

Title	Compact minimal generic submanifolds with parallel normal section in a complex projective space
Author(s)	Choe, Yeong-Wu; Ki, U-Hang; Takagi, Ryoichi
Citation	Osaka Journal of Mathematics. 2000, 37(2), p. 489-499
Version Type	VoR
URL	https://doi.org/10.18910/5072
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

<https://ir.library.osaka-u.ac.jp/>

The University of Osaka

Choe, Y.-W., Ki, U-H. and Takagi, R.
Osaka J. Math.
37 (2000), 489–499

COMPACT MINIMAL GENERIC SUBMANIFOLDS WITH PARALLEL NORMAL SECTION IN A COMPLEX PROJECTIVE SPACE

YEONG-WU CHOE*, U-HANG KI** and RYOICHI TAKAGI

(Received July 6, 1998)

Introduction

Generic submanifold have been investigated by many authors (e.g. [5], [7], [8], [9], [21]). Here a submanifold M in a Kaehlerian manifold is called *generic* if each normal space of M is mapped into the tangent space of M by the complex structure of the ambient space (cf. [2], [4], [22]). Any real hypersurface in a Kaehlerian manifold is a typical example of the generic submanifold.

In particular, the model space of the so called A_1 , A_2 , B , C , D and E -type are typical examples of a real hypersurface in a complex projective space $P(\mathbb{C})$. Recently, the third named author, B. H. Kim and I.-B. Kim [19] proved that those model spaces exhaust all intrinsic homogeneous real hypersurfaces in $P(\mathbb{C})$.

On the other hand, the model spaces of the type A_1 and A_2 was frist introduced by Lawson [13], and he gave a characterization of them. Moreover, Choe and Okumura [5] gave a generalization of Lawson's theorem in [13] from a viewpoint of the CR-submanifold (see §1 for the definiton).

The purpose of the present paper is to give another generalization (Theorem A) of Lawson's theorem, from a viewpoint of the generic submanifold, and to give new examples of a generic submanifold in $P(\mathbb{C})$.

The authors would like to thank the referee for his suggestions, which resulted in many improvmnts of the present paper.

1. Preliminaries

Let \tilde{M} be a Kaehlerian manifold of real dimension $n+r$ equipped with an almost complex structure J and a Hermitian metric tensor G . Then for any vector fields X and Y on M , we have

$$J^2X = -X, \quad G(JX, JY) = G(X, Y), \quad \tilde{\nabla}J = 0,$$

*Partially supported by the research grant of Catholic University of Taegu-Hyosung.

**Partially supported by TGRC-KOSEF, 1999 and BSRI-98-015-D00030.

where $\tilde{\nabla}$ denotes the Riemannian connection of \tilde{M} .

Let M be an n -dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{U; x^h\}$ and isometrically immersed in \tilde{M} by the immersion $i : M \rightarrow \tilde{M}$. When the argument is local, M need not distinguished from $i(M)$ itself. Throughout this paper the indices i, j, k, \dots run from 1 to n . We represent the immersion i locally by

$$y^A = y^A(x^h), \quad (A = 1, \dots, n, \dots, n+r)$$

and put $B_j^A = \partial_j y^A$, ($\partial_j = \partial/\partial x^j$) then $B_j = (B_j^A)$ are n -linearly independent local tangent vectors of M . We choose r -mutually orthogonal unit normals $C_x = (C_x^A)$ to M . Hereafter the indices u, v, w, x, \dots run from $n+1$ to $n+r$ and the summation convention will be used. The immersion being isometric, the induced Riemannian metric tensor g with components g_{ji} and the metric tensor δ with components δ_{yx} of the normal bundle are respectively obtained

$$g_{ji} = G(B_j, B_i), \quad \delta_{yx} = G(C_y, C_x).$$

By denoting ∇_j the operator of van der Waerden-Bortolotti covariant differentiation with respect to g and G , the equations of Gauss and Weingarten for the submanifold M are respectively given by

$$(1.1) \quad \nabla_j B_i = A_{ji}^x C_x, \quad \nabla_j C_x = -A_j^h B_h,$$

where A_{ji}^x are components of the second fundamental tensor and the shape operator A^x in the direction C_x are related by

$$A^x = (A_j^{hx}) = (A_{jiy} \ g^{ih} \ \delta^{yx}), \quad (g^{ji}) = (g_{ji})^{-1}.$$

For $x \in M$ we denotes by $T_x(M)$ and $N_x(M)$ the tangent space and the normal space of M , respectively.

