕ_1 and ϕ_2 , $\gamma_G(f, \phi_1) - \gamma_G(f, \phi_2) \in B(G)$.

Proof. By hypothesis (EP), $\phi_1 \cup \phi_2$: $X_1 \bigcup_F X_2 \to P$ extends to a *G*-resolution $\phi: X \to P$ of *f*. Let dim X=m dim $X_i=n_i$, i=1, 2. We can assume that $m \ge n_i+2$ and $n_i > \dim P$, i=1, 2.

By assumptions, ϕ_* : $H_j(X) \approx H_j(P)$, j < m; and ϕ_{i*} : $H_j(X_i) \approx H_j(P)$ for $j < n_i$, i=1, 2, hence from the homology exact sequences of the pairs (X, X_i) we have $H_m(X) \approx H_m(X|X_i)$, $H_{n_i+1}(X|X_i) \approx H_{n_i}(X_i)$ and $\tilde{H}_j(X|X_i) = 0$ otherwise. For instance if $j < n_j$,

$$\begin{array}{c} H_{j}(X_{i}) \xrightarrow{\approx} H_{j}(X) \to H_{j}(X|X_{i}) \to H_{j-1}(X_{i}) \xrightarrow{\approx} H_{j-1}(X) \\ \approx \bigvee \swarrow \swarrow & \swarrow & \swarrow & \swarrow & \swarrow \\ H_{j}(P) & H_{j-1}(P) \end{array}$$

From the homology exact sequences of ϕ and ϕ_i we obtain $H_{m+1}(\phi) \approx H_m(X)$ and $H_{n_i+1}(\phi_i) \approx H_{n_i}(X_i)$.

Now G acts on X/X_i with $(X/X_i)^c = pt$. Apply 3.1 to the constant maps

 $f_i: X/X_i \rightarrow pt$, since $H_{m+1}(f_i) = H_m(X/X_i) = H_{m+1}(\phi)$ and $H_{n_i+2}(f_i) = H_{n_i+1}((X/X_i))$ = $H_{n_i+1}(\phi_i)$ are Z(G)-projective and $\tilde{H}_j(f_i) = 0$ otherwise, there exist G-resolutions $\psi_i: Y_i \rightarrow pt$ of c such that

$$egin{aligned} &\gamma_{G}(c,\,\psi_{i})=(-1)^{n_{i}+2}[H_{n_{i}+2}(f_{i})]\!+\!(-1)^{m+1}\![H_{m+1}(f_{i})]\ &=-(-1)^{n_{i}+1}\![H_{n_{i}+1}(\phi_{i})]\!+\!(-1)^{m+1}\![H_{m+1}(\phi)]\ &=-\gamma_{G}(f,\,\phi_{i})\!+\!\gamma_{G}(f,\,\phi), \quad i=1,\,2\,. \end{aligned}$$

Clearly this implies that $\gamma_G(f, \phi_1) - \gamma_G(f, \phi_2) \in B(G)$.

Theorem 3.4. If $\gamma_G(f)=0$ and $F^G \neq \phi$, then G acts on some finite complex \hat{X} and there is an equivariant map $\hat{\phi}: \tilde{X} \rightarrow P$ which is a homology equivalence, $\hat{\phi}|F=f$ and G acting freely on $\hat{X}-F$. If F is simply connected, then $\hat{\phi}$ is a homotopy equivalence.

Proof. Let $\gamma_{c}(f) = [\gamma_{c}(f, \phi)] = 0$, where $\phi: X \to P$ is G-resolution of f. Then $\gamma_{c}(f, \phi) \in B(G)$. Hence there is a G-resolution $\psi: Y \to pt$ of $c: pt \to pt$ such that $\gamma_{c}(f, \phi) = -\gamma_{c}(c, \psi)$. Consider

$$\phi \lor \psi \colon X \lor Y \rightarrow P \lor pt = P$$

where the $pt \in Y$ is joined to any fixed point of X. Thus we have

$${ ilde H}_{m{*}}(\phiee\psi)={ ilde H}_{m{*}}(\phi){ otheta}{ ilde H}_{m{*}}(\psi)$$

which is Z(G)-projective. By 3.1, $\phi \lor \psi$ can be embedded in a G-resolution $\tilde{\phi} \colon \tilde{X} \to P$ of f, and

$$\gamma_{\mathcal{G}}(f,\,\widetilde{\phi}) = \sum_{i} (-1)^{i} [H_{i}(\phi \lor \psi)] = \gamma_{\mathcal{G}}(f,\,\phi) + \gamma_{\mathcal{G}}(c,\,\psi) = 0 \,.$$

