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1. Introduction. Let G be a finite group, F and P be fixed finite G-

complexes. In this paper we shall define a general obstruction theory for

extending a 1 -connected cellular G-map /: F->P to a cellular G-map φ: X-*P

which is a homology or homotopy equivalence, where X is a finite G-complex.
Define a G-resolution of /: F-*P to be an ^-connected cellular G-map

φ: X-^Py n=dim X>dim P, which extends f(n>2) so that G acts freely outside

F, F a G-subcomplex of X and Hn+l(φ) is a projective Z(G)-module. The

obstruction 7G(f, φ) of a G-resolution φ of /is defined as

Vc(f, Φ) = (~l)n+l[Hn+1(φ)]^K0(Z(G)) ,

where [Hn+1(φ)] denotes the class of Hn+1(φ) in the projective class group

K0(Z(G)). Let c: pt-*pt be the constant map and define

B(G) = {jG(c, φ) : φ is a G-resolution of c} .

Then B(G) can be proved to be a subgroup of KQ(Z(G)). Assume the map
/: F->P satisfies the following extension property:

(EP): Let φ,: X^P be any two G-resolutions off, i=l, 2. Then

extends to a G-resolution of f.

We shall show that for any such φ,, /=!, 2,

hence if we let [7G(f, φ)] to be the equivalence class of 7G(/, φ) for any G-
resolution φ of/, then we can define the obstruction of /by

Ύo(f) = [Ύo(f, φ)]

We will verify that the invariant Ύc(f) ιs exactly the obstruction to extending
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/ to a homology or homotopy equivalence of G-map if the fixed point set F° is
not empty.

We shall also see that the extension property (EP) holds for many G-maps.
Moreover we have the following equality

Now let us consider the following:

Converse to the Smith fixed point set problem. Suppose the finite group G
acts on a finite Poincre complex P with PG= UP^P,- is a component of PG),

and F= \JFt a finite complex with F^P, (i.e., H*(Fi\ L)«#*(P,: L)) for
ί L

all i. Can we find a finite complex X such that G acts on X with XG=F and
J*T~P?

L

We are able to apply the obstruction theory to study this general problem.

In particular we will prove the following results.

Theorem 1.1. Let/: F-»PGcP be a cellular map such that G acts semίfreely

on P and f*: H*(F; Z)**H*(PG\ Z). Suppose fι.F-*P is \-connected. Then
there is a finite complex X which is homology equivalent to P, and G acts semίfreely
on X with XG=F. Moreover, if F is simply connected} X is homotopy equivalent

to P.

Theorem 1.2 [4]. Let G=Zq (q is not necessarily prime) and F a finite Zq-
acyclίc complex. Then there is a finite contractίble G-complex X such that G acts
semifreely on X with XG=F.

Theorem 1.3. Let G be a finite group of order q with periodic cohomology
of period n, and let d=(q, φ(<?)), where φ is the Euler φ-functίon (i.e., φ(q) is
the number of positive integers <q that are prime to q). Suppose F is a simply
connected r-dimensional integral homology r-sphere. Then there exists a finite
G-complex X which is homotopy equivalent to Sr+dn. Moreover, G acts semi-

freely on X with XG=F.

In Swan [8], he proved that G can act freely on some finite complex X
which is homotopy equivalent to Sdn~\ where G, d and n are as in 1.3.

We also can define another obstruction theory by using the (^-resolution
φ which is defined exactly as a G-resolution of / with XG=FG except that G is
not necessarily acting freely on X—F. Set

B(G) = {φ: φ is a G-resolution of c: pt-^pt}

which is again a subgroup of K0(Z(G)). Thus if/satisfies (EP) for (^-resolutions,
7 G ( f ) = [%(f,$)]eKQ(Z(G))lS(G) is well defined so that the obstruction
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theory can be established as in 7G-theory. The 7G(/) was defined by Oliver
in [6] for the case X(F) = l mod m(G), G acts trivially on F and P a point.

