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Abstract
Let S be aTodorov surface, i.e., a minimal smooth surface of general type with

q = 0 and pg = 1 having an involutioni such thatS=i is birational to aK 3 surface
and such that the bicanonical map ofS is composed withi .

The main result of this paper is that, ifP is the minimal smooth model ofS=i ,
then P is the minimal desingularization of a double cover ofP2 ramified over two
cubics. Furthermore it is also shown that, given a Todorov surface S, it is possible
to construct Todorov surfacesSj with K 2 = 1,: : : , K 2

S�1 and such thatP is also the
smooth minimal model ofSj =i j , where i j is the involution of Sj . Some examples
are also given, namely an example different from the examples presented by Todorov
in [9].

1. Introduction

An involution of a surfaceS is an automorphism ofS of order 2. We say that a
map iscomposed with an involution iof S if it factors through the double coverS!
S=i . Involutions appear in many contexts in the study of algebraic surfaces. For in-
stance in most cases the bicanonical map of a surface of general type is non-birational
only if it is composed with an involution.

Assume thatS is a smooth minimal surface of general type withq = 0 and pg 6= 0
having bicanonical map�2 composed with an involutioni of S such thatS=i is non-
ruled. Then, according to [10, Theorem 3],pg(S) = 1, K 2

S � 8 andS=i is birational to
a K3 surface (Theorem 3 of [10] contains the assumption deg(�2) = 2, but the result
is still valid assuming only that�2 is composed with an involution).

Todorov ([9]) was the first to give examples of such surfaces.His construction is
as follows. Consider a Kummer surfaceQ in P3, i.e., a quartic having as only singu-
larities 16 nodesai . The double cover ofQ ramified over the intersection ofQ with
a general quadric and over the 16 nodes ofQ is a surface of general type withq = 0,
pg = 1 and K 2 = 8. Then, choosea1, : : : , a6 in general position and letG be the
intersection ofQ with a general quadric throughj of the nodesa1, : : : , a6. The dou-
ble cover of Q ramified overQ \ G and over the remaining 16� j nodes ofQ is a
surface of general type withq = 0, pg = 1 and K 2 = 8� j .

Imposing the passage of the branch curve by a 7-th node, one can obtain a surface
with K 2 = pg = 1 and q = 0. This is the so-calledKunev surface. Todorov ([8]) has
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686 C. RITO

shown that the Kunev surface is a bidouble cover ofP2 ramified over two cubics and
a line.

I refer to [5] for an explicit description of the moduli spaces of Todorov surfaces.
We call Todorov surfacessmooth surfacesS of general type withpg = 1 andq = 0

having bicanonical map composed with an involutioni of S such thatS=i is birational
to a K3 surface.

In this paper we prove the following:

Theorem 1. Let S be a Todorov surface with involution i and P be the smooth
minimal model of S=i . Then:
a) there exists a generically finite degree2 morphism P! P2 ramified over two
cubics;
b) for each j 2 f1, : : : , K 2

S � 1g, there is a Todorov surface Sj , with involution ij ,
such that K2

Sj
= j and P is the smooth minimal model of Sj =i j .

The idea of the proof is the following. First we verify that the evenness of the
branch locusB0 +

P
Ai � P implies that each nodal curveA j can only be contained

in a Dynkin graphG of type A2n+1 or Dn. Then we use a Saint-Donat result to show
that A j can be chosen such that the linear systemjB0 � Gj is free. This implies b).
Finally we conclude that there is a free linear systemjB0

0j with B02
0 = 2, which gives a).

Notation and conventions. We work over the complex numbers; all varieties are
assumed to be projective algebraic. For a projective smoothsurfaceS, the canonical
class is denoted byK , the geometric genusby pg := h0(S, OS(K )), the irregularity by
q := h1(S, OS(K )) and theEuler characteristicby � = �(OS) = 1 + pg � q.

A (�2)-curve or nodal curveon a surface is a curve isomorphic toP1 such that
C2 = �2. We say that a curve singularity isnegligible if it is either a double point or
a triple point which resolves to at most a double point after one blow-up.

The rest of the notation is standard in algebraic geometry.

2. Preliminaries

The next result follows from [7, (4.1), Theorem 5.2, Propositions 5.6 and 5.7].

