On Monomial Representations of Finite Groups

By Noboru Ito*

In 1933 Shoda obtained remarkable results concerning monomial representations of finite groups [1]. Above all, he established a comprehensible criterion whether a transitive monomial representation of a finite group is irreducible or not, which is of general character; so that it is applicable to imprimitive representations of not necessarily finite groups. Further he proved the precise relation between the degree of a faithful irreducible representation of a metabelian group and the order of a maximal abelian normal subgroup containing the commutator subgroup. Giving alternative proofs to the above results of Shoda with some remarks, we shall show now the following

Theorem. Every irreducible monomial representation of a finite group which is induced by its cyclic subgroup (which is different from the whole group) contains at least one not scalar diagonal matrix.

§ 1.

First of all, for the completeness of the description, we give a proof to a theorem due to Frobenius [2]:

Proposition 1 (Frobenius). Let G be an irreducible matrix group of finite order and let N be a normal subgroup of G. Let \(N = r_1\Delta_1 + \ldots + r_n\Delta_n \) be the irreducible decomposition of N. Then \(r_1 = \ldots = r_n \) and \(\Delta_1, \ldots, \Delta_n \) are G-conjugate with each other.

Proof. We may assume, by the complete reducibility, that G is transformed into the form in which N is completely reduced:

\[
N = \begin{pmatrix} \Delta^{(1)} \\ \vdots \\ \Delta^{(n)} \end{pmatrix}, \text{ where } \Delta^{(1)} = r_1\Delta_1, \ldots, \Delta^{(n)} = r_n\Delta_n. \]

Let \(X = \begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix} \) be any matrix of G, where \(X_{ij} \) is of type \((\deg \Delta^{(i)}, \deg \Delta^{(j)}) \) \((i, j = 1, \ldots, n) \). Then we have

\[
\begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix} \begin{pmatrix} \Delta^{(1)}(Y) \\ \vdots \\ \Delta^{(n)}(Y) \end{pmatrix} = \begin{pmatrix} \Delta^{(1)}(XYX^{-1}) \\ \vdots \\ \Delta^{(n)}(XYX^{-1}) \end{pmatrix} \begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix}
\]

* Yukawa Fellow.
where \(Y \) runs all the matrices of \(N \). If there exists an \(X \) such that \(X_{ik}, X_{it} \neq 0 \) for some \(i \) and for some two \(k \neq l \), then we have

\[
X_{ik} \Delta^{(0)}(Y) = \Delta^{(0)}(XYX^{-1}) X_{ik} \quad \text{and} \quad X_{it} \Delta^{(0)}(Y) = \Delta^{(0)}(XYX^{-1}) X_{it}.
\]

Since all the irreducible parts of \(\Delta^{(0)}(XYX^{-1}) \) are equivalent one another, we come, by the so-called Schur's lemma, to the fact that \(\Delta^{(0)}(Y) \) and \(\Delta^{(0)}(Y) \) have at least one equivalent irreducible part, which is clearly a contradiction. Further more finely we see that if \(X_{ij} \neq 0 \), then, since \(X_{ik} = 0, k \neq j \) as above and \(\det X \neq 0 \), \(\deg \Delta^{(0)} = \deg \Delta^{(0)} \) and \(\det X_{ij} = 0 \). Therefore \(\Delta^{(0)} \) and \(\Delta^{(0)} \) are \(G \)-conjugate one another, whence follows \(r_i = r_j \) and \(\Delta_i \) and \(\Delta_j \) are \(G \)-conjugate one another. Now, by a fundamental relation of Schur, there exists an \(X \) such that \(X_{ij} \neq 0 \), when the pair \(i, j \) is arbitrarily given. Thus all the \(r_k \) are equal one another and all the \(\Delta_i \) are \(G \)-conjugate one another (\(i = 1, \ldots, n \)). This completes the proof.

Next, with a slight modification in the formulation, we give a proof to Shoda's theorem concerning metabelian groups.

Proposition 2 (Shoda). Let \(G \) be a metabelian group of finite order with a faithful irreducible representation. Then all the maximal abelian normal subgroups \(\{ A \} \) containing the commutator subgroup possess the same order and all the faithful irreducible representations \(\{ \Gamma \} \) possess the same degree, and between these two numbers holds the equality:

\[
\deg \Gamma \ ord A = ord G.
\]

Therefore \(G \) can be induced from a suitable linear representation of an arbitrarily given \(A \).

