<table>
<thead>
<tr>
<th>Title</th>
<th>ON SOME LENGTH PROBLEMS FOR ANALYTIC FUNCTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Nunokawa, Mamoru; Sokol, Janosz</td>
</tr>
<tr>
<td>Citation</td>
<td>Osaka Journal of Mathematics. 2014, 51(3), p. 695-707</td>
</tr>
<tr>
<td>Version Type</td>
<td>VoR</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.18910/50812</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
ON SOME LENGTH PROBLEMS FOR ANALYTIC FUNCTIONS

MAMORU NUNOKAWA and JANUSZ SOKÓŁ

(Received December 6, 2012)

Abstract

Let A be the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$

which are analytic in the unit disk $D = \{z : |z| < 1\}$. Let $C(r)$ be the closed curve which is the image of the circle $|z| = r < 1$ under the mapping $w = f(z)$, $L(r)$ the length of $C(r)$, and let $A(r)$ be the area enclosed by the curve $C(r)$. It was shown in [13] that if $f \in A$, f is starlike with respect to the origin, and for $0 \leq r < 1$, $A(r) < A$, an absolute constant, then

$$L(r) = O\left(\log \frac{1}{1-r}\right) \quad \text{as} \quad r \to 1. \quad (0.1)$$

It is the purpose of this work to prove, using a modified methods than that in [13], a strengthened form of (0.1) for Bazilevič functions, strongly starlike functions and for close-to-convex functions.

1. Introduction

Let A be the class of functions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (1.1)$$

which are analytic in the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. Let S denote the subclass of A consisting of all univalent in D.

If $f \in A$ satisfies

$$\Re \left\{ 1 + \frac{zf'''(z)}{f''(z)} \right\} > 0, \quad z \in D$$

then $f(z)$ is said to be convex in D and denoted by $f(z) \in K$.

2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C80.
If \(f \in \mathcal{A} \) satisfies
\[
\Re \left\{ \frac{zf'(z)}{f(z)} \right\} > 0, \quad z \in \mathbb{D}
\]
then \(f(z) \) is said to be starlike with respect to the origin in \(\mathbb{D} \) and denoted by \(f(z) \in S^* \).

Furthermore, if \(f \in \mathcal{A} \) satisfies
\[
(1.2) \quad \Re \left\{ \frac{zf'(z)}{e^{i\alpha}g(z)} \right\} > 0, \quad z \in \mathbb{D}
\]
for some \(g(z) \in S^* \) and some \(\alpha \in (-\pi/2, \pi/2) \), then \(f(z) \) is said to be close-to-convex in \(\mathbb{D} \) and denoted by \(f(z) \in \mathcal{C} \). An univalent function \(f \in \mathcal{S} \) belongs to \(\mathcal{C} \) if and only if the complement \(E \) of the image-region \(F = \{ f(z) : |z| < 1 \} \) is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays).

On the other hand, if \(f \in \mathcal{A} \) satisfies
\[
\Re \left\{ \frac{zf''(z)}{f'(z)g(z)} \right\} > 0, \quad z \in \mathbb{D}
\]
for some \(g(z) \in S^* \) and some \(\beta \in (0, \infty) \), then \(f(z) \) is said to be a Bazilević function of type \(\beta \) and denoted by \(f(z) \in B(\beta) \).

Let \(SS^*(\alpha) \) denote the class of strongly starlike functions of order \(\alpha, 0 < \alpha \leq 1 \),
\[
SS^*(\alpha) := \left\{ f \in \mathcal{A} : \left| \frac{zf'(z)}{f(z)} \right| < \frac{\alpha \pi}{2}, \quad z \in \mathbb{D} \right\},
\]
which was introduced in [12] and [1].

Let \(C(r) \) be the closed curve which is the image of \(|z| = r < 1 \) under the mapping \(w = f(z) \). Let \(L(r) \) denote the length of \(C(r) \) and let \(A(r) \) be the area enclosed by \(C(r) \).