2. Preliminaries. Let X and W be finite G complexes, G finite, and
/: X-* W be an equivariant cellular map. There is an exact sequence of the
map/:

•••-* πn+1(X) - πn+1(W) -> πn+l(f) - πu(X)-»

The element of πn+l(f) is represented by a pair (/?, a) of cellular maps so that
the diagram below is commutative:

Define a: GxS"^X by a(g,y)=ga(y) for (#, j) <Ξ G X S", and let

U OΛ+1).
<* a g^β

Then there is a naturally induced action of G on Y defined by

hx

(hg,x) ify=(g,x

where h^G. Thus Y is a G-complex which is obtained from X be adding
free orbits of (#+l)-cells. Define an equivariant map /: Y-+W by

(/(*) ity

y ~ 1 gβ(*) if y = (S,

By construction, f is an equivariant map, and

where K is the normal subgroup containing the Z(G)-submodule generated by
the class (/?, a) in πn+1(f).

Lemma 2.1. L ί̂ /: X—>Y be an (n—\)-connected equivariant map with
Hn(f)=N@M, where M and N are Z(G)-modulesy n>2. Then we can add n-cells
of free orbits to kill off M to produce an (n—V)-connected equivariant map
/: £->Y such that
(1) Hi(/)=Hi(f)9i>n+2,
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(2) 0-*ff.+1(/)-»ff,+I()->Ker 8.+1-*0 and
0-*Ker dn+l-*Hn(&, X)-*M-*Q exact.

(3) H.(f)=N.
Moreover if M is Z(G)-projective (or Ker 8n+1 is Z(G)-projective) then
(4) Hn+1(f)=Hn+1(f)®Kerdn+1.
Furthermore if M is a free Z(G)-module) dn+1: Hn(£, X)^M and
(5) Hi(f)

Proof. Since / is (n— l)-connected, πn(f)->Hn(f) is surjective by the
Hurewicz Theorem. Hence there exist pairs of cellular maps (βh αt),

α, : Sn~l-*X, \<i<v such that Σ(& , al)^ί{Hn(Dn, Sn~1}} generates M as
ί = l

Z(G)-module. Let

±=X U {ΌGxD1}} .
U δf t

By the construction above / extends to an equivariant map /: X-» Y. There is
an exact sequence

0 -> H.+l(f) - HH+1(f) - ff.(X JΓ) ̂  //„(/) -̂ > //„(/) -> 0 .

This can be easily obtained by looking at the algebraic mapping cones of
/* : C*(X) -> C#( F) and /# : C*(J^->C#( Y). Now Ker ./*=M by construction,
hence H.(f)**Hn(f)IM**N, and

o

0 - Hn+1(f) - £f.+1(/) - //„(!, JQ ̂ ^ M - 0

is exact. The results follow easily.

Lemma 2.2. Let G be a finite group of order q, and f: M-^P®T be a
surjective map of Z(G)-modules. Suppose M is Z(G)-free, P Z(G)-projective and
T torsion prime to q. Then Ker / is Z(G)-projective.

Proof. Let L be any Sylow subgroup of G. Then both M and P are Z(L)-
projective. Since we have exact sequence of Z(L)-modules

0 -> Ker/-* M -> P®T -> 0 ,

we obtain an exact sequence

H\L: M) = 0 -> H\L\ T)^H\L: P0Γ) -> Hi+1(L: Ker/)

where ίt\L\ M) = ̂ ί+1(L: M) = G and fr(L: P®T)*& fr(L: T) because M
and P are both Z(L)-projective. Since T is torsion prime to | L \ , the map
I L I : T-* T which is a multiplication by | L \ is an isomorphism. Thus it
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induces an isomorphism |L|: #'(L; Γ)^.#'(Z,; Γ). But \L\H*(L\ T) = Q,
hence #•'(£,; Γ)=0, and so

for any Sylow subgroup L of G and any /. It follows from [7] that Ker / is
cohomologically trivial. Therefore Ker /is Z(G)-projective by [7], The proof
extends the idea due to Oliver (cf. [3]).

