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Abstract
Using Seifert fibered three-manifold examples of Boileau and Zieschang, we

demonstrate that the Reshetikhin–Turaev quantum invariants may be used to provide
a sharp lower bound on the Heegaard genus which is strictly larger than the rank of
the fundamental group.

1. Introduction

For a closed oriented, connected three-manifoldM, the Heegaard genusg(M) is
defined to be the smallest integer so thatM has a Heegaard splitting of that genus.
Classically studied, the Heegaard genus is notoriously difficult to compute. In this
paper, we investigate the effectiveness of a lower bound ong(M) deriving from the
Reshetikhin–Turaev quantum invariants, as was discoveredin [6] and in [18].

The Reshetikhin–Turaev quantum invariants for three-manifolds were originally con-
ceived by Witten in [20] as a generalization of the Jones polynomial for knots and links.
As such, they allow an algorithmic and combinatorial definition, though the actual calcu-
lation is often computationally expensive. Of their known topological applications, the
lower bound ong(M) deriving from the quantum invariants may be one of the most
powerful and useful.

Until the advent of the quantum invariants, the best known bounds on Heegaard
genus came from algebraic topology. For a groupG, let its rank r (G) be the mini-
mal number of elements required to generateG. The rankr (�1M) of the fundamental
group of a three-manifold is a lower bound ong(M). By studying the Seifert fibered
space examples of Boileau and Zieschang in [4], we show that quantum invariants may
be used to provide a lower bound ong(M) which is strictly larger thanr (�1M). Fur-
ther, in this particular case, the calculation of the quantum invariant is significantly sim-
pler and shorter than the determination ofr (�1M), as appears in [4].

It is shown in [5] that for a random Heegaard splitting of genus g � 2, the quan-
tum invariants will not provide a sharp lower bound ong(M) with probability ap-
proaching 1 as the complexity of the Heegaard splitting increases. Thus, such examples
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710 H. WONG

as presented here, where the quantum invariant is better than the rank of the fundamen-
tal group in determining Heegaard genus, are statisticallyrare.

We begin with a very brief description of the quantum invariant and the correspond-
ing lower bound on Heegaard genus. We will use the version of the Reshetikhin–Turaev
quantum invariant which corresponds to the gauge groupSO(3). In Section 3, we show
that under appropriate assumptions and choices, the calculations for theSO(3) quan-
tum invariants may be simplified. We end in Section 4 by applying these results to the
Boileau–Zieschang examples and determining the Heegaard genus.

The author would like to thank her thesis advisor Professor Andrew Casson for his
patience and input while completing this research.

2. A lower bound on Heegaard genus

We define theSO(3)-quantum invariant forM, with the aim of describing a the-
orem due to Garoufalidis and Turaev relating the quantum invariants to the study of
Heegaard genus. In this paper, we follow the exposition of Lickorish in [14] and of
Turaev in [18], although the notation is changed slightly. Before proceeding, we re-
mark that it is also possible to define the set of quantum invariants associated to the
gauge groupSU(2) and to obtain lower bounds on Heegaard genus from them. The
two versions are related by a factor depending on the first betti number.

DEFINITION 1. Let M be an oriented three-manifold and letA be a complex
number. The skein spaceS(M) is the complex vector space generated by all possible
framed links inM up to isotopy of framed links and subject to the following Kauffman
bracket relations:

(i) D (�A2 � A�2) ,

(ii) D A C A�1 .

As described pictorially in the definition, relation (i) allows a small circle bounding
a disk to be removed, at the cost of introducing a factor (�A2 � A�2). The diagrams
in relation (ii) correspond to a small neighborhood of a single framed link, where it
is understood that the suppressed remainder is identical ineach diagram. For example,
note thatS(S3) � C.

