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Abstract

We determine the minimum number of generators of the honmab@soldman
Lie algebra of a surface consisting of elements of the firshdlogy group of the
surface.

1. Introduction

Let X be a compact connected oriented surface of ggnasl. The first homology
group H = Hy(X,Z) of X is equipped with a skew-symmetric bilinear forfm,—): H x
H — Z called theintersection form We denote byQH the Q-vector space with basis
the setH;

neN, ¢ €Q, xieH},

QH := {Zci[xi]
=

where [-} H — QH is the embedding as basis. Let [-:-QH x QH — QH be
a bilinear form defined by {], [y]] := (X, y)[x + V] for X, y € H. It is easy to see
that this bilinear form is skew-symmetric and satisfies theobi identity. We call the
Q-vector spac&H equipped with the Lie bracket [-, —] tHeomological Goldman Lie
algebra of X. This Lie algebra was originally introduced by Goldman [p] p95—-297.

The purpose of this paper is to study generatorsQdi. In the previous paper
[3], the third-named author determined the ideals@¥H. In particular, it follows
that the abelianization ofQH is finite dimensional if and only if the intersection
form (—, -) is non-degenerate; otherwis@H is not finitely generated as a Lie al-
gebra. On the other hand, the abelianizationZ#i is not finitely generated even in
the non-degenerate case.

Hereafter we assume that, —) is non-degenerate, i.e% is closed or has one
boundary component. Then there existZ-basis{ A, B}’_, of H, called asymplectic
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basisof H, such that
(A, Bj) =6, (A,A)=(Bi,Bj)=0

for alli, j € {1,..., 9}, whereg;; is Kronecker's delta. Throughout this paper, we fix
a symplectic basis oH.

We will show that if (—, —) is hon-degenerate, then the Lie algel@#l is finitely
generated. Moreover, we determine the minimum number of rgeore of QH con-
sisting of elements oH. Our main theorem is the following.

Theorem 1.1. Suppose the intersection forta, —) is non-degenerate. There is a
subset S of H such théfs] | s€ S} generatesQH as a Lie algebra andtS = 2g+ 2.
In particular, the Lie algebraQH is finitely generated. Moreoveif S is a subset of
H and {[s] | s € S} generatesQH as a Lie algebrawe have#S > 2g + 2.

REMARK 1.2. As we see in Lemma 2.2 and Theorem 3 is generated by
primitive elements ofH and [0]. By Theorem 3.2, ifS is a subset ofH and {[s] |
s € S} generatesQH, then 0e S. Therefore, the quotient Lie algeb@H /Q[0] is
generated by @+ 1 primitive elements ofH, and 2y + 1 is the minimum number of
generators ofQH /Q[0] consisting of elements dfl. This result reminds us a result of
Humphries [2] that the mapping class group of a closed ttsurface is generated
by 29 + 1 Dehn twists, and @+ 1 is the minimum number of generators consisting
of Dehn twists. Although we do not see any relationship betwklumphries’s result
and our result, this coincidence seems interesting.

On the other hand, there is another Lie algebra associatéuetoriented surface
¥ called theGoldman Lie algebra This Lie algebra is denoted b@w, where 7 is
the set of homotopy classes of oriented loops n For more details, see Goldman
[1]. The natural projectionr — H induces a surjective Lie algebra homomorphisms
Q7 — QH and Q7/Q1 — QH/Q[0]. Here 1 is the homotopy class of a constant
loop. Simple closed curves oB are analogous to primitive elements Hf. However,
in contrast with the above property @H, the quotient Lie algebr®sz/Q1 is not
generated by simple closed curves. This follows from the fhat the kernel of the
Turaev cobracket [4] is a proper Lie subalgebraQpt/Q1, and simple closed curves
are in the kernel of the Turaev cobracket. It is not known Wweetthe Goldman Lie
algebraQs for a surface which is closed or has one boundary componefiniisly
generated or not.

The rest of this paper is devoted to the proof of Theorem 1.1.

2. Upper bound of the number of generators

We define theQ-linear mapad: QH — End@H) by ad(X)(Y) :=[X, Y].
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Lemma 2.1. Fix ke {1,..., g}. Let g be a Lie subalgebra oQH such that

[£A], [£Bk] € g. If X € H satisfies{Ax, X) =0, (B, X) =0 and [X + A(] € g, then
we have[X +aA, + bB(] € g for all (a, b) € z?\ {(0, 0)}.

