<table>
<thead>
<tr>
<th>Title</th>
<th>Compact minimal generic submanifolds with parallel normal section in a complex projective space</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Choe, Yeong-Wu; Ki, U-Hang; Takagi, Ryoichi</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 37(2) P.489-P.499</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2000</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/5072</td>
</tr>
<tr>
<td>DOI</td>
<td>10.18910/5072</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
COMPACT MINIMAL GENERIC SUBMANIFOLDS
WITH PARALLEL NORMAL SECTION
IN A COMPLEX PROJECTIVE SPACE

YEONG-WU CHOE*, U-HANG KI** and RYOICHI TAKAGI

(Received July 6, 1998)

Introduction

Generic submanifold have been investigated by many authors (e.g. [5], [7], [8], [9], [21]). Here a submanifold M in a Kaehlerian manifold is called generic if each normal space of M is mapped into the tangent space of M by the complex structure of the ambient space (cf. [2], [4], [22]). Any real hypersurface in a Kaehlerian manifold is a typical example of the generic submanifold.

In particular, the model space of the so called A_1, A_2, B, C, D and E-type are typical examples of a real hypersurface in a complex projective space $P(\mathbb{C})$. Recently, the third named author, B. H. Kim and I.-B. Kim [19] proved that those model spaces exhaust all intrinsic homogeneous real hypersurfaces in $P(\mathbb{C})$.

On the other hand, the model spaces of the type A_1 and A_2 was first introduced by Lawson [13], and he gave a characterization of them. Moreover, Choe and Oukumura [5] gave a generalization of Lawson's theorem in [13] from a viewpoint of the CR-submanifold (see §1 for the definition).

The purpose of the present paper is to give another generalization (Theorem A) of Lawson's theorem, from a viewpoint of the generic submanifold, and to give new examples of a generic submanifold in $P(\mathbb{C})$.

The authors would like to thank the referee for his suggestions, which resulted in many improvements of the present paper.

1. Preliminaries

Let \tilde{M} be a Kaehlerian manifold of real dimension $n + r$ equipped with an almost complex structure J and a Hermitian metric tensor G. Then for any vector fields X and Y on M, we have

$$J^2X = -X, \quad G(JX, JY) = G(X, Y), \quad \nabla J = 0,$$

*Partially supported by the research grant of Catholic University of Taegu-Hyosung.
**Partially supported by TGRC-KOSEF, 1999 and BSRI-98-015-D00030.
where \tilde{V} denotes the Riemannian connection of \tilde{M}.

Let M be an n-dimensional Riemannian manifold covered by a system of co-
ordinate neighborhoods $\{U; x^i\}$ and isometrically immersed in \tilde{M} by the immersion $i : M \rightarrow \tilde{M}$. When the argument is local, M need not distinguished from $i(M)$ itself. Throughout this paper the indices i, j, k, \cdots run from 1 to n. We represent the immersion i locally by

$$y^A = y^A(x^i), \quad (A = 1, \cdots, n, \cdots, n + r)$$

and put $B_j^A = \partial_j y^A$, ($\partial_j = \partial/\partial x^j$) then $B_j = (B_j^A)$ are n-linearly independent lo-
cal tangent vectors of M. We choose r-mutually orthogonal unit normals $C_x = (C_x^A)$ to M. Hereafter the indices u, v, w, x, \cdots run from $n + 1$ to $n+r$ and the summa-
tion convention will be used. The immersion being isometric, the induced Riemannian metric tensor g with components g_{ij} and the metric tensor δ with components δ_{xy} of the normal bundle are respectively obtained

$$g_{ij} = G(B_j, B_i), \quad \delta_{xy} = G(C_y, C_x).$$

By denoting ∇_j the operator of van der Waerden-Bortolotti covariant differentia-
tion with respect to g and G, the equations of Gauss and Weingarten for the subman-
ifold M are respectively given by

$$\nabla_j B_i = A_{ij}^a C_a, \quad \nabla_j C_x = -A_{ji}^x B_i,$$

where A_{ji}^x are components of the second fundamental tensor and the shape operator A^x in the direction C_x are related by

$$A^x = (A_J^x) = (A_{ji}^x g^{ih} \delta_{xy}), \quad (g^{ij}) = (g_{ij})^{-1}.$$

For $x \in M$ we denotes by $T_x(M)$ and $N_x(M)$ the tangent space and the normal space of M, respectively.

