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Introduction

Generic submanifold have been investigated by many authors (e.g. [5], [7], [8],
[9], [21]). Here a submanifold M in a Kaehlerian manifold is called generic if each
normal space of M is mapped into the tangent space of M by the complex structure of
the ambient space (cf. [2], [4], [22]). Any real hypersurface in a Kaehlerian manifold
is a typical example of the generic submanifold.

In particular, the model space of the so called A}, Ay, B, C, D and E-type are
typical examples of a real hypersurface in a complex projective space P(C). Recently,
the third named author, B. H. Kim and I.-B. Kim [19] proved that those model spaces
exhaust all intrinsic homogeneous real hypersurfaces in P(C).

On the other hand, the model spaces of the type A; and A, was frist introduced
by Lawson [13], and he gave a characterization of them. Moreover, Choe and Oku-
mura [5] gave a generalization of Lawson’s theorem in [13] from a viewpoint of the
CR-submanifold (see §1 for the definiton).

The purpose of the present paper is to give another generalization (Theorem A)
of Lawson’s theorem, from a viewpoint of the generic submanifold, and to give new
examples of a generic submanifold in P(C).

The authors would like to thank the refree for his suggestions, which resulted in
many improvments of the present paper.

1. Preliminaries

Let M be a Kaehlerian manifold of real dimension n +r equipped with an almost
complex structure J and a Hermitian metric tensor G. Then for any vector fields X
and Y on M, we have

J’X =-X, GUX,JY)=G(X,Y), VJ=0,

*Partially supported by the research grant of Catholic University of Taegu-Hyosung.
**Partially supported by TGRC-KOSEF, 1999 and BSRI-98-015-D00030.
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where V denotes the Riemannian connection of M.

Let M be an n-dimensional Riemannian manifold covered by a system of co-
ordinate neighborhoods {U;x"} and isometrically immersed in M by the immersion
i+ M — M. When the argument is local, M need not distinguished from i(M) it-
self. Throughout this paper the indices i, j, k, --- run from 1 to n. We represent the
immersion i locally by

yA=yA", (A=1,---,n,- n+r)

and put Bj" = 9;y%, (3j = 3/3x/) then B, = (BjA) are n-linearly independent lo-
cal tangent vectors of M. We choose r-mutually orthogonal unit normals C, = (CXA)
to M. Hereafter the indices u, v, w, x, --- run from n + 1 to n+r and the summa-
tion convention will be used. The immersion being isometric, the induced Riemannian
metric tensor g with components g;; and the metric tensor § with components §,, of
the normal bundle are respectively obtained

8ji = G(Bp B)), Byx = G(Cya Cy).

By denoting V; the operator of van der Waerden-Bortolotti covariant differentia-
tion with respect to g and G, the equations of Gauss and Weingarten for the subman-
ifold M are respectively given by

(1.1 VB =A;i*Cy, V;Cx=—A;" By,

where Aj; * are components of the second fundamental tensor and the shape operator
A* in the direction C, are related by

A¥=(A") = (Ajiy " 8™), (8" =(g;)™"

For x € M we denotes by T,(M) and N,(M) the tangent space and the normal space
of M, respectively.

A submanifold M of a Kaehlerian manifold M is called CR submani fold of M
if there exists a differentiable distribution D : x — D, C T,(M) on M satisfying the
following conditons (see [2], [4], [22]):

(1) D is invariant with respect to J, and
(2) the complementary orthogonal distribution D+ : x — DL C T.(M) is totally
real with respect to J.

In particular if dim D+ = codimM, then M is a generic submanifold of
M(see [8], [20]). If M is a CR submanifold, then the maximal J-invariant subspace
JT,(M) N T,(M) of T,(M) has constant dimension for x € M and this constant is
called CR dimension. '

If we assume that M is CR submanifold of CR dimension n — 1, that is,

dim(JT,(M)NT,(M))=n — 1.
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This implies that there exists a unit vector field C, normal to M such that JT(M) C
T(M)® span {C.}. Then, we have the following theorem by the first named author
and Okumura [5].

Theorem A. Let M be an n-dimensional compact, minimal CR submanifold of
CR dimension n — 1 of P"™*"/%(C). If the normal vector field C, is parallel with re-
spect to the normal connection and scalar curvature > (n +2)(n — 1), then M is an
Mﬁq for some p, q satisfying 2(p+q)=n — 1.

The model space Mﬁq in the above theorem is described in the following. Let
M, , be the hypersurface in $"*2 which is defined by

p p+q+l p
E |2jI* = cos? 6, Z |z;|* = sin#, 0<9<5'
Jj=0 j=p+1

M, , is a standard product S?P*! x $%*! 2(p + q) = n — 1. The Hopf fibration 7 :
§™+2 — P@+1/2(C) submerses M, , onto a real hypersurface of P"*D/2(C) which we
denote by M . Cecil-Ryan [3] proved that M, is a tube of radius 6 over a totally
geodesic PP(C), namely, Mﬁq is a homogeneous type A; or A; [18].