Theorem 2 ([7]). Let jDj be a complete linear system on a smooth K3 surface
F , without fixed components and such that D2 � 4. Denote by'D the map given byjDj. If 'D is non-birational and the surface'D(F) is singular then there exists an
elliptic pencil jEj such that E D= 2 and one of these cases occur:
(i) D � OF (4E + 20) where0 is a smooth rational irreducible curve such that0E =
1. In this case'D(F) is a cone over a rational normal twisted quartic inP4;
(ii) D � OF (3E + 200 +01), where00 and 01 are smooth rational irreducible curves
such that00E = 1, 01E = 0 and0001 = 1. In this case'D(F) is a cone over a rational
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Fig. 1. Configuration (iii) b).

normal twisted cubic inP3;
(iii) a) D � OF (2E + 00 + 01), where 00 and 01 are smooth rational irreducible

curves such that00E = 01E = 1 and 0001 = 0;
b) D � OF (2E +1), with 1 = 200 + � � �+ 20N +0N+1 +0N+2 (N � 0), where the
curves0i are irreducible rational curves as inFig. 1.
In both cases'D(F) is a quadric cone inP3.

Moreover in all the cases above the penciljEj corresponds under the map'D to the
system of generatrices of'D(F).

3. Proof of Theorem 1

We say that a curveD is nef and big if DC � 0 for every curveC and D2 > 0.
In order to prove Theorem 1, we show the following:

Proposition 3. Let P be a smooth K3 surface with a reduced curve B satisfying:
(∗) B = B0 +

Pt
1 Ai , t 2 f9, : : : , 16g, where B0 is a nef and big curve with at most

negligible singularities, the curves Ai are disjoint (�2)-curves also disjoint from B0
and B� 2L, L2 = �4, for some L2 Pic(P).
Then:
a) Let � : V ! P be a double cover with branch locus B and S be the smooth min-
imal model of V. Then q(S) = 0, pg(S) = 1, K 2

S = t � 8 and the bicanonical map of S
is composed with the involution i of S induced by� ;
b) If t � 10, then P contains a smooth curve B00 and (�2)-curves A01, : : : , A0

t�1 such

that B020 = B02� 2 and B0 := B0
0 +

Pt�1
1 A0

i also satisfies condition(∗).

Proof. a) Let L � (1=2)B be the line bundle which determines� . From the
double cover formulas (see e.g. [1]) and the Riemann-Roch theorem,

q(S) = h1(P, OP(L)),

pg(S) = 1 +h0(P, OP(L)),

h0(P, OP(L)) + h0(P, OP(�L)) = h1(P, OP(L)).
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Fig. 2. E6.

Since 2L � P Ai is nef and big, the Kawamata-Viehweg’s vanishing theorem (see
e.g. [3, Corollary 5.12, c)]) impliesh1(P, OP(�L)) = 0. Hence

h1(P, OP(L)) = h1(P, OP(K P � L) = h1(P, OP(�L))) = 0

and thenq(S) = 0 and pg(S) = 1. As

h0(P, OP(2K P + L)) = h0(P, OP(L)) = 0,

the bicanonical map ofS is composed withi (see [2, Proposition 6.1]).
The (�2)-curvesA1, : : : , At give rise to (�1)-curves inV , therefore

K 2
S = K 2

V + t = 2(K P + L)2 + t = 2L2 + t = t � 8.

b) Denote by� � P the set of irreducible curves which do not intersectB0 and
denote by�i , i � 1, the connected components of� . Since B02 � 2, the Hodge index
theorem implies that the intersection matrix of the components of �i is negative defi-
nite. Therefore, following [1, Lemma I.2.12], the�i ’s have one of the five configura-
tions: the support ofAn, Dn, E6, E7 or E8 (see e.g. [1, III.3] for the description of
these graphs).

Claim 1. Each nodal curve Ai can only be contained in a graph of typeA2n+1

or Dn.

Proof. Suppose that there exists anAi which is contained in a graph of typeE6.
Denote the components ofE6 as in Fig. 2. If Ai = a3 or Ai = a6, then a6B = a6a3 = 1
or a3B = 1, contradictingB � 2L. If Ai = a1 or Ai = a2, thena2B = 1 or a1B = 1, the
same contradiction. By the same reason,Ai 6= a4 and Ai 6= a5.

Analogously one can verify that eachAi can not be in a graph of typeA2n, E7

or E8.

The possible configurations for the curvesAi in the graphs are shown in Fig. 3.
Fix one of the curvesAi and denote byG the graph containing it.
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Fig. 3. The numbers represent the multiplicity and the doted
curve represent a general elementB0

0 in jB0 � Gj.
Claim 2. We can choose Ai such that the linear systemjB0 � Gj has no fixed

components(and thus no base points, from [7, Theorem 3.1]).