A submanifold M of a Kaehlerian manifold \tilde{M} is called CR submanifold of \tilde{M} if there exists a differentiable distribution $D : x \rightarrow D_x \subset T_x(M)$ on M satisfying the following conditions (see [2], [4], [22]):

1. D is invariant with respect to J, and
2. the complementary orthogonal distribution $D^\perp : x \rightarrow D^\perp_x \subset T_x(M)$ is totally
 real with respect to J.

In particular if $\dim D^\perp = \text{codim} M$, then M is a generic submanifold of \tilde{M} (see [8], [20]). If M is a CR submanifold, then the maximal J-invariant subspace $JT_x(M) \cap T_x(M)$ of $T_x(M)$ has constant dimension for $x \in M$ and this constant is called CR dimension.

If we assume that M is CR submanifold of CR dimension $n - 1$, that is,

$$\dim(JT_x(M) \cap T_x(M)) = n - 1.$$
This implies that there exists a unit vector field C_* normal to M such that $JT(M) \subset T(M) \oplus \text{span} \{C_*\}$. Then, we have the following theorem by the first named author and Okumura [5].

Theorem A. Let M be an n-dimensional compact, minimal CR submanifold of CR dimension $n-1$ of $P^{(n+1)/2}(C)$. If the normal vector field C_* is parallel with respect to the normal connection and scalar curvature $\geq (n+2)(n-1)$, then M is an $M^C_{p,q}$ for some p, q satisfying $2(p+q)=n-1$.

The model space $M^C_{p,q}$ in the above theorem is described in the following. Let $M_{p,q}$ be the hypersurface in S^{n+2} which is defined by

$$\sum_{j=0}^p |z_j|^2 = \cos^2 \theta, \quad \sum_{j=p+1}^{p+q+1} |z_j|^2 = \sin^2 \theta, \quad 0 < \theta < \frac{\pi}{2}.$$

$M_{p,q}$ is a standard product $S^{2p+1} \times S^{2q+1}, 2(p+q) = n-1$. The Hopf fibration $\pi : S^{n+2} \rightarrow P^{(n+1)/2}(C)$ submerses $M_{p,q}$ onto a real hypersurface of $P^{(n+1)/2}(C)$ which we denote by $M^C_{p,q}$. Cecil-Ryan [3] proved that $M^C_{p,q}$ is a tube of radius θ over a totally geodesic $P^p(C)$, namely, $M^C_{p,q}$ is a homogeneous type A_1 or A_2 [18].

In the following, we assume that M is a generic submanifold of a Kaehlerian manifold. Then our hypothesis implies that the transformations of B_i and C_x by J are respectively represented in each coordinate neighborhood as follows:

$$JB_j = f_j^h B_h - J_j^x C_x, \quad JC_x = J_x^h B_h,$$

where we have put $f_{ji} = G(JB_j, B_i), J_{jx} = -G(JB_j, C_x), J_{kj} = G(JC_x, B_j), f_j^h = f_{ji} \delta^{ih}$ and $J_j^x = J_{jy} \delta^{zx}$. From these definitions, it follows from (1.2) that

$$f_j^t f_t^h = -\delta_j^h + J_J^x J_j^h, \quad f_j^t J_j^t = 0,$$

$$J_x^t J_y^z = \delta_x^z.$$

By differentiating (1.2) covariantly along M, using $\nabla J=0$, and by comparing the tangential and normal parts, we obtain

$$\nabla_J f_i^h = A_{ji} x J_x^h - A_j^h x J_{ix},$$

$$\nabla_J J_{ix} = A_{jix} f_i^t,$$

$$A_{jty} J_{ix}^x = A_{jtx} J_{iy}^t.$$

If the ambient space \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature δ, the equations of Gauss, Codazzi and Ricci of M are respectively given by

