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1. Introduction. Let G be a finite group, F and P be fixed finite G-
complexes. In this paper we shall define a general obstruction theory for
extending a 1-connected cellular G-map f: F—P to a cellular G-map ¢: X —P
which is a homology or homotopy equivalence, where X is a finite G-complex.

Define a G-resolution of f: F—P to be an n-connected cellular G-map
¢: X—P, n=dim X >dim P, which extends f(z>2) so that G acts freely outside
F, F a G-subcomplex of X and H,,,(¢) is a projective Z(G)-module. The
obstruction v(f, ¢) of a G-resolution ¢ of f is defined as

Ye(fy ¢) = (—1)""[H,..($)1EK(Z(G)),

where [H,,,(¢)] denotes the class of H,,,(¢) in the projective class group
R(Z(G)). Let c: pt— pt be the constant map and define

B(G) = {v¢(c, ¢): ¢ is a G-resolution of ¢} .

Then B(G) can be proved to be a subgroup of K(Z(G)). Assume the map
f: F— P satisfies the following extension property:

(EP): Let ¢;: X;—P be any two G-resolutions of f, i=1, 2. Then
U e Xngz —- P
extends to a G-resolution of f.
We shall show that for any such ¢;, i=1, 2,
Yo(fs b1)—7e(fs b)) EB(G),

hence if we let [v¢(f, ¢)] to be the equivalence class of v4(f, ¢) for any G-
resolution ¢ of f, then we can define the obstruction of f by

Y6(f) = [Ye(f, HIER(Z(G))/B(G).

We will verify that the invariant v4(f) is exactly the obstruction to extending
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f to a homology or homotopy equivalence of G-map if the fixed point set F€ is
not empty.

We shall also see that the extension property (EP) holds for many G-maps.
Moreover we have the following equality

Ye(fof1) = Ve(f)+Ye(f2) -

Now let us consider the following:

Converse to the Smith fixed point set problem. Suppose the finite group G
acts on a finite Poincré complex P with P°= U P;(P; is a component of P€),

and F=UF; a finite complex with F,—f:P,- (i.e., H¥(F;; Ly~H*(P;: L)) for
all . Can we find a finite complex X such that G acts on X with X¢=F and
X~P?
L
We are able to apply the obstruction theory to study this general problem.
In particular we will prove the following results.

Theorem 1.1. Let f: F—PC°C P be a cellular map such that G acts semifreely
on P and fy: H(F; Z)~H (P°; Z). Suppose f: F—P is 1-connected. Then
there is a finite complex X which is homology equivalent to P, and G acts semifreely
on X with X6=F. Moreover, if F is simply connected, X is homotopy equivalent
to P.

Theorem 1.2 [4]. Let G=Z, (q is not necessarily prime) and F a finite Z -
acyclic complex. Then there is a finite contractible G-complex X such that G acts
semifreely on X with X°=F.

Theorem 1.3. Let G be a finite group of order q with periodic cohomology
of period n, and let d=(q, ¢(q)), where ¢ is the Euler ¢-function (i.e., p(q) is
the number of positive integers <<q that are prime to q). Suppose F is a simply
connected r-dimensional integral homology r-sphere. Then there exists a finite
G-complex X which is homotopy equivalent to S™ . Moreover, G acts semi-
freely on X with X¢=F.

In Swan [8], he proved that G can act freely on some finite complex X
which is homotopy equivalent to S, where G, d and 7 are as in 1.3.

We also can define another obstruction theory by using the G-resolution
¢ which is defined exactly as a G-resolution of f with X¢=F¢ except that G is
not necessarily acting freely on X—F. Set

B(G) = {$: ¢ is a G-resolution of c: pt — pt}

which is again a subgroup of K(Z(G)). Thus if f satisfies (EP) for G-resolutions,
F(f) = [F6(f, $)] € Ky(Z(G))/B(G) is well defined so that the obstruction
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theory can be established as in 7,-theory. The #,(f) was defined by Oliver
in [6] for the case X(F)=1 mod m(G), G acts trivially on F and P a point.