Thus $\gamma_G(f, \tilde{\phi})$ is stably Z(G)-free. It follows from 2.1 that $\tilde{\phi}$ can be extended to an equivariant map $\tilde{\phi}: \hat{X} \to P$ which is a homology equivalence.

Proposition 3.5. Suppose G acts semifreely on both F and P and $\gamma_G(f)=0$. Then

$$f^{\scriptscriptstyle G}_*\colon H_*(F^{\scriptscriptstyle G};Z_p) \xrightarrow{\approx} H_*(P^{\scriptscriptstyle G};Z_p),$$

for every prime p such that p||G|, where $f^G: F^G \to P^G$ is the restriction of f. Equivalently, $\tilde{H}_*(f^G)$ is torsion prime to |G|, |G| = order of G.

Proof. Let $\phi: X \to P$ be an equivariant map which is a homology equivalence and $\phi|F=f$. For every prime p, p||G|, there is a subgroup Z_p of G of order p and

$$X^{Z_{p}} = F^{Z_{p}} = F^{G}, P^{Z_{p}} = P^{G}.$$

Since the group Z_p acts semifreely on the mapping cone C_{ϕ} which is Z_p -acyclic with $C_{\phi}^{Z_p} = C_f G$, hence $C_f G$ is Z_p -acyclic by the Smith fixed point theorem, that is, $\hat{H}_*(f^c; Z_p) = 0$, or

$$f_*^G: H_*(F^G; Z_p) \approx H_*(P^G; Z_p)$$
 for every $p \mid |G|$.

4. Existence of G-resolutions. The obstruction theory which we have defined depends on the existence of G-resolutions satisfying (EP). In this section we shall investigate the existence of the equivariant maps $f: F \rightarrow P$ satisfying (EP).

Lemma 4.1. Let |G| = q and $\phi: X \to P$ be an n-connected equivariant cellular map, $n \ge 2$. Suppose $\tilde{H}_*(\phi^H)$ is torsion prime to q (resp. $\tilde{H}_*(\phi^H)=0$) for every $\phi^H = \phi | X^H: X^H \to P^H$, where $e \neq H \subset G$, dim $X^H < n = \dim X$ and dim $P \le \dim X$. Then $H_{n+1}(\phi)$ is Z(G)-projective (resp. stably Z(G)-free).

Proof. Let $\hat{X}=U\{X^{H}: e \neq H \subset G\}$ and $\hat{P}=\cup\{P^{H}: e \neq H \subset G\}$. By the Mayer-Vietoris sequence and induction, it is easy to verify that $\hat{H}_{*}(\hat{\phi})$ is torsion prime to q, where $\hat{\phi}=\phi \mid \hat{X}: \hat{X} \rightarrow \hat{P}$. Since ϕ is *n*-connected, it induces an equivariant map $\bar{\phi}: X/\hat{X} \rightarrow P/\hat{P}$ with $H_{i}(\bar{\phi}) \approx \tilde{H}_{i-1}(\hat{\phi})$ for $i \leq n$. Hence $\tilde{H}_{i}(\bar{\phi})$ is torsion prime to q for every $i \leq n$. We may assume that both X/\hat{X} and P/\hat{P} are simply connected. Otherwise we simply consider the suspension map $\Sigma\bar{\phi}: \Sigma(X/\hat{X}) \rightarrow \Sigma(P/\hat{P})$. Add free orbits to X/\hat{X} inductively to kill off $\tilde{H}_{i}(\bar{\phi}), i \leq n$. By 2.1. this creates equivariant *i*-connected cellular maps $\phi_{i}: X_{i} \rightarrow P/\hat{P}, 2 \leq i \leq n$, with

(1)
$$\begin{cases} H_{i+1}(\phi_i) = H_{i+1}(\phi_{i-1}) \oplus \text{Ker } \partial_{i+1} \\ H_j(\phi_i) = H_j(\phi_{i-1}), \quad j \ge i+2, \end{cases}$$

where Ker ∂_{i+1} is Z(G)-projective for every *i* by 2.2.