A submanifold M of a Kaehlerian manifold \tilde{M} is called *CR submanifold* of \tilde{M} if there exists a differentiable distribution $D : x \rightarrow D_x \subset T_x(M)$ on M satisfying the following conditons (see [2], [4], [22]):

- (1) D is invariant with respect to J , and
- (2) the complementary orthogonal distribution $D^\perp : x \rightarrow D_x^\perp \subset T_x(M)$ is totally real with respect to J .

In particular if $\dim D^\perp = \text{codim } M$, then M is a *generic submanifold* of \tilde{M} (see [8], [20]). If M is a *CR* submanifold, then the maximal J -invariant subspace $JT_x(M) \cap T_x(M)$ of $T_x(M)$ has constant dimension for $x \in M$ and this constant is called *CR dimension*.

If we assume that M is *CR* submanifold of *CR* dimension $n-1$, that is,

$$\dim(JT_x(M) \cap T_x(M)) = n-1.$$

This implies that there exists a unit vector field C_* normal to M such that $JT(M) \subset T(M) \oplus \text{span } \{C_*\}$. Then, we have the following theorem by the first named author and Okumura [5].

Theorem A. *Let M be an n -dimensional compact, minimal CR submanifold of CR dimension $n-1$ of $P^{(n+r)/2}(\mathbb{C})$. If the normal vector field C_* is parallel with respect to the normal connection and scalar curvature $\geq (n+2)(n-1)$, then M is an $M_{p,q}^C$ for some p, q satisfying $2(p+q) = n-1$.*

The model space $M_{p,q}^C$ in the above theorem is described in the following. Let $M_{p,q}$ be the hypersurface in S^{n+2} which is defined by

$$\sum_{j=0}^p |z_j|^2 = \cos^2 \theta, \quad \sum_{j=p+1}^{p+q+1} |z_j|^2 = \sin^2 \theta, \quad 0 < \theta < \frac{\pi}{2}.$$

$M_{p,q}$ is a standard product $S^{2p+1} \times S^{2q+1}$, $2(p+q) = n-1$. The Hopf fibration $\pi : S^{n+2} \rightarrow P^{(n+1)/2}(\mathbb{C})$ submerses $M_{p,q}$ onto a real hypersurface of $P^{(n+1)/2}(\mathbb{C})$ which we denote by $M_{p,q}^C$. Cecil-Ryan [3] proved that $M_{p,q}^C$ is a tube of radius θ over a totally geodesic $P^p(\mathbb{C})$, namely, $M_{p,q}^C$ is a homogeneous type A_1 or A_2 [18].

In the following, we assume that M is a generic submanifold of a Kaehlerian manifold. Then our hypothesis implies that the transformations of B_i and C_x by J are respectively represented in each coordinate neighborhood as follows:

$$(1.2) \quad JB_j = f_j^h B_h - J_j^x C_x, \quad JC_x = J_x^h B_h,$$

where we have put $f_{ji} = G(JB_j, B_i)$, $J_{jx} = -G(JB_j, C_x)$, $J_{xj} = G(JC_x, B_j)$, $f_j^h = f_{ji} g^{ih}$ and $J_j^x = J_{jy} \delta^{yx}$. From these definitions, it follows from (1.2) that

$$(1.3) \quad f_j^t f_t^h = -\delta_j^h + J_j^x J_x^h, \quad f_{jt} J_x^t = 0,$$

$$(1.4) \quad J_x^t J_t^z = \delta_x^z.$$

By differentiating (1.2) covariantly along M , using $\tilde{\nabla} J = 0$, and by comparing the tangential and normal parts, we obtain