2. Preliminaries. Let X and W be finite G complexes, G finite, and
f: X— W be an equivariant cellular map. There is an exact sequence of the

map f:
o= Ty (X) = 7y s(W) = mpi(f) = (X)) ==

The element of z,.,(f) is represented by a pair (8, a) of cellular maps so that
the diagram below is commutative:

s Yx
] f
]il)n+l '8, ‘I[/V

Define @: GXS"=X by a(g, y)=ga(y) for (g, y)G x S", and let
Y=XUGXD"M=XU(UgxD")=XU( U D).
& & ze6

ge,8€6

Then there is a naturally induced action of G on Y defined by

hx ify=xeX
h(y) = )

(hg, x) if y=(g, x)=GXD"**,
where h€G. Thus Y is a G-complex which is obtained from X be adding
free orbits of (n+1)-cells. Define an equivariant map f: Y —W by

f(x) ify=x€X
fly) = _

gh(z) ify=(g, )eGxD"".
By construction, f is an equivariant map, and

m(H=m(f) fori<n
”n+1(f) = m,.(f)K,

where K is the normal subgroup containing the Z(G)-submodule generated by
the class (83, @) in 7,.,(f).

Lemma 2.1. Let f: X—Y be an (n—1)-connected equivariant map with
H,(f)=N®M, where M and N are Z(G)-modules, n>2. Then we can add n-cells
of free orbits to Rkill off M to produce an (n—1)-connected equivariant map
f: X—Y such that
() H(f)=H(f), i=n+2,
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(2) 0—>H,.\(f) _’Hn+1(f) —Ker 9,,,—0 and
0—Ker 9,,,— H,(X, X)—M—0 exact.
3) H(H=N.
Moreover if M is Z(G)-projective (or Ker 0, is Z(G)-projective) then
“4) Hn+1(f)=Hn+1(f)@Kef [ N
Furthermore if M is a free Z(G)-module, 0,,,: H (X, X)~M and

S) H(f)=H{(f), i=n+1.

Proof. Since f is (n—1)-connected, =,(f)— H,(f) is surjective by the
Hurewicz Theorem. Hence there exist pairs of cellular maps (8;, @),

a;: S"1—= X, 1<i<9v such that i}(,@,-, a)x {H(D", S" ")} generates M as
Z(G)-module. Let
X=X U {UGxD3}.
ua; g

By the construction above f extends to an equivariant map f: X—Y. There is
an exact sequence

A A 6n+1 .* £
0= Hyo(f) = Hun(f) = Hy(X, X) =5 H(f) L5 H,(f) > 0.

This can be easily obtained by looking at the algebraic mapping cones of
fi: Co(X)—>Cy(Y) and fy: Ci(X)—>Cx(Y). Now Kerj,=M by construction,
hence H,(f)~H,(f)/M ~N, and

an+1

0 H,(f) > Hyf) = Hy(X, X) == M — 0
is exact. The results follow easily.

Lemma 2.2. Let G be a finite group of order q, and f: M—P®T be a
surjective map of Z(G)-modules. Suppose M is Z(G)-free, P Z(G)-projective and
T torsion prime to q. Then Ker f is Z(G)-projective.

Proof. Let L be any Sylow subgroup of G. Then both M and P are Z(L)-
projective. Since we have exact sequence of Z(L)-modules

0—-Kerf>M—-P®T—0,
we obtain an exact sequence
Hi(L: M) = 0— H(L: T)~H(L: P®T) — H*(L: Ker f)
—H*L: M)=0,

where Hi(L: My= H*+(L: M)=0 and H(L: P®T)~ H(L: T) because M
and P are both Z(L)-projective. Since T is torsion prime to |L|, the map
|L|: T— T which is a multiplication by |L| is an isomorphism. Thus it
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induces an isomorphism |L|: Hi(L; T)— H(L; T). But |L|H{(L; T)=0,
hence H¥(L; T)=0, and so

H*Y(L; Kerf) =0,

for any Sylow subgroup L of G and any i. It follows from [7] that Ker f is
cohomologically trivial. Therefore Ker f is Z(G)-projective by [7]. The proof
extends the idea due to Oliver (cf. [3]).