Now G acts semifreely on both X_n and P/\hat{P} with exactly one fixed point, say x_0 and p_0 respectively. Let $h=\phi_n|x_0$. Then $C_*=C_*(C_{\phi_n}, C_h)$ is a free Z(G)-module with $H_i(C_*)=\tilde{H}_i(\phi_n)$ for all $i\geq 0$. As ϕ_n is *n*-connected, there is an exact sequence

$$(2) 0 \to H_{n+1}(\phi_n) \to C_{n+1} \to \cdots \to C_0 \to 0.$$

This implies that if we let $N=C_n\oplus C_{n-2}\oplus \cdots$, then $H_{n+1}(\phi_n)\oplus N$ is Z(G)-free. Let $M=\text{Ker }\partial_{n+1}$. According to (1)

$$H_{n+1}(\phi_n) = H_{n+1}(\phi_{n-1}) \oplus M = \cdots = H_{n+1}(\bar{\phi}) \oplus M.$$

Since the sequence

$$(3) \qquad 0 \to H_{n+1}(\phi) \to H_{n+1}(\bar{\phi}) \to H_n(\phi) \to 0$$

is exact, we obtain an exact sequence

$$0 \to H_{n+1}(\phi) \oplus M \oplus N \to H_{n+1}(\bar{\phi}) \oplus M \oplus N = H_{n+1}(\phi) \oplus N \to H_n(\hat{\phi}) \to 0.$$

But $H_n(\hat{\phi})$ is torsion prime to q, and $H_{n+1}(\phi_n) \oplus N$ is Z(G)-free, hence $H_{n+1}(\phi) \oplus M \oplus N$ is Z(G)-projective by 2.2. It follows that $H_{n+1}(\phi)$ is Z(G)-projective.

Suppose now that $\hat{H}_{*}(\phi^{H})=0$ for every $H \neq e$. Then $\hat{H}_{i}(\bar{\phi})=0$ for $i \leq n$. Hence $\bar{\phi}$ is *n*-connected and (2) holds for $\bar{\phi}$. Thus $H_{n+1}(\bar{\phi})$ is stably Z(G)-free. But $H_{n}(\hat{\phi})=0$ and so $H_{n+1}(\phi)=H_{n+1}(\bar{\phi})$ by (3). This proves that $H_{n+1}(\phi)$ is stably Z(G)-free.

Theorem 4.2 (Existence theorem I). Let $f: F \rightarrow P$ be an 1-connected equivariant cellular map.

(1) Suppose $\hat{H}_*(f^H)$ is torsion prime to q = |G| for every $f^H = f|F^H : F^H \to P^H$, where $e \neq H \subset G$. Then $\gamma_G(f)$ is well defined, i.e., f satisfies (EP).

(2) If $\tilde{H}_*(f^H) = 0$ for every f^H , $e \neq H \subset G$, then $\gamma_G(f) = 0$.

Proof. Add free orbits of cells of dimensions $\leq n$ inductively to get an *n*-connected cellular map $\phi: X \rightarrow P$ with $n = \dim X \geq \dim P$. Now $\phi^H = f^H$ for every $e \neq H \subset G$ by construction, hence by 4.1 $H_{n+1}(\phi)$ is Z(G)-projective, i.e., ϕ is a G-resolution of f.

If $\phi_i: X_i \to P$ are two *G*-resolutions of *f*, i=1, 2, add free orbits of cells to $X_1 \bigcup_F X_2$ extending $\phi_1 \cup \phi_2: X_1 \bigcup_F X_2 \to P$ to an *n*-connected equivariant cellular map $\phi: X \to P$. Again ϕ is a *G*-resolution of *f* which extends both ϕ_1 and ϕ_2 , i.e., *f* satisfies (EP). Hence $\gamma_G(f)$ is well defined.