Proof. First of all, we haveX + a/Ac] € g for all a € Z \ {0} since

ad([—Bx]) ad([ A ad([Bd)([X + Ad) = —a[X +aA] if a>0,

and
ad([By]) ad([—AJ) *"* ad([-Bd)([ X + Ad) = —a[X +aA] if a<O0.
Similarly, we have K 4+ bBy] € g for all b € Z \ {0} since

ad([—A]) ad([B)°([X + Ad) = (-1 b[X + bB] if b>0,
and
ad([—Ax] ad([—Bx]) °([X + Ac]) = —b[X +bB] if b<DO.

Therefore we haveX + aA + bB] € g if ab=0 and &, b) # (0, 0).
Supposeab # 0. By what we have just proved, we havk § aAc] € g. Then we
have X +aA + bB] € g since

ad([B)°([X + aA]) = (—a)°[X + aA+bBJ] if b>0,
and
ad([—B) (X + aAJ) = aP[X + aA+bB] if b<O.

This completes the proof. ]
Lemma 2.2. The set
{[xAl (1 =<i=<0), [£tB] 1 =i=<9) [A+A]l(1=i<]=q9) [0}
generatesQH as a Lie algebra. In particularQH is finitely generated.
Proof. Letg be the Lie subalgebra generated by the above set.

Claim 1. For any integer n> 0 and indices {,...,ip with1<i; <--- <i, <g,
we have[A, +---+ A, ] € g.

We prove Claim 1 by induction on. If n =1 orn = 2, the claim follows from
the assumption of the lemma. Suppase- 2 and letiq, ..., i, be indices with 1<
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i1 <--- <in < g. By the inductive assumption, we havé&[+---+ A _,] € g. Since

ad([-By,]) ad([—A,]) ad([A, + Ai.]) ad([Bi.)([ AL + -+ A, L)
=[A,+--+ A

we have B, +---+ A, ] € g. This proves Claim 1.

Let x € H be an arbitrary element. K = 0, we have %] € g by the assumption
of the lemma. Suppose # 0. Since{A, Bi}ig:l is a Z-basis ofH, we can writex =
A, +biBi, +---+a A, +byBi, with 1<i; <---<iy<gand @,bi),...,(@.bn) €
Z2\ {(0, 0)).

Claim 2. We havelai A, +b1Bi, +-- -+ amAi, + bmBi, + A, +---+ Al €g
foralm=1,...,n.

We prove Claim 2 by induction om. Supposen = 1. We have i, +---+ A ] €
g by Claim 1. Applying Lemma 2.1 t&k =i, and X = A, + --- + A, we have
[aa A, + 1B, + A, + -+ A ] € g. This proves the case = 1.

Supposem > 1. By the inductive assumption, we hava; f, + biBi, +--- +
am-1A, , + bm-1Bi, , + A, + -+ A,] € g. Applying Lemma 2.1 tk = i, and
X =aA, +biBi, +---+an1 A, +bnaBi, , + A, +---+ A, we obtain i1 A, +
b1Bi, +---+anA, +bnBi, + A,., +---+ A,] € g. This proves Claim 2.

Applying Claim 2 tom = n, we have k] € g. Since{[x] | x € H} is aQ-basis of
QH, we obtaing = QH. This completes the proof. L]

Now we give generators dpH consisting of 8 + 2 elements ofH.
Theorem 2.3. The set
{{All=i=09),[BlQ=i=9g [-A——Ag—B—--—Bg], [0]}
generatesQH as a Lie algebra.
Proof. Letg be the Lie subalgebra generated by the above setXSet[—A; —
o= Ag— By —--— Byl

First of all, we have Ay +--- 4+ Ag], [B1 +--- 4+ By] € g since

ad([Bi]) - - - ad([Bg]) ad([ A1])* - - - ad([ Ag])*(X) = (—1)°[As + - - - + Ag],
and

ad([Ad]) - - - ad([Ag]) ad([B1])? - - - ad([Bg])*(X) = [B1 + - - + Bg.
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Next, we have +A]],[-B]egforali=1,..., g since

ad([By + -+ - + Bg]) ad([Ad]) - - - ad([Ai—1]) @d([Ai +1]) - - - ad([ Ag])(X)
= (-1 '[-Al,

and
ad([A1 + -+ + Ag]) @d([B1]) - - - ad([ Bi—1]) @d([B; +1]) - - - ad([ Bg])(X)
= —[-Bi].