Lemma 2.3. Let G=Z, (n, q)=1, M and N be free Z(G)-modules and
P,: N®Z,—Z, the projection. Suppose h: M—N DZ, is an epimorphism such
that ph: M—Z, is an augmentation map. Then Ker h is stably Z(G)-free.

Proof. Let p: N&Z,—N be the projection. Since N is Z(G)-free, there
is a Z(G)-homomorphism ¢: N—M such that (ph)p=1. Thus M=KD $(N)
as Z(G)-modules and %|¢p(N): ¢(N)~N, where K=Ker(ph). It follows that
h induces an epimorphism k: K— Z, with Ker z=Ker &. Note that we have
exact sequence

h=(h, 0
0 — Ker ki@ p(N) > M = KPPH(N) ul Z
Hence Ker 2D $(N) is Z(G)-free by applying [4, Lemma 1.1] inductively on
the rank of M. As ¢(NN) is Z(G)-free, Ker h is stably Z(G)-free.

L —0.

3. An obstruction theory for finite group actions

Lemma 3.1. Let +r: Y—P be an equivariant map and n=dimY > P such
that r|F=f and ) is 1-connected. Assume that H,(v) is Z(G)-projective for
i1>2. Then r can be embedded in a G-resolution ¢: X —P of f such that

Ye(f, ) = 2025 (— 1) [Hi()] -

Proof. Let k be the smallest integer such that H,, () +0. If k=mn,
¢=1 is a G-resolution of f.

Suppose k<<n. Since the Hurewitz homomorphism %: 7, (V) = Hiy(3)
is an epimorphism by the Hurewitz theorem, we can add free orbits of (k+41)-
cells to kill off H,, (). This creates an equivariant map f,: X,—P. According
to 2.1 we have

Hi(fk) = 0 ) igk—l_l .

H(f)=H), i>k+3.

Hy.(fp) = H(Y)OM M = Ker 9,,,, and

Hy(X,, Y) = MOH, (),
where Hy,(X;, Y) is Z(G)-free. Thus [M]= —[H,,(V)] €K [(Z(G). It
follows that
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2k (1) H(f)] = 20k (=1 [H()] -
By repeating this process, eventually we will produce a G-resolutiont ¢ of f with

Yelfs §) = (=) [Hyi(9)] = 222 (=D [(Hi(¥)] -

Lemma 3.2. Let B(G)={vs(c, $): ¢ is a G-resolution of c}, where c: pt—
pt is the constant map. Then B(G) is a subgroup of Ky(Z(G)).

Proof. Let v4(c, ¢;)EB(G), where ¢;: X;—pt are two G-resolutions of
¢, and dim X;=n;, =1, 2. Then

Hj($V ¢y) = Hj1i(p) DH;ii(2) for all 5,
where ¢,V ¢,: X, 11\”/)(2 —pt. Thus Hy(¢p,V¢,) is Z(G)-projective. It follows

from this and 3.1 that there is a G-resolution ¢ of ¢ such that

Yo(6s $) = (= 1) [Hys( 1V )]+ (— 1) [Hoprs($1V $2)]
= (=" Hy (@] +H(— 1) [Hop i $2)] 5

that is, vs(c, d1)+Ye(c, $.)EB(G).

Suppose now that v4(c, ¢) € B(G), ¢: X—pt is a G-resolution of
¢ (dim X=#). Then ¢: SX —pt is also a G-resolution of ¢, where ZX denotes
the reduced suspension of X. This implies that

—%6(6, $) = (= 1) [H,($)] = (—1)""[H,.4P)] = Ve(c, $)EB(G) -

Proposition 3.3. Suppose the map f: F— P satisfies (EP). Then for any
two G-resolutions ¢, and ¢, Vo(f, 1) —7e(f, P2) EB(G).

Proof. By hypothesis (EP), ¢,U ¢,: XI%JXZ——>P extends to a G-resolu-

tion ¢: X—>P of f. Let dim X=m dim X;=n;, i=1, 2. We can assume that
m>n;+2 and n;>dim P, i=1, 2.