$$R_{kijh} = g_{kh} g_{ji} - g_{jh} g_{ki} + f_{kh} f_{ji} - f_{jh} f_{ki} - 2 f_{kj} f_{ih} + A_{kh}^x A_{jix} - A_{jh}^x A_{kix},$$
\[
\n(1.9) \quad \nabla_k A_{jix} - \nabla_j A_{kix} = J_{jx} f_{ki} - J_{kx} f_{ji} + 2J_{ix} f_{kj},
\]
\[
(1.10) \quad R_{jix} = J_{jx} J_{iy} - J_{ix} J_{jy} + A_{jtx} A_{i}^{t} y - A_{itx} A_{i}^{t} y,
\]

where \(R_{kijh} \) and \(R_{jixy} \) are components of the Riemannian curvature tensor and those with respect to the connection induced in the normal bundle respectively.

From (1.8) the Ricci tensor \(S \) of \(M \) is verified that

\[
S_{ji} = (n+2)g_{ji} - 3J_{j}^{x} J_{ix} + h^{x} A_{jix} - A_{jit} A_{i}^{t} x,
\]

because of (1.3), where \(h^{x} = \text{trace} A^{x} \). Thus the scalar curvature \(\rho \) of \(M \) is given by

\[
(1.11) \quad \rho = n(n+2) - 3J_{ix} J_{ix} + h_{ix} h^{x} - A_{jix} A_{jix}
\]

since we have (1.4).

In what follows, to write our formula in convention forms \(n+1 \) denoted by the symbol * and we put \(h_{(2)} = A_{jix} A_{jix}^{*} \), \((A_{jix}^{*})^{2} = A_{jx}^{*} A_{ix}^{*} \) and \(P_{xyz} = A_{jix} J_{y} J_{z}^{x} \). Then \(P_{xyz} \) is symmetric for all indices because of (1.7).

2. Parallel normal section

Here we consider the case of a complex projective space \(\tilde{M} = P^{(n+r)/2}(\mathbb{C}) \) of constant holomorphic sectional curvature 4. A normal vector field \(\xi = (\xi^{x}) \) is called a parallel section in the normal bundle if it satisfies \(\nabla_j \xi^{x} = 0 \).

From now on we suppose that \(M \) is an \(n \)-dimensional compact generic submanifold of \(P^{(n+r)/2}(\mathbb{C}) \) with parallel unit normal vector field \(C_{*} \) with respect to the normal connection, that is, \(\nabla_{j} C_{*} = 0 \). Then (1.10) shows that \(R_{jix} \) vanishes identically for any index \(x \) and hence

\[
(2.1) \quad A_{jix} A_{jix}^{*} - A_{itx} A_{itx}^{*} = J_{ix} J_{ix} - J_{ix} J_{ix},
\]

which together with (1.4) and (1.7) implies that

\[
(2.2) \quad (J^{*} A_{j}^{*})(J^{*} A_{itx}) = (A_{j}^{*} J_{x}^{*})(A_{itx} J_{ix}) + 1 - r.
\]

From (1.5) and (1.6) we have

\[
(2.3) \quad \nabla_{k} \nabla_{j} J_{i}^{*} = (\nabla_{k} A_{j}^{*}) f_{l}^{i} A_{j}^{*} (A_{kl}^{*} J_{x}^{*} - A_{l}^{*} J_{ix}),
\]

or, using (1.3), (1.4) and (2.2)

\[
J^{*} \Delta J_{ix} = (A_{j}^{*} J_{ix}^{*})(A_{j}^{*} J_{ix}) - h_{(2)},
\]