Proof. We take any \(\Gamma \). Further we take any \(A \) as an \(N \) in Proposition 1 and notice that \(\Delta_i \) is of degree 1 (\(i = 1, \ldots, n \)). (We use the same notation as in the proof of Proposition 1).

Let \(X = \begin{pmatrix} X_{11} & \cdots & X_{1n} \\ \vdots & \ddots & \vdots \\ X_{n1} & \cdots & X_{nn} \end{pmatrix} \) be any matrix of \(G \) such that \(X_{11} \neq 0 \).

Then we have

\[
X_{11} \Delta^{(0)}(Y) = \Delta^{(0)}(XYX^{-1}) X_{11}, \quad (Y \text{ runs all the elements of } A).
\]

Since \(\Delta^{(0)}(Y) \) and \(\Delta^{(0)}(XYX^{-1}) \) are scalar matrices, we have

\[
\Delta^{(0)}(Y) = \Delta^{(0)}(XYX^{-1}), \quad (Y \text{ runs all the elements of } A).
\]

But this implies that

\[
\Delta^{(0)}(Y) = \Delta^{(0)}(XYX^{-1}) \quad i = 1, \ldots, n.
\]
In fact, by Proposition 1, there exists an element Z (depending on i) of G such that $\Delta^{(i)}(Y) = \Delta^{(i)}(YZ^{-1})$ and $\Delta^{(i)}(XYX^{-1}) = \Delta^{(i)}(ZXYX^{-1}Z^{-1})$. Now since A contains the commutator subgroup of G and is abelian, we have $\Delta^{(i)}(ZXYX^{-1}Z^{-1}) = \Delta^{(i)}(ZXYZ^{-1}X^{-1})$. Thus we have the conclusion that $\Delta^{(i)}(Y) = \Delta^{(i)}(XYX^{-1})$. Since $\begin{pmatrix} \Delta^{(i)} \\ \Delta^{(i)} \end{pmatrix}$ is faithful for A, this implies that $Y = XYX^{-1}$. Further X belongs to A, because A is a maximal abelian normal subgroup containing the commutator subgroup of G. Put $\Gamma(X) = (\gamma_{ij}(X))$. If $r = r_1 = \cdots = r_n > 1$, then we have, by a fundamental relation of Schur, a contradiction:

$$\sum \gamma_{ij}(X) \gamma_{jk}(X^{-1}) = 0 = \sum \gamma_{ii}(X) \gamma_{ii}(X^{-1}) = \text{ord } G; \deg \Gamma.$$

Therefore $r = 1$. Finally we have, by a fundamental relation of Schur,

$$\frac{\text{ord } G}{\deg \Gamma} = \sum \gamma_{ij}(X) \gamma_{ii}(X^{-1}) = \sum \gamma_{ii}(Y) \gamma_{ii}(Y^{-1}) = \text{ord } A.$$

This completes the proof.

Further we prove the following.

Proposition 3. Let G be an irreducible matric group such that G contains an abelian subgroup A for which the inequality: $\text{ord } A \deg G \geq \text{ord } G$ holds. Then it holds the equality: $\text{ord } A \deg G = \text{ord } G$, and G is equivalent with a monomial matric group, which is induced by a suitable linear representation of A.

Proof. This proof we owe to Prof. T. Nakayama, our original proof was somewhat longer. Considering G itself as a representation of G, we transform into a form in which $G(A)$ takes the completely reduced form: $G(A) = r \Delta + \cdots$, where $\deg \Delta = 1$. Let $\Delta^*(G)$ be the induced representation of G by Δ. Then, by Frobenius’ reciprocity theorem [2], we have $\Delta^*(G) = rG + \cdots$. Since $\deg \Delta^*(G) = \text{ord } G$: $\text{ord } A$, we have $\Delta^*(G) = G$. This completes the proof.

Next we give a proof to Shoda’s criterion on the irreducibility of transitive monomial representations.

Proposition 4. (Shoda). Let G be a transitive monomial matric group of finite order. Considering G itself as a representation of G, we put $G(X) = (\gamma_{ij}(X)) = X$ for every matrix X of G. Then G is irreducible if and only if, for every pair of $i, j, i \neq j$, G contains a matrix X (depending on j) such that $\gamma_{ij}(X) \gamma_{jj}(X) \neq 0$, $\gamma_{ij}(X) \neq \gamma_{jj}(X)$.