Finally, we have iy + Aj] e g for 1 <i < j < g since
ad([By + -+ + Bg]) ad([ A + - + Ag]) ad([A]) ad([A|(X) = 20[A + Aj].
Now the assertion follows from Lemma 2.2. O

3. Lower bound of the number of generators

Lemma 3.1. Let S be a subset of Hy the Lie subalgebra generated Kys] |
se S}, and M the submonoid in H generated byi®,

M={ss+ --+ss€H|neN, s e8S.
Then we haveg C QM.

Proof. The sef{[s;, [S, [, [sv-1, ] -]l In € N, s € S} generategy as a
Q-vector space. Since

n—1 n
[s, [s2. [+ v [sv-vo sl -+ 11 = (]_[<s, > Sj>)[sl+“‘+5n] €QM,

i=1 j=i+1
we obtaing C QM. O

Theorem 3.2. Let S be a subset of H. [s] | s € S} generatesQH as a Lie
algebrg we have0 € S and#S > 2g + 2.

Proof. Suppos®H is generated by[s] | s € S} as a Lie algebra. Now, we have
[QH, QH] c Q(H \ {0}) since(x,y) =0 for x, y € H with x +y = 0. This implies
that Oe S.

Let M be the submonoid generated By By Lemma 3.1 we hav®QH C QM,
thus H C M. SinceH > M, we obtainH = M. In other words, the seb generates
H as a monoid. In particulai$\ {0} generatesH as aZ-module. SinceH is a free
Z-module of rank 8, we have #8\ {0}) > 2g.



670 N. Kawazumi, Y. KUNO AND K. TODA

If #(S\ {0}) = 29, S\ {0} is a Z-basis of H. ThenM = {3} g &S |as >
0} # H, which contradictsM = H. Hence #§\ {0}) > 2g, therefore we have %>
29 + 2. 0

By Theorems 2.3 and 3.2, we obtain Theorem 1.1.

REMARK 3.3. Let R be a commutative ring with unit. Using instead ofQ,
we can similarly define the homological Goldman Lie algeR#&. If R includesQ,
the same result as Theorem 1.1 holds FoH.

In Theorem 3.2, we assumeéslC H. This condition is essential. If we consider
generators which are not necessarily elementdHofwe can find generators @H

whose number is less thamg 2- 2.

Propositon 3.4. The Lie algebraQH is generated by g 2 element§A4], ...,[Agl,

[-A1— = Ag—B1—--+=Bg] +[Bi] +---+[Bg] +[0], and [By + - - - + Bg].
Proof. Letg be the Lie subalgebra generated b%] [Ag] X:=[-A —

Supposeg = 1. ThenX = [—Al— Bi1] +[B1] +[0] andY = [By;]. We have {—Al] €
g since [X,Y] = —[—As], and we have{Bs] € g since [X—Y,[A{]] =[—Bi1]. Then we
have |-A;—By] € g since [FA1],[—Bil] =[—A1—By]. Since [0]= X—[-A;1—B1]—Y
we have [O]e g. Therefore we obtaif[A;], [B1], [—A1 — Bal, [0]} C g, which implies
g = QH by Theorem 2.3.

Supposeg > 2. Then 1)9[—B;---— By] = ad([Aq]) - - ad([Ag])(X) € g. On the
other hand, we have-g[—A;---— Ag] = [X Y]leg. SetZ=[-Ay---—Ag—By---—
Byl. Then Z € g since

[—Ai—+-— Agl, [-Bi -+ — Bgl] = gZ.
We have FA]egfori =1,...,g since
ad(Y) ad([Ad]) - - - ad([ Ai-1]) ad([Ai 41]) - - - ad([Ag])(2) = (-1)° [~ A,
and we have B] e g for i = 1,..., g since
ad([—A]) ad([AD(X) + Z = —[Bi].

Finally, we have [Ok g since [0]= X—Z —[By] —---—[Bg]. Hence, we havg = QH
by Theorem 2.3. ]
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