In the following, we assume that M is a generic submanifold of a Kaehlerian
manifold. Then our hypothesis implies that the transformations of B; and C, by J are
respectively represented in each coordinate neighborhood as follows:

(1.2) JB; = f"B,— J;*Cy, JC,=J"By,

where we have put f;; = G(JBj, B;), Jjx = —G(JBj, Cy), Jij = G(JCy, B)), fjh =
fjig™ and J ;¥ =Jjy8*. From these definitions, it follows from (1.2) that

(1.3) fi' ==+ 70 fiid " =0,

(1.4) 110 =87,

By differentiating (1.2) covariantly along M, using VJ=0, and by comparing the
tangential and normal parts, we obtain

(1.5) Vifi'= At L — AT,
(1.6) Vidix = Ajix ,'t’
(1.7) Ajigd™ = Aj* "

If the ambient space M is a Kaehlerian manifold of constant holomorphic sec-
tional curvature 4, the equations of Gauss, Codazzi and Ricci of M are respectively
given by

(1.8)  Rijin = gkn&ji — 8jn&ki + funfii — finfui — 2fuj fin + Aun™ Ajix — Ajn™ Agix,
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(1.9 ViAjix — VjArix = Jix fui — Jix fji + 2Jix frjs
(1.10) Rjiyx = Jjxdiy — JixJjy + Ajix A; 'y — Ai”Ajty'

where Ryjin and Rj;y, are components of the Riemannian curvature tensor and those
with respect to the connection induced in the normal bundle respectively.
From (1.8) the Ricci tensor S of M is verified that

Sji=(n+2)gji —3J;" Jix +h*Ajix — Aj*A;f,
because of (1.3), where h*=trace A*. Thus the scalar curvature p of M is given by
(1.11) p=n(n+2)— 30 J* +hh* — Aji A"
since we have (1.4).
In what follows, to write our formula in convention forms n + 1 denoted by the

symbol * and we put h(z) = Aj,‘*Aii, (Aj,'*)2 = Aj,*Air* and nyz = Aj,'x.’yj.lzi.
Then P, is symmetric for all indices because of (1.7).

2. Parallel normal section

Here we consider the case of a complex projective space M = P"*)/2(C) of con-
stant holomorphic sectional curvature 4. A normal vector field £=(£*) is called a par-
allel section in the normal bundle if it satisfies V;§* = 0.

From now on we suppose that M is an n-dimensional compact generic submani-
fold of P™*/2(C) with parallel unit normal vector field C, with respect to the normal
connection, that is, leC* = 0. Then (1.10) shows that Rj;., vanishes identically for
any index x and hence

2.1) AjxAi'y — AixAj' = Jjdix = Jindjxs
which together with (1.4) and (1.7) implies that
2.2 (JP*AMNTF Aig) = (AT ) Aix J™*) +1 = 1.
From (1.5) and (1.6) we have
2.3) ViVid; * = (VKA i T+ A (A T — A i),
or, using (1.3), (1.4) and (2.2)
T AT = (A Ju)XAT  Ji) = he,

where A = g/'V;V,.
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We also have from (2.3)
TP (ViViJ™) = b Po — (A (AT Ti) +n = 1,

where we have used (1.3), (1.4) and (1.9). From the last two equations, we obtain
2.4) J* Ao+ J*(ViV; ™)y = —hgy + h* Py +1n — 1.

Let us put U; = J*V;J, * + Ji*V;Jj*. Then we have

divU = (V; )V I7*) 4+ (Vi TNV T + T *Ad + JI*VIV, L,

which together with (1.6) and (2.4) yields
(2.5) divU = % | A*f — fA* |2 —h@y+ h* Pyy +n — 1.

On the other hand, we have from (1.4)
(2.6) Jpdi*=1, JiJ&¥=r
because r is the codimension of M and consequently we obtain
2.7) Jid'® =r —1,(x) > n+2.
Thus, (1.11) turns out to be
(28) p=n+3)n—1)=3Jj5J 7+ heh™ — hgy+ Ajign AT,

Lemma 1. Let M be an n-dimensional generic, minimal submanifold of
P™N/2(C) with parallel unit normal C,. Then we have

1 . 3
(29) divU = 3 |A*f — fA* P 4+p —(n+2)(n — 1)+ 3T ]I + Aji AT,

Proof. Since M is minimal, it follows, using (2.5), (2.6) and (2.8), that required
equation is obtained. This completes the proof. O