where \(\Delta = g^{ij} \nabla_{j} \nabla_{i} \).
We also have from (2.3)
\[J^i*(\nabla_i \nabla_j J^i*) = h^x P_{x**} - (A^i J^i J^i*) + n - 1, \]
where we have used (1.3), (1.4) and (1.9). From the last two equations, we obtain
\[J^i* \Delta J^i* + J^i*(\nabla_i \nabla_j J^i*) = -h_{(2)} + h^x P_{x**} + n - 1. \]
Let us put \(U_j = J^i* \nabla_i J^i* + J^i* \nabla_i J^i*. \) Then we have
\[\text{div} \ U = (\nabla i J^i*) (\nabla i J^i*) + (\nabla J^i*) (\nabla J^i*) + J^i* \Delta J^i* + J^i* \nabla J^i* \]
which together with (1.6) and (2.4) yields
\[\text{div} \ U = \frac{1}{2} \left| A^* f - f A^* \right|^2 - h_{(2)} + h^x P_{x**} + n - 1. \]
On the other hand, we have from (1.4)
\[J_{j*} J^i* = 1, \quad J_{j*} J^j* = r \]
because \(r \) is the codimension of \(M \) and consequently we obtain
\[J_{j(*)} J^{j(*)} = r - 1, \quad (x) \geq n + 2. \]
Thus, (1.11) turns out to be
\[\rho = (n + 3)(n - 1) - 3 J_{j(*)} J^{j(*)} + h^x - h_{(2)} + A_{ji(*)} A^{ji(*)}. \]

Lemma 1. Let \(M \) be an \(n \)-dimensional generic, minimal submanifold of \(P^{(n+1)/2}(\mathbb{C}) \) with parallel unit normal \(C_\ast \). Then we have
\[\text{div} \ U = \frac{1}{2} \left| A^* f - f A^* \right|^2 + \rho - (n + 2)(n - 1) + 3 J_{j(*)} J^{j(*)} + A_{ji(*)} A^{ji(*)}. \]

Proof. Since \(M \) is minimal, it follows, using (2.5), (2.6) and (2.8), that required equation is obtained. This completes the proof.

Further, suppose that \(M \) is compact and the scalar curvature \(\rho \) of \(M \) satisfies \(\rho \geq (n + 2)(n - 1) \) in Lemma 1, then we have
\[A^* f = f A^*, \]
\[A_{ji(*)} = 0, \quad J_{j(*)} = 0 \quad \text{for all} \quad (x) \geq n + 2 \]
and \(\rho = (n + 2)(n - 1) \). Thus (2.7) means \(r = 1 \), that is, \(M \) is a real hypersurface of \(P^{(n+1)/2}(\mathbb{C}) \).
Thus we have

Lemma 2. Let M be an n-dimensional compact generic, minimal submanifold in $P^{(n+r)/2}(\mathbb{C})$. Suppose that M admits a parallel unit normal vector field C_* and the scalar curvature $\rho \geq (n+2)(n-1)$ on M. Then M is a real hypersurface in $P^{(n+1)/2}(\mathbb{C})$ satisfying $A^*f = fA^*$ and $\rho = (n+2)(n-1)$.

From Lemma 2 and Theorem 4.4 in [15] due to Okumura, we have

Theorem 3. Let M be an n-dimensional compact generic, minimal submanifold in $P^{(n+r)/2}(\mathbb{C})$. Suppose that M admits a parallel unit normal vector field and the scalar curvature $\geq (n+2)(n-1)$. Then $r = 1$ and M is an $M_{p,q}^C$ for some p, q satisfying $2(p+q) = n - 1$.

3. Examples of generic submanifolds in $P^n(\mathbb{C})$

In this section we shall give two examples of a compact homogeneous generic submanifold in $P^n(\mathbb{C})$, and another example of a compact homogeneous minimal generic submanifold in $P^n(\mathbb{C})$ admitting a parallel normal vector field.

