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Abstract
We determine the minimum number of generators of the homological Goldman

Lie algebra of a surface consisting of elements of the first homology group of the
surface.

1. Introduction

Let 6 be a compact connected oriented surface of genusg� 1. The first homology
group H D H1(6,Z) of 6 is equipped with a skew-symmetric bilinear formh–,–iW H�
H ! Z called theintersection form. We denote byQH theQ-vector space with basis
the setH ;

QH WD

(

n
X

iD1

ci [xi ] n 2 N, ci 2 Q, xi 2 H

)

,

where [–]W H ! QH is the embedding as basis. Let [–, –]W QH � QH ! QH be
a bilinear form defined by [[x], [ y]] WD hx, yi[x C y] for x, y 2 H . It is easy to see
that this bilinear form is skew-symmetric and satisfies the Jacobi identity. We call the
Q-vector spaceQH equipped with the Lie bracket [–, –] thehomological Goldman Lie
algebra of6. This Lie algebra was originally introduced by Goldman [1] pp. 295–297.

The purpose of this paper is to study generators ofQH . In the previous paper
[3], the third-named author determined the ideals ofQH . In particular, it follows
that the abelianization ofQH is finite dimensional if and only if the intersection
form h–, –i is non-degenerate; otherwiseQH is not finitely generated as a Lie al-
gebra. On the other hand, the abelianization ofZH is not finitely generated even in
the non-degenerate case.

Hereafter we assume thath–, –i is non-degenerate, i.e.,6 is closed or has one
boundary component. Then there exists aZ-basis{Ai , Bi }

g
iD1 of H , called asymplectic
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basisof H , such that

hAi , B j i D Æi j , hAi , A j i D hBi , B j i D 0

for all i , j 2 {1, : : : , g}, whereÆi j is Kronecker’s delta. Throughout this paper, we fix
a symplectic basis ofH .

We will show that if h–, –i is non-degenerate, then the Lie algebraQH is finitely
generated. Moreover, we determine the minimum number of generators ofQH con-
sisting of elements ofH . Our main theorem is the following.

Theorem 1.1. Suppose the intersection formh–, –i is non-degenerate. There is a
subset S of H such that{[s] j s 2 S} generatesQH as a Lie algebra and#SD 2gC2.
In particular, the Lie algebraQH is finitely generated. Moreover, if S is a subset of
H and {[s] j s 2 S} generatesQH as a Lie algebra, we have#S� 2gC 2.

REMARK 1.2. As we see in Lemma 2.2 and Theorem 2.3,QH is generated by
primitive elements ofH and [0]. By Theorem 3.2, ifS is a subset ofH and {[s] j
s 2 S} generatesQH , then 02 S. Therefore, the quotient Lie algebraQH=Q[0] is
generated by 2gC 1 primitive elements ofH , and 2gC 1 is the minimum number of
generators ofQH=Q[0] consisting of elements ofH . This result reminds us a result of
Humphries [2] that the mapping class group of a closed oriented surface is generated
by 2gC 1 Dehn twists, and 2gC 1 is the minimum number of generators consisting
of Dehn twists. Although we do not see any relationship between Humphries’s result
and our result, this coincidence seems interesting.

On the other hand, there is another Lie algebra associated tothe oriented surface
6 called theGoldman Lie algebra. This Lie algebra is denoted byQ O� , where O� is
the set of homotopy classes of oriented loops on6. For more details, see Goldman
[1]. The natural projectionO� ! H induces a surjective Lie algebra homomorphisms
Q O� ! QH and Q O�=Q1! QH=Q[0]. Here 1 is the homotopy class of a constant
loop. Simple closed curves on6 are analogous to primitive elements ofH . However,
in contrast with the above property ofQH , the quotient Lie algebraQ O�=Q1 is not
generated by simple closed curves. This follows from the fact that the kernel of the
Turaev cobracket [4] is a proper Lie subalgebra ofQ O�=Q1, and simple closed curves
are in the kernel of the Turaev cobracket. It is not known whether the Goldman Lie
algebraQ O� for a surface which is closed or has one boundary component isfinitely
generated or not.

The rest of this paper is devoted to the proof of Theorem 1.1.

2. Upper bound of the number of generators

We define theQ-linear mapadW QH ! End(QH ) by ad(X)(Y) WD [X, Y].
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Lemma 2.1. Fix k 2 {1, : : : , g}. Let g be a Lie subalgebra ofQH such that
[�Ak], [�Bk] 2 g. If X 2 H satisfieshAk, Xi D 0, hBk, Xi D 0 and [XC Ak] 2 g, then
we have[X C a Ak C bBk] 2 g for all (a, b) 2 Z2

n {(0, 0)}.