Lemma 2.3. Let G=Zq, (n, q)=l, M and N be free Z(G)~modules and
PI N®Zn-+Zn the projection. Suppose h: M-*N@Zn is an epimorphίsm such
that pjh: M->Zn is an augmentation map. Then Ker h is stably Z(G)-free.

Proof. Let p: N@Zn-*N be the projection. Since TV is Z(G)-free, there
is a Z(G)-homomorphism φ: N-*M such that (ph)φ=\. Thus M=K®φ(N)
as Z(G)-modules and h\φ(N): φ(N)**N, where K= Ker(ph). It follows that
h induces an epimorphism h: K-*Zn with Ker h = Ker h. Note that we have
exact sequence

0 -» Ker h®φ(N) -*M= K®φ(N) Pl ^ ' I Zn -> 0 .

Hence Ker h(&φ(N) is Z(G)-free by applying [4, Lemma 1.1] inductively on
the rank of M. As φ(N) is Z(G)-free, Ker h is stably Z(G)-free.

3. An obstruction theory for finite group actions

Lemma 3.1. Let Λ]T: Y-+P be an equivarίant map and n=dimy>P such
that ty\F=f and -fy is \-connected. Assume that Ht(ψ) is Z(G)-projecΐive for
i>2. Then ψ* can be embedded in a G-resolutίon φ: X->P of f such that

Proof. Let k be the smallest integer such that //Λ+1(ι/r)Φθ. If k = n,
φ— ψ. is a G-resolution of/.

Suppose k<n. Since the Hurewitz homomorphism h:
is an epimorphism by the Hurewitz theorem, we can add free orbits of
cells to kill off Hk+1(ψ). This creates an equivariant map/*: Xk-*P According
to 2.1 we have

#,(/*) = 0,

HM(fk) = Hk+2(^)®M , M = Ker dk+2 , and

Hk+1(Xk, Y) = M®HM(+) ,

where HM(Xk, Y) is Z(G)-free. Thus [M] = -[Ht+1( ψ)] ξ=K,[(Z(G). It
follows that
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By repeating this process, eventually we will produce a G-resolutiont φ off with

, Φ) = (-iΓ'[#,,

Lemma 3.2. Let B(G)= {7G(cy φ): φ is a G-resolutίon ofc}, where c: pt->
pt is the constant map. Then B(G) is a subgroup of K0(Z(G)).

Proof. Let 7G(c, φt )eJ9(G), where φ,: X{->pt are two G-resolutions of
c, and dim Xι=nh ι=l, 2. Then

Hj+ι(Φι VΦ2) = #y+ι(Φι)θ#/+ι(Φ2) , for all;,

where φjVφa: XlVX2-^pt. Thus ff^(φίyφ2) is Z(G)-projective. It follows
ί*

from this and 3.1 that there is a G-resolution φ of c such that

rc(c, Φ) = (-i)^+1[ 1̂+1(

that is, 7G(c, φO

Suppose now that 7c(c, φ)ejB(G), φ: X^ pt is a G-resolution of

t (dim^Γ=«). Then φ~: ΣX-> pt is also a G-resolution of c, where Σ-SΓ denotes
the reduced suspension of X. This implies that

-Ύo(c, Φ) = (-ir2[#n+ι(Φ)] = (-1)Λ+2[^Λ+2(Φ)] = ΎG(c,

Proposition 3.3. Suppose the map f: F^P satisfies (EP). Then for any

two G-resolutions φ± and φ2, ΎG(f> Φι)

Proof. By hypothesis (EP), φιUφ2: X^Xz-^P extends to a G-resolu-

tion φ: X-+P of/. Let dim X=m dim Xi=nh ί=\, 2. We can assume that

m>ni-\-2 and #t>dim P, ί=l, 2.
By assumptions, φ*: Hj(X)^Hj(P), j<m\ and φt*: Hj(X^Hj(P) for