By assumptions, ¢4: H(X)~H(P), j<m; and ¢;: H}(X;)~HP) for
j<m; i=1, 2, hence from the homology exact sequences of the pairs (X, X;) we
have H,(X)~H,(X|X,), H,. . (X/X;)~H,(X;) and H,(X/X;)=0 otherwise.
For instance if j<n,,

H{(X,) —> H(X) — H/(X|X;) > H;_(X,) —» H,_(X)

~ =~ ~ =~

H,(P) H;_\(P)
From the homology exact sequences of ¢ and ¢; ‘we obtain H,,,,(¢)~H,(X)
and Hn,'+1(¢’i)§Hn;(Xi)-
Now G acts on X/X; with (X/X,)°=pt. Apply 3.1 to the constant maps
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fit X[ Xi—pt, since H,,\(f)=H,(X|X,)=H,.(¢) and H,,,(f;)=H,+(X|X)
=H, . \(¢;) are Z(G)-projective and H,(f;)=0 otherwise, there exist G-resolu-
tions yr;: Y;— pt of ¢ such that

Vole, ¥i) = (= 1) [H,, o f)]+H(— 1) [H ()]
= — (=1 [H,, ()] +(— )" [Hpsi($)]
= —%(f, )+ 7e(fs $), i=12.

Clearly this implies that v4(f, ¢,)—7(f, ¢,) EB(G).

Theorem 3.4. If vo(f)=0 and FC=¢, then G acts on some finite complex
X and there is an equivariant map $: X—P which is a homology equivalence, $| F=f
and G acting freely on X—F. If F is simply connected, then ¢ is a homotopy
equivalence.

Proof. Let v4(f)=[vc(f, $)]=0, where ¢: X— P is G-resolution of f.
Then v¢(f, $)=B(G). Hence there is a G-resolution +r: Y —pt of c: pt—pt
such that v(f, $)=—"¢(c, ). Consider

¢VYy: XVY—->PVpt=P
where the ptE Y is joined to any fixed point of X. Thus we have

H*(‘ib\/‘l’) = H*(‘f’)@H*(‘l’)
which is Z(G)-projective. By 3.1, ¢V« can be embedded in a G-resolution
¢: X— P of f, and

V(s §) = 22 (— 1) [H(d V)] = Ye(fs d)+Y6(e, ¥) = 0.

Thus v4(f, ¢) is stably Z(G)-free. It follows from 2.1 that ¢ can be extended
to an equivariant map ¢: X— P which is a homology equivalence.

Proposition 3.5. Suppose G acts semifreely on both F and P and vv(f)=0.
Then
fi H(F®; Z) —> Hy(P% Z,),

for every prime p such that p||G|, where f¢: FC—PC is the restriction of f.
Equivalently, H ,(f°) is torsion prime to |G|, |G |=order of G.

Proof. Let ¢: X— P be an equivariant map which is a homology equi-
valence and ¢|F=f. For every prime p, p| |G|, there is a subgroup Z, of G
of order p and

X% = F? = FS, P% = P°,
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Since the group Z, acts semifreely on the mapping cone Cy which is Z,-acyclic
with C$»=C,G, hence C,G is Z,-acyclic by the Smith fixed point theorem,
that is, H,(f¢; Z,)=0, or

f§: Hy(F®; Z,)~H(P%; Z,) for every p||G]|.

4. Existence of G-resolutions. The obstruction theory which we have
defined depends on the existence of G-resolutions satisfying (EP). In this
section we shall investigate the existence of the equivariant maps f: F—P
satisfying (EP).

Lemma 4.1. Let |G|=q and ¢: X—P be an n-connected equivariant
cellular map, n>2. Suppose Hy(p") is torsion prime to q (resp. Hy(¢")=0)
for every ¢? =¢p|XE: X#— PH, where e+HCG, dim X?<n=dim X and
dim P<dim X. Then H,.,(p) is Z(G)-projective (resp. stably Z(G)-free).

