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Introduction

Generic submanifold have been investigated by many authors (e.g. [5], [7], [8],
[9], [21]). Here a submanifold M in a Kaehlerian manifold is called generic if each
normal space of M is mapped into the tangent space of M by the complex structure of
the ambient space (cf. [2], [4], [22]). Any real hypersurface in a Kaehlerian manifold
is a typical example of the generic submanifold.

In particular, the model space of the so called AI , A^ B, C, D and E-type are
typical examples of a real hypersurface in a complex projective space P(C). Recently,
the third named author, B. H. Kim and I.-B. Kim [19] proved that those model spaces
exhaust all intrinsic homogeneous real hypersurfaces in P(C).

On the other hand, the model spaces of the type AI and A 2 was frist introduced
by Law son [13], and he gave a characterization of them. Moreover, Choe and Oku-
mura [5] gave a generalization of Lawson's theorem in [13] from a viewpoint of the
CR-submanifold (see §1 for the definiton).

The purpose of the present paper is to give another generalization (Theorem A)
of Lawson's theorem, from a viewpoint of the generic submanifold, and to give new
examples of a generic submanifold in P(C).

The authors would like to thank the refree for his suggestions, which resulted in
many improvments of the present paper.

1. Preliminaries

Let M be a Kaehlerian manifold of real dimension n + r equipped with an almost
complex structure / and a Hermitian metric tensor G. Then for any vector fields X
and Y on M, we have

), V J = 0 ,
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where V denotes the Riemannian connection of M.
Let M be an n -dimensional Riemannian manifold covered by a system of co-

ordinate neighborhoods {U\xh} and isometrically immersed in M by the immersion
i : M -> M. When the argument is local, M need not distinguished from ι(M) it-
self. Throughout this paper the indices /, y, k, run from 1 to n. We represent the
immersion / locally by

/=yV), (A = 1, , / I , - - - ,/ ι + r)

and put BjA = djyA, (9y = d/3xj) then #/ = (fl^) are w-linearly independent lo-
cal tangent vectors of M. We choose r-mutually orthogonal unit normals Cx = (CX

A)
to M. Hereafter the indices w, ι>, w, c, run from n + 1 to n+r and the summa-
tion convention will be used. The immersion being isometric, the induced Riemannian

metric tensor g with components g7/ and the metric tensor 8 with components δyx of

the normal bundle are respectively obtained

By denoting Vy the operator of van der Waerden-Bortolotti covariant differentia-
tion with respect to g and G, the equations of Gauss and Weingarten for the subman-
ifold M are respectively given by

(1.1) VjBi = Aβ

xCx, VjCx = -Ajh

xBh,

where A7 ,
 x are components of the second fundamental tensor and the shape operator

Ax in the direction Cx are related by

ih 'x "' 1Ax = ( A j x ) = (Ajiy g

For x e M we denotes by TX(M) and NX(M) the tangent space and the normal space
of M, respectively.

A submanifold M of a Kaehlerian manifold M is called CR submanifold of M
if there exists a differentiable distribution D : x -> Dx c TX(M) on M satisfying the
following conditons (see [2], [4], [22]):
(1) D is invariant with respect to /, and

(2) the complementary orthogonal distribution D-1 : x -> D\ c TX(M) is totally
real with respect to J.

In particular if dim D-1 = codimΛf, then M is a generic submanifold of
M(see [8], [20]). If M is a CR submanifold, then the maximal /-invariant subspace
JTX(M) Π TX(M) of TX(M) has constant dimension for x e M and this constant is
called CR dimension.

If we assume that M is CR submanifold of CR dimension n — 1, that is,

άim(JTx(M) Π 7i(Λf)) = n-l.
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This implies that there exists a unit vector field C* normal to M such that JT(M) c
Γ(Λf)Θ span {C*}. Then, we have the following theorem by the first named author

and Okumura [5].

Theorem A. Let M be an n-dimensional compact, minimal CR submanifold of

CR dimension n - 1 of P(π+r)/2(C). // the normal vector field C* is parallel with re-
spect to the normal connection and scalar curvature > (n + 2)(n — 1), then M is an

for some p, q satisfying 2(p + q) = n — 1.

The model space M^q in the above theorem is described in the following. Let
,q be the hypersurface in Sn+2 which is defined by

7 |
2 = sin26>, 0 < θ < -.