7<»f , ι=l, 2, hence from the homology exact sequences of the pairs (X> Xi) we
have Hm(X)~Hm(XIXλ Hni+l(XIX^Hni(Xt) and ff^XIX^Q otherwise.
For instance ifj<njy

/
^ ?^\ /«

\ *

From the homology exact sequences of φ and φ, "we obtain Hm+l(φ)^fHm(X)

Now G acts on X\Xι with (X\X?)G=pt. Apply 3.1 to the constant maps
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/,: XlX^pt, since Hm+M)=HmWXi)=Hm+l(φ) and H

=Hni+ι(Φi) are Z(G)-ρrojective and #,.(/,.)=() otherwise, there exist G-resolu-
tions i/r,: Yi~>pt of c such that

= -TcC/i Φi)+Ύc(f, Φ), i = l , 2 .

Clearly this implies that γG(/, φ1)-7G(ff φ2)<Ξ£(G).

Theorem 3.4. T/" γG(/)=0 dwrf -f^Φφ, ίΛβn G Λrfί on some finite complex
X and there is an equίvariant map φ: X->P which is a hσmology equivalence, φ \ F=f

and G acting freely on X—F. If F is simply connected, then φ is a homotopy
equivalence.

Proof. Let ΎG(f) = [ΎG(f, Φ)]= 0, where φ: X-+P is G-resolution of/.
Then 7G(/, φ)eβ(G). Hence there is a G-resolution -ψ : Y->^i of c: pt->pt

such that 7G(/, φ) = — 7G(c, ψ). Consider

— P

where the pt^ Y is joined to any fixed point of X. Thus we have

which is Z(G)-projective. By 3.1, φVψ can be embedded in a G-resolution

φ:X-+Poff, and

•/<;(/, ft = Σ (-I)WΦ Vψ)] = Ύe(f, Φ)+Ύβ(c, ψ) = 0 .
I

Thus TG(/> φ) is stably Z(G)-free. It follows from 2.1 that φ can be extended

to an equi variant map φ: X-+P which is a homology equivalence.

Proposition 3.5. Suppose G acts semίfreely on both F and P and γG(/)=0.

Then

for every prime p such that p\ |G|, where fG: FG-*PG is the restriction of f.

Equίvalently y B*(fG) is torsion prime to | G | , | G | Border of G.

Proof. Let φ: X— >P be an equivariant map which is a homology equi-

valence and φ I F=f. For every prime p, p \ \ G \ , there is a subgroup Zp of G

of order p and

XZp = FZp = pG^ pZp =
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Since the group Zp acts semifreely on the mapping cone Cψ which is Z^-acyclic
with C$p=CfG, hence CfG is Z^-acyclic by the Smith fixed point theorem,
that is, #*(/G; Z,)=0, or

/ί : H*(FG; Zp)~H*(PG; Zp) for every p\\G\.

4. Existence of G-resolutions. The obstruction theory which we have
defined depends on the existence of G-resolutions satisfying (EP). In this
section we shall investigate the existence of the equivariant maps f:F-*P
satisfying (EP).

Lemma 4.1. Let \G\=q and φ: X-+P be an n-connected equivariant
cellular map, n>2. Suppose H*(φff) is torsion prime to q (resp. ff*(φH)=Q)
for every φff = φ\XH: XH-*PH, where e^H^G, dim^*<rc = dim^ and

dim P<dim X. Then Hn+1(φ) is Z(G)-projective (resp. stably Z(G)-free).

Proof. Let X=U{XH: *Φ# cG} and P= U {PH: eφHdG}. By the
Mayer- Vietoris sequence and induction, it is easy to verify that R*(φ) is torsion
prime to q, where φ=φ\X: j£->A Since φ is ^-connected, it induces an

equivariant map φ: X/A-^P/P with //,-(<£) »#,•_!($) for i<n. Hence H^Φ)

is torsion prime to q for every i<n. We may assume that both X/X and P/P
are simply connected. Otherwise we simply consider the suspension map

ΣΦ: Σ(-Y/-£)-»Σ(P/^). Add free orbits to X/X inductively to kill off #,(φ),

i<n. By 2.1. this creates equivariant /-connected cellular maps φ, : Xi->P/P,
2<i<n, with

