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Abstract
Using Seifert fibered three-manifold examples of Boileaw afieschang, we
demonstrate that the Reshetikhin—Turaev quantum invariaay be used to provide
a sharp lower bound on the Heegaard genus which is striatjedahan the rank of
the fundamental group.

1. Introduction

For a closed oriented, connected three-manifvld the Heegaard genug(M) is
defined to be the smallest integer so ti\athas a Heegaard splitting of that genus.
Classically studied, the Heegaard genus is notoriouslficdif to compute. In this
paper, we investigate the effectiveness of a lower boundy@) deriving from the
Reshetikhin—Turaev quantum invariants, as was discovierg¢é] and in [18].

The Reshetikhin—Turaev quantum invariants for three-foltts were originally con-
ceived by Witten in [20] as a generalization of the Jones paryial for knots and links.
As such, they allow an algorithmic and combinatorial defamit though the actual calcu-
lation is often computationally expensive. Of their knovapalogical applications, the
lower bound ong(M) deriving from the quantum invariants may be one of the most
powerful and useful.

Until the advent of the quantum invariants, the best knownnds on Heegaard
genus came from algebraic topology. For a grdbplet its rankr(G) be the mini-
mal number of elements required to gener&@teThe rankr (71 M) of the fundamental
group of a three-manifold is a lower bound g(M). By studying the Seifert fibered
space examples of Boileau and Zieschang in [4], we show th@htgm invariants may
be used to provide a lower bound @(M) which is strictly larger tham (71 M). Fur-
ther, in this particular case, the calculation of the quaminvariant is significantly sim-
pler and shorter than the determinationr¢f; M), as appears in [4].

It is shown in [5] that for a random Heegaard splitting of gelgu> 2, the quan-
tum invariants will not provide a sharp lower bound g(M) with probability ap-
proaching 1 as the complexity of the Heegaard splittingdases. Thus, such examples
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710 H. WoNG

as presented here, where the quantum invariant is betterthiearank of the fundamen-
tal group in determining Heegaard genus, are statisticalfg.

We begin with a very brief description of the quantum invatiand the correspond-
ing lower bound on Heegaard genus. We will use the versioheReshetikhin—Turaev
guantum invariant which corresponds to the gauge gi®0f8). In Section 3, we show
that under appropriate assumptions and choices, the atitmg for theSQ(3) quan-
tum invariants may be simplified. We end in Section 4 by apgythese results to the
Boileau—Zieschang examples and determining the Heegaardsg

The author would like to thank her thesis advisor Professmiréw Casson for his
patience and input while completing this research.

2. A lower bound on Heegaard genus

We define theSQ(3)-quantum invariant foM, with the aim of describing a the-
orem due to Garoufalidis and Turaev relating the quanturariamts to the study of
Heegaard genus. In this paper, we follow the exposition akdiish in [14] and of
Turaev in [18], although the notation is changed slightlyefde proceeding, we re-
mark that it is also possible to define the set of quantum iamts associated to the
gauge groupSU(2) and to obtain lower bounds on Heegaard genus from thene Th
two versions are related by a factor depending on the firdt beimber.

DEFINITION 1. Let M be an oriented three-manifold and It be a complex
number. The skein spacg(M) is the complex vector space generated by all possible
framed links inM up to isotopy of framed links and subject to the following Kenan
bracket relations:

(i) =(-A-A?)

o X

As described pictorially in the definition, relation (i) @s a small circle bounding
a disk to be removed, at the cost of introducing a facteA{ — A=2). The diagrams
in relation (ii) correspond to a small neighborhood of a Enfjamed link, where it
is understood that the suppressed remainder is identioghdh diagram. For example,
note thatS(S®) ~ C

For a manifoldM, choose a framed link. in S® so that surgery alond. pro-
ducesM. The framing onL determines the type of surgery performed, i.e. the curves
to which disks are attached. Work of Dehn and Lickorish [18hmntees such a link
exists, and Kirby in [9] further shows that any such link isique up to link isotopy
and the two Kirby moves (stabilizations and handleslidés)lowing the combinatorial
approach of [14], [18] and [3], th&(Q3) quantum invariant foM is obtained when
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each component df is replaced by an elemefit € S(S*x D?) which we describe sub-
sequently. Though the definition may seem complicated atrieding, it is becausg

is carefully crafted so that, under a suitable normalizatiwe obtain invariance under
Kirby moves onL.

Let A to be a 2-th or 4 -th primitive root of unity for some odd integer > 3.
(We will usually chooseA to be one of+e*2"/4 or +ie*?"'/4 ) In this case, the
Temperley—Lieb algebra on a square wittmarked points on top and marked points
on bottom may be generated by a set of idempotents calledbties3dWenzl projectors.
By identifying the top and bottom of the square, we obtainmaats of S(S' x D?)
which furthermore form a basis faf(S' x D?). We denote thek-th basis element
obtained from a Jones—Wenzl projector by a open box labefeki, lnirawn as follows:

S = . Due to the following identity regarding the addition ofpositive twists,
2ok
(1) }ntimes = (—1)kAk +2K I@ ,

the Jones—Wenzl basis elements are often thought of asveigers for the linear ac-
tion on the skein space induced by a Dehn twist along a meridfaSt x D2.