For a manifold M, choose a framed linkL in S3 so that surgery alongL pro-
ducesM. The framing onL determines the type of surgery performed, i.e. the curves
to which disks are attached. Work of Dehn and Lickorish [13] guarantees such a link
exists, and Kirby in [9] further shows that any such link is unique up to link isotopy
and the two Kirby moves (stabilizations and handleslides).Following the combinatorial
approach of [14], [18] and [3], theSO(3) quantum invariant forM is obtained when
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each component ofL is replaced by an element� 2 S(S1�D2) which we describe sub-
sequently. Though the definition may seem complicated at first reading, it is because�
is carefully crafted so that, under a suitable normalization, we obtain invariance under
Kirby moves onL.

Let A to be a 2r -th or 4r -th primitive root of unity for some odd integerr � 3.
(We will usually chooseA to be one of�e�2� i =4r or �ie�2� i =4r .) In this case, the
Temperley–Lieb algebra on a square withn marked points on top andn marked points
on bottom may be generated by a set of idempotents called the Jones–Wenzl projectors.
By identifying the top and bottom of the square, we obtain elements ofS(S1 � D2)
which furthermore form a basis forS(S1 � D2). We denote thek-th basis element
obtained from a Jones–Wenzl projector by a open box labeled by k, drawn as follows:

Sk D . Due to the following identity regarding the addition ofn positive twists,

(1) D (�1)k Ak2C2k ,

the Jones–Wenzl basis elements are often thought of as eigenvectors for the linear ac-
tion on the skein space induced by a Dehn twist along a meridian of S1 � D2.

The element� 2 S(S1 � D2) is defined as a weighted average of Jones–Wenzl
idempotents withevenlabels:

(2) D � r�3X
kD0

k is even

1k ,

where�2 D (A2 � A�2)2=(�r ) and1k D (�1)k(A2(kC1) � A�2(kC1))=(A2 � A�2). 1k is
the evaluation ofSk when embedded into a neighborhood of the unknot with framing
0 in S3.

Let h�, : : : , �iL denote the skein inS(S3) obtained when� is embedded into a
neighborhood of each component of the linkL � S3. SinceS(S3) � C, we can reduceh�, : : : , �iL to a complex number dependent onA.

Theorem 2 ([10], [2]). Let r � 3 be an odd integer, and A be a2r -th or 4r -th
primitive root of unity. Let M be the closed three-manifold which results from surgery
along a framed link L in S3, and let � (L) denote the signature of the linking matrix
for L. Also let U� denote the unknot with framing�1 in S3. Then

I A(M) D h�, : : : , �iL (h�iU� )� (L)

is an invariant of the three-manifold M.
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Theorem 2 appeared in various papers, notably [10], [2], andalso later in [14]
and [3]. The version we state here is presented by Lickorish in [14] and is referred to
there as the “invariant with zero spin structure”. In Turaev’s book [18], it is the “SO(3)
quantum invariant”. However, we note that the normalization provided above differs by
a factor of�.

As an example, consider the manifoldS3. As it can be obtained fromS3 without
any surgery, its corresponding framed link will be the emptylink. So I A(S3) D 1 for
us here. SinceS3 can also be obtained by surgery along the unknot with framing1 in
S3 and I A(S3) D 1, it follows from the definition ofI A that h�iU�h�iUC D 1, where
U� and UC denote the unknot with framing�1 andC1 respectively. As all the cross-
ings in U� andUC are reversed,h�iU� and h�iUC are conjugates of each other. Thus,jh�iU� j D 1.

The SO(3) quantum invariant enjoys many properties; for instance, it behaves well
under reversal of orientation and under connect sum. That is,

I A(M) D I A(M)

and

I A(M1 ℄ M2) D I A(M1) � I A(M2)

for three-manifoldsM, M1, and M2.
Further, for particular choices ofA, it can be shown thatI A(M) is related to the

Heegaard genusg(M). This may be thought of as a consequence of theSO(3) topo-
logical quantum field theory. The proof for theSU(2) version, which is nearly identical
as that for theSO(3), may be found in [6] and in [18].