I

where Ker 8ί+1 is Z(G)-ρrojective for every / by 2.2.
Now G acts semifreely on both Xn and P/P with exactly one fixed point, say

x0 and pQ respectively. Let h=φn\xQ. Then C*=C%(Cφn, Ch) is a free Z(G)-
module with #,-(£*) =/?ί(φll) for all i>0. As φn is w-connected, there is an

exact sequence

( 2 ) 0 - Hu+1(φΛ) - Cn+1 -»..•-* C0 -> 0 .

This implies that if we let Λ^CΛΘCW_2Θ . , then Hn+1(φn)®N is Z(G)-free.
Let M=Ker 9n+1. According to (1)

Hn+1(φn) = Hn+l(φn

Since the sequence

( 3 ) 0 -> Hn+l(φ) -> Jϊn+1(Φ) -> Hn(φ) -> 0
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is exact, we obtain an exact sequence

0 - Hn+1(φ)φM®N -> Hn+1(φ)®M®N = Hn+l(φ)®N - Hn(φ) -> 0 .

But Hn(φ) is torsion prime to q, and Hn+l(φn)φN is Z(G)-free, hence Hn+1(φ)(&
M@N is Z(G)-projective by 2.2. It follows that Hn+l(φ) is Z(G)-ρrojective.

Suppose now that S*(φH}=Q for every H ^e. Then #,(φ)=0 for i<n.
Hence φ is w-connected and (2) holds for φ. Thus Hn+1(φ) is stably Z(G)-free.
But Hn(φ)=0 and so Hn+1(φ) = Hn+1(φ) by (3). This proves that Hn+1(φ)
is stably Z(G)-free.

Theorem 4.2 (Existence theorem I). Let f: F-+P be an \-connected
equivaήant cellular map.

(1) Suppose #*(/*) is torsion prime toq=\G\ for every fH=f \ FH : FH-*PH,
where eφHdG. Then 7 G ( f ) is well defined, i.e., f satisfies (EP).

(2) If #*(/*)=() for every /*, e^HdG, then rG(/)=0.

Proof. Add free orbits of cells of dimensions <n inductively to get an
^-connected cellular map φ: X-+P with n— dim -X" > dim P. Now φH=fH for
every eφHdG by construction, hence by 4.1 Hn+1(φ) is Z(G)-ρrojective, i.e.,
φ is a G- resolution of/.

If φ,: Xf-^P are two G-resolutions of/, /—I, 2, add free orbits of cells to

X1\JX2 extending φιUφ2: Xι\JX2-^P to an w-connected equivariant cellular
F F

map φ: X-^P. Again φ is a G-resolution of /which extends both φ1 and φ2,

i.e., /satisfies (EP). Hence ΎG(f) is well defined.
If ff*(fH)=Q for every G^H^e, then HH+1(φ) is stably Z(G)-free. Hence

Theorem 4.3 (Existence theorem II). Suppose f is \-connected and
Hi(f)=Miξ&Tifor all i>2, where M^s are Z(G)-projective and TiS torsion prime
to q= I G I . Then the G-resolutions of f always exist and f satisfying (EP). More-

over if Hi(f) is Z(G)-freefor every i>2y then ΎG(f)=Q

Proof. We shall construct inductively ^-connected equivariant cellular
maps/s: XS-*P satisfying the following:

(1) Hs+i(fs)=Hs+i(f)® a Z(G)-projective module, ί=l, 2.
(2) #,.(/,)=#,.(/), />,+3.
Assume that/, has been constructed. By 2.1. add free orbits of (s-f-l)-cells

to kill off Hs+1(fs) to obtain a (ί+l)-connected cellular map gs+l: FS-*P such
that

(3) ^(Λ+I)=^CΛ). hence #,<£Wι)=#.(/), *'̂ *+3 by (2).
(4) 0-^s+2(/s)->^s+2(^+1)-Ker9s+2-Oand

0-Ker ds+2^Hs+1(Ys, X.)^ #.+1(/.)-»0 exact,
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where Ker 9s+2 is Z(G)-ρrojective 2.2. Thus

Again by 2.1. add (s+2)-cells to Ys to kill off ker9s+2 to produce a
connected equivariant cellular maρ/s+1: Xs+l-*P such that

(5) Hs+2(fs+1)=Hs+2(fs), hence
Hs+2(fs+1)=Hs+2(f)φa Z(G)-projective module by (1).