Further, suppose that M is compact and the scalar curvature p of M satisfies p >
(n+2)(n — 1) in Lemma 1, Then we have

A*f=fA*,
Aji P=0, Jjxy=0 forall (x)>n+2

and p = (n +2)(n — 1). Thus (2.7) means r = 1, that is, M is a real hypersurface of
P(n+1)/2((C)_
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Thus we have

Lemma 2. Let M be an n-dimensional compact generic, minimal submanifold
in P"*"/2(C). Suppose that M admits a parallel unit normal vector field C, and the
scalar curvature p > (n+2)(n—1) on M. Then M is a real hypersurface in P™V/2(C)
satisfying A*f = fA* and p=(n+2)(n —1).

From Lemma 2 and Theorem 4.4 in [15] due to Okumura, we have

Theorem 3. Let M be an n-dimensional compact generic, minimal submanifold
in P™ND/2(C). Suppose that M admits a parallel unit normal vector field and the
scalar curvature > (n+2)(n — 1). Then r = 1 and M is an M,,,,,C for some p,q
satisfying 2(p+q)=n — 1.

3. Examples of generic submanifolds in P"(C)

In this section we shall give two examples of a compact homogeneous generic
submanifold in P"(C), and another example of a compact homogeneous minimal
generic submanifold in P"(C) admitting a parallel normal vector field.

Let p,q (p < q) be positive integers. We denote by M, ,(C) the space of p X
g matrices over C, which can be considered as a complex Euclidean space CP? with
the standard Hermitian inner product. Let U(p) denote the unitary group of degree p.
Then the Lie group G := S(U(p) x U(q)) acts on CP? = M, ,(C) as follows:

(0, 1)X=0Xt"!, (0,7)€G, X e CH.

Thus we can consider G as a unitary subgroup of U(pg). Remark that this action
is nothing but the linear isotropic representation of the compact Hermitian symmetric
space SU(p +q)/S(U(p) x U(q)) of type AIIL.

Let 7 be the canonical projection of CP4 — {0} onto PP4~!(C), and S?79~(r)
the hypersphere in CP? of radius r centered at the origin. Then, for any element A
of CP4 — {0}, the orbit G(A) of A under G is a compact homogeneous submanifold
in S?2P4-1(JA|), and the space m(G(A)) is a compact homogeneous submanifolds in
PPi~1(C) (see e.g. [19]). Moreover, for any normal vector N of G(A) in S?P4~'(|A)),
the mean curvature of G(A) in the direction N is equal to the one of w(G(A)) in
the direction m,N in PP4~!(C). (see e.g. [16]). In particular, G(A) is minimal in
§2Pa=1(|A|) if and only if 7(G(A)) is minimal in PP4~1(C).

Here, fori =1,---, p we put
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- l.th —

e = 1 o] €CH—{0},

and denote by a the vector space spanned by ey, - -- , e, over R. In the sequel we shall
show

(3.1) If A = aje; +--- +ape, satisfies a; # 0, a;> #a;2 for 1 <i < j < p, then
w(G(A)) is a (2pq — p — 1)-dimensional generic submanifold in PP4~!(C).

(3.2) If A = e|+ey+azes+- - +ape), satisfies a;> #0, 1 and a;> #a;2 for 3 <i < j < p,
then m(G(A)) is a (2pq — p — 3)-dimensional generic submanifold in P?9~!(C).

(3.3) Let p = 3 < q. Then there exists a vector A in a \ {0} such that 7(G(A)) is
a (6q — 4) dimensional minimal generic submanifold in P37~1(C) admitting a
parallel normal vector field.

To show these, we need some preparations. Let A denote the positive restricted
root system associated with the symmetric space SU(p +q)/S(U(p) x U(q)) and a(cf.
[6]). Let {w;, -+, wp} be the dual basis of e, ---,e,. Then A is given by

(3.4) A={w, 20,0 tw;j; 1 <i<j=<p}

with multiplicities 2(q — p), 1, 2, respectively (cf. Helgason [6, 349p] or Araki [1,

table]). An element A =aje; +---+ape, is called regular if w(A)#0 for any w € A,

or equivalently a; #0, a;? #aj2 for 1 <i<j<p.