7=0 j=p+\

Mp^ is a standard product 52/7+1 x S2ci+\ 2(p + q) = n - 1. The Hopf fibration π :

Sn+2 _^ p("+i)/2(Q submerses Mp,q onto a real hypersurface of P(n+1)/2(C) which we

denote by M% . Cecil-Ryan [3] proved that M^q is a tube of radius θ over a totally

geodesic PP(C), namely, M^q is a homogeneous type A\ or ΔΊ [18].
In the following, we assume that M is a generic submanifold of a Kaehlerian

manifold. Then our hypothesis implies that the transformations of /?/ and Cx by J are
respectively represented in each coordinate neighborhood as follows:

(1.2) JBj = fj>'Bh-Jj

xCx, JCx = Jx

hBh,

where we have put /,, = G(JBj, B, ), JjX = -G(JBj,Cx), Jxj = G(JCX, £,), /,* =
f j i g ' H and Jj* = Jjyδ

y*. From these definitions, it follows from (1.2) that

(1-3) ///,A = -θ/ + y///, fjtJx'=0,

(1.4) W = V

By differentiating (1.2) covariantly along M, using V7=0, and by comparing the

tangential and normal parts, we obtain

(1.5) V j f t * = Aji

xJx

h-AjhxJix,

(1.6) VjJix = A j t j c f i ' ,

(1.7) AjtyJ
tx = AjSJy*.

If the ambient space M is a Kaehlerian manifold of constant holomorphic sec-
tional curvature 4, the equations of Gauss, Codazzi and Ricci of M are respectively
given by

(1.8) Rkjih = gkhgji - gjhgki + fkhfji ~ fjhfki - Ifkjfih + AkhxAjix - Ajh

xAkix,
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(1.9) VkAjtt - VjAkίx = JJxfu - Jttfji + 2Jixfkj,

i y ~ ^itx^j »

where /fy//Λ and Rμyx are components of the Riemannian curvature tensor and those
with respect to the connection induced in the normal bundle respectively.

From (1.8) the Ricci tensor 5 of M is verified that

j i - 3JjXJix+hxAjix - Ajt'Ai',

because of (1.3), where Λ*=trace A*. Thus the scalar curvature p of M is given by

(1.11) p = n(n + 2) - 3JixJ
ix + hxh

x - AjixA
jix

since we have (1.4).
In what follows, to write our formula in convention forms n + 1 denoted by the

symbol * and we put λφ = Ay/Mi' , (A7/*)2 = Ajr*Ai

r* and Pxyz = AjixJy

J Jz

l.
Then Pxyz is symmetric for all indices because of (1.7).

2. Parallel normal section

Here we consider the case of a complex protective space M = /)(π+r)/2(C) of con-
stant holomorphic sectional curvature 4. A normal vector field ξ=(ξx) is called a par-
allel section in the normal bundle if it satisfies Vjξx = 0.

From now on we suppose that M is an n -dimensional compact generic submani-
fold of P(n+r)/2(C) with parallel unit normal vector field C* with respect to the normal
connection, that is, Vy-C* = 0. Then (1.10) shows that /?//** vanishes identically for
any index x and hence

which together with (1.4) and (1.7) implies that

(2.2) (/'*A/*)(//Jf A / f J C) = (A/XJ, j)(AitxJ^) + 1 - r.

From (1.5) and (1.6) we have

(2.3) V tV yJi * = (V tAy f*)/ ( ' + Ajt (Au*Jx ' - Ak'
x Jlx),

or, using (1.3), (1.4) and (2.2)

/''•Δ/i. = (A/'/wXA'1',//,) - Λ(2),

where Δ = g" V, V,.
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We also have from (2.3)

/'*(V; Vj /''*) = h* Px** - (A/x Jt*)(Aji

 x Λ*) + n - 1,

where we have used (1.3), (1.4) and (1.9). From the last two equations, we obtain

(2.4) /''*Δ Ji, + /'*(V/V y /''*) = -Λ(2) + Λ*P,«, + n - 1.

Let us put Uj = J**VjJi * + J**ViJj*. Then we have

dΐv t/ = (VjJi*κviJJ*) + (VjJi*)(vsJi*) + /^Δ//* + JJ'VVjJi*,

which together with (1.6) and (2.4) yields

(2.5) divί/ = i I A*/ - /A* |2 -A(2) + A'PX1W +„ - 1.

On the other hand, we have from (1.4)

(2.6) /,*./'* = 1, JjxJ
jx=r

because r is the codimension of M and consequently we obtain

(2.7) ^w/'w = r- l , (*)>π + 2.

Thus, (1.11) turns out to be

(2.8) p = (n + 3)(n - 1) - Mj(x}J
j(x} + hxh

x - Λ(2) + A7, (jc)A^l'(jc).

Lemma 1. Let M be an n-dimensional generic, minimal submanifold of

P<w+r>/2(C) with parallel unit normal C*. Then we have

(2.9) div 17 = i I A*/ - /A* |2 +p - (n + 2)(π - 1) -h 3Jj(X)Ji(x} + A y ίWA^ lW.