Let p, q ($p \leq q$) be positive integers. We denote by $M_{p,q}(\mathbb{C})$ the space of $p \times q$ matrices over \mathbb{C}, which can be considered as a complex Euclidean space \mathbb{C}^{pq} with the standard Hermitian inner product. Let $U(p)$ denote the unitary group of degree p. Then the Lie group $G := S(U(p) \times U(q))$ acts on $\mathbb{C}^{pq} = M_{p,q}(\mathbb{C})$ as follows:

$$(\sigma, \tau)X = \sigma X \tau^{-1}, \quad (\sigma, \tau) \in G, \quad X \in \mathbb{C}^{pq}.$$

Thus we can consider G as a unitary subgroup of $U(pq)$. Remark that this action is nothing but the linear isotropic representation of the compact Hermitian symmetric space $SU(p+q)/S(U(p) \times U(q))$ of type AIII. Let π be the canonical projection of $\mathbb{C}^{pq} - \{0\}$ onto $P^{pq-1}(\mathbb{C})$, and $S^{2pq-1}(r)$ the hypersphere in \mathbb{C}^{pq} of radius r centered at the origin. Then, for any element A of $\mathbb{C}^{pq} - \{0\}$, the orbit $G(A)$ of A under G is a compact homogeneous submanifold in $S^{2pq-1}(\{A\})$, and the space $\pi(G(A))$ is a compact homogeneous submanifolds in $P^{pq-1}(\mathbb{C})$ (see e.g. [19]). Moreover, for any normal vector N of $G(A)$ in $S^{2pq-1}(\{A\})$, the mean curvature of $G(A)$ in the direction N is equal to the one of $\pi(G(A))$ in the direction $\pi* N$ in $P^{pq-1}(\mathbb{C})$. (see e.g. [16]). In particular, $G(A)$ is minimal in $S^{2pq-1}(\{A\})$ if and only if $\pi(G(A))$ is minimal in $P^{pq-1}(\mathbb{C})$.

Here, for $i = 1, \cdots, p$ we put
and denote by α the vector space spanned by e_1, \ldots, e_p over \mathbb{R}. In the sequel we shall show

(3.1) If $A = a_1 e_1 + \cdots + a_p e_p$ satisfies $a_i \neq 0$, $a_i^2 \neq a_j^2$ for $1 \leq i < j \leq p$, then $\pi(G(A))$ is a $(2pq - p - 1)$-dimensional generic submanifold in $P^{pq-1}(\mathbb{C})$.

(3.2) If $A = e_1 + a_2 e_3 + \cdots + a_p e_p$ satisfies $a_i^2 \neq 0$, 1 and $a_i^2 \neq a_j^2$ for $3 \leq i < j \leq p$, then $\pi(G(A))$ is a $(2pq - p - 3)$-dimensional generic submanifold in $P^{pq-1}(\mathbb{C})$.

(3.3) Let $p = 3 \leq q$. Then there exists a vector A in $\alpha \setminus \{0\}$ such that $\pi(G(A))$ is a $(6q - 4)$-dimensional minimal generic submanifold in $P^{2q-1}(\mathbb{C})$ admitting a parallel normal vector field.

To show these, we need some preparations. Let Δ denote the positive restricted root system associated with the symmetric space $SU(p+q)/S(U(p) \times U(q))$ and ω (cf. [6]). Let $\{\omega_1, \ldots, \omega_p\}$ be the dual basis of e_1, \ldots, e_p. Then Δ is given by

$$\Delta = \{\omega_i, 2\omega_i, \omega_i \pm \omega_j ; 1 \leq i < j \leq p\}$$

with multiplicities $2(q - p)$, 1, 2, respectively (cf. Helgason [6, 349p] or Araki [1, table]). An element $A = a_1 e_1 + \cdots + a_p e_p$ is called regular if $\omega(A) \neq 0$ for any $\omega \in \Delta$, or equivalently $a_i \neq 0$, $a_i^2 \neq a_j^2$ for $1 \leq i < j \leq p$.

Thus a vector A in (3.2) is regular, and one in (3.2) is not regular. As seen later, a vector in (3.3) is also regular. In the following, A always denotes an element of $\alpha \setminus \{0\}$.