$$(1.5) \quad \nabla_j f_i^h = A_{ji}^x J_x^h - A_j^{hx} J_{ix},$$

$$(1.6) \quad \nabla_j J_{ix} = A_{jtx} f_i^t,$$

$$(1.7) \quad A_{jty} J^{tx} = A_{jt}^x J_y^t.$$

If the ambient space \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature 4, the equations of Gauss, Codazzi and Ricci of M are respectively given by

$$(1.8) \quad R_{kjh} = g_{kh} g_{ji} - g_{jh} g_{ki} + f_{kh} f_{ji} - f_{jh} f_{ki} - 2f_{kj} f_{ih} + A_{kh}^x A_{jix} - A_{jh}^x A_{kix},$$

$$(1.9) \quad \nabla_k A_{jix} - \nabla_j A_{kix} = J_{jx} f_{ki} - J_{kx} f_{ji} + 2J_{ix} f_{kj},$$

$$(1.10) \quad R_{jiyx} = J_{jx} J_{iy} - J_{ix} J_{iy} + A_{jix} A_i{}^t{}_y - A_{itx} A_j{}^t{}_y,$$

where R_{kjh} and R_{jiyx} are components of the Riemannian curvature tensor and those with respect to the connection induced in the normal bundle respectively.

From (1.8) the Ricci tensor S of M is verified that

$$S_{ji} = (n+2)g_{ji} - 3J_j{}^x J_{ix} + h^x A_{jix} - A_{jt}{}^x A_i{}^t{}_x$$

because of (1.3), where $h^x = \text{trace } A^x$. Thus the scalar curvature ρ of M is given by

$$(1.11) \quad \rho = n(n+2) - 3J_{ix} J^{ix} + h_x h^x - A_{jix} A^{jix}$$

since we have (1.4).

In what follows, to write our formula in convention forms $n+1$ denoted by the symbol $*$ and we put $h_{(2)} = A_{ji}{}^* A_{*}^{ji}$, $(A_{ji}{}^*)^2 = A_{jr}{}^* A_i{}^r{}^*$ and $P_{xyz} = A_{jix} J_y{}^j J_z{}^i$. Then P_{xyz} is symmetric for all indices because of (1.7).

2. Parallel normal section

Here we consider the case of a complex projective space $\tilde{M} = P^{(n+r)/2}(\mathbb{C})$ of constant holomorphic sectional curvature 4. A normal vector field $\xi = (\xi^x)$ is called a *parallel section* in the normal bundle if it satisfies $\nabla_j \xi^x = 0$.

From now on we suppose that M is an n -dimensional compact generic submanifold of $P^{(n+r)/2}(\mathbb{C})$ with parallel unit normal vector field C_* with respect to the normal connection, that is, $\nabla_j^\perp C_* = 0$. Then (1.10) shows that R_{ji*} vanishes identically for any index x and hence

$$(2.1) \quad A_{jix} A_i{}^t{}_* - A_{itx} A_j{}^t{}_* = J_{j*} J_{ix} - J_{i*} J_{jx},$$

which together with (1.4) and (1.7) implies that

$$(2.2) \quad (J^{j*} A_j{}^t{}^*)(J^{ix} A_{itx}) = (A_j{}^t{}^x J_*{}^j)(A_{itx} J^{i*}) + 1 - r.$$

From (1.5) and (1.6) we have

$$(2.3) \quad \nabla_k \nabla_j J_i{}^* = (\nabla_k A_{jt}{}^*) f_i{}^t + A_{jt}{}^* (A_{ki}{}^x J_x{}^t - A_k{}^t{}^x J_{ix}),$$

or, using (1.3), (1.4) and (2.2)

$$J^{i*} \Delta J_{i*} = (A_j{}^t{}^x J_{t*})(A^{ji}{}_x J_{i*}) - h_{(2)},$$

where $\Delta = g^{ji} \nabla_j \nabla_i$.