Proof. Since Λf is minimal, it follows, using (2.5), (2.6) and (2.8), that required

equation is obtained. This completes the proof. D

Further, suppose that M is compact and the scalar curvature p of M satisfies p >

(n + Ί)(n — 1) in Lemma 1, Then we have

A*/ = /A*,

Aβ °° = 0, Jj(X) = 0 for all (jc) > n + 2

and p = (n + 2)(n — 1). Thus (2.7) means r = 1, that is, M is a real hypersurface of
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Thus we have

Lemma 2. Let M be an n-dimensional compact generic, minimal submanifold
in P(n+r)/2(C). Suppose that M admits a parallel unit normal vector field C* and the
scalar curvature p > («+2)(w —1) on M. Then M is a real hypersurface in P^n+l^2(C)
satisfying A*f = fA* and p = (n + 2)(n - 1).

From Lemma 2 and Theorem 4.4 in [15] due to Okumura, we have

Theorem 3. Let M be an n-dimensional compact generic, minimal submanifold
in p(n+r^2(C). Suppose that M admits a parallel unit normal vector field and the
scalar curvature > (n + 2)(n - 1). Then r = 1 and M is an Mp^

c for some p,q
satisfying 2(p + q) - n — 1.

3. Examples of generic submanifolds in /*n(C)

In this section we shall give two examples of a compact homogeneous generic
submanifold in Pn(C), and another example of a compact homogeneous minimal
generic submanifold in Pn(C) admitting a parallel normal vector field.

Let p,q (p < q) be positive integers. We denote by Mp^(C) the space of p x
q matrices over C, which can be considered as a complex Euclidean space Cpq with
the standard Hermitian inner product. Let U(p) denote the unitary group of degree p.
Then the Lie group G := S(U(p) x U(q)) acts on Cpq = MM(C) as follows:

(σ, τ)X = σXτ~l, (σ, τ) e G, X € Cpq.

Thus we can consider G as a unitary subgroup of U(pq). Remark that this action
is nothing but the linear isotropic representation of the compact Hermitian symmetric
space SU(p + q)/S(U(p) x U(q)) of type AIII.

Let 7Γ be the canonical projection of Cpq - {0} onto PW"1(C), and S2pq~l(r)
the hypersphere in Cpq of radius r centered at the origin. Then, for any element A
of Cpq — {0}, the orbit G(A) of A under G is a compact homogeneous submanifold
in S2pq~l(\A\\ and the space π(G(A)) is a compact homogeneous submanifolds in
/w-i(C) (see e.g. [19]). Moreover, for any normal vector W of G(Λ) in S2pq~v(\A\\
the mean curvature of G(A) in the direction N is equal to the one of τr(G(Λ)) in
the direction π*N in Ppq~l(C). (see e.g. [16]). In particular, G(A) is minimal in
S2p«~l(\A\) if and only if π(G(Λ)) is minimal in Ppq~\C).

Here, for / = !,••• , p we put
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O € Cpq - {0},

and denote by α the vector space spanned by e\,
show

, ep over M. In the sequel we shall

(3.1) If A = a\e\ + + apep satisfies a\ ^ 0, α/2 ^ cij2 for I < i < j < p, then
π(G(Λ)) is a (2pq — p — 1 )-dimensional generic submanifold in Ppq~l(C).

(3.2) If A = 61+62+^63+- - -+apep satisfies α/2 ^0, 1 and α, 2 ^f l/ 2 for 3 < i < 7 < p,
then π(G(A)) is a (2p<? — p — 3)-dimensional generic submanifold in Ppq~l(C).

(3.3) Let p = 3 < q. Then there exists a vector A in α \ {0} such that π(G(A)) is
a (6g — 4) dimensional minimal generic submanifold in P3q~l(C) admitting a
parallel normal vector field.

To show these, we need some preparations. Let Δ denote the positive restricted
root system associated with the symmetric space SU(p + q)/S(U(p) x U(q)) and o(cf.
[6]). Let {ωι, , ωp] be the dual basis of e\, - - ,ep. Then Δ is given by

(3.4) Δ = {&>/, 2ω, , ω, ± o)j? 1 < / < j < p]

with multiplicities 2(^ — p), 1, 2, respectively (cf. Helgason [6, 349p] or Araki [1,
table]). An element A = a\e\ + + apep is called regular if ω(A) ^0 for any ω e Δ,
or equivalently α/ ^0, α,2 =^α7

2 for 1 < / < j < p.
Thus a vector A in (3.2) is regular, and one in (3.2) is not regular. As seen later, a
vector in (3.3) is also regular. In the following, A always denotes an element of α\{0}.