Proof. “Only if”-part holds for general irreducible matric
groups. In fact, otherwise, by a fundamental relation of Schur, we have
\[0 = \sum \gamma_{ij}(X) \gamma_{jj}(X^{-1}) = \sum \gamma_{ij}(X) \gamma_{ij}(X^{-1}) = \text{ord } G : \text{deg } G. \]
Now we prove "If" part. To do this, let \(A = \langle a_{ij} \rangle \) be any commutor of \(G \). We take an \(X \) such that
\[\gamma_{ij}(X) \gamma_{jj}(X) \neq 0 \] and \(\gamma_{ij}(X) = \gamma_{jj}(X) \). Then we have \(XA = AX \). Now equating the \((i, j)\)-components of both sides, we have
\[\gamma_{ij}(X)a_{ij} = a_{ij}\gamma_{jj}(X). \]
Thus we come to the fact that \(A \) is diagonal. Now since \(G \) is transitive, \(G \) contains, for every \(i \), a matrix \(X \) (depending on \(i \)) such that \(\gamma_{ii}(X) \neq 0 \). Then we have \(XA = AX \). Again equating the \((1, i)\)-components of both sides, we have
\[\gamma_{1i}(X)a_{1i} = a_{1i}\gamma_{ii}(X). \]
Thus we come to the fact that \(A \) is scalar. This completes the proof.

Now in the extremal case: \(\text{ord } G = \text{deg } G \). \(\text{ord } A \), we can say nothing on the structure of the factor group \(G/A \). In fact,

Example 1. Let \(H \) be the regular representation of any group \(H \). Now let \(k \) be a natural number \(> 1 \) and let \(\rho \) be a primitive \(k \)-th root of \(1 \). Let \(A \) be the totality of the matrices such that
\[\begin{pmatrix} e_1^\rho & \cdots & e_{\text{ord } n}^\rho \end{pmatrix}, \]
where \(0 \leq e_1, \ldots, e_{\text{ord } n} < k \). Then clearly the product \(AH = G \) constitutes a group in which \(A \) is abelian normal, and holds the equality
\[\text{ord } G = \text{deg } G \text{ ord } A. \]
By Proposition 4, actually \(G \) is irreducible.

§ 2.

Now we treat the question to what extent the orders of two maximal abelian normal subgroups are correlated. First we give the following.

Example 2. Let \(G \) be a \(p \)-group of order \(p^{2p+2} \) which is defined by the following generators and relations:
\[A_i^p = [A_i, A_j] = B^p = C^p = 1, \]
\[BA_iB^{-1} = A_i^{1+p} (i = 1, \ldots, p), \]
\[CA_1C^{-1} = A_2, \ldots, CA_pC^{-1} = A_1. \]
Then \(G \) is metabelian and the centre of \(G \) is cyclic. Now \(\langle A_1, \ldots, A_p \rangle \) and \(\langle A_1, \ldots, A_p, B \rangle \) are two maximal abelian normal subgroups and are of order \(p^{2p} \) and \(p^{p+1} \) respectively. Thus in Proposition 2 the adjective "containing the commutator subgroup" cannot be omitted.

Now we prove following

Proposition 5. Let \(A \) and \(B \) be two maximal abelian normal subgroups of a finite group \(G \). If the commutator subgroup of \(AB \) is cyclic, then the orders of \(A \) and \(B \) are coincident.