If $\tilde{H}_*(f^H)=0$ for every $G \supset H \neq e$, then $H_{n+1}(\phi)$ is stably Z(G)-free. Hence $\gamma_G(f)=0$.

Theorem 4.3 (Existence theorem II). Suppose f is 1-connected and $H_i(f) = M_i \oplus T_i$ for all $i \ge 2$, where M_i 's are Z(G)-projective and T_i 's torsion prime to q = |G|. Then the G-resolutions of f always exist and f satisfying (EP). Moreover if $H_i(f)$ is Z(G)-free for every $i \ge 2$, then $\gamma_G(f) = 0$.

Proof. We shall construct inductively s-connected equivariant cellular maps $f_s: X_s \rightarrow P$ satisfying the following:

(1) $H_{s+i}(f_s) = H_{s+i}(f) \oplus a Z(G)$ -projective module, i=1, 2.

(2) $H_i(f_s) = H_i(f), i \ge s+3.$

Assume that f_s has been constructed. By 2.1. add free orbits of (s+1)-cells to kill off $H_{s+1}(f_s)$ to obtain a (s+1)-connected cellular map g_{s+1} : $Y_s \rightarrow P$ such that

(3)
$$H_i(g_{s+1}) = H_i(f_s)$$
, hence $H_i(g_{s+1}) = H_i(f)$, $i \ge s+3$ by (2).
(4) $0 \rightarrow H_{s+2}(f_s) \rightarrow H_{s+2}(g_{s+1}) \rightarrow \text{Ker } \partial_{s+2} \rightarrow 0$ and
 $0 \rightarrow \text{Ker } \partial_{s+2} \rightarrow H_{s+1}(Y_s, X_s) \xrightarrow{\partial_{s+2}} H_{s+1}(f_s) \rightarrow 0$ exact,

where Ker ∂_{s+2} is Z(G)-projective 2.2. Thus

$$H_{s+2}(g_{s+1}) = H_{s+2}(f_s) \oplus \operatorname{Ker} \partial_{s+2}.$$

Again by 2.1. add (s+2)-cells to Y_s to kill off ker ∂_{s+2} to produce a (s+1)connected equivariant cellular map f_{s+1} : $X_{s+1} \rightarrow P$ such that

- (5) $H_{s+2}(f_{s+1}) = H_{s+2}(f_s)$, hence
- $H_{s+2}(f_{s+1}) = H_{s+2}(f) \oplus a Z(G)$ -projective module by (1).
- (6) $H_i(f_{s+1}) = H_i(g_{s+1}) = H_i(f), i \ge s + 4$ (by (3))
- (7) $0 \rightarrow H_{s+3}(g_{s+1}) \rightarrow H_{s+3}(f_{s+1}) \rightarrow \text{Ker } \tilde{\partial}_{s+2} \rightarrow 0 \text{ and}$

$$0 \to \operatorname{Ker} \tilde{\partial}_{s+2} \to H_{s+2}(X_{s+1}, Y_s) \xrightarrow{\partial_{s+2}} \operatorname{Ker} \partial_{s+2} \to 0$$

exact, where Ker $\hat{\partial}_{s+2}$ is Z(G)-projective. Thus

$$H_{s+3}(f_{s+1}) = H_{s+3}(g_{s+1}) \oplus \operatorname{Ker} \partial_{s+2}$$

= $H_{s+3}(f) \oplus \operatorname{Ker} \tilde{\partial}_{s+2}$ (by (3)).

This completes the inductive construction.

Now if $s > \max\{\dim F, \dim P\}$, then $H_i(f) = 0$ for $i \ge s+1$ and $\dim X_s = s+1$. It follows from (1) and (2) that we have an s-connected equivariant cellular map $f_s: X_s \to P$ with $H_i(f_s) Z(G)$ -projective for i=s+1 and s+2. By 2.1, we can add (s+1)-cells to X to kill off $H_{s+1}(f_s)$ to obtain a G-resolution $\phi: X \to P$ of f with

$$H_{s+2}(\phi) = H_{s+2}(f_s) \oplus \operatorname{Ker} \partial_{s+2}$$

which is Z(G)-projective.