Proof. Denote by'jB0j the map given by the linear systemjB0j. We know that'jB0j is birational or it is of degree 2 (see [7, Section 4]). If'jB0j is birational or the
point 'jB0j(G) is a smooth point of'jB0j(P), the result is clear, sincejB0 � Gj is the
pullback of the linear system of the hyperplanes containing'jB0j(G) and'�jB0j('jB0j(G)) =
G (see [1, Theorems III 7.1 and 7.3]).

Suppose now that'jB0j is non-birational and that'jB0j(G) is a singular point of'jB0j(P). Then B0 is linearly equivalent to a curve with one of the configurations de-
scribed in Theorem 2. Except for the last configuration,G contains at most two (�2)-
curves. Butt � 9, thus in these cases there exists other graphG0 containing a curve
A j such that'jB0j(G0) is a non-singular point of'jB0j(P) (notice that Theorem 2 implies
that 'jB0j(P) contains only one singular point).

So we can suppose thatB0 is equivalent to a curve with a configuration as in The-
orem 2, (iii), b). None of the curves00, : : : , 0N can be one of the curvesA j . For
this note that: if00 = A j , then E B = E

�
B0 +

P
Ai
�

= 2 + E00 = 3 6� 0 (mod 2); if01 = A j , then00B = 0001 = 1 6� 0 (mod 2); etc. Again this configuration can contain
at most two curvesA j , the components0N+1, 0N+2.
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Let B0
0 be a smooth curve injB0 � Gj. If G is an A2n+1 graph, then, using the

notation of Fig. 3, 
B0

0 +
nX
1

Ei

!
+

tX
n+2

Ai �
 

B0 � n+1X
1

Ai

!
+

tX
n+2

Ai

� B0 +
tX
1

Ai � 2
n+1X
1

Ai � 0 (mod 2).

Therefore the curve

B0 := B0
0 +

nX
1

Ei +
tX

n+2

Ai

satisfies condition (∗).
The case whereG is a Dm graph is analogous.

Proof of Theorem 1. LetV ! S be the blow-up at the isolated fixed points of
the involution i and W be the minimal resolution ofS=i . We have a commutative
diagram

V ����! S

�??y ??y
W ����! S=i .

The branch locus of� is a smooth curveB = B0 +
Pt

1 Ai , where the curvesAi are
(�2)-curves which contract to the nodes ofS=i . Let P be the minimal model ofW and
B � P be the projection ofB. Let L � (1=2)B be the line bundle which determines� .

First we verify thatB satisfies condition (∗) of Proposition 3: from [2, Proposi-
tion 6.1], �(OW)��(OS) = KW(KW +L), henceKW(KW +L) = 0, which implies thatB

has at most negligible singularities; now from [5, Theorem 5.2] we get K 2
S = (1=2)B02

and 1 =pg(S) = (1=4)(K 2
S� t) + 3, thust = K 2

S + 8 and B
2

= B02�2t = 2K 2
S�2t = �16,

which gives (B=2)2 = �4 and B02 � 2; finally B0 is nef because, on aK3 surface, an
irreducible curve with negative self intersection must be a(�2)-curve.

Now using Proposition 3, b) and a) we obtain statement b). In particular we get
also that P contains a curveB0

0 and (�2)-curves A0
i , i = 1, : : : , 9, such thatB0 :=

B0
0 +
P9

1 A0
i is smooth and divisible by 2 in the Picard group. Moreover, thecomplete

linear systemjB0
0j has no fixed component nor base points andB02

0 = 2. Therefore,
from [7], jB0

0j defines a generically finite degree 2 morphism

' := 'jB00j : P! P2.
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Sinceg(B0
0) = 2, this map is ramified over a sextic curve�. The singularities of� are

negligible becauseP is a K3 surface.
We claim that� is the union of two cubics. Letpi 2 � be the singular point

corresponding toA0
i , i = 1, : : : , 9. Notice that thepi ’s are possibly infinitely near. Let

C � P2 be a cubic curve passing throughpi , i = 1, : : : , 9. As C + '�(B0
0) is a plane

quartic, we have

 
'�(C)� 9X

1

A0
i

!
+ B0

0 +
9X
1

A0
i � '�(C + '�(B0

0)) � 0 (mod 2),

hence also'�(C)�P9
1 A0

i � 0 (mod 2), i.e. there exists a divisorJ such that

2J � '�(C)� 9X
1

A0
i .