Thus a vector A in (3.2) is regular, and one in (3.2) is not regular. As seen later, a

vector in (3.3) is also regular. In the following, A always denotes an element of a\{0}.
By the difinition, the tangent space T4(G(A)) of the orbit of A under G is gener-

ated by the vectors

XA and AY,

where X (resp. Y) ranges over all skew-Hermitian matrices of degree p (resp. q). In
particular, if A is regular, the normal space of G(A) in C?P9 is just a, and the normal
space of G(A) in $?P77!(JA|) consits of all vectors xje; + - - - + xpe, satisfying a;x; +
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ceetapx, =0.
It is proved in [19] that if A is regular, for a unit normal vector N of G(A) in
S2Pa=1(|A|), the mean curvature of G(A) in the direction N is given by

-1 A(N)
dim G(A) g AA)’

where the summation is taken according to the multiplicities of A. In particular, if A
is regular, the orbit G(A) and space 7(G(A)) are minimal in $??9~!(|A|) if and only
if

AN) ,
(3.5) fgm:O for N =ajey, —aye; (i=2,---,p).

Now, by a theorem of Kitagawa and Ohnita [11] we see that the mean curvature
vector field n(A) of the orbit G(A) in CP? is parallel with respect to the normal con-
nection. We denote by by 7,(A) the $2P9~!(|A|)-component of n(A). Then we easily
see that 7;(A) is the mean curvature vector field of G(A) in $?79~!(JA|) and parallel
in $279-1(]A|). Moreover, by a theorem of Shimizu [17], the mean curvature vector
field of the submanifold 7 (G(A)) is given by m,ns(A) and parallel in PP7~1(C).

Now we are in a position to show (3.1)~(3.3).

Proof of (3.1). This is a special case of the results in [17]. Remark that the
word generic is not used there. O

Proof of (3.2). By a simple calculation we find that the normal space of
T4(G(A)) in CP? is generated by a and the following two vectors:

0 1 0 V-1

0 0
B=|1 0 , C= —J=1 0 . O
o |o [ | 0

Thus the space +/—1a and two vectors +/—1B and +/—1C are tangent to G(A) at A,
which implies that the space w(G(A)) is generic in PP4~1(C).

REMARK. Since this A is not regular, the space is not treated in [17].

Proof of (3.3). Put A =e; +ae, + be;, where 0 < b <a < 1. Then A is regular.
Thus as a basis for the normal space of G(A) at A in S*~!(|A|) we can take

{ae; — ey, be; — e3}.

It follows from (3.4) and (3.5) that the space m(G(A)) is minimal in P3¢~!(C) if and
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only if

5 1 a—1 a 1 a+1 a 1
("”5)(“_5)+ Tva T1+b a+b 1-a 1-b a-b "
( _é)(b_l>+b—l+ b B 1 +b+1+ b _ 1 -0

2 b 14b 1+a b+a 1—-b 1—a b-a

For simplicity we put

(3.6)

m:=Q2q —5)/4, x:=a%y:=b%

1 1
X(x,y) :=m(——1)—- 2 — ! + ,
X l-x 1—-y x-—y

U={x,y)eR*;0<y<x<1}
Then (3.6) can be rewritten as
3.7 X(x,y)=0, X(y,x)=0, (x,y)eU.
Now we define a differential mapping f of U into R? by

fx,»=Xx,y), X(y,x)), x,y)el.

It is sufficient to show that f(U) contains 0. We can easily check the following.

(3.8) The Jacobian matrix of f is non-singular everywhere. Hence f is locally diffeo-
morphic everywhere.

(3.9) For every sequence {p,} in U converging to a point of the boundary aU of U,
lim | f(pn) |= 00.
n—oo

Assume that W := R? — f(U) # ¢. Then, choose any point r in 3W. Let {p,} be
a sequence in U such that f(p,) — r as n — oo. Then there exists a subsequence
{Pn;} of {pn} such that {p,} converges to some point of U, say po. If po € U, then it
contradicts (3.8). If po € AU, then it contradicts (3.9). Thus we have shown that there
are a point (ag, bp) in U and a neighbourhood V of (ag, bp) in U such that the space
w(G(A)) where A = e) + ape; + bpes is minimal but for any (a, b) € V — {(ao, bo)} the
space w(G(A)) where A = e + ae; + bes is not minimal. For an element (a, b) in V,
we denote by M(a, b) the space w(G(A)) where A = e; +ae; + bes, and by n(a, b) the
mean curvature vector field of M(a, b).

Finally we shall show that M(ao, bp) admits a parallel normal vector field. Since
every M(a, b) is an equivariant homogeneous submanifold in P34~!(C), the length of
its mean curvature vector field is constant. Thus for every (a, b) in V — {(ag, bo)} we
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obtain a parallel unit vector field &(a, b) = n(a, b)/|n(a, b)| on M(a, b). Since this &
is a differentiable vector field on the open subset

{p € M(a,b) | (a,b) € V — {(ao, bo)}}

of P37~1(C), we obtain a unit vector field on M(ag, by) as a limit of &, say &. Since
the normal connection M(a, b) differentiably depends on (a, b) in V, the vecctor field
£ on M(ap, by) is also parallel. O
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