Next, let $\phi_i: X_i \to P$ be any two G-resolutions of f, i=1, 2. We may assume that dim $X_i = n_i > \max \{\dim F, \dim P\}$. Clearly we have an exact sequence

$$\cdots \to H_{i+1}(f) \to H_{i+1}(\phi_1) \oplus H_{i+1}(\phi_2) \to H_{i+1}(\phi_1 \cup \phi_2) \to H_i(f) \to \cdots$$

But $H_{i+1}(\phi_j)=0$ for $i \neq n_j$, j=1,2. Thus

$$H_{i+1}(\phi_1 \cup \phi_2) \approx H_i(f) \quad \text{for } i \neq n_1, n_2 ,$$

$$H_{i+1}(\phi_1 \cup \phi_2) = \begin{cases} H_{n_1+1}(\phi_1) \oplus H_{n_2+1}(\phi_2) , & \text{if } i = n_1 = n_2 \\ H_{n_1+1}(\phi_1) & \text{if } i = n_1, n_1 \neq n_2 \\ H_{n_2+1}(\phi_2) & \text{if } i = n_2, n_1 \neq n_2 . \end{cases}$$

Hence $\phi_1 \cup \phi_2$ can be embedded in a G-resolution of f. This proves that f satisfies (EP).

If $H_i(f)$ is Z(G)-free for every $i \ge 2$, it is not difficult to see from the proof that $H_{s+2}(\phi)$ is stably Z(G)-free, hence $\gamma_G(f)=0$.

Proposition 4.4. (1) If $\gamma_G(f)$ is well defined for $f: F \rightarrow P$, then $\gamma_G(\Sigma f) = -\gamma_G(f)$.

(2) Suppose that $f_1: F \rightarrow P_1$ and $f_2: P_1 \rightarrow P_2$ both satisfy 4.2 $\gamma_G(1)$ or 4.3 so that $\gamma_G(f_i)$ are well defined, i=1, 2. Then

$${\gamma}_{\scriptscriptstyle G}(f_2f_1) = {\gamma}_{\scriptscriptstyle G}(f_1) + {\gamma}_{\scriptscriptstyle G}(f_2) \ .$$

Proof. (1) Obvious.

(2) Let $\phi_1: X_1 \rightarrow P_1$ be a *G*-resolution of f_1 with $n_1 = \dim X_1 > \max{\dim F, \dim P_1, \dim P_2}$. We can see that

$$\begin{split} H_{i+1}(f_2\phi_1) &= H_{i+1}(f_2), \quad i < n_1, \\ H_{n_1+1}(f_2\phi_1) &= H_{n_1}(X_1) = H_{n_1+1}(\phi), \text{ a } Z(G) \text{-projective module,} \\ H_{i+1}(f_2\phi_1) &= 0, \quad i \ge n_1 + 1. \end{split}$$

For example, if $i < n_1$, we have

$$\cdots \to H_{i+1}(f_2\phi_1) = H_{i+1}(f_2) \to H_i(X_1) \xrightarrow{(f_2\phi_1)_*} H_i(P_2) \to \cdots$$
$$\phi_{1^*} \swarrow f_{2^*}$$
$$H_i(P_1)$$

Now let $\psi_2: M_2 \rightarrow H_2(f_2\phi_1) = H_2(f_2)$ be a surjective map with M_2 a Z(G)-free module. Adding cells to both X_1 and P_1 to kill off both $H_2(f_2\phi_1)$ and $H_2(f_2)$ realizing ψ_2 . This creates 2-connected equivariant cellular maps $g_2: Y_2 \rightarrow P_2$ and $h_2: W_2 \rightarrow P_2$ extending $f_2\phi_1$ and f_2 respectively. By 2.1 we can see that $H_3(g_2) = H_3(h_2)$. Continuing this construction, eventually we will get a G-resolution $\phi_2 = h_{n_2}: W_{n_2} \rightarrow P_2$ of f_2 , dim $W_{n_2} = n_2$ and an n_2 -connected equivariant map $g_{n_2}: Y_{n_2} \rightarrow P_1$ extending $f_2\phi_1$ such that $H_{n_2+1}(h_{n_2}) = H_{n_2+1}(g_{n_2})$ and $H_i(g_{n_2}) = H_i(f_2\phi_1)$ for $i \ge n_2+2$. We may assume that $n_1 > n_2$. By construction, it is easy to see that

$$H_{i+1}(g_{n_2}) = \begin{cases} H_{n_j+1}(\phi_j), & \text{if } i = n_j, j = 1, 2 \text{ (hence } Z(G)\text{-projective)} \\ 0, & \text{otherwise.} \end{cases}$$