Proof. First we remark that if \(A \) is maximal abelian normal and if \(A_p \) is the \(p \)-Sylow subgroup of \(A \), then \(A_p \) is a maximal abelian
normal p-subgroup. Therefore, to prove the Proposition 5, it is sufficient to prove the following: Let A and B be two maximal abelian normal p-subgroups of a finite group. If the commutator subgroup of AB is cyclic, then the orders of A and B are coincident. Now put $H = AB$. We show that A and B are maximal abelian subgroups of H. In fact, otherwise, we have, say, the inequality: $K(A) \cap H \supseteq A$, where $K(A)$ is the centralizer of A in G. Now since $K(A) \cap H$ is normal in G, this contradicts the maximality of A. Thus the problem is reduced to that of p-groups. So we assume that G is a p-group such that $G = AB$, where A and B are maximal abelian (normal) subgroups of G. Let $Z(G)$ be the centre of G. Then $Z(G) = A \cap B$. In fact, otherwise, A say, is not maximal abelian. Let $D(G)$ be the commutator subgroup of G. Then obviously $D(G) \subseteq A \cap B = Z(G)$. Therefore G is of class 2. Therefore if $A \cap B = Z(G)$ is cyclic, then A and B are of the same order by Proposition 2. So we assume that $A \cap B = Z(G)$ is not cyclic. Let C be a central subgroup of order p such that $C \subseteq D(G)$. Let us consider the factor group $G/C = A/C \times B/C$. Then A/C and B/C are also maximal abelian (normal) subgroups of G/C. In fact, otherwise, say, A^*_C be a maximal abelian normal subgroup of G/C containing A/C properly. Let a^*_p and a^*_p be any two elements of A^*. Then $a^*_p a^*_p a^*_p^{-1} a^*_p^{-1}$ belongs to $C \cap D(G) = 1$. This contradicts the maximality of A in G. Therefore we have the assertion by virtue of an induction argument.

§ 3.

Now we prove the theorem stated at the beginning, which is, we think, the main result of the present paper. First we give a lemma which is an immediate consequence of Proposition 4.

Lemma. Let G be a transitive monomial matric group of finite order, which is induced by its subgroup M. Let $Z(G)$ be the centre of G. If G contains an element X such that $M \triangleleft XMX^{-1} \subseteq Z(G)$, then G is reducible.

Proof of the Theorem. Let M be a cyclic subgroup of a finite group G, which is distinct from G. Let Γ be a transitive monomial representation of G induced by M. Let M be the largest normal subgroup of G contained in M. Let $Z(G)$ be the centre of G. If Γ is irreducible, then M is not contained in $Z(G)$.

Let p be any prime divisor of the order of G. Let P_p be a p-Sylow subgroup of G. We may assume that P_p is not contained in
$Z(G)$. In fact, otherwise, by Schur’s theorem, there exists the p-Sylow complement C_p of G. Further, by the so-called Schur’s lemma $\Gamma(C_p)$ is scalar and therefore $\Gamma(C_p)$ is irreducible. Since $\Gamma(C_p)$ is a transitive monomial representation of C_p induced by $M\cap C_p$, we obtain the assertion by virtue of an induction argument with respect to the order of groups.

Let M_p be the p-Sylow subgroup of M. If M_p is not contained in $Z(G)$, then we call p an essential prime divisor of the order of G. Now we assume that p is essential. Let Z_p be the p-Sylow subgroup of $Z(G)$. We denote by T_p a minimal subgroup over Z_p of M_p. By Lemma every element of G is contained in the normalizer $N(T_p)$ of T_p for some essential p. Thus G admits the set-theoretical decomposition:

$$G = \sum_p N(T_p)$$

where p runs all the essential prime order divisor of the order of G. If $N(T_p) = G$ for some essential p, then T_p is normal in G. This proves the theorem. Therefore we may assume that $N(T_p) = G$ for every essential p. In particular, we may assume that M is not a p-subgroup. Now there exists at least one p for which the index of $N(T_p)$ in G is smaller than the number R of all the essential prime divisors of the order of G.

Let p_1 be the largest prime divisor of the order of G. Then we have that $G : N(T_p) \leq R \leq p_1$. Let P_{p_1} be the least normal subgroup of G containing P_{p_1}. Representing G as a permutation group of the residue class of G by $N(T_p)$ we immediately see that $N(T_p) \cong P_{p_1}$. First we assume that $p = p_1$. Since the automorphism group of T_p is cyclic and is of order $(p-1)p^*$, we have $K(T_p) \cong P_{p_1}$, where $K(T_p)$ is the centralizer of T_p. We call an element X of $N(T_p)$ p-essential, if X is not contained in any $N(T_q), q \neq p$. Let P_{p_1} contain a p-essential element A. Naturally A is not an element of M. Let B be any element of M such that ABA^{-1} is contained in M, too. Then, as can be easily seen, we have $ABA^{-1} = B$. By virtue of Proposition 4 Γ is reducible, which is a contradiction. Therefore P_{p_1} does not contain a p-essential element. Thus P_{p_1} admits the set-theoretical decomposition:

$$P_{p_1} = \sum_{q \neq p} N(T_q) \cap P_{p_1}$$

where q runs all the essential prime divisors except p of the order of G. Now, as above, there exists at least one q such that $P_{p_1} : P_{p_1} \cap N(T_q) \leq R-1 \leq p_1$. This implies that P_{p_1} is contained in $N(T_q)$.
Again we assume that $p_i \neq q$. Since the automorphism group of T_z is of order $(q-1)q^*$, we have $K(T_q) \supseteq P_{p_i}$. We call an element X of $N(T_q) \{p, q\}$-essential, if X is not contained in any $N(T_r)$, $r \neq p, q$. Let P_{p_i} contain a \{p, q\}$-essential element A. Naturally A is not an element of M. Let B be any element of M such that ABA^{-1} is contained in M, too. Then, as can be easily seen, we have $ABA^{-1} = B$. By virtue of Proposition 4 Γ is reducible, which is a contradiction. Therefore P_{p_i} does not contain a \{p, q\}-essential element. Thus P_{p_i} admits the set-theoretical decomposition:

$$P_{p_i} = \sum_{r \neq p, q} N(T_r) \cap P_{p_i}$$

where r runs all the essential prime divisor except p, q of the order of G. Repeating this procedure, we come to the conclusion that either p_i is an essential prime divisor of the order of G and $N(T_{p_i})$ contains P_{p_i} or p_i is not an essential prime divisor of the order of G and P_{p_i} is contained in $K(T_p)$ for every essential p. Now we assume that the latter case actually occurs. Let A be an element of P_{p_i} not belonging to Z_{p_i}. Let B be an element of M such that ABA^{-1} contains M, too. Then, as can be easily seen, we have $ABA^{-1} = B$. By virtue of Proposition 4 Γ is reducible, which is a contradiction. Thus the latter case does not occur and p_i is an essential prime divisor of the order of G and $N(T_{p_i})$ contains P_{p_i}. Then since P_{p_i} may be an arbitrary p_i-Sylow subgroup of G, we have $P_{p_i} \subseteq N(T_{p_i})$.

Now let us assume that $Z_{p_i} = 1$. Then the order of T_{p_i} is p_i. Since $N(T_{p_i}) \supseteq P_{p_i}$ and the automorphism group of T_{p_i} is of order $p_i - 1$, we have $K(T_{p_i}) \supseteq P_{p_i}$. Let X be an element of G not belonging to $N(T_{p_i})$. Then we have $T_{p_i} = XT_{p_i}X^{-1}$ and $K(XT_{p_i}X^{-1}) \supseteq P_{p_i}$. Therefore, in particular, it holds that $[XT_{p_i}X^{-1}, M_{p_i}] = 1$. Put $XT_{p_i}X^{-1} = \{A\}$. Then A is a p_i-element not belonging to M. Now let B be an element of M such that ABA^{-1} is contained in M, too. Then, as can be easily seen, we have $ABA^{-1} = B$. This contradicts the irreducibility of Γ in virtue of Proposition 4. Thus Z_{p_i} can not be the identity subgroup. Then since any element of $N(T_{p_i})$ with order prime to p_i must be commutative with any element of Z_{p_i}, and since, as can be seen from the just above argument, $K(T_{p_i})$ does not contain P_{p_i}, we have $N(T_{p_i}) : K(T_{p_i}) = p_i$. In other words, any element of $N(T_{p_i})$ with order prime to p_i belongs to $K(T_{p_i})$.

Let p_i be the largest prime divisor except p_i of the order of G. Let P_{p_2} contain a p_i-essential element A. Let B be an element of M.
such that ABA^{-1} is contained in M, too. Then, as can be easily seen, we have $ABA^{-1} = B$. By virtue of Proposition 4 Γ is reducible, which is a contradiction. Thus P_{p_2} does not contain a p_1-essential element. Therefore P_{p_2} admits the set-theoretical decomposition:

$$P_{p_2} = \sum_{p \neq p_1} N(T_p) \cap P_{p_2}$$

where p runs all the essential prime divisors except p_3 of the order of G. Now, as before, there exists at least one $p \neq p_1$ such that $P_{p_2} : P_{p_2} \cap N(T_p) < R - 1 < p_2$. This implies that P_{p_2} is contained in $N(T_p)$, etc. Repeating this procedure, we come to the conclusion that every prime divisor p of the order of G is an essential prime divisor of the order of G and that $N(T_p) \supseteq P_p$ and that $Z_p = 1$ and that $N(T_p) : K(T_p) = p$.