By the difinition, the tangent space TA(G(A)) of the orbit of A under G is gener-
ated by the vectors

XA and AF,

where X (resp. Y) ranges over all skew-Hermitian matrices of degree p (resp. q). In
particular, if A is regular, the normal space of G(A) in C2pq is just α, and the normal
space of G(A) in S2pg~l(\A\) consits of all vectors x\e\ + ••• +xpep satisfying a\x\ +



496 Y.-W CHOE, U-H. Ki AND R. TAKAGI

• + apxp - 0.
It is proved in [19] that if A is regular, for a unit normal vector N of G(A) in

S2pq~l(\A\), the mean curvature of G(A) in the direction N is given by

-1

where the summation is taken according to the multiplicities of λ. In particular, if A
is regular, the orbit G(A) and space π(G(A)) are minimal in S2pq~l(\A\) if and only

if

(3.5) = aιe\ -a\ei (ί = 2, - - , /?).

Now, by a theorem of Kitagawa and Ohnita [11] we see that the mean curvature
vector field η(A) of the orbit G(A) in Cpq is parallel with respect to the normal con-
nection. We denote by by ηs(A) the 52^~1(|A|)-component of η(A). Then we easily
see that ηs(A) is the mean curvature vector field of G(A) in S2pq~l(\A\) and parallel
in S2pq~l(\A\). Moreover, by a theorem of Shimizu [17], the mean curvature vector

field of the submanifold π(G(A)) is given by π*ηs(A) and parallel in Ppq~l(C).
Now we are in a position to show (3.1)~(3.3).

Proof of (3.1). This is a special case of the results in [17]. Remark that the
word generic is not used there. D

Proof of (3.2). By a simple calculation we find that the normal space of
TA(G(A)) in Cpq is generated by α and the following two vectors:

B =

0 1

1 0

o

o

o
c =

0

o

o

o
D

Thus the space Λ^Tα and two vectors ^Γ~\B and V^TC are tangent to G(A) at A,
which implies that the space ττ(G(A)) is generic in Ppq~l(C).

REMARK. Since this A is not regular, the space is not treated in [17].

Proof of (3.3). Put A = e\ + ae^ + be^, where 0 < b < a < 1. Then A is regular.
Thus as a basis for the normal space of G(A) at A in S3q~l(\A\) we can take

if and

-e2, be\ - *?3}.

It follows from (3.4) and (3.5) that the space π(G(A)) is minimal in
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only if

(3.6)

_
~(-1

(-DH)
a) l+a l+b a+b I—a l—b a—b

-I b I b+l b I

l+b l+a b + a l—b I—a b — a

For simplicity we put

m := (2q - 5)/4, x := α2, y := b2,

X(x,y):=m (--!)- 2 * *

= 0.

x J 1 — x l — y x — y'

U :={(*, ; y ) G R 2 ; 0 < y <x < I}.

Then (3.6) can be rewritten as

(3.7) X(jc,;y) = 0, X(y,jc) = 0, (jc, v) € U.

Now we define a differential mapping f of U into R2 by

It is sufficient to show that f ( U ) contains 0. We can easily check the following.

(3.8) The Jacobian matrix of / is non-singular everywhere. Hence / is locally diffeo-
morphic everywhere.

(3.9) For every sequence {pn} in U converging to a point of the boundary dU of £/,

lim I f(pn) |= oo.
π->oo

Assume that W := R2 - f(U)Jφ. Then, choose any point r in dW. Let {/?„} be

a sequence in U such that f(pn) —> r as n —> oo. Then there exists a subsequence

{pni} of {/?„} such that {pni} converges to some point of ί/, say PQ. If PQ G ί/, then it

contradicts (3.8). If po € 3£7, then it contradicts (3.9). Thus we have shown that there
are a point (#o, &o) in C7 and a neighbourhood V of (αo, ^o) in U such that the space

π(G(A)) where A = e\ +αo^2 + ̂ 0^3 is minimal but for any (α, b) e V — {(αo> ^o)} the
space π(G(Λ)) where A = e\ + ae^ + be$ is not minimal. For an element (a, b) in V,

we denote by Λf(α, b) the space π(G(A)) where A = e\ +ae2 + be3, and by η(a, b) the

mean curvature vector field of M(a, b).

Finally we shall show that M(a$, bQ) admits a parallel normal vector field. Since

every M(a,b) is an equivariant homogeneous submanifold in P3q~l(C), the length of

its mean curvature vector field is constant. Thus for every (a, b) in V — {(αo,



498 Y.-W CHOE, U-H. Ki AND R. TAKAGI

obtain a parallel unit vector field ξ(a,b) := η(a, b)/\η(a, b)\ on M(a,b). Since this ξ
is a differentiable vector field on the open subset

{peM(a,b)\(a,b)e V -

of P3g~l(C)9 we obtain a unit vector field on M (αo, &o) as a limit of £, say £o Since
the normal connection M(a,b) differentiably depends on (a,b) in V, the vecctor field
£o on M(ao, bo) is also parallel. D
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