By the definition, the tangent space $T_A(G(A))$ of the orbit of A under G is generated by the vectors

$$XA \quad \text{and} \quad AY,$$

where X (resp. Y) ranges over all skew-Hermitian matrices of degree p (resp. q). In particular, if A is regular, the normal space of $G(A)$ in \mathbb{C}^{2pq} is just α, and the normal space of $G(A)$ in $S^{2pq-1}(\vert A \vert)$ consists of all vectors $x_1 e_1 + \cdots + x_p e_p$ satisfying $a_1 x_1 + \cdots + a_p x_p = 0$.

\[\cdots + a_p x_p = 0. \]

It is proved in [19] that if \(A \) is regular, for a unit normal vector \(N \) of \(G(A) \) in \(S^{2pq-1}(\|A\|) \), the mean curvature of \(G(A) \) in the direction \(N \) is given by

\[\frac{-1}{\dim G(A)} \sum_{\lambda \in \Delta} \frac{\lambda(N)}{\lambda(A)}, \]

where the summation is taken according to the multiplicities of \(\lambda \). In particular, if \(A \) is regular, the orbit \(G(A) \) and space \(\pi(G(A)) \) are minimal in \(S^{2pq-1}(\|A\|) \) if and only if

\[\sum_{\lambda \in \Delta} \frac{\lambda(N)}{\lambda(A)} = 0 \quad \text{for} \quad N = a_i e_1 - a_1 e_i \quad (i = 2, \ldots, p). \quad (3.5) \]

Now, by a theorem of Kitagawa and Ohnita [11] we see that the mean curvature vector field \(\eta(A) \) of the orbit \(G(A) \) in \(\mathbb{C}^{pq} \) is parallel with respect to the normal connection. We denote by \(\eta_s(A) \) the \(S^{2pq-1}(\|A\|) \)-component of \(\eta(A) \). Then we easily see that \(\eta_s(A) \) is the mean curvature vector field of \(G(A) \) in \(S^{2pq-1}(\|A\|) \) and parallel in \(S^{2pq-1}(\|A\|) \). Moreover, by a theorem of Shimizu [17], the mean curvature vector field of the submanifold \(\pi(G(A)) \) is given by \(\pi_s \eta_s(A) \) and parallel in \(P^{pq-1}(\mathbb{C}) \).

Now we are in a position to show (3.1)\(\sim \)(3.3).

Proof of (3.1). This is a special case of the results in [17]. Remark that the word *generic* is not used there.

Proof of (3.2). By a simple calculation we find that the normal space of \(T_A(G(A)) \) in \(\mathbb{C}^{pq} \) is generated by \(a \) and the following two vectors:

\[
B = \begin{bmatrix}
0 & 1 \\
1 & 0 \\
O & O
\end{bmatrix}, \quad C = \begin{bmatrix}
0 & \sqrt{-1} & O \\
-\sqrt{-1} & 0 & O \\
O & O
\end{bmatrix}.
\]

Thus the space \(\sqrt{-1} a \) and two vectors \(\sqrt{-1} B \) and \(\sqrt{-1} C \) are tangent to \(G(A) \) at \(A \), which implies that the space \(\pi(G(A)) \) is generic in \(P^{pq-1}(\mathbb{C}) \).

Remark. Since this \(A \) is not regular, the space is not treated in [17].

Proof of (3.3). Put \(A = e_1 + ae_2 + be_3 \), where \(0 < b < a < 1 \). Then \(A \) is regular. Thus as a basis for the normal space of \(G(A) \) at \(A \) in \(S^{3q-1}(\|A\|) \) we can take

\[\{ae_1 - e_2, \ be_1 - e_3\}. \]

It follows from (3.4) and (3.5) that the space \(\pi(G(A)) \) is minimal in \(P^{3q-1}(\mathbb{C}) \) if and
only if

\[
\begin{align*}
(3.6) \quad & \left(\frac{q - 5}{2} \right) \left(a - \frac{1}{a} \right) + \frac{a - 1}{a + b} + \frac{a}{1 + a} - \frac{1}{a - b} + \frac{a + 1}{a + b} + \frac{a}{1 - a} - \frac{1}{a - b} = 0, \\
& \left(\frac{q - 5}{2} \right) \left(b - \frac{1}{b} \right) + \frac{b - 1}{b + a} + \frac{b}{1 + a} - \frac{1}{b - a} + \frac{b + 1}{b + a} + \frac{b}{1 - b} - \frac{1}{b - a} = 0.
\end{align*}
\]