The elementQ € S(S' x D?) is defined as a weighted average of Jones—Wenzl
idempotents withevenlabels:

(2) = I f Ak,
P

k=0
k is even

where u? = (A2 — A2)?/(—r) and Ag = (—1K(AZKHD — A-2k+D) /(A2 — A2). Ay is
the evaluation ofS, when embedded into a neighborhood of the unknot with framing
0in S

Let (2, ..., Q). denote the skein i5(S) obtained wherg2 is embedded into a
neighborhood of each component of the lihkc S°. SinceS(S®) = C, we can reduce
(2,..., ) to a complex number dependent én

Theorem 2 ([10], [2]). Letr > 3 be an odd integerand A be a2r-th or 4r-th
primitive root of unity. Let M be the closed three-manifoltiet results from surgery
along a framed link L in § and leto(L) denote the signature of the linking matrix
for L. Also let U. denote the unknot with framingl in S°. Then

AM) = (2, ..., 2)L(Q)u )V

is an invariant of the three-manifold M.
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Theorem 2 appeared in various papers, notably [10], [2], alsd later in [14]
and [3]. The version we state here is presented by Lickorisfi4] and is referred to
there as the “invariant with zero spin structure”. In Turadwok [18], it is the ‘SQ(3)
guantum invariant”. However, we note that the normalizagwovided above differs by
a factor of u.

As an example, consider the manifofi. As it can be obtained fron$® without
any surgery, its corresponding framed link will be the emiitk. So 1A(S%) = 1 for
us here. Sinces® can also be obtained by surgery along the unknot with franing
S* and 1A(S®) = 1, it follows from the definition ofl, that (2)y (Q)u, = 1, where
U_ and U, denote the unknot with framing1 and+1 respectively. As all the cross-
ings inU_ andU, are reversed(2)y_ and (2)y, are conjugates of each other. Thus,
(Qu | =1.

The SQ(3) quantum invariant enjoys many properties; for instaricbehaves well
under reversal of orientation and under connect sum. That is

IA(M) = Ta(M)

and
[a(M1 8 M2) = 1a(My) - 1a(M2)

for three-manifoldsM, M, and M,.

Further, for particular choices oA, it can be shown thata(M) is related to the
Heegaard genug(M). This may be thought of as a consequence of $I&3) topo-
logical quantum field theory. The proof for tl8J(2) version, which is nearly identical
as that for theSQ(3), may be found in [6] and in [18].

Theorem 3 ([6], [18]). Let r > 3 be odd. If A= e*2" /4 or ie*2"/4  then
[1A(M)] < oo,

Recall thatu? = (A — A2)?/(—r). When A = e*27'/4 or ie*2"//4 note that then
0 < u = (2/4/)sin(x/r) < 1. Define

I
Ga(M) = Og|((ngA(2\)/l)|)

so thatga(M) < g(M). In other words,ga(M) is the lower bound on Heegaard genus
provided by theSQ(3) quantum invariant.

3. Changing the framing number by r

We present some methods for simplifying the computationhef3Q3) quantum
invariants in some special cases. In particular, it is foedor two non-homeomorphic
manifolds to haves((3) quantum invariants with the same value. Similar resatgear
in [7] and also in [11] for theSU(2) case. All such results rely on a simple observation.
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Proposition 4. The skein elemen® € S(S' x D?) does not change when any
multiple of r twists are added to it.

}. _fa
r times

Proof. This is an application of equation (1). Becaus® = 1, then also
((—1)FA*+Zy = 1 wheneverk is even. Since the definition o involves only la-
bels k which are even, the result immediately follows. O

Theorem 5 ([7], [11]). Letr > 5 be odd and A be &r-th or 4r-th primitive
root of unity. Let L be a link in Swith two distinct framings f and f. Surgery
along L using the framings f and’ fwill result in two manifolds which we call M
and M respectively. Suppose that the framings f aridafe congruent modulo r on
each component of L. Then

[TAM)] = [1a(M)].

Proof. A difference in framing numbers can be accounted fpriftroducing a
corresponding number of twists into the diagram. In paldicun the blackboard fram-
ing, the framing f’ can be obtained fronf by insertingr twists, possibly more than
once, to each link component. Although this changes theasige of the framed link,
the absolute value of the quantum invariant is left unchdngecause(2)y_ has unit
norm and because of Proposition 4. []

Notice that Theorem 5 is true only at the specified laveExamples of pairs of
manifolds with all values of th&(Q(3) invariants identical for all choices of levelcan
be found in [15] and [8].