We also have from (2.3)

$$J^{j*}(\nabla_i \nabla_j J^{i*}) = h^x P_{x**} - (A_j^{tx} J_{t*})(A^{ji}{}_x J_{i*}) + n - 1,$$

where we have used (1.3), (1.4) and (1.9). From the last two equations, we obtain

$$(2.4) \quad J^{i*} \Delta J_{i*} + J^{j*}(\nabla_i \nabla_j J^{i*}) = -h_{(2)} + h^x P_{x**} + n - 1.$$

Let us put $U_j = J^{i*} \nabla_j J_i{}^* + J^{j*} \nabla_i J_j{}^*$. Then we have

$$\operatorname{div} U = (\nabla_j J_{i*})(\nabla^i J^{j*}) + (\nabla_j J^{i*})(\nabla^j J_{i*}) + J^{i*} \Delta J_{i*} + J^{j*} \nabla^i \nabla_j J_{i*},$$

which together with (1.6) and (2.4) yields

$$(2.5) \quad \operatorname{div} U = \frac{1}{2} |A^* f - f A^*|^2 - h_{(2)} + h^x P_{x**} + n - 1.$$

On the other hand, we have from (1.4)

$$(2.6) \quad J_{j*} J^{j*} = 1, \quad J_{jx} J^{jx} = r$$

because r is the codimension of M and consequently we obtain

$$(2.7) \quad J_{j(x)} J^{j(x)} = r - 1, \quad (x) \geq n + 2.$$

Thus, (1.11) turns out to be

$$(2.8) \quad \rho = (n + 3)(n - 1) - 3J_{j(x)} J^{j(x)} + h_x h^x - h_{(2)} + A_{ji(x)} A^{ji(x)}.$$

Lemma 1. *Let M be an n -dimensional generic, minimal submanifold of $P^{(n+r)/2}(\mathbb{C})$ with parallel unit normal C_* . Then we have*

$$(2.9) \quad \operatorname{div} U = \frac{1}{2} |A^* f - f A^*|^2 + \rho - (n + 2)(n - 1) + 3J_{j(x)} J^{j(x)} + A_{ji(x)} A^{ji(x)}.$$

Proof. Since M is minimal, it follows, using (2.5), (2.6) and (2.8), that required equation is obtained. This completes the proof. \square

Further, suppose that M is compact and the scalar curvature ρ of M satisfies $\rho \geq (n + 2)(n - 1)$ in Lemma 1, Then we have

$$\begin{aligned} A^* f &= f A^*, \\ A_{ji}{}^{(x)} &= 0, \quad J_{j(x)} = 0 \quad \text{for all } (x) \geq n + 2 \end{aligned}$$

and $\rho = (n + 2)(n - 1)$. Thus (2.7) means $r = 1$, that is, M is a real hypersurface of $P^{(n+1)/2}(\mathbb{C})$.

Thus we have

Lemma 2. *Let M be an n -dimensional compact generic, minimal submanifold in $P^{(n+r)/2}(\mathbb{C})$. Suppose that M admits a parallel unit normal vector field C_* and the scalar curvature $\rho \geq (n+2)(n-1)$ on M . Then M is a real hypersurface in $P^{(n+1)/2}(\mathbb{C})$ satisfying $A^*f = fA^*$ and $\rho = (n+2)(n-1)$.*

From Lemma 2 and Theorem 4.4 in [15] due to Okumura, we have

Theorem 3. *Let M be an n -dimensional compact generic, minimal submanifold in $P^{(n+r)/2}(\mathbb{C})$. Suppose that M admits a parallel unit normal vector field and the scalar curvature $\geq (n+2)(n-1)$. Then $r = 1$ and M is an $M_{p,q}(\mathbb{C})$ for some p, q satisfying $2(p+q) = n-1$.*

3. Examples of generic submanifolds in $P^n(\mathbb{C})$

In this section we shall give two examples of a compact homogeneous generic submanifold in $P^n(\mathbb{C})$, and another example of a compact homogeneous minimal generic submanifold in $P^n(\mathbb{C})$ admitting a parallel normal vector field.