By 3.1 g_{n_2} can be embedded in a G-resolution ϕ of $f_2\phi_1$ which is also a G-resolution of f_2f_1 such that

$$\begin{split} \gamma_G(f_2f_1,\,\phi) &= \gamma_G(f_2\phi_1,\,\phi) = (-1)^{n_1+1}[H_{n_1+1}(\phi_1)] + (-1)^{n_2+1}[H_{n_2+1}(\phi_2)] \\ &= \gamma_G(f_1,\,\phi_1) + \gamma_G(f_2,\,\phi_2) \,. \end{split}$$

Hence $\gamma_G(f_2f_1) = \gamma_G(f_1) + \gamma_G(f_2)$ as required.

5. Converse to the Smith fixed point theorem. The converse to the Smith fixed point theorem 1.1 is an immediate consequence of the following.

Theorem 5.1. Let $f: F \rightarrow P$ be an equivariant 1-connected cellular map

such that G acts semifreely on both F and P.

(1) Suppose $\tilde{H}_*(f^c; Z_p) = 0$ for all p, where p ||G| and p is prime. Then $\gamma_G(f)$ is well defined, i.e., f satisfies (EP).

(2) If $\tilde{H}_*(f^c)=0$, then $\gamma_c(f)=0$.

Proof. Since G acts semifreely on F, P and X, $f^c = \phi^c$ for all $e \neq H \subset G$. Hence the result follows from 4.2.

Corollary 5.2. (1) Let F be a Z-acyclic finite complex and G a finite group. Then there is a finite contractible complex X such that $X^G = F$ and G acts semifreely on X.

(2) Let F be an integral r-homology sphere (r>0) and G acts semifreely on S^k with fixed point set $S'(r\geq 2)$. Suppose there is a cellular map $f: F \rightarrow S^r$ such that $f_*: H_*(F) \approx H_*(S^r)$. Then there is a finite G-complex X which is homology equivalent to S^k , and G acts semifreely on X with $X^G = F$. Moreover X is homotopy equivalent to S^k if F is simply connected.

Theorem 5.3. Let $G = Z_q$ and $f: F \to P$ be a 1-connected equivariant cellular map. Suppose that $H_i(f) = M_i \oplus T_i$ for all $i \ge 2$, where M_i 's are Z(G)-free and T_i 's torsion prime to q. Moreover assume that

(*) $T_i = torsion \ submodule \ of \ H_i(f^G) \ for \ all \ i \geq 2$.

Then $\gamma_G(f) = 0$.

Proof. According to the proof of 4.3, we have the following

(1)
$$H_{s+i}(f_s) = H_{s+i}(f) \oplus \operatorname{Ker} \partial_{s+i}$$
$$= T_{s+i} \oplus M_{s+i} \oplus \operatorname{Ker} \partial_{s+i}, \quad i = 1, 2.$$

By using the notation in the proof of 4.3, the following composition of maps is an augmentation map by (*)

$$H_{s+1}(Y_s, X_s) \xrightarrow{\partial_{(s+2)}} H_{s+1}(f_s) \xrightarrow{\text{proj.}} T_{s+1}$$

Thus Ker ∂_{s+2} is a stably free Z(G)-module by 2.3. Hence (1) becomes (1)' $H_{s+i}(f_s) = T_{s+i} \oplus a$ stably free Z(G)-module, i=1, 2. If follows that $H_i(f_s)$ is stably Z(G)-free for i=s+1 and s+2 if $s > \max\{\dim F, \dim P\}$. Therefore $\gamma_G(f)=0$.

Now Theorem 1.2 is a simple corollary of the following.