Let p_R be the least prime divisor of the order of G. First we assume that $p_R > 2$. Let X be an element of G not belonging to $N(T_{p_R})$. Since $N(T_{p_R}) \supseteq P_{p_R}$, in other words, since T_{p_R} is normal in P_{p_R}, we see that $XT_{p_R}X^{-1}$ is also normal in P_{p_R}. Now let us consider the product $M_{p_R} \prod X'T_{p_R}X^{-1}$, where X runs all the elements of G not belonging to $N(T_{p_R})$. Then it is immediately seen that M_{p_R} is normal in this product. Then since the automorphism group of M_{p_R} is cyclic, we have that $\prod X'T_{p_R}X^{-1} : Z_{p_R} = p_R$. Thus this product is a p_R-group containing a cyclic subgroup of index p_R. Then, as is well known, the number of subgroups such as $XT_{p_R}X^{-1}$ in this product is at most equal to p_R. On the other hand, $N(T_{p_R}) \supseteq P_{p_R}$. Since p_R is the least prime divisor of the order of G, this means that $G = N(T_{p_R})$. Because of our assumption that $N(T_{p_R}) \neq G$, this is a contradiction. Thus we have $p_R = 2$. As above, we see that M_2. T_2 is a 2-group containing a cyclic subgroup of index 2, where T_2 is the least normal subgroup of G containing T_2. Then since $Z_2 = 1$, as is well known, if T_2 is not a quaternion group, then, as above, we have $G = N(T_2)$, which is a contradiction. Therefore T_2 is a quaternion group. Since $N(T_2) = G$ and since $N(T_2) \supseteq P_2$ and further since the automorphism group of a quaternion group is the symmetric group of degree 4, we have $p_{R-1} = 3$, where p_{R-1} is the least prime divisor except p_R of the order of G, and moreover $G : N(T_2) = 3$. Now let us assume that $M_2 = T_2$. Then let X be an element of G not belonging to $N(T_2)$. Since $N(T_2) \supseteq P_2 \supseteq XM_2X^{-1}$, we have $[T_2, XT_2X^{-1}] = 1$, which is a contradiction. Therefore we must have $M_2 = T_2$. Further let us assume that $P_2 \supseteq M_2$. Then P_2 contains an element A not belonging to M_2.
such that A is an element of $K(M_2)$, where $K(M_2)$ is the centralizer of M_2. Let B be any element of M such that ABA^{-1} is contained in M, too. Then, as can be easily seen, we have $ABA^{-1}=B$. By virtue of Proposition 4 it is reducible, which is a contradiction. Thus we must have $P_2 = M_2$, in other words, the 2-Sylow subgroup P_2 of G is normal in G and is a quaternion group. On the other hand, let us consider $N(T_3)$. Then, as above, we have $G : N(T_3) = 2$. More exactly, considering G as an automorphisms group of T_3, we see $G/K(T_3)$, where $K(T_3)$ is the centralizer of T_3, is of even order. Because of the normality of P_2, this shows the contradiction. This completes the proof.

Naturally for an arbitrary inducing subgroup the conclusion of this theorem is not always valid. We refer, for instance, to the icosahedral group A_5, that is, the alternating group of degree 5; since it seems to us that the example shows us the utility of Shoda’s criterion (Proposition 4). We take a tetrahedral subgroup $A_t = \{1, 2, 3, 4\}$ as an inducing subgroup and a four subgroup $V_t = \{1, 2, 3, 4\}$ as its kernel. Then the transitive monomial representation of A thus induced of degree 5 is irreducible. In fact,

$$
\begin{align*}
(15432)(123)(12345) &= (234)(132)(13)(24) \\
(14253)(124)(13524) &= (134)(142)(12)(34) \\
(13523)(134)(14253) &= (124)(143)(13)(24) \\
(12345)(234)(15432) &= (123)(243)(12)(34)
\end{align*}
$$

By virtue of Shoda’s criterion, this shows the irreducibility. Since A_5 is simple and not abelian, this representation evidently can not contain a not scalar, diagonal matrix.

Mathematical Institute, Nagoya University

(Received March 24, 1954)

References