Let p, q ($p \leq q$) be positive integers. We denote by $M_{p,q}(\mathbb{C})$ the space of $p \times q$ matrices over \mathbb{C} , which can be considered as a complex Euclidean space \mathbb{C}^{pq} with the standard Hermitian inner product. Let $U(p)$ denote the unitary group of degree p . Then the Lie group $G := S(U(p) \times U(q))$ acts on $\mathbb{C}^{pq} \equiv M_{p,q}(\mathbb{C})$ as follows:

$$(\sigma, \tau)X = \sigma X \tau^{-1}, \quad (\sigma, \tau) \in G, \quad X \in \mathbb{C}^{pq}.$$

Thus we can consider G as a unitary subgroup of $U(pq)$. Remark that this action is nothing but the linear isotropic representation of the compact Hermitian symmetric space $SU(p+q)/S(U(p) \times U(q))$ of type AIII.

Let π be the canonical projection of $\mathbb{C}^{pq} - \{0\}$ onto $P^{pq-1}(\mathbb{C})$, and $S^{2pq-1}(r)$ the hypersphere in \mathbb{C}^{pq} of radius r centered at the origin. Then, for any element A of $\mathbb{C}^{pq} - \{0\}$, the orbit $G(A)$ of A under G is a compact homogeneous submanifold in $S^{2pq-1}(|A|)$, and the space $\pi(G(A))$ is a compact homogeneous submanifolds in $P^{pq-1}(\mathbb{C})$ (see e.g. [19]). Moreover, for any normal vector N of $G(A)$ in $S^{2pq-1}(|A|)$, the mean curvature of $G(A)$ in the direction N is equal to the one of $\pi(G(A))$ in the direction π_*N in $P^{pq-1}(\mathbb{C})$. (see e.g. [16]). In particular, $G(A)$ is minimal in $S^{2pq-1}(|A|)$ if and only if $\pi(G(A))$ is minimal in $P^{pq-1}(\mathbb{C})$.

Here, for $i = 1, \dots, p$ we put

$$e_i := \begin{bmatrix} & & & & i^{\text{th}} & & \\ 0 & & \vdots & & & \vdots & \\ & \ddots & \vdots & & & \vdots & \\ & & 0 & \vdots & & \vdots & \\ & & & 1 & & \vdots & O \\ & & & & 0 & \vdots & \\ & & & & & \ddots & \vdots \\ & & & & & & 0 & \vdots \end{bmatrix} \in \mathbb{C}^{pq} - \{0\},$$

and denote by \mathfrak{a} the vector space spanned by e_1, \dots, e_p over \mathbb{R} . In the sequel we shall show

- (3.1) If $A = a_1e_1 + \dots + a_pe_p$ satisfies $a_i \neq 0$, $a_i^2 \neq a_j^2$ for $1 \leq i < j \leq p$, then $\pi(G(A))$ is a $(2pq - p - 1)$ -dimensional generic submanifold in $P^{pq-1}(\mathbb{C})$.
- (3.2) If $A = e_1 + e_2 + e_3 + \dots + a_pe_p$ satisfies $a_i^2 \neq 0$, 1 and $a_i^2 \neq a_j^2$ for $3 \leq i < j \leq p$, then $\pi(G(A))$ is a $(2pq - p - 3)$ -dimensional generic submanifold in $P^{pq-1}(\mathbb{C})$.
- (3.3) Let $p = 3 \leq q$. Then there exists a vector A in $\mathfrak{a} \setminus \{0\}$ such that $\pi(G(A))$ is a $(6q - 4)$ dimensional minimal generic submanifold in $P^{3q-1}(\mathbb{C})$ admitting a parallel normal vector field.

To show these, we need some preparations. Let Δ denote the positive restricted root system associated with the symmetric space $SU(p+q)/S(U(p) \times U(q))$ and \mathfrak{a} (cf. [6]). Let $\{\omega_1, \dots, \omega_p\}$ be the dual basis of e_1, \dots, e_p . Then Δ is given by

$$(3.4) \quad \Delta = \{\omega_i, 2\omega_i, \omega_i \pm \omega_j ; 1 \leq i < j \leq p\}$$

with multiplicities $2(q - p)$, 1 , 2 , respectively (cf. Helgason [6, 349p] or Araki [1, table]). An element $A = a_1e_1 + \dots + a_pe_p$ is called regular if $\omega(A) \neq 0$ for any $\omega \in \Delta$, or equivalently $a_i \neq 0$, $a_i^2 \neq a_j^2$ for $1 \leq i < j \leq p$.