For simplicity we put

\[
m := \frac{(2q - 5)}{4}, \quad x := a^2, \quad y := b^2,
\]

\[
X(x, y) := m \left(\frac{1}{x} - 1 \right) - \frac{2}{1 - x} - \frac{1}{1 - y} + \frac{1}{x - y},
\]

\[
U := \{(x, y) \in \mathbb{R}^2; 0 < y < x < 1\}.
\]

Then (3.6) can be rewritten as

\[
(3.7) \quad X(x, y) = 0, \quad X(y, x) = 0, \quad (x, y) \in U.
\]

Now we define a differential mapping \(f \) of \(U \) into \(\mathbb{R}^2 \) by

\[
f(x, y) = (X(x, y), X(y, x)), \quad (x, y) \in U.
\]

It is sufficient to show that \(f(U) \) contains 0. We can easily check the following.

(3.8) The Jacobian matrix of \(f \) is non-singular everywhere. Hence \(f \) is locally diffeomorphic everywhere.

(3.9) For every sequence \(\{p_n\} \) in \(U \) converging to a point of the boundary \(\partial U \) of \(U \),

\[
\lim_{n \to \infty} |f(p_n)| = \infty.
\]

Assume that \(W := \mathbb{R}^2 - f(U) \neq \emptyset \). Then, choose any point \(r \) in \(\partial W \). Let \(\{p_n\} \) be a sequence in \(U \) such that \(f(p_n) \to r \) as \(n \to \infty \). Then there exists a subsequence \(\{p_{n_k}\} \) of \(\{p_n\} \) such that \(\{p_{n_k}\} \) converges to some point of \(U \), say \(p_0 \). If \(p_0 \in U \), then it contradicts (3.8). If \(p_0 \in \partial U \), then it contradicts (3.9). Thus we have shown that there are a point \((a_0, b_0) \) in \(U \) and a neighbourhood \(V \) of \((a_0, b_0) \) in \(U \) such that the space \(\pi(G(A)) \) where \(A = a_1 + a_0e_2 + b_0e_3 \) is minimal but for any \((a, b) \in V - \{(a_0, b_0)\} \) the space \(\pi(G(A)) \) where \(A = a_1 + ae_2 + be_3 \) is not minimal. For an element \((a, b) \) in \(V \), we denote by \(M(a, b) \) the space \(\pi(G(A)) \) where \(A = a_1 + ae_2 + be_3 \), and by \(\eta(a, b) \) the mean curvature vector field of \(M(a, b) \).

Finally we shall show that \(M(a_0, b_0) \) admits a parallel normal vector field. Since every \(M(a, b) \) is an equivariant homogeneous submanifold in \(\mathbb{P}^{3q-1}(\mathbb{C}) \), the length of its mean curvature vector field is constant. Thus for every \((a, b) \) in \(V - \{(a_0, b_0)\} \) we
obtain a parallel unit vector field \(\xi(a, b) := \frac{\eta(a, b)}{|\eta(a, b)|} \) on \(M(a, b) \). Since this \(\xi \) is a differentiable vector field on the open subset
\[\{ p \in M(a, b) \mid (a, b) \in V - \{(a_0, b_0)\} \} \]

of \(P^{3q-1}(\mathbb{C}) \), we obtain a unit vector field on \(M(a_0, b_0) \) as a limit of \(\xi \), say \(\xi_0 \). Since the normal connection \(M(a, b) \) differentiably depends on \((a, b) \) in \(V \), the vector field \(\xi_0 \) on \(M(a_0, b_0) \) is also parallel.

\[\square \]

References

Y.-W. Choe
Department of Mathematics
Catholic University of Taegu-Hyosung
Kyungsan 712-702
Korea

U-H. Ki
Department of Mathematics
Kyungpook National University
Taegu 702-701
Korea

R. Takagi
Department of Mathematics and Informatics
Chiba University
Chiba-Shi 263-8522
Japan