We next recall a fact from number theory: any rational numpg¢g € Q has a
continued fraction decompositipmhere

P
q

X1 —

We will denote this byp/q = [Xo, X1, - .., Xa]. We will say that two fractionsp/q
and p'/q’ have entries in their continued fraction decompositions equaldmo r if
p/q = [Xo, X1, X2, - - -, Xn] @nd p’/qQ’ = [Xo +rag, X1 +rag, Xog +ray, ..., X, +rap] for
g € ”Z.
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Related by a series of Kirby moves, the following two surgdegcriptions

> e p
Pl xaly
and %
X1 .(Q}
0 x.
yield the same manifold ([17]). This allows us to convert &orzal (p/q)-surgery along
a knot into the language of integral surgery along a framekl, lihus facilitating com-
putation of theSQ(3) quantum invariants.
Let L be a link withl components in a three-manifoll. Denote the manifold
obtained by f/;)-surgery along thé-th component ofL (1 <i <1) by M, /q3-
Theorem 5 has the following corollary.

Corollary 6. Letr >5 be odd and A be &r-th or 4r-th primitive root of unity.
Let L be a link in a three-manifold M. Ifjpg, and {/q  have entries in their con-
tinued fraction decomposition equal modulpthen

TaMp /a1l = [TA(Myp /)l
4. Boileau-Zieschang examples

In this section, we focus on a particular set of three-méaéfoLet M be the mani-
fold which corresponds to the surgery presentation giverl bdyelow:

2 2 2 plq

where the continued fraction decomposition pfq has even length and every other
entry is divisible byr, i.e. p/q = [rXo, X1, X2, X3, . .., Xon_1, [ X2n] fOr oddr > 5 and
integersx;.

Such three-manifoldM are Seifert-fibered. As first noted by Boileau and Zieschang
in [4], they are of especial interest because they are exasrgdlthe relatively rare phe-
nomenon that (71 M) = 2 is strictly less thag(M) = 3. Recall from Section 2 that the
guantum invariants also provide a lower bound on the Heegganus, denoteda(M).

In the remainder of this section, we apply the results of iBecB to show that 2<
ga(M), and thus also Z g(M) for the chosen values gi/q. Viewed another way, we
show that the quantum lower bound for Heegaard genus carriblystarger than that
provided by the rank of the fundamental group.
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Proposition 7. Let r > 5 be odd and A be &r-th or 4r-th primitive root of
unity. Let M be the manifold corresponding to surgery using indicated coefficients
along the link L in 8 described at the beginning of this section. Suppose thgt=p
[rXo, X1, X2, X3, . .., Xon_1, [ Xon] fOr some integers oX. .., Xon. Then

[1A(M)] = [IARP3 2 RP3E RP?)|.

Proof. Because/q = [rXg,X1,l X2,X3,--.,Xon—1,F X2n], the SQ(3) invariant does not
change absolute value when we replace the surgery lafelby 0= [0, X1, 0, X3, .. .,
Xon—1, 0] according to Corollary 6. Recall that if in a framed lindkge component is an
unknot with framing zero which links only one other compongerometrically once,
then these two components may be deleted from the surgetyrgiwithout affecting
any of the other remaining framed components. This is a cuesee of the Kirby
moves. On the other hand, surgery along an unknot with frgn@inproducesR P2.
Thus, [1a(M)| = [1a(RP3) £ Ia(RP3) £ IA(RP3)| by Corollary 6. O

Proposition 8. When r> 5 is odd and A= e*%"/4 or ie*?7/4  then

cosgr/2r
1@ P?) = S0/2)
sinr/r)
Proof. LetU, . denote the unknot with framing number 2 8%. In the black-
board framing, this would be drawn as an unknot with two pasitwists. Hence, from
the basic definitions, we obtain

r-3
(Qu,, =n Y (D2,

k=0
k is even

By rearranging the terms and noting that = 1, then

@, = p BT Yo A
+ (A2 — A-2)2

With A=e*211/4 orje*27i/4 hoth haveu? = (A2—A"2)2/(—r)=4sirf(x/r)/r. A stand-
ard result about Gauss sums (see for example [1]) gesy A% = Y1 e K/ =
iTe=2 /v, It follows that [(Q)y,, | = cosr/2r)/sin@z/r). Since surgery alongy.
gives RP3, we havels(RP3) = (Q)3 (Q)u,,. Finally, recall that|(Q)y | = 1, so
[1A®RP3)| = [(Q)u,. | O

Theorem 9. Let M be the manifold corresponding to surgery using thedattd
coefficients along the link L pictured above Tineorem 7 Let r > 5 be odd and let
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A = etZri/4 or je*2Ti/4  Syppose also that/p = [rXo, X1, IX2, X3, . . ., Xon_1, I X2n]
for some integersox. .., Xon. Then

2 < ga(M) = g(M).

Proof. First note that since the quantum invariants are ipticlitive under con-

nect sum, we havés(RP3 1 RP3 £ RP3) = I,(RP3)3. Recall from Proposition 8 that
[IA(RP3)| = cosfr/2r)/sin(z/r). Whenr > 5, a quick calculus argument shows that
w2 =r/(4sirf(/r)) < (cosfr/2r)/sin@r/r))® = |1a(M)], and so 2< ga(M). O
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