(6) Htf^Hfe^HM, *':>*+4 (by (3))

(7) 0-»Hs+3(gs+1)^Hs+3(fs+1)^Ker 9~s+2-»0 and

5+2

exact, where Ker 95+2 is Z(G)-projective. Thus

Hs+3(fs+1) = #s+3(£s+ι)ΘKer 9s+2

= ^s+3(/)ΘKer9s+2 (by (3)).

This completes the inductive construction.
Now if £>max{dimF, dimP}, then Hi(f)=0 for i>s+ί and dimXs=

s+l. It follows from (1) and (2) that we have an s-connected equivariant

cellular map fs: XS-*P with #,-(/,) Z(G)-projective for i=s+l and s+2. By
2.1, we can add (,y+l)-cells to X to kill off Hs+1(fs) to obtain a G-resolution
φ: X-*P off with

which is Z(G)-projective.
Next, let φ,: X^P be any two G-resolutions of/, i=l, 2. We may assume

that dϊmXi=ni>max{dimFy dimP}. Clearly we have an exact sequence

•••-> Hi+1(f) -> HM(φj®Hi+l(φj -> Hi+^ U φ2) - fft.(/) -"- •

But Hi+1(φj) = 0 for i φny , j = 1 ,2. Thus

^i+ι(Φι U φ2) «#,-(/) for ί Φwj, w2 ,

if ί = Hi = W2

Hn2+1(φ2) if i = n2) n1

Hence φj U φ2 can be embedded in a G-resolution of /. This proves that /
satisfies (EP).

If Hi(f) is Z(G)-free for every />2, it is not difficult to see from the proof
that Hs+2(φ) is stably Z(G)-free, hence γG(/)=0.

Proposition 4.4. (1) // γG(/) is well defined for f: F-»P, then γG(Σf)=
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(2) Suppose that fa F-^Pl and /2: Pi~*P2 both satisfy 4.2 γG(l) or 4.3 so
that γc(/i) are well defined, i=l, 2.

Proof. (1) Obvious.
(2) Let φji -SΓι->Λ be a G-resolution of /i with w1=

max {dim F, dimPj, dimP2}. We can see that

Hnι+l(f2φι) = Hnι(X^ = Hnι+1(φ), a Z(G)-projective module,

#m(/2φι) = 0, tenH-1.

For example, if /<#!, we have

HM(fύ - Hm (^k Hi

ψi V A*
Now let ι/r2: M2-^H2(f2φι)=H2(f2) be a surjective map with M2 a Z(G)-free
module. Adding cells to both X1 and P1 to kill oίf both #2(/2φι) and ί/2(/2)
realizing ι/r2. This creates 2-connected equivariant cellular maps g2: Y2-^P2

and h2: W2-^P2 extending /2φj and /2 respectively. By 2.1 we can see that
^3(82)= H3(h2). Continuing this construction, eventually we will get a G-
resolution φ?=hn2: Wn2-*P2 of /2, dimWn2 = n2 and an w2-connected equi-
variant map £M2: yM2->Pι extending /20! such that HΛ2+1(hn2)= H^g^) and
H^g^—H^φ^ for ί>w2+2. We may assume that nl>n2. By construction,
it is easy to see that

HΛJ+1(φj) , if i = njy j=l,2 (hence Z(G)-ρrojective)
.

0 , otherwise.