Theorem 3 ([6], [18]). Let r � 3 be odd. If AD e�2� i =4r or ie�2� i =4r , thenjI A(M)j � ��g(M).

Recall that�2 D (A2� A�2)2=(�r ). When AD e�2� i =4r or ie�2� i =4r , note that then
0< � D (2=pr ) sin(�=r ) < 1. Define

qA(M) D log(jI A(M)j)
log(�)

so thatqA(M) � g(M). In other words,qA(M) is the lower bound on Heegaard genus
provided by theSO(3) quantum invariant.

3. Changing the framing number by r

We present some methods for simplifying the computation of the SO(3) quantum
invariants in some special cases. In particular, it is possible for two non-homeomorphic
manifolds to haveSO(3) quantum invariants with the same value. Similar resultsappear
in [7] and also in [11] for theSU(2) case. All such results rely on a simple observation.
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Proposition 4. The skein element� 2 S(S1 � D2) does not change when any
multiple of r twists are added to it.

D .

Proof. This is an application of equation (1). BecauseA4r D 1, then also
((�1)k Ak2C2k)r D 1 wheneverk is even. Since the definition of� involves only la-
bels k which are even, the result immediately follows.

Theorem 5 ([7], [11]). Let r � 5 be odd and A be a2r -th or 4r -th primitive
root of unity. Let L be a link in S3 with two distinct framings, f and f0. Surgery
along L using the framings f and f0 will result in two manifolds, which we call M
and M0 respectively. Suppose that the framings f and f0 are congruent modulo r on
each component of L. Then

jI A(M)j D jI A(M 0)j.
Proof. A difference in framing numbers can be accounted for by introducing a

corresponding number of twists into the diagram. In particular, in the blackboard fram-
ing, the framing f 0 can be obtained fromf by insertingr twists, possibly more than
once, to each link component. Although this changes the signature of the framed link,
the absolute value of the quantum invariant is left unchanged becauseh�iU� has unit
norm and because of Proposition 4.

Notice that Theorem 5 is true only at the specified levelr . Examples of pairs of
manifolds with all values of theSO(3) invariants identical for all choices of levelr can
be found in [15] and [8].

We next recall a fact from number theory: any rational numberp=q 2 Q has a
continued fraction decomposition, where

p

q
D x0 � 1

x1 � 1

� � � � 1

xn

.

We will denote this byp=q D [x0, x1, : : : , xn]. We will say that two fractionsp=q
and p0=q0 have entries in their continued fraction decompositions equal modulo r if
p=q D [x0, x1, x2, : : : , xn] and p0=q0 D [x0C ra0, x1C ra1, x2C ra2, : : : , xnC ran] for
ai 2 Z.
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Related by a series of Kirby moves, the following two surgerydescriptions

and

yield the same manifold ([17]). This allows us to convert a rational (p=q)-surgery along
a knot into the language of integral surgery along a framed link, thus facilitating com-
putation of theSO(3) quantum invariants.

Let L be a link with l components in a three-manifoldM. Denote the manifold
obtained by (pi =qi )-surgery along thei -th component ofL (1 � i � l ) by M{pi =qi }.
Theorem 5 has the following corollary.

Corollary 6. Let r � 5 be odd and A be a2r -th or 4r -th primitive root of unity.
Let L be a link in a three-manifold M. If pi =qi and p0i =q0i have entries in their con-
tinued fraction decomposition equal modulo r, then

jI A(M{pi =qi })j D jI A(M{p0i =q0i })j.
4. Boileau–Zieschang examples

In this section, we focus on a particular set of three-manifolds. Let M be the mani-
fold which corresponds to the surgery presentation given byL below:

L D

where the continued fraction decomposition ofp=q has even length and every other
entry is divisible byr , i.e. p=q D [r x0, x1, r x2, x3, : : : , x2n�1, r x2n] for odd r � 5 and
integersxi .