Thus a vector A in (3.2) is regular, and one in (3.3) is not regular. As seen later, a vector in (3.3) is also regular. In the following, A always denotes an element of $\mathfrak{a} \setminus \{0\}$.

By the definition, the tangent space $T_A(G(A))$ of the orbit of A under G is generated by the vectors

$$XA \quad \text{and} \quad AY,$$

where X (resp. Y) ranges over all skew-Hermitian matrices of degree p (resp. q). In particular, if A is regular, the normal space of $G(A)$ in \mathbb{C}^{2pq} is just \mathfrak{a} , and the normal space of $G(A)$ in $S^{2pq-1}(|A|)$ consists of all vectors $x_1e_1 + \dots + x_pe_p$ satisfying $a_1x_1 + \dots + a_px_p = 0$.

$$\cdots + a_p x_p = 0.$$

It is proved in [19] that if A is regular, for a unit normal vector N of $G(A)$ in $S^{2pq-1}(|A|)$, the mean curvature of $G(A)$ in the direction N is given by

$$\frac{-1}{\dim G(A)} \sum_{\lambda \in \Delta} \frac{\lambda(N)}{\lambda(A)},$$

where the summation is taken according to the multiplicities of λ . In particular, if A is regular, the orbit $G(A)$ and space $\pi(G(A))$ are minimal in $S^{2pq-1}(|A|)$ if and only if

$$(3.5) \quad \sum_{\lambda \in \Delta} \frac{\lambda(N)}{\lambda(A)} = 0 \quad \text{for } N = a_i e_1 - a_1 e_i \ (i = 2, \dots, p).$$

Now, by a theorem of Kitagawa and Ohnita [11] we see that the mean curvature vector field $\eta(A)$ of the orbit $G(A)$ in \mathbb{C}^{pq} is parallel with respect to the normal connection. We denote by $\eta_s(A)$ the $S^{2pq-1}(|A|)$ -component of $\eta(A)$. Then we easily see that $\eta_s(A)$ is the mean curvature vector field of $G(A)$ in $S^{2pq-1}(|A|)$ and parallel in $S^{2pq-1}(|A|)$. Moreover, by a theorem of Shimizu [17], the mean curvature vector field of the submanifold $\pi(G(A))$ is given by $\pi_* \eta_s(A)$ and parallel in $P^{pq-1}(\mathbb{C})$.

Now we are in a position to show (3.1)~(3.3).

Proof of (3.1). This is a special case of the results in [17]. Remark that the word *generic* is not used there. \square

Proof of (3.2). By a simple calculation we find that the normal space of $T_A(G(A))$ in \mathbb{C}^{pq} is generated by \mathfrak{a} and the following two vectors:

$$B = \left[\begin{array}{cc|c} 0 & 1 & O \\ 1 & 0 & O \\ \hline O & O & O \end{array} \right], \quad C = \left[\begin{array}{cc|c} 0 & \sqrt{-1} & O \\ -\sqrt{-1} & 0 & O \\ \hline O & O & O \end{array} \right]. \quad \square$$

Thus the space $\sqrt{-1}\mathfrak{a}$ and two vectors $\sqrt{-1}B$ and $\sqrt{-1}C$ are tangent to $G(A)$ at A , which implies that the space $\pi(G(A))$ is generic in $P^{pq-1}(\mathbb{C})$.

REMARK. Since this A is not regular, the space is not treated in [17].