Since P is a K3 surface, the Riemann-Roch theorem implies thatJ is effective. From
J A0i = 1, i = 1, : : : , 9, we obtain that the plane curve'�(J) passes with multiplicity 1
through the nine singular pointspi of �. This immediately implies that'�(J) is not
a line nor a conic, because� is a reduced sextic. Therefore'�(J) is a reduced cubic.
So '�(J) � C and then

'�('�(J)) � 2J +
9X
1

A0
i .

This implies that'�(J) is contained in the branch locus�, which finishes the proof
of a).

4. Examples

Todorov gave examples of surfacesS with bicanonical image�2(S) birational to a
Kummer surface having only ordinary double points as singularities. The next sections
contain an example with�2(S) non-birational to a Kummer surface and an example
with �2(S) having anA17 double point.

4.1. S=i non-birational to a Kummer surface. Here we construct smooth sur-
faces S of general type withK 2 = 2, 3, pg = 1 andq = 0 having bicanonical map of
degree 2 onto aK3 surface which is not birational to a Kummer surface.

It is known since [4] that there exist special sets of 6 nodes,called Weber hexads,
in the Kummer surfaceQ 2 P3 such that the surface which is the blow-up ofQ at these
nodes can be embedded inP3 as a quartic with 10 nodes. This quartic is the Hessian
of a smooth cubic surface.
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The space of all smooth cubic surfaces has dimension 4 while the space of Kum-
mer surfaces has dimension 3. Thus it is natural to ask if there exist Hessian “non-
Kummer” surfaces, i.e. which are not the embedding of a Kummer surface blown-up
at 6 points. This is studied in [6], where the existence of “non-Kummer” quartic Hess-
ians H in P3 is shown. These are surfaces with 10 nodesai such that the projection
from one nodea1 to P2 is a generically 2 : 1 cover ofP2 with branch locus�1 + �2

satisfying: �1, �2 are smooth cubics tangent to a nondegenerate conicC at 3 distinct
points. We use this in the following construction.

Let �1, �2 and C be as above. Take the morphism� : W ! P2 given by the
canonical resolution of the double cover ofP2 with branch locus�1 + �2. The strict
transform ofC gives rise to the union of two disjoint (�2)-curves A1, A2 � W (one
of these correspond to the nodea1 from which we have projected).

Let T 2 P2 be a general line. LetA3, : : : , A11 � W be the disjoint (�2)-curves
contained in��(�1 + �2). We have��(T + �1) � 0 (mod 2), hence, since�1 is in the
branch locus, also

��(T) +
11X
3

Ai � 0 (mod 2).

The linear systemsj��(T) + A2j and j��(T) + A1 + A2j have no fixed components nor
base points (see [7, (2.7.3) and Corollary 3.2]). The surface S is the minimal model
of the double cover ofW ramified over a general element in

j��(T) + A2j + 11X
2

Ai

or

j��(T) + A1 + A2j + 11X
1

Ai .

4.2. �2(S) with A17 and A1 singularities. This section contains a brief descrip-
tion of a construction of a surfaceS of general type having bicanonical image�2(S) �
P3 a quarticK3 surface withA17 and A1 singularities. I omit the details, which were
verified using theComputational Algebra System Magma.

Let C1 be a nodal cubic,p an inflection point ofC1 and T the tangent line toC1

at p. The pencil generated byC1 and 3T contains another nodal cubicC2, smooth at
p. The curvesC1 and C2 intersect atp with multiplicity 9.

Let � : X! P2 be the resolution ofC1 + C2 and� : W! X be the double cover
with branch locus the strict transform ofC1 + C2. Denote byl the line containing the
nodes ofC1 and C2 and by l � W the pullback of the strict transform ofl . The map
given by j(� Æ �)�(l ) + l j is birational onto a quarticQ in P3 with an A1 and A17

singularities (notice thatl is a (�2)-curve and ((� Æ �)�(l ) + l )l = 0).
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Let B0 2 j(� Æ�)�(l ) + l j be a smooth element andA1, : : : , A9 be the disjoint (�2)-
curves contained in (� Æ �)�(p). Let S be the minimal model of the double cover of
W with branch locusB0 +

P9
1 Ai + l . The surfaceQ is the image of the bicanonical

map of S and pg(S) = 1, q(S) = 0, K 2
S = 2.
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