
Title リファクタリングを目的としたコードクローン分析
ツール Aries

Author(s) 肥後, 芳樹; 神谷, 年洋; 楠本, 真二 他

Citation 組込みソフトウェアシンポジウムESS2005. 2005,
2005(12), p. 172-173

Version Type VoR

URL https://hdl.handle.net/11094/50817

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



組込みソフトウェアシンポジウム ESS2005

リファクタリングを目的としたコードクローン分析ツール Aries

肥後芳樹 1

橋本真 -1

神谷

井

年洋 2

克郎 l

Aries: Refactoring Supporting Tool based on Code Clone Analysis 

YOSHIKI HIGO¥TOSHIHIRO KAMIYA2ヲ SHINJIKUSUMOT0
1 

and KATSURO INOUE1 

1.はじめに

近年，コードクローンがソフトウェア保守を困難に

している一つの要留といわれている.コードクローン

とはソースコード中に存在する間一，または類似した

コード片のことである.コードクローンが生成される

原因としてはさまざまな理由が考えれれるが，その最

も大きな原因のーっとしてコピーアンドペーストによ

る修正，拡張作業が挙げられる.あるコード片にパグ

が含まれていた場合，そのコード片のコードクローン

全てに対して修正の是非を考慮する必要がある.この

ような作業は，特に大規模ソフトウェアでは非常に手

間のかかる作業である.

組込み開発のソフトウェアのソースコードは近年大

規模になっており，また，実行時のパフォーマンスを

稼ぐためにループを意図的に展開したコードクローン

が作り込まれる場合があるなど，コードクローンの発

生は避けられない問題となっている.本稿では，我々

が開発してきたコードクローン検出ツールCCFinder

とリファクタリングを倍的としたコードクローン分析

ツール Ariesを紹介する.

2. コードクローン検出ツーjレ CCFinder

CCFinder2)は与えられたソフトウェアのソース

1大阪大学大学院情報科学研究科

Graduate Scholl of lnformation and Science Technol-
ogy， Osaka University 
2産業技術総合研究所情報技術研究部門

lnfomation Technology Research Institute， Advanced 
lndustrial Science and Technology 

172 

コード中に存在するコードクローンを検出し，その位

置を出力する.CCFinderはコードクローンをトーク

ンの列として検