Proof of (3.3). Put $A = e_1 + ae_2 + be_3$, where $0 < b < a < 1$. Then A is regular. Thus as a basis for the normal space of $G(A)$ at A in $S^{3q-1}(|A|)$ we can take

$$\{ae_1 - e_2, be_1 - e_3\}.$$

It follows from (3.4) and (3.5) that the space $\pi(G(A))$ is minimal in $P^{3q-1}(\mathbb{C})$ if and

only if

$$(3.6) \quad \begin{cases} \left(q - \frac{5}{2}\right)\left(a - \frac{1}{a}\right) + \frac{a-1}{1+a} + \frac{a}{1+b} - \frac{1}{a+b} + \frac{a+1}{1-a} + \frac{a}{1-b} - \frac{1}{a-b} = 0, \\ \left(q - \frac{5}{2}\right)\left(b - \frac{1}{b}\right) + \frac{b-1}{1+b} + \frac{b}{1+a} - \frac{1}{b+a} + \frac{b+1}{1-b} + \frac{b}{1-a} - \frac{1}{b-a} = 0. \end{cases}$$

For simplicity we put

$$\begin{aligned} m &:= (2q - 5)/4, \quad x := a^2, y := b^2, \\ X(x, y) &:= m\left(\frac{1}{x} - 1\right) - \frac{2}{1-x} - \frac{1}{1-y} + \frac{1}{x-y}, \\ U &:= \{(x, y) \in \mathbb{R}^2; 0 < y < x < 1\}. \end{aligned}$$

Then (3.6) can be rewritten as

$$(3.7) \quad X(x, y) = 0, \quad X(y, x) = 0, \quad (x, y) \in U.$$

Now we define a differential mapping f of U into \mathbb{R}^2 by

$$f(x, y) = (X(x, y), X(y, x)), \quad (x, y) \in U.$$

It is sufficient to show that $f(U)$ contains 0. We can easily check the following.

- (3.8) The Jacobian matrix of f is non-singular everywhere. Hence f is locally diffeomorphic everywhere.
- (3.9) For every sequence $\{p_n\}$ in U converging to a point of the boundary ∂U of U ,

$$\lim_{n \rightarrow \infty} |f(p_n)| = \infty.$$

Assume that $W := \mathbb{R}^2 - f(U) \neq \emptyset$. Then, choose any point r in ∂W . Let $\{p_n\}$ be a sequence in U such that $f(p_n) \rightarrow r$ as $n \rightarrow \infty$. Then there exists a subsequence $\{p_{n_i}\}$ of $\{p_n\}$ such that $\{p_{n_i}\}$ converges to some point of \overline{U} , say p_0 . If $p_0 \in U$, then it contradicts (3.8). If $p_0 \in \partial U$, then it contradicts (3.9). Thus we have shown that there are a point (a_0, b_0) in U and a neighbourhood V of (a_0, b_0) in U such that the space $\pi(G(A))$ where $A = e_1 + a_0e_2 + b_0e_3$ is minimal but for any $(a, b) \in V - \{(a_0, b_0)\}$ the space $\pi(G(A))$ where $A = e_1 + ae_2 + be_3$ is not minimal. For an element (a, b) in V , we denote by $M(a, b)$ the space $\pi(G(A))$ where $A = e_1 + ae_2 + be_3$, and by $\eta(a, b)$ the mean curvature vector field of $M(a, b)$.

Finally we shall show that $M(a_0, b_0)$ admits a parallel normal vector field. Since every $M(a, b)$ is an equivariant homogeneous submanifold in $P^{3q-1}(\mathbb{C})$, the length of its mean curvature vector field is constant. Thus for every (a, b) in $V - \{(a_0, b_0)\}$ we

obtain a parallel unit vector field $\xi(a, b) := \eta(a, b)/|\eta(a, b)|$ on $M(a, b)$. Since this ξ is a differentiable vector field on the open subset

$$\{p \in M(a, b) \mid (a, b) \in V - \{(a_0, b_0)\}\}$$

of $P^{3q-1}(\mathbb{C})$, we obtain a unit vector field on $M(a_0, b_0)$ as a limit of ξ , say ξ_0 . Since the normal connection $M(a, b)$ differentiably depends on (a, b) in V , the vector field ξ_0 on $M(a_0, b_0)$ is also parallel. \square