Theorem 5.4. Let $G=Z_q$ and F be a finite G-complex such that $\hat{H}_*(F; Z_q) = 0$ and $i_*: H_*(F^c) \xrightarrow{\approx} H_*(F)$, where $i: F^c \rightarrow F$ is an inclusion. Then $\gamma_G(f)=0$, where $f: F \rightarrow pt$ is the constant map. Thus there exists a contractible finite G-complex X which contains F as a G-subcomplex and acts freely outside F.

Proof. First, add free orbits of 2-cells to F to get a simply connected G-complex Y. According to 2.3 and 2.1 we have $Y^{c}=F^{c}$ and

$$H_2(Y) = H_2(F) \oplus M$$
, M a free $Z(G)$ -module,
 $H_i = H_i(F)$ for $i \ge 3$.

Let $\psi: Y \to pt$ be the constant map. Then $H_{i+1}(\psi^c) = H_{i+1}(f^c) = H_i(F^c) \approx H_i(F)$ and

$$egin{aligned} H_i(\psi) &= \hat{H}_{i-1}(Y) = 0\,, & i = 1,\,2\,. \ H_3(\psi) &= H_2(F) \oplus M\,, \ H_i(\psi) &= H_{i-1}(F)\,, & i \geq 4\,, \end{aligned}$$

where $H_i(F)$ are torsion prime to q for $i \ge 2$. Thus the conclusion follows from 5.3 and 3.4.

6. Semifree actions of groups with periodic cohomology on homology spheres

In [8], Swan has proved that if a finite group G acts freely on a compact integral cohomology *n*-sphere, then G has periodic cohomology with period n+1. This result can be generalized for semifree actions. More precisely, we have

Theorem 6.1. Let G be a finite group acting semifreely on a locally compact space X with dim, $X < \infty$ and $X \sim S^n$. Suppose $F \sim S_{\perp}(n-r \geq 1)$. Then G has periodic cohomology with period n-r. (Here we use the Alexander Spanier cohomology with compact supports).

Proof. The cohomology exact sequence of the pair (X, F), $F = X^c$, gives

$$H^{n}(X-F; Z) = H^{r+1}(X-F; Z) = Z$$
 and
 $H^{i}(X-F; Z) = 0$ for $i \neq n, r+1$.

From the spectral sequence of the fibration $(X-F) \rightarrow (X-F)_{c} \xrightarrow{\pi_{2}} B_{c}$ (cf [1]), we have the following Gysin type exact sequence (cf. [2])

The map $\pi_1: (X-F)_G \rightarrow (X-F)/G$ induces isomorphism

$$\pi_1^*: H^i((X-F)/G; Z) \approx H^i((X-F)_G, Z)$$

for i>0 by the Vietoris-Begle mapping theorem. But $H^i((X-F)/G; Z)=0$ i>n by [1]. It follows that

$$H^{i-n}(B_G; Z) \approx H^{i-r}(B_G; Z)$$
 for $i > n$.

Now we shall establish the converse of this result, i.e. Theorem 1.3 which is a special case of the following:

Theorem 6.2. Let G be a finite group of order q with periodic cohomology of period n, $d=(q, \phi(q))$, and f: $F \rightarrow P$ be an equivariant cellular map with F and P both simply connected. Assume

$$H_{r+1}(f) = H_k(f) = Z, \quad k = r+dn \quad and$$

 $\tilde{H}_i(f) = 0, \quad i \neq r+1, k.$

Then $\gamma_{G}(f)$ is well defined and $\gamma_{G}(f)=0$.

Proof. According to Swan [9], there is a periodic free resolution over Z of period dn, i.e., an exact sequence

(*)
$$0 \to Z \to F_k \xrightarrow{\partial} F_{k-1} \xrightarrow{\partial} \cdots \to F_{r+1} \xrightarrow{\psi} Z = H_{r+1}(f) \to 0$$
,

with all F_i s Z(G)-free.