Proof. Let X=U{X%: e+HCG} and P=U {P#: e+H CG}. By the
Mayer-Vietoris sequence and induction, it is easy to verify that H,(¢) is torsion
prime to g, where $=¢|X: X—P. Since ¢ is m-connected, it induces an
equivariant map ¢: X/X—P|P with H/($)~H,_(¢) for i<n. Hence H(%)
is torsion prime to g for every i<z. We may assume that both X/)A( and P/l6
are simply connected. Otherwise we simply consider the suspension map
>¢: S(X/X)—>=(P/P). Add free orbits to X/X inductively to kill off H (),
i<nm. By 2.1. this creates equivariant 7-connected cellular maps ¢;: X,-—>P/15,
2<i<m, with
(1) { Hiy\(¢p:) = H; (i) DKer 0,

Hi(¢:) = Hi($i-1),  j=i+2,

where Ker 0, is Z(G)-projective for every ¢ by 2.2.

Now G acts semifreely on both X, and P/l5 with exactly one fixed point, say
%, and p, respectively. Let h=¢,|x,. Then Cy=Cy(Csy, C)) is a free Z(G)-
module with H(Cy)=H(¢,) for all i>0. As ¢, is n-connected, there is an
exact sequence

(2) O“'>Hn+1(¢n)_>Cn+1_)""—>co_>0-

This implies that if we let N=C,PC,_,PB::-, then H, (¢,)DN is Z(G)-free.
Let M=Ker9,,,. According to (1)

H,.\($,) = Hn+1(¢n—1)@M == u+l(¢_))®M .
Since the sequence

( 3 ) 0— Hﬂ+l(¢) g n+l(¢;) - Hn(dg) -0
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is exact, we obtain an exact sequence
0— H, ()M DN — H, (H)SM SN = H,, ($)ON — H,($) 0.

But H,(¢) is torsion prime to ¢, and H,,,($,)BN is Z(G)-free, hence H,,($)D
M@®N is Z(G)-projective by 2.2. It follows that H,,,(¢) is Z(G)-projective.

Suppose now that Hy(¢¥)=0 for every H =e. Then H,($)=0 for i <n.
Hence ¢ is n-connected and (2) holds for ¢. Thus H,, () is stably Z(G)-free.
But H,($)=0 and so H,,(¢)=H,,($) by (3). This proves that H,,,(¢)
is stably Z(G)-free.

Theorem 4.2 (Existence theorem I). Let f: F—P be an 1-connected
equivariant cellular map.

(1) Suppose H (f¥) is torsion prime to q= |G | for every fE=f|F?: F¥—PH,
where e =H CG. Then v(f) is well defined, i.e., f satisfies (EP).

(2) If Hy(f¥)=0 for every f¥, eH CG, then v4(f)=0.

Proof. Add free orbits of cells of dimensions <z inductively to get an
n-connected cellular map ¢: X — P with n=dim X >dim P. Now ¢#=f¥ for
every e=H CG by construction, hence by 4.1 H,,,(¢) is Z(G)-projective, i.e.,
¢ is a G-resolution of f.

If ¢;: X;— P are two G-resolutions of f, i=1, 2, add free orbits of cells to
X ngXZ extending ¢, U ¢d,: X 1%JXZ—>P to an m-connected equivariant cellular

map ¢: X—P. Again ¢ is a G-resolution of f which extends both ¢, and ¢,,
i.e., f satisfies (EP). Hence v4(f) is well defined.
If H,(f7)=0 for every GDH e, then H,,,(¢) is stably Z(G)-free. Hence

76(f)=0.

Theorem 4.3 (Existence theorem II). Suppose f is 1-commected and
H(f)=M;DT; for all i>2, where M;’s are Z(G)-projective and T’s torsion prime
to q=|G|. Then the G-resolutions of f always exist and f satisfying (EP). More-
over if H(f) is Z(G)-free for every i >2, then vy(f)=0.

Proof. We shall construct inductively s-connected equivariant cellular
maps f,: X,—P satisfying the following:

(1) H(f)=H..(f)® a Z(G)-projective module, i=1, 2.

(2) H(f)=Hf), i=s+3.

Assume that f; has been constructed. By 2.1. add free orbits of (s-1)-cells
to kill off H,,,(f,) to obtain a (s+1)-connected cellular map g,,,: ¥,—P such
that

(3) Hi(g,.)—H{(f), hence Hy(g,.)=Hf), i=s+3 by (2).