References

- [1] S. Araki: *On root systems and an infinitesimal classification of irreducible symmetric spaces*, J. Math. Osaka City Univ. **13** (1962), 1–34.
- [2] A. Bejancu: *CR-submanifolds of a Kaehler manifold I*, Proc. Amer. Math. Soc. **69** (1979), 135–142.
- [3] T.E. Cecil and P.J. Ryan: *Focal sets and real hypersurfaces in complex projective space*, Trans. Amer. Math. Soc. **269** (1982), 481–499.
- [4] B.Y. Chen: *CR-submanifolds of a Kaehlerian manifold I, II*, J. Differential Geom. **16** (1981), 305–322, 493–509.
- [5] Y.-W. Choe and M. Okumura: *Scalar curvature of a certain CR-submanifold of complex projective space*, Arch. Math. **68** (1997), 340–346.
- [6] S. Helgason: *Differential Geometry, Lie groups and Symmetric Space*, Academic Press, 1978.
- [7] U-H. Ki and Y.H. Kim: *Totally real submanifolds of a complex space form*, Int'l. J. Math. and Math. Sci. **19** (1996), 38–44.
- [8] U-H. Ki, Y.H. Kim and M. Kon: *Generic submanifolds of a complex space form*, Kyungpook Math. J. **34** (1994), 25–33.
- [9] U-H. Ki and M. Kon: *CR submanifolds with parallel mean curvature vector of a complex space form*, Accademia Peloritana dei Pericolanti, **LXX** (1992), 173–192.
- [10] U-H. Ki, R. Takagi and T. Takahashi: *On some CR submanifolds with parallel mean curvature vector field in a complex space form*, Nihonkai Math. J. **6** (1995), 215–226.
- [11] Y. Kitagawa and Y. Ohnita: *On the mean curvature of R-spaces*, Math. Ann. **262** (1983), 219–243.
- [12] M. Kon: *Real minimal hypersurfaces in a complex projective space*, Proc. Amer. Math. Soc. **79** (1980), 285–288.
- [13] H.B. Lawson, Jr.: *Rigidity theorems in rank-1 symmetric space*, J. Differential Geom. **4** (1970), 349–357.
- [14] Y. Ohnita: *On differential geometrical properties of the standard imbeddings of R-spaces*, report at the Conference of Math. Soc. Japan, (April, 1982), in Japanese.
- [15] M. Okumura: *On some real hypersurfaces of a complex projective space*, Trans. Amer. Math. Soc. **212** (1975), 355–364.
- [16] M. Okumura: *Totally umbilical submanifolds of a Kaehlerian manifold*, J. Japan Math. Soc. **19** (1967), 317–327.
- [17] Y. Shimizu: *On a construction of homogenous CR-submanifolds in a complex projective spaces*, Comm. Math. Univ. Sancti Pauli, **32** (1983), 203–207.
- [18] R. Takagi: *Real hypersurfaces in a complex projective space with constant principal curvatures I, II*, J. Math. Soc. Japan, **27** (1975), 43–53, 507–516.
- [19] B.H. Kim, I.-B. Kim and R. Takagi: *The rigidity for real hypersurfaces in a complex projective space*, preprint.

- [20] R. Takagi and T. Takahashi: *On the principal curvatures of homogeneous hypersurfaces in a sphere*, Differential Geometry; in honor of K. Yano, Kinokuniya, Tokyo (1972), 469–481.
- [21] K. Yano and M. Kon: *Generic minimal submanifolds with flat normal connection*, E. B. Christoffel, Aachen Birkhäuser Verlag, Basel (1981), 592–599.
- [22] K. Yano and M. Kon: *Structures on submanifolds*, World Scientific Pub. (1984).

Y.-W. Choe

Department of Mathematics
Catholic University of Taegu-Hyosung
Kyungsan 712-702
Korea

U-H. Ki

Department of Mathematics
Kyungpook National University
Taegu 702-701
Korea

R. Takagi

Department of Mathematics and Informatics
Chiba University
Chiba-Shi 263-8522
Japan