Let us define \(M(r) \) by
\[
M(r) = \max_{|z| = r < 1} |f(z)|.
\]

Then F.R. Keogh [4] has shown that

Theorem 1.1. Suppose that \(f(z) \in S^* \) and
\[
|f(z)| \leq M < \infty, \quad z \in \mathbb{D}.
\]

Then we have
\[
L(r) = O\left(\log \frac{1}{1-r} \right) \text{ as } r \to 1,
\]
where \mathcal{O} means Landau’s symbol.

Furthermore, D.K. Thomas in [13] extended this result for bounded close-to-convex functions. Ch. Pommerenke in [9] has shown that

Theorem 1.2. If $f(z) \in \mathcal{C}$, then

$$L(r) = \mathcal{O}\left \{ M(r) \left(\log \frac{1}{1-r} \right)^{5/2} \right \} \text{ as } r \to 1.$$

Later, D.K. Thomas in [14] has shown that

Theorem 1.3. If $f(z) \in \mathcal{S}^*$, then

$$L(r) = \mathcal{O}\left \{ \sqrt{A(r)} \log \frac{1}{1-r} \right \} \text{ as } r \to 1.$$

M. Nunokawa in [6, 7] has shown that

Theorem 1.4. If $f(z) \in \mathcal{K}$, then

$$L(r) = \mathcal{O}\left \{ A(r) \log \frac{1}{1-r} \right \}^{1/2} \text{ as } r \to 1.$$

Moreover, D.K. Thomas in [15] has shown the following two theorems

Theorem 1.5. If $f(z) \in \mathcal{B}(\beta)$ and $|f(z)| < 1$ in \mathbb{D}, then we

$$L(r) = \mathcal{O}\left(\log \frac{1}{1-r} \right) \text{ as } r \to 1.$$

Theorem 1.6. If $f(z) \in \mathcal{B}(\beta)$ and $0 < \beta \leq 1$, then we

$$L(r) = \mathcal{O}\left(M(r) \log \frac{1}{1-r} \right) \text{ as } r \to 1.$$

M. Nunokawa, S. Owa et al. in [8] have shown that

Theorem 1.7. If $f(z) \in \mathcal{B}(\beta)$ and $zf'(z) = f^{1-\beta}(z)g^{\beta}(z)h(z)$, then we

$$L(r) = \mathcal{O}\left \{ \sqrt{A^{1-\beta}(r)G^{\beta}(r)} \left(\log \frac{1}{1-r} \right)^2 \right \} \text{ as } r \to 1,$$
where
\[G(r) = \int_0^r \int_0^{2\pi} e^{g(Qe^{i\theta})} |d\theta\,dQ| \]
or \(G(r) \) is the area of the image domain of \(|z| \leq r \) under the starlike mapping \(g \).

Ch. Pommerenke in [9] has also shown that

Theorem 1.8. If \(f(z) \in S \), then

\[M(r) \leq 4 \sqrt{\frac{A(r)}{\pi}} \log \frac{3}{1 - r} \quad (|z| = r < 1). \]

Therefore, we have

\[M(r) = O\left\{ A(r) \log \frac{1}{1 - r} \right\}^{1/2} \quad \text{as} \quad r \to 1. \]

It is the purpose of this work to prove, using a modified method than that in [13], a strengthened form of (0.1) for Bazilević functions, strongly starlike functions and for close-to-convex functions.

2. **Lemmas**

Lemma 2.1. If \(h(z) \) is analytic and \(\Re\{h(z)\} > 0 \) in \(\mathbb{D} \) with \(h(0) = 1 \), then

\[\frac{1}{2\pi} \int_0^{2\pi} |h(re^{i\theta})|^2 \, d\theta \leq \frac{1 + 3r^2}{1 - r^2} < \frac{4}{1 - r^2} \]
for \(0 < r < 1 \).

Lemma 2.1 can be easily proved using \(|h^{(n)}(0)| \leq 2n!\) and the Gutzmer’s theorem, see for example [3, p.31].

Lemma 2.2. If \(f(z) \in S \), then we have

\[\left| \frac{zf''(z)}{f'(z)} \right| \leq \frac{1 + |z|}{1 - |z|} < \frac{2}{1 - |z|} \quad \text{in} \quad \mathbb{D}, \]

\[\left| f'(z) \right| \leq \frac{1 + |z|}{(1 - |z|)^3} \quad \text{in} \quad \mathbb{D}. \]

A proof can be found in [10, p.21].
Lemma 2.3 ([2, p. 337]). If $h(z)$ is analytic and $\Re\{h(z)\} > 0$ in \mathbb{D} with $h(0) = 1$, then we have

\[
|h'(z)| \leq \frac{2 \Re\{h(z)\}}{1 - |z|^2} < \frac{2}{1 - |z|} \quad \text{in} \quad \mathbb{D}.
\]

A proof can be found also in [5].

An analytic function f is said to be subordinate to an analytic function F, or F is said to be superordinate to f, if there exists a function an analytic function w such that

\[
w(0) = 0 \quad \text{and} \quad |w(z)| < 1 \quad (z \in \mathbb{D}),
\]

and

\[
f(z) = F(w(z)) \quad (z \in \mathbb{D}).
\]

In this case, we write $f \prec F \ (z \in \mathbb{D})$ or $f(z) \prec F(z) \ (z \in \mathbb{D})$. If the function F is univalent in \mathbb{D}, then we have

\[
[f \prec F \ (z \in \mathbb{D})] \Leftrightarrow [f(0) = F(0) \text{ and } f(\mathbb{D}) \subset F(\mathbb{D})].
\]

Lemma 2.4. If $f(z)$ is subordinate to $g(z)$ in \mathbb{D} and if $0 < p$, then

\[
\int_0^{2\pi} |f(re^{i\theta})|^p \, d\theta \leq \int_0^{2\pi} |g(re^{i\theta})|^p \, d\theta
\]

for all r, $0 < r < 1$.

W. Rogosinski has shown Lemma 2.4 in [11].

3. Main results

Theorem 3.1. If $f(z) \in \mathcal{S}$ satisfies the condition

\[
\Re\left\{ 1 + \frac{zf''(z)}{f(z)} \right\} \geq -\Re\left\{ \frac{1 + z}{1 - z} \right\} \quad \text{in} \quad \mathbb{D},
\]

then we have

\[
L(r) = O \left\{ A(r) \log \frac{1}{1 - r} \right\}^{1/2} \quad \text{as} \quad r \to 1.
\]

Proof. For the case $0 < r \leq 1/2$, from Lemma 2.2 we have

\[
L(r) = \int_0^{2\pi} |zf'(z)| \, d\theta
\]

\[
\leq \int_0^{2\pi} |z|(1 + |z|) \, d\theta
\]

\[
< 12\pi.
\]
For the case $1/2 < r < 1$, we have

$$L(r) = \int_{0}^{2\pi} |zf'(z)| \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{r} \left| f'(z) + zf''(z) \right| \, dQ \, d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{r} \left| f'(z) \left(1 + \frac{zf''(z)}{f(z)} \right) \right| \, dQ \, d\theta$$

$$\leq \left(\int_{0}^{2\pi} \int_{0}^{r} |f'(z)|^2 \, dQ \, d\theta \right)^{1/2} \left(\int_{0}^{2\pi} \int_{0}^{r} \left| 1 + \frac{zf''(z)}{f(z)} \right|^2 \, dQ \, d\theta \right)^{1/2}$$

$$< \left(2 \int_{0}^{2\pi} \int_{0}^{r} \varrho |f'(z)|^2 \, dQ \, d\theta \right)^{1/2} \left(\int_{0}^{2\pi} \int_{0}^{r} \left| 1 + \frac{zf''(z)}{f(z)} \right|^2 \, dQ \, d\theta \right)^{1/2}$$

$$= \sqrt{2A(r)} \left(\int_{0}^{2\pi} \int_{0}^{r} \left| 1 + \frac{zf''(z)}{f(z)} \right|^2 \, dQ \, d\theta \right)^{1/2}.$$

From the hypothesis (3.1), we have

$$\Re \left\{ 1 + \frac{zf''(z)}{f(z)} + \frac{1+z}{1-z} \right\} > 0 \quad \text{in} \quad \mathbb{D}$$

or

$$(3.3) \quad \frac{1 + zf''(z)/f(z) + (1+z)/(1-z)}{2} < \frac{1+z}{1-z} \quad \text{in} \quad \mathbb{D}.$$

It follows that

$$1 + \frac{zf''(z)}{f(z)} + \frac{1+z}{1-z} < 2 \frac{1+z}{1-z} \quad \text{in} \quad \mathbb{D},$$

where the symbol $<$ means the subordination. Then we have

$$\int_{0}^{r} \int_{0}^{2\pi} \left| 1 + \frac{zf''(z)}{f(z)} \right|^2 \, d\theta \, dQ$$

$$= \int_{0}^{r} \int_{0}^{2\pi} \left| 1 + \frac{zf''(z)}{f(z)} + \frac{1+z}{1-z} - \frac{1+z}{1-z} \right|^2 \, d\theta \, dQ$$

$$\leq \int_{0}^{r} \int_{0}^{2\pi} \left| 1 + \frac{zf''(z)}{f(z)} + \frac{1+z}{1-z} \right|^2 \, d\theta \, dQ$$

$$+ 2 \int_{0}^{r} \int_{0}^{2\pi} \left| 1 + \frac{zf''(z)}{f(z)} + \frac{1+z}{1-z} \right| \left| 1 + \frac{z}{1-z} \right| \, d\theta \, dQ$$

$$+ \int_{0}^{r} \int_{0}^{2\pi} \left| 1 + \frac{z}{1-z} \right|^2 \, d\theta \, dQ$$

$$= I_1 + 2I_2 + I_3.$$
From Lemma 2.4, (3.3) and Lemma 2.1, we have

\[
I_1 = \int_0^r \int_0^{2\pi} \left| 1 + \frac{zf''(z)}{f(z)} + \frac{1 + z}{1 - z} \right|^2 \, d\theta \, dQ \\
\leq \int_0^r \int_0^{2\pi} 4 \left| \frac{1 + z}{1 - z} \right|^2 \, d\theta \, dQ \\
< 32\pi \int_0^r \frac{1}{1 - q^2} \, dq \\
= 16\pi \log \frac{1 + r}{1 - r}.
\]

By Lemma 2.1, we have

\[
2I_2 = \left(\int_0^r \int_0^{2\pi} \left| 1 + \frac{zf''(z)}{f(z)} + \frac{1 + z}{1 - z} \right|^2 \, d\theta \, dQ \right)^{1/2} \left(\int_0^r \int_0^{2\pi} \left| \frac{1 + z}{1 - z} \right|^2 \, d\theta \, dQ \right)^{1/2} \\
\leq \left(16\pi \log \frac{1 + r}{1 - r} \right)^{1/2} \left(8\pi \int_0^r \frac{1}{1 - q^2} \, dq \right)^{1/2} \\
= \left(16\pi \log \frac{1 + r}{1 - r} \right)^{1/2} \left(4\pi \log \frac{1 + r}{1 - r} \right)^{1/2} \\
= \mathcal{O} \left(\log \frac{1}{1 - r} \right) \text{ as } r \to 1.
\]

By Lemma 2.1, we have

\[
I_3 = \int_0^r \int_0^{2\pi} \left| \frac{1 + z}{1 - z} \right|^2 \, d\theta \, dQ \\
= 4\pi \log \frac{1 + r}{1 - r} \\
= \mathcal{O} \left(\log \frac{1}{1 - r} \right) \text{ as } r \to 1.
\]

This shows (3.2) which completes the proof of Theorem 3.1.

Theorem 3.2. If \(f(z) \in \mathcal{B}(\beta) \) is a Bazilevič function of type \(\beta, 0 < \beta \leq 1 \), then we have

\[
L(r) = \mathcal{O} \left\{ A(r) \left(\log \frac{1}{1 - r} \right)^{3/2} \right\} \text{ as } r \to 1.
\]

Proof. Because \(f(z) \in \mathcal{B}(\beta) \), there exists \(g(z) \in \mathcal{S}^* \) and there exists an analytic function \(h(z), h(0) = 1, \Re \{ h(z) \} > 0 \) in \(\mathbb{D} \), such that

\[
zf'(z) = f^{1-\beta}(z)g^\beta(z)h(z).
\]
Therefore we have
\[L(r) = \int_0^{2\pi} |zf'(z)| \, d\theta \]
\[= \int_0^{2\pi} |f^{1-\beta}(z)g^{\beta}(z)h(z)| \, d\theta \]
\[\leq M^{1-\beta}(r) \int_0^{2\pi} |g^{\beta}(z)h(z)| \, d\theta \]
\[\leq M^{1-\beta}(r) \left\{ \int_0^r \int_0^{2\pi} \beta|g^{\beta-1}(z)g'(z)h(z)| \, d\theta \, dQ + \int_r^1 \int_0^{2\pi} |g^{\beta}(z)h'(z)| \, d\theta \, dQ \right\} \]
\[\leq M^{1-\beta}(r)(I_1(r) + I_2(r)). \]

Applying Ch. Pommerenke’s result (1.3), we have
\[L(r) \leq \left(\frac{16}{\pi} A(r) \log \frac{3}{1-r} \right)^{(1-\beta)/2} (I_1(r) + I_2(r)). \]

D.K. Thomas in [15] has shown that if \(f(z) \) is a Bazilević function of type \(\beta, 0 < \beta \), then
\[I_1(r) \leq 2\sqrt{2\pi} \beta K(\beta) \left(\frac{1}{r} \log \frac{1 + r}{1 - r} \right)^{1/2} \]
\[= O \left\{ \left(\log \frac{1}{1-r} \right)^{1/2} \right\} \quad \text{as} \quad r \to 1, \]

(3.6)

where
\[K(\beta) = \max\{1, (4/r)^{1-\beta}\} \]

is a bounded constant not necessarily the same each time. On the other hand
\[I_2(r) = \int_0^r \int_0^{2\pi} |g^{\beta}(z)h'(z)| \, d\theta \, dQ. \]

Using (2.1) we obtain
\[I_2(r) \leq \int_0^r \int_0^{2\pi} |g(z)|^\beta \Re \{h(z)\} \frac{2}{1 - Q^2} \, d\theta \, dQ \]
\[\leq 2 \Re \left\{ \int_0^r \int_0^{2\pi} \frac{|g^{\beta}(z)|}{g^{\beta}(z)} h(z) \frac{1}{1 - Q^2} \, d\theta \, dQ \right\}. \]

Using (3.5) we can write
\[I_2(r) \leq 2 \Re \left\{ \int_0^r \int_0^{2\pi} zf'(z)f^{\beta-1}(z) \frac{e^{-i \arg g(z)}}{1 - Q^2} \, d\theta \, dQ \right\}. \]
Because \(g(z) \) is a starlike function, then \(\arg g(\mathcal{Q}e^{i\theta}) \) is an increasing function of \(\theta \) and maps the interval \([0, 2\pi]\) onto oneself. Applying D. K. Thomas method [15, p. 357], after a suitable substitution and integrating by parts, we obtain

\[
I_2(r) \leq \frac{2}{\beta} \Re \left\{ \int_0^r \int_{|\mathcal{Q}|=\mathcal{Q}_0} z \left(\frac{df^{\beta}(z)}{dz} \right) e^{-i\beta \arg g(z)} \frac{dz}{1 - \mathcal{Q}^2} \frac{d\mathcal{Q}}{i\mathcal{Q}} \right\}
\]

\[
= 2 \Re \left\{ \int_0^r \int_{|\mathcal{Q}|=\mathcal{Q}_0} \frac{1}{i\beta(1 - \mathcal{Q}^2)} \left(df^{\beta}(z) \right) \frac{dz}{1 - \mathcal{Q}^2} \left(\frac{d\beta}{d\arg g(z)} \right) \frac{d\theta}{\arg g(z)} \right\}
\]

\[
= 2 \Re \left\{ \int_0^r \int_{|\mathcal{Q}|=\mathcal{Q}_0} \left[f^{\beta}(z)e^{-i\beta \arg g(z)} \frac{1}{1 - \mathcal{Q}^2} \frac{d\theta}{\arg g(z)} \right] \right\}
\]

\[
\leq 4\pi \int_0^r M^{\beta}(\mathcal{Q})/(1 - \mathcal{Q}^2) \frac{d\mathcal{Q}}{i\mathcal{Q}}.
\]

Applying Ch. Pommerenke’s result (1.3), we have

\[
I_2(r) \leq 16\sqrt{\pi} \int_0^r \left(A(\mathcal{Q}) \log \frac{3}{1 - \mathcal{Q}} \right)^{\beta/2} \frac{d\mathcal{Q}}{(1 - \mathcal{Q}^2)}
\]

\[
\leq 16\sqrt{\pi} A^{\beta/2}(r) \int_0^r \left(\log \frac{3}{1 - \mathcal{Q}} \right)^{\beta/2} \frac{1}{1 - \mathcal{Q}} \frac{d\mathcal{Q}}{1 - \mathcal{Q}}
\]

\[
= 16\sqrt{\pi} A^{\beta/2}(r) \frac{2}{\beta} + 2 \int_0^r \left(\log \frac{3}{1 - \mathcal{Q}} \right)^{(\beta+2)/2} \frac{d\mathcal{Q}}{1 - \mathcal{Q}}
\]

\[
= \mathcal{O} \left\{ A^{\beta/2}(r) \left(\log \frac{1}{1 - r} \right)^{\beta+2} \right\} \text{ as } r \to 1.
\]

Applying it together with (3.6) we obtain (3.4). \(\square\)

Theorem 3.3. If \(f(z) \in \mathcal{B}(\beta) \) is a Bazilevič function of type \(\beta \), \(1 < \beta \), then we have

\[
L(r) = \mathcal{O} \left\{ A^{\beta}(r) \left(\log \frac{1}{1 - r} \right)^{\beta+2} \right\}^{1/2} \text{ as } r \to 1.
\]
Proof. For the case $0 < r \leq 1/2$, because $B(\beta) \subset S$, by Lemma 2.2 we have

\[
L(r) = \int_0^{2\pi} |z f'(z)| \, d\theta \leq \int_0^{2\pi} \frac{r(1 + r)}{(1 - r)^3} \, d\theta < 12\pi,
\]

where $r = |z|$. Assume that

\[
h(z) = \frac{zf'(z)}{f^{1-\beta}(z)g^\beta(z)}, \quad \Re\{h(z)\} > 0, \quad z \in \mathbb{D}, \quad g \in S^*.
\]

For the case $1/2 < r < 1$, we have

\[
L(r) = \int_0^{2\pi} |z f'(z)| \, d\theta = \int_0^{2\pi} |f^{1-\beta}(z)g^\beta(z)h(z)| \, d\theta \leq \int_0^{2\pi} \frac{(1 + r)^2}{r} |g^\beta(z)h(z)| \, d\theta
\]

\[
\leq \left(\frac{9}{2}\right)^{\beta-1} \int_0^{2\pi} |g^\beta(z)h(z)| \, d\theta
\]

\[
\leq \left(\frac{9}{2}\right)^{\beta-1} \left\{\int_0^r \int_0^{2\pi} \beta|g'(z)|g^{\beta-1}(z)h(z)\, d\theta\, d\varphi + \int_0^r \int_0^{2\pi} |g^\beta(z)h'(z)| \, d\theta \, d\varphi\right\}
\]

\[
= \left(\frac{9}{2}\right)^{\beta-1} (I_1(r) + I_2(r)).
\]

Using the result (3.7) for $1/2 < r < 1$, we have

\[
I_1(r) \leq 2\sqrt{2\pi} \beta K_1(\beta) \left(2 \log \frac{1}{1-r}\right)^{1/2},
\]

where $K_1(\beta) \leq \max\{1, 8^{1-\beta}\}$. Furthermore, in the same way as in the previous proof, we obtain

\[
I_2(r) = \int_0^{2\pi} \int_0^r |g^\beta(z)h'(z)| \, d\varphi \, d\theta
\]

\[
= O\left\{(A(r))^{\beta/2} \left(\log \frac{1}{1-r}\right)^{(\beta+2)/2}\right\} \quad \text{as} \quad r \to 1,
\]

where $K_2(r)$ is a bounded function of β. This completes the proof. \qed
Remark 3.4. D.K. Thomas in [15] has shown that if $f(z)$ is a Bazilevič function of type β, $0 < \beta \leq 1$, then

$$L(r) \leq K(\beta)M(r) \log \frac{1}{1-r},$$

where $K(\beta)$ is a bounded function of β. On the other hand, from Ch. Pommerenke’s result [9], we have

$$L(r) \leq K(\beta)\sqrt{A(r)}\left(\log \frac{1}{1-r}\right)^{3/2}.$$

From Theorems 3.2 and 3.3 we have that if $f(z)$ is a Bazilevič function of type β, $0 < \beta \leq 1$, then

$$L(r) = \begin{cases} O\left(\frac{A^{\beta/2}(r)}{\log \frac{1}{1-r}}\right)^{\beta+2/2} & \text{for } 1 < \beta, \\ O\left(\frac{A^{1/2}(r)}{\log \frac{1}{1-r}}\right)^{3/2} & \text{for } 0 < \beta \leq 1, \end{cases}$$

as $r \to 1$.

Theorem 3.5. Let $f \in SS^*(\alpha)$ be strongly starlike function of order α, $0 < \alpha < 1$. Then we have

(3.9) $$L(r) = O\left(A(r)\left(\log \frac{1}{1-r}\right)^{1/2}\right) \quad \text{as } r \to 1.$$

Proof. From the hypothesis of the Theorem and applying Ch. Pommerenke’s [9] and Rogosinski’s [11] results, we have

$$L(r) = \int_0^{2\pi} |zf'(z)| \, d\theta$$

$$= \int_0^{2\pi} |f(z)| \left|zf'(z)/f(z)\right| \, d\theta$$

$$\leq M(r) \int_0^{2\pi} \left|zf'(z)/f(z)\right| \, d\theta$$

$$\leq \sqrt{-KA(r)\log(1-r)} \int_0^{2\pi} \left|\frac{1+z}{1-z}\right|^\alpha \, d\theta$$

$$\leq \sqrt{-KA(r)\log(1-r)} \int_0^{2\pi} \frac{2}{|1-z|^\alpha} \, d\theta$$

$$= O\left(A(r)\left(\log \frac{1}{1-r}\right)^{1/2}\right) \quad \text{as } r \to 1,$$
where K is a bounded constant and because we have

$$\int_0^{2\pi} \frac{2}{|1-e|} \, d\theta < \infty \quad \text{for} \quad 0 < \alpha < 1. \quad \Box$$

Corollary 3.6. Let $f \in \mathcal{C}$ be close-to-convex function, satisfy (1.2) with $\alpha = 0$ in \mathbb{D} and map \mathbb{D} onto a domain of finite area A. Then by Theorem 3.2, $\beta = 1$, we have

$$L(r) = \mathcal{O}\left\{ \left(\log \frac{1}{1-r} \right)^{3/2} \right\} \quad \text{as} \quad r \to 1.$$

Notice that D.K. Thomas in Theorem 2 [13, p. 431] has shown that

$$L(r) = \mathcal{O}\left\{ \left(\log \frac{1}{1-r} \right) \right\} \quad \text{as} \quad r \to 1.$$

when $f \in \mathcal{C}$, satisfies (1.2) with $\alpha = 0$ and f is bounded in \mathbb{D}.

Corollary 3.7. Let $f \in \mathcal{C}$ be close-to-convex function, satisfy (1.2) with $\alpha = 0$ in \mathbb{D}. Then by Theorem 3.2, $\beta = 1$, we have

$$L(r) = \mathcal{O}\left\{ A(r) \left(\log \frac{1}{1-r} \right)^{3/2} \right\} \quad \text{as} \quad r \to 1.$$

In [13] it was shown that

$$L(r) = \mathcal{O}\left\{ M(r) \left(\log \frac{1}{1-r} \right) \right\} \quad \text{as} \quad r \to 1,$$

when $f \in \mathcal{C}$, satisfies (1.2) with $\alpha = 0$. Compare also Theorems 1.1–1.8 in the introduction.

References

ON SOME LENGTH PROBLEMS

Mamoru Nunokawa
University of Gunma
Hoshikuki-cho 798-8
Chuou-Ward, Chiba, 260-0808
Japan
e-mail: mamoru_nuno@doctor.nifty.jp

Janusz Sokół
Department of Mathematics
Rzeszów University of Technology
Al. Powstańców Warszawy 12
35-959 Rzeszów
Poland
e-mail: jsokol@prz.edu.pl