Such three-manifoldsM are Seifert-fibered. As first noted by Boileau and Zieschang
in [4], they are of especial interest because they are examples of the relatively rare phe-
nomenon thatr (�1M) D 2 is strictly less thang(M) D 3. Recall from Section 2 that the
quantum invariants also provide a lower bound on the Heegaard genus, denotedqA(M).
In the remainder of this section, we apply the results of Section 3 to show that 2<
qA(M), and thus also 2< g(M) for the chosen values ofp=q. Viewed another way, we
show that the quantum lower bound for Heegaard genus can be strictly larger than that
provided by the rank of the fundamental group.
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Proposition 7. Let r � 5 be odd and A be a2r -th or 4r -th primitive root of
unity. Let M be the manifold corresponding to surgery using the indicated coefficients
along the link L in S3 described at the beginning of this section. Suppose that p=q D
[r x0, x1, r x2, x3, : : : , x2n�1, r x2n] for some integers x0, : : : , x2n. Then

jI A(M)j D jI A(RP3 ℄ RP3 ℄ RP3)j.
Proof. Becausep=q D [r x0,x1,r x2,x3,:::,x2n�1,r x2n], the SO(3) invariant does not

change absolute value when we replace the surgery labelp=q by 0D [0, x1, 0, x3, : : : ,
x2n�1, 0] according to Corollary 6. Recall that if in a framed link,one component is an
unknot with framing zero which links only one other component geometrically once,
then these two components may be deleted from the surgery picture without affecting
any of the other remaining framed components. This is a consequence of the Kirby
moves. On the other hand, surgery along an unknot with framing 2 producesRP3.
Thus, jI A(M)j D jI A(RP3) ℄ I A(RP3) ℄ I A(RP3)j by Corollary 6.

Proposition 8. When r� 5 is odd and AD e�2� i =4r or ie�2� i =4r , then

jI A(RP3)j D cos(�=2r )

sin(�=r )
.

Proof. Let UCC denote the unknot with framing number 2 inS3. In the black-
board framing, this would be drawn as an unknot with two positive twists. Hence, from
the basic definitions, we obtain

h�iUCC D �
r�3X
kD0

k is even

((�1)k
2C2k)212

k.

By rearranging the terms and noting thatA4r D 1, then

h�iUCC D � (A�4 � A2(r�1))
Pr�1

kD0 A8k2

(A2 � A�2)2
.

With ADe�2� i =4r or ie�2� i =4r , both have�2D (A2�A�2)2=(�r )D4sin2(�=r )=r . A stand-
ard result about Gauss sums (see for example [1]) gives

Pr�1
kD0 A8k2 DPr�1

kD0 e4� ik2=r D
i r (r�1)=2pr . It follows that jh�iUCC j D cos(�=2r )=sin(�=r ). Since surgery alongUCC
gives RP3, we have I A(RP3) D h�i2U�h�iUCC . Finally, recall thatjh�iU� j D 1, sojI A(RP3)jD jh�iUCC j.

Theorem 9. Let M be the manifold corresponding to surgery using the indicated
coefficients along the link L pictured above inTheorem 7. Let r � 5 be odd, and let
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A D e�2� i =4r or ie�2� i =4r . Suppose also that p=q D [r x0, x1, r x2, x3, : : : , x2n�1, r x2n]
for some integers x0, : : : , x2n. Then

2< qA(M) � g(M).

Proof. First note that since the quantum invariants are multiplicative under con-
nect sum, we haveI A(RP3 ℄ RP3 ℄ RP3) D I A(RP3)3. Recall from Proposition 8 thatjI A(RP3)j D cos(�=2r )=sin(�=r ). When r � 5, a quick calculus argument shows that��2 D r =(4 sin2(�=r )) < (cos(�=2r )=sin(�=r ))3 D jI A(M)j, and so 2< qA(M).
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