By 3.1 gn2 can be embedded in a G-resolution φ of /2φx which is also a G-
resolution of /2/i such that

, Φ) = τG(/2Φι. Φ) = (-^
= TG(/ι, Φι)+ΎG(f2, Φ2)

Hence <yG(/2/1)=7G(/ι)+')'G(/2) as required.

5. Converse to the Smith fixed point theorem. The converse to the
Smith fixed point theorem 1.1 is an immediate consequence of the following.

Theorem 5.1. Let f: F-* P be an equivariant \-connected cellular map
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such that G acts semifreely on both F and P.
(1) Suppose #*(/G; ̂ )=0 for all p, where p\\G\ and p is prime. Then

ΎG(f) is well defined, i.e., /satisfies (EP).
(2) If ̂ (7^=0, then 7C(/)=0.

Proof. Since G acts semifreely on F, P and X, fG=φG for all £?Φ#cG.
Hence the result follows from 4.2.

Corollary 5.2. (1) Let F be a Z-acydie finite complex, and G a finite group.
Then there is a finite contractible complex X such that XG=F and G acts semifreely
onX.
(2) Let F be an integral r-homology sphere (r>ϋ) and G acts semifreely on Sk with
fixed point set Sr(r>2). Suppose there is a cellular map f: F-*Sr such that /*:
H*(F)*&H*(Sr). Then there is a finite G-complex X which is homology equivalent
to Sk, and G acts semifreely on X with XG=F. Moreover X is homotopy equiva-
lent to Sk if F is simply connected.

Theorem 5.3. Let G = Zq and f: F-+P be a \-connected equίvaήant
cellular map. Suppose that Hi(f)=Mi0Γ, for all z > 2, where M s are Z(G)-free
and Ti's torsion prime to q. Moreover assume that

(*) Γ, = torsion submodule of #, (/G) for all i>2.

Then 7G(/)=0.

Proof. According to the proof of 4.3, we have the following

( 1 ) Hs+i(fs) = Hs+i(f)®Kerds+i

= Γs+,.0Ms+t 0Ker 9s+ί, i = 1, 2 .

By using the notation in the proof of 4.3, the following composition of maps is
an augmentation map by (*)

77 (v γ\ d(s+2\ π f f \ proj\ Ttts+i^Ys, Λ.s) > ns+1(js) ^ ± s+1.

Thus Ker9s+2 is a stably free Z(G)-module by 2.3. Hence (1) becomes
(1)' Hs+i(fs)=Ts+iφa stably free Z(G)-module, ί=l, 2. If follows that #,(/,)
is stably Z(G)-free for i=s+l and s+2 if ί>max{dimF, dimP}. Therefore
7G(/)=0.

Now Theorem 1.2 is a simple corollary of the following.

Theorem 5.4. Let G=Zq and F be a finite G-complex such that H*(F\ Zq)

=0 and i*: H*(FG)-^+ H*(F), where i: FG-*F is an inclusion. Then γc(/)=0,
where /: F-*pt is the constant map. Thus there exists a contractible finite G-com-
plex X which contains F as a G-subcomplex and acts freely outside F.
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Proof. First, add free orbits of 2-cells to F to get a simply connected
G-complex Y. According to 2.3 and 2.1 we have YG—FG and

H2(Y) = H2(F)®M, M a free Z(G)-module ,

Hi = Hi(F) forz'^3.

Let -ψ : Y-^ pt be the constant map. Then Hi+1( ψ c) = Hi

Hι(F) and

0, ί = l , 2 .

where H^F) are torsion prime to q for />2. Thus the conclusion follows
from 5.3 and 3.4.

6. Semifree actions of groups with periodic cohomology on homo-
logy spheres

In [8], Swan has proved that if a finite group G acts freely on a compact
integral cohomology ^-sphere, then G has periodic cohomology with period
Λ+l. This result can be generalized for semifree actions. More precisely, we
have

Theorem 6.1. Let G be α finite group acting semifreely on a locally compact
space X with dimzX<oo and X~Sn. Suppose F~S'Λ (n—r>\). Then G

has periodic cohomology with period n—r. (Here we use the Alexander Spanier
cohomology with compact supports).