Now add free orbits of (r+1)-cells to kill off $H_{r+1}(f)$ realizing ψ . This creates an (r+1)-connected equivariant cellular map $f_{r+1}: X_{r+1} \rightarrow P$ such that

$$0 \to H_{r+2}(f_{r+1}) \to H_{r+1}(X, F) = F_{r+1} \xrightarrow{\Psi} Z \to 0$$

is exact. Hence Im $\{\partial: F_{r+2} \rightarrow F_{r+1}\} = \text{Ker } \psi = H_{r+2}(f_{r+1})$. Again, adding free orbits of cells to kill off $H_{r+2}(f_{r+1})$ and realizing $\partial: F_{r+2} \rightarrow H_{r+2}(f_{r+1})$. This produces an (r+2)-connected equivariant cellular map $f_{r+2}: X_{r+2} \rightarrow P$ such that Im $\{\partial: F_{r+3} \rightarrow F_{r+2}\} = \text{Ker } \{\partial: F_{r+2} \rightarrow H_{r+2}(f_{r+1})\} = H_{r+3}(f_{r+2})$. Repeating this procedure eventually we will get an (k-1)-connected equivariant cellular map $f_{k-1}: X_{k-1} \rightarrow P$ such that

$$0 \to H_k(f_{k-2}) = Z \to H_k(f_{k-1}) \to \operatorname{Ker} \partial \to 0$$

is exact, where $\partial: F_{k-1} \to H_{k-1}(f_{k-2})$. It follows from this and (*) that $H_k(f_{k-1}) = F_k$, a free Z(G)-module. Since both F and P are simply connected, we can add k-cells to X_{k-1} to get equivariant cellular map $\phi: X \to P$ which is a homotopy equivalence by 2.1.

To verify that f satisfies (EP), let $\phi_i: X_i \to P$ be any two G-resolutions of f, i=1,2. We may assume that dim $X_i=n_i > k$. Then

Thus

We can use the periodic free resolution

Obstruction Theory for Finite Group Actions

(**)
$$0 \to H_{k+1}(\phi_1 \cup \phi_2) = Z \to \widetilde{F}_{k+1} \to \widetilde{F}_k \to \cdots \to \widetilde{F}_{r+2} \to Z$$
$$= H_{r+2}(\phi_1 \cup \phi_2) \to 0$$

where $\tilde{F}_{i+1} = F_i$, $r+1 \le i \le k$, as above to kill off all homology groups of dimensions $\le k+1$ to get a map $\tilde{\phi}: \tilde{X} \to P$ such that $\tilde{H}_*(\tilde{\phi})$ is Z(G)-projective. By 3.1 the G-resolutions of $\tilde{\phi}$ exists. This proves that f satisfies (EP).

REMARK. We can combine (*) to get new periodic free resolutions

$$\begin{array}{l} 0 \rightarrow Z \rightarrow F_k \rightarrow \cdots \rightarrow F_{r+1} \rightarrow F_k \rightarrow \cdots \rightarrow F_{r+1} \rightarrow \\ F_k \rightarrow \cdots \rightarrow F_{r+2} \rightarrow F_{r+1} \rightarrow Z \rightarrow 0 \; . \end{array}$$

Thus 1.3 and 6.2 also hold for k=r+sdn, s positive integers.

References

- A. Borel et al: Seminar on transformation groups, Ann. of Math. Studies, No. 46, Princeton Univ. Press., 1960.
- [2] H. Cartan and S. Eilenberg: Homological algebra, Princeton Univ. Press., 1956.
- [3] R.M. Dotzel: A converse of the Borel formula, to appear in Proc. Amer. Math. Soc.
- [4] L. Jones: The converse to the fixed point theorem of P. A. Smith, Ann. of Math. 94 (1971), 52-68.
- [5] H.T. Ku and M.C. Ku: Seminar on transformation groups, mimeographed, Univ. of Mass., Amherst, 1979.
- [6] R.A. Oliver: Fixed point set of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155-177.
- [7] D.S. Rim: Modules over finite groups, Ann. of Math. 69 (1959), 700-712.
- [8] R.G. Swan: A new method in fixed point theory, Comment. Math. Helv. 34 (1960), 1-16.
- [9] R.G. Swan: Periodic resolutions for finite groups, Ann. of Math. 72 (1960), 267-291.

Department of Mathematics University of Massachusetts Amherst, MA 01003 U.S.A.