Proof. First of all, we have [X C a Ak] 2 g for all a 2 Z n {0} since

ad([�Bk]) ad([ Ak])a�1 ad([Bk])([ X C Ak]) D �a[X C a Ak] if a > 0,

and

ad([Bk]) ad([�Ak])�aC1 ad([�Bk])([ X C Ak]) D �a[X C a Ak] if a < 0.

Similarly, we have [X C bBk] 2 g for all b 2 Z n {0} since

ad([�Ak]) ad([Bk])b([X C Ak]) D (�1)bC1b[X C bBk] if b > 0,

and

ad([�Ak] ad([�Bk])�b([X C Ak]) D �b[X C bBk] if b < 0.

Therefore we have [X C a Ak C bBk] 2 g if abD 0 and (a, b) ¤ (0, 0).
Supposeab¤ 0. By what we have just proved, we have [XC a Ak] 2 g. Then we

have [X C a Ak C bBk] 2 g since

ad([Bk])b([X C a Ak]) D (�a)b[X C a Ak C bBk] if b > 0,

and

ad([�Bk])�b([X C a Ak]) D a�b[X C a Ak C bBk] if b < 0.

This completes the proof.

Lemma 2.2. The set

{[�Ai ] (1 � i � g), [�Bi ] (1 � i � g), [Ai C A j ] (1 � i < j � g), [0]}

generatesQH as a Lie algebra. In particular, QH is finitely generated.

Proof. Letg be the Lie subalgebra generated by the above set.

Claim 1. For any integer n> 0 and indices i1, : : : , in with 1� i1 < � � � < in � g,
we have[ Ai1 C � � � C Ain ] 2 g.

We prove Claim 1 by induction onn. If n D 1 or n D 2, the claim follows from
the assumption of the lemma. Supposen > 2 and let i1, : : : , in be indices with 1�
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i1 < � � � < in � g. By the inductive assumption, we have [Ai1 C � � � C Ain�1] 2 g. Since

ad([�Bi1]) ad([�Ai1]) ad([ Ai1 C Ain ]) ad([Bi1])([ Ai1 C � � � C Ain�1])

D [ Ai1 C � � � C Ain ],

we have [Ai1 C � � � C Ain ] 2 g. This proves Claim 1.
Let x 2 H be an arbitrary element. Ifx D 0, we have [x] 2 g by the assumption

of the lemma. Supposex ¤ 0. Since{Ai , Bi }
g
iD1 is a Z-basis ofH , we can writex D

a1Ai1Cb1Bi1C� � �Can AinCbn Bin with 1� i1 < � � � < in � g and (a1,b1), : : : , (an,bn) 2
Z

2
n {(0, 0)}.

Claim 2. We have[a1Ai1 C b1Bi1 C � � � C am Aim C bmBim C AimC1 C � � � C Ain ] 2 g

for all m D 1, : : : , n.

We prove Claim 2 by induction onm. SupposemD 1. We have [Ai2C� � �CAin ] 2
g by Claim 1. Applying Lemma 2.1 tok D i1 and X D Ai2 C � � � C Ain , we have
[a1Ai1 C b1Bi1 C Ai2 C � � � C Ain ] 2 g. This proves the casemD 1.

Supposem > 1. By the inductive assumption, we have [a1Ai1 C b1Bi1 C � � � C

am�1Aim�1 C bm�1Bim�1 C AimC1 C � � � C Ain ] 2 g. Applying Lemma 2.1 tok D im and
X D a1Ai1Cb1Bi1C� � �Cam�1Aim�1Cbm�1Bim�1C AimC1C� � �C Ain , we obtain [a1Ai1C

b1Bi1 C � � � C am Aim C bmBim C AimC1 C � � � C Ain ] 2 g. This proves Claim 2.
Applying Claim 2 tomD n, we have [x] 2 g. Since{[x] j x 2 H} is aQ-basis of

QH , we obtaing D QH . This completes the proof.

Now we give generators ofQH consisting of 2gC 2 elements ofH .

Theorem 2.3. The set

{[ Ai ] (1 � i � g), [Bi ] (1 � i � g), [�A1 � � � � � Ag � B1 � � � � � Bg], [0]}

generatesQH as a Lie algebra.

Proof. Letg be the Lie subalgebra generated by the above set. SetX WD [�A1�

� � � � Ag � B1 � � � � � Bg].
First of all, we have [A1C � � � C Ag], [ B1C � � � C Bg] 2 g since

ad([B1]) � � � ad([Bg]) ad([ A1])2
� � � ad([ Ag])2(X) D (�1)g[ A1C � � � C Ag],

and

ad([ A1]) � � � ad([ Ag]) ad([B1])2
� � � ad([Bg])2(X) D [B1C � � � C Bg].
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Next, we have [�Ai ], [�Bi ] 2 g for all i D 1, : : : , g since

ad([B1C � � � C Bg]) ad([ A1]) � � � ad([ Ai�1]) ad([ AiC1]) � � � ad([ Ag])(X)

D (�1)g�1[�Ai ],

and

ad([ A1C � � � C Ag]) ad([B1]) � � � ad([Bi�1]) ad([BiC1]) � � � ad([Bg])(X)

D �[�Bi ].