Proof. The cohomology exact sequence of the pair (X, F), F=XG, gives

Hn(X-F; Z) = Hr+1(X-F; Z) = Z and

Hl(X-F; Z) = 0 for ί *n, r+ 1 .

7Γ2

From the spectral sequence of the fibration (X— F)-+(X— F)G->BG (cf [1]), we
have the following Gysin type exact sequence (cf. [2])

..— H'((X-F)G) - H'- (BG, H
n(X-F)) -> H'-'(BG; H'+\X-

The map πγ\ (X—F)G-*(X—F)IG induces isomorphism

irf : H'((X-F)IG; Z)~H'((X-F)G, Z)

for i>0 by the Vietoris-Begle mapning theorem. But H*((X— F)/G; Z)=0
i>nby [ί]. It follows that
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#'"%BG; Z)^Hl-r(B^ Z) for ί>n .

Now we shall establish the converse of this result, i.e. Theorem 1.3 which
is a special case of the following:

Theorem 6.2. Let G be a finite group of order q with periodic cohomology of

period ny d=(q, φ(q))> and f: F-+P be an equivariant cellular map with F and
P both simply connected. Assume

Hr+1(f) = Hk(f) = Z, k = r+dn and

#,.(/) = 0, ίφr+1,*.

Then 7 G ( f ) w «>*// defined and γG(/)=0.

Proof. According to Swan [9], there is a periodic free resolution over Z

of period dny i.e., an exact sequence

9 3 lίf
(*) o-Z->^->^.1-...->Fr+Λ^-^+ι(/)-0,

with all F,s Z(G)-free.
Now add free orbits of (/ +l)-cells to kill off Hr+l(f) realizing -ψ\ This

creates an (r+l)-connected equivariant cellular map fr+1: Xr+1-*P such that

0 - Hr+2(fr+1) -> H^X, F) = Fr+1tZ-*0

is exact. Hence Im {3: Fr+2->Fr+1} = Ker ψ=Hr+2(fr+1). Again, adding free
orbits of cells to kill off Hr+2(fr+1) and realizing 9: Fr+2-*Hr+2(fr+1). This
produces an (r+2)-connected equivariant cellular map fr+2: Xr+2—*P such that
Im {3: Fr+3->Fr+2}=Kεr {9: Fr+2->Hr+2(fr+1)}=Hr+3(fr+2). Repeating this pro-
cedure eventually we will get an (k— l)-connected equivariant cellular map

fίl.l: Xk.^P such that

0 -> #*(/*-2) = Z -+ H^.,) - Ker 9 - 0

is exact, where 9: ^_ι->^_ι(/fe_2). It follows from this and (*) that Hk(fk_^)=
Fk, a free Z(G)-module. Since both F and P are simply connected, we can add

Λ-cells to Xk-i to get equivariant cellular map φ: X-+P which is a homotopy
equivalence by 2.1.

To verify that/ satisfies (EP), let φ{: X{-^P be any two G-resolutions of
/, i=l,2. We may assume that dim X^n^k. Then

Thus Hk+ι(Φι U Φ2) =Z , Hr+2(φ1 Vφ2) = Z and

Ri(Φι U Φ2) = 0 for i<ky i φr+2 .

We can use the periodic free resolution
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(**) 0 -> H^fa U φ2) = Z - Fk+1 ^Fk-»...-»Fr+2-*Z

where Fi+ί=Fiί r-}-\<i<k, as above to kill off all homology groups of dimen-
sions <k+l to get a map φ: Jξ"-»P such that ϊϊ*(φ) is Z(G)-projective. By
3.1 the G-resolutions of φ exists. This proves that/ satisfies (EP).

REMARK. We can combine (*) to get new periodic free resolutions

0 _» Z -» Fk -»--> Fr+1 -> Fk ->•••-> Fr+1 ->

F,->. .-^Fr+2-*ίV+1-*Z->0.

Thus 1.3 and 6.2 also hold for k=r-}-sdn, s positive integers.
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