“4) 0—>H,5(f)>H,12(gs+1)—>Ker 0,,,—0 and

0
0—>Ker 8,,,—>H,,(Y,, X,)—5 H,,,(f,) >0 exact,
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where Ker 0,,, is Z(G)-projective 2.2. Thus

H,(g5+1) = Hyio(f)DKer 0, .

Again by 2.1. add (s+2)-cells to Y, to kill off kerd,,, to produce a (s+1)-
connected equivariant cellular map f,,,: X,,,—P such that

(5) Hs+2(fs+l)=Hs+2(fs), hence
H,, i for))=H,.s(f)Pa Z(G)-projective module by (1).

(6) H{for)=Hi(gu)=Hi(f), izs+4 (by (3))
(7) 0—H y(gs11) = His(for)— Kfr 0,42—>0 and

8s-f—2

0— Ker 5s+2 —>H, y( X4y, Y)—>Ker 0,,,—0
exact, where Ker 9,,, is Z(G)-projective. Thus

H oy o(forr) = Hora(gor1) DKer G
= s+3(f)@Ker as+2 (by (3)) *
This completes the inductive construction.

Now if s>max{dim F, dim P}, then H,(f)=0 for i >s+1 and dim X,=
s+1. It follows from (1) and (2) that we have an s-connected equivariant
cellular map f,: X,—P with H(f,) Z(G)-projective for i=s4-1 and s4-2. By
2.1, we can add (s+1)-cells to X to kill off H,,,(f,) to obtain a G-resolution
¢: X—P of f with

H,)(¢p) = H,o(f,)DKer 9,4,

which is Z(G)-projective.
Next, let ¢;: X;—P be any two G-resolutions of f,7=1,2. We may assume
that dim X;=n;>max {dim F, dim P}. Clearly we have an exact sequence

> H,~+1(f) g Hi+1(¢1)EBHi+1(¢2) - Hi+1(¢1 Uy — Hz(f) >t
But H;,,(¢;)=0 for i #nj, j=1,2. Thus

H (41U do)~H(f) for i #ny, n,,
H,,1+1(¢1)€BH”2+1(¢2) ’ fi=mn=mn,
Hi(p1Ugpy) = Hn1+1(¢1) if £ = ny, ny #n,
H,, . ($2) if i =my, n,Fn,.
Hence ¢,U¢, can be embedded in a G-resolution of f. This proves that f
satisfies (EP).

If H(f) is Z(G)-free for every i>2, it is not difficult to see from the proof
that H,,,(¢) is stably Z(G)-free, hence v4(f)=0.

Proposition 4.4. (1) If vo(f) is well defined for f: F—P, then vs(Zf)=
—%6(f)-
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(2) Suppose that f;: F—P, and f,: P,—P, both satisfy’ 4.2 v(1) or 4.3 so
that v(f;) are well defined, i=1, 2. Then

Ve(of)) = V() +7e(f2) -
Proof. (1) Obvious.
(2) Let ¢,: X,—P, be a G-resolution of f, with n,=dim X,>
max{dim F, dim P,, dim P,}. We can see that

Hi+1(f2¢1) = Hi+1(f2) ’ <n,
H, (f.$) = H, (X)) = H, .($), a2 Z(G)-projective module,

H\(fop) =0, izn+1.

For example, if i<<n,, we have

> Hi+1(f2¢>1) = Hi+l(f2) g Hi(Xl) (f—qul)"; Hi(PZ) >

¢1‘\7’ / fz*
H,(P)

Now let yr,: M,—H,(f,p))=H,(f,) be a surjective map with M, a Z(G)-free
module. Adding cells to both X, and P, to kill off both H,(f,p,) and H,(f5)
realizing +Jr,. This creates 2-connected equivariant cellular maps g,: Y,—»P,
and h,: W,—P, extending f,$, and f, respectively. By 2.1 we can see that
Hy(g;)=Hj(h,). Continuing this construction, eventually we will get a G-
resolution ¢,=h,,: W,,—P, of f,, dim W,,=n, and an n,-connected equi-
variant map g,,: Y,,—P, extending f,¢, such that H,,,,(k,)=H,,.,(g,,) and
Hi(g,,)=H(fx,) for i=n,4-2. We may assume that n,>n,. By construction,
it is easy to see that

H, (%), if £ = n,, j = 1, 2 (hence Z(G)-projective)

Hi (gn ) =
e 0, otherwise.

By 3.1 g,, can be embedded in a G-resolution ¢ of f,p, which is also a G-
resolution of f,f; such that

Ye(fofy ) = Ve(fobr &) = (— 1) [H, 1 i(P)]H(—1)"2" [ H,, 41(2)]
= Y6(fis P)+Te(fo Do) -

Hence v¢(fof)="7¢(f1)+ 7c(f2) as required.

5. Converse to the Smith fixed point theorem. The converse to the
Smith fixed point theorem 1.1 is an immediate consequence of the following.

Theorem 5.1. Let f: F—P be an equivariant 1-connected cellular map
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such that G acts semifreely on both F and P.

(1) Suppose Hy(f%; Z,)=0 for all p, where p| |G| and p is prime. Then
v6(f) ts well defined, i.e., f satisfies (EP).

(2) If Hy(f€)=0, then 74(f)=0.

Proof. Since G acts semifreely on F, P and X, f¢=¢° for all e=H CG.
Hence the result follows from 4.2.

Corollary 5.2. (1) Let F be a Z-acyclic finite complex and G a finite group.

Then there is a finite contractible complex X such that X ®=F and G acts semifreely
on X.
(2) Let F be an integral r-homology sphere (r>0) and G acts semifreely on S* with
Sixed point set S'(r>2). Suppose there is a cellular map f: F—S’ such that fy:
Hy(F)~H(S"). Thenthereis a finite G-complex X which is homology equivalent
to S*, and G acts semifreely on X with X°=F. Moreover X is homotopy equiva-
lent to S* if F is simply connected.

Theorem 5.3. Let G=Z, and f: F—P be a l-connected equivariant
cellular map. Suppose that H(f)=M;DT; for all i>2, where M,’s are Z(G)-free

and T;’s torsion prime to q. Moreover assume that
(*) T; = torsion submodule of H,(f°) for all i>2.
Then v4(f)=0.
Proof. According to the proof of 4.3, we have the following

( 1 ) Hs+l'(fs) = Hs—H(f)@Ker as+i
= s+i@Ms+i®Ker 6s+i ’ i= 1’ 2 .

By using the notation in the proof of 4.3, the following composition of maps is
an augmentation map by (*)

0 j.
Ho(Y, X))~ Hou(f) 2205 T,
Thus Kerd,,, is a stably free Z(G)-module by 2.3. Hence (1) becomes
(1) Hyi(f)=T,,:Pa stably free Z(G)-module, i=1, 2. If follows that H(f,)
is stably Z(G)-free for i=s-+1 and s+2 if s>max{dim F, dim P}. Therefore

Yo(f)=0.

Now Theorem 1.2 is a simple corollary of the following.

Theorem 5.4. Let G=Z,and F be a finite G-complex such that H(F; Z,)
=0and iy: H*(Fa)ﬁ» H (F), where i: FC—F is an inclusion. Then v(f)=0,
where f: F—pt is the constant map. Thus there exists a contractible finite G-com-
plex X which contains F as a G-subcomplex and acts freely outside F.
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Proof. First, add free orbits of 2-cells to F to get a simply connected
G-complex Y. According to 2.3 and 2.1 we have Y°=F¢ and
HY(Y) = H(F)®M, M a free Z(G)-module
H,=H,(F) fori23.
Let 4: Y—pt be the constant map. Then H,, ,(y°)=H,(f%)= H(F°)~
H(F) and
H;(’\P‘)zﬂi_l(Y)=O, i=1,2.
Hy(y) = H(F)OM,
Hi(",’):Hi—l(F)’ >4,

where H,(F) are torsion prime to g for 7>2. Thus the conclusion follows
from 5.3 and 3.4.

6. Semifree actions of groups with periodic cohomology on homo-
logy spheres

In [8], Swan has proved that if a finite group G acts freely on a compact
integral cohomology z-sphere, then G has periodic cohomology with period
n+1. This result can be generalized for semifree actions. More precisely, we
have

Theorem 6.1. Let G be a finite group acting semifreely on a locally compact
space X with dim, X<<oco and X':S”. Suppose F~S, (n—r>1). Then G

has periodic cohomology with period n—r. (Here we use the Alexander Spanier
cohomology with compact supports).

Proof. The cohomology exact sequence of the pair (X, F), F=X¢, gives
H"X—F;Z)= H*"X—F; Z)= Z and
Hi(X—F;Z)=0 for i=m, r+1.

From the spectral sequence of the fibration (X—F)—(X —F)GzZ»BG (cf [1]), we
have the following Gysin type exact sequence (cf. [2])

o> H(X—F)¢) > H""(Bg, H'(X—F)) — H"""(Bg; H*Y(X—F))
> HH(X—F)g —-
The map 7z,: (X—F);—(X—F)/G induces isomorphism
wt: H(X—F)|G; Z)~H(X—F), Z)

for >0 by the Vietoris-Begle mapning theorem. But H'(X—F)/G; Z)=0
i>n by [1]. It follows that
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Hi"%Bg; Z)y~H""(Bs; Z)  fori>n.

Now we shall establish the converse of this result, i.e. Theorem 1.3 which
is a special case of the following:

Theorem 6.2. Let G be a finite group of order q with periodic cohomology of
period n, d=(q, $(q)), and f: F— P be an equivariant cellular map with F and
P both simply connected. Assume

H, (f)=H(f)=Z, k=r+dn and
H(f)=0, ikr+1, k.

Then v y(f) is well defined and v (f)=0.

Proof. According to Swan [9], there is a periodic free resolution over Z
of period dn, i.e., an exact sequence
0 6] Jr
* 0>Z—>F,—»>F_,—>—>F,—>Z=H,f)—0,
with all F';s Z(G)-free.

Now add free orbits of (r41)-cells to kill off H,,,(f) realizing 4. This
creates an (r+1)-connected equivariant cellular map f,,,: X,,,— P such that

¥
0— Hr+?(fr+1) - Hr+l(X’ F) =F.,—>Z-0

is exact. Hence Im {0: F,,,—F, }=Keryr=H,,(f,.,). Again, adding free
orbits of cells to kill off H,,,(f,+,) and realizing 0: F, ,—H, ,(f,+;). This
produces an (r+2)-connected equivariant cellular map f,,,: X,,,— P such that
Im {0: F,,;—F, ,}=Ker {3: F,,,—H, (f,+1)} =H,,5(f,+,). Repeating this pro-
cedure eventually we will get an (k—1)-connected equivariant cellular map
fi-12 Xp_1—P such that

0— Hk(fk-Z) =Z— Hk(fk—l) —-Kerd—0

is exact, where 0: F;,_,— H,_,(f,_;). It follows from this and (¥) that H,(f,_,)=
F,, a free Z(G)-module. Since both F and P are simply connected, we can add
k-cells to X,_, to get equivariant cellular map ¢: X—P which is a homotopy
equivalence by 2.1.

To verify that f satisfies (EP), let ¢;: X;— P be any two G-resolutions of
f,i=1,2. We may assume that dim X;=»;>k. Then

Hi+l(¢'1 Udgy) = H:(f) ’ i<k.
Thus Hy(1U) =Z, H,($pUgp) = Z and
Hi(¢1u¢z) = 0 for iSk, i:l:r+2 .

We can use the periodic free resolution
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~ 0.0 0 -
(**) 0'—>Hk+1(¢1u¢'z)=z“'>Fk+1—’Fk—>"‘-’ 2> 2
= r+2(¢1U¢2)_’0

where F;,,=F;, r+1<i<k, as above to kill off all homology groups of dimen-
sions <k-+1 to get a map ¢: X—P such that H,($) is Z(G)-projective. By
3.1 the G-resolutions of ¢ exists. This proves that f satisfies (EP).

RemArRk. We can combine (*) to get new periodic free resolutions

0->Z—>F,—>—>F, ,>F—>-—F,—

F,—».-—F, ,—»F,—->Z—-0.

Thus 1.3 and 6.2 also hold for k=r+-sdn, s positive integers.
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