Finally, we have [Ai C A j ] 2 g for 1� i < j � g since

ad([B1C � � � C Bg]) ad([ A1C � � � C Ag]) ad([ Ai ]) ad([ A j ])(X) D 2g[ Ai C A j ].

Now the assertion follows from Lemma 2.2.

3. Lower bound of the number of generators

Lemma 3.1. Let S be a subset of H, g the Lie subalgebra generated by{[s] j
s 2 S}, and M the submonoid in H generated by S, i.e.,

M D {s1C � � � C sn 2 H j n 2 N, si 2 S}.

Then, we haveg � QM.

Proof. The set{[s1, [s2, [ � � � , [sn�1, sn] � � � ]]] j n 2 N, si 2 S} generatesg as a
Q-vector space. Since

[s1, [s2, [ � � � , [sn�1, sn] � � � ]]] D

0

�

n�1
Y

iD1

*

si ,
n
X

jDiC1

sj

+

1

A[s1C � � � C sn] 2 QM,

we obtaing � QM.

Theorem 3.2. Let S be a subset of H. If{[s] j s 2 S} generatesQH as a Lie
algebra, we have0 2 S and#S� 2gC 2.

Proof. SupposeQH is generated by{[s] j s 2 S} as a Lie algebra. Now, we have
[QH, QH ] � Q(H n {0}) since hx, yi D 0 for x, y 2 H with x C y D 0. This implies
that 02 S.

Let M be the submonoid generated byS. By Lemma 3.1 we haveQH � QM,
thus H � M. Since H � M, we obtainH D M. In other words, the setS generates
H as a monoid. In particular,Sn {0} generatesH as aZ-module. SinceH is a free
Z-module of rank 2g, we have #(Sn {0}) � 2g.
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If #(S n {0}) D 2g, S n {0} is a Z-basis of H . Then M D
{
P

s2Sn{0} ass j as �

0
}

¤ H , which contradictsM D H . Hence #(Sn {0}) > 2g, therefore we have #S�
2gC 2.

By Theorems 2.3 and 3.2, we obtain Theorem 1.1.

REMARK 3.3. Let R be a commutative ring with unit. UsingR instead ofQ,
we can similarly define the homological Goldman Lie algebraRH. If R includesQ,
the same result as Theorem 1.1 holds forRH.

In Theorem 3.2, we assumedS� H . This condition is essential. If we consider
generators which are not necessarily elements ofH , we can find generators ofQH
whose number is less than 2gC 2.

Propositon 3.4. The Lie algebraQH is generated by gC2 elements[ A1], :::,[Ag],
[�A1 � � � � � Ag � B1 � � � � � Bg] C [B1] C � � � C [Bg] C [0], and [B1C � � � C Bg].

Proof. Let g be the Lie subalgebra generated by [A1], : : : , [Ag], X WD [�A1 �

� � � � Ag � B1 � � � � � Bg] C [B1] C � � � C [Bg] C [0], and Y WD [B1C � � � C Bg].
SupposegD 1. ThenX D [�A1�B1]C[B1]C[0] and Y D [B1]. We have [�A1] 2

g since [X,Y] D�[�A1], and we have [�B1] 2 g since [X�Y, [A1]] D [�B1]. Then we
have [�A1�B1] 2 g since [[�A1], [�B1]] D [�A1�B1]. Since [0]D X�[�A1�B1]�Y
we have [0]2 g. Therefore we obtain{[ A1], [ B1], [�A1 � B1], [0]} � g, which implies
g D QH by Theorem 2.3.

Supposeg � 2. Then (�1)g[�B1 � � � � Bg] D ad([ A1]) � � � ad([ Ag])(X) 2 g. On the
other hand, we have�g[�A1 � � � � Ag] D [X, Y] 2 g. Set Z D [�A1 � � � � Ag� B1 � � � �

Bg]. Then Z 2 g since

[[�A1 � � � � � Ag], [�B1 � � � � � Bg]] D gZ.

We have [�Ai ] 2 g for i D 1, : : : , g since

ad(Y) ad([ A1]) � � � ad([ Ai�1]) ad([ AiC1]) � � � ad([ Ag])(Z) D (�1)g�1[�Ai ],

and we have [Bi ] 2 g for i D 1, : : : , g since

ad([�Ai ]) ad([ Ai ])(X)C Z D �[Bi ].

Finally, we have [0]2 g since [0]D X�Z� [B1]�� � �� [Bg]. Hence, we havegDQH
by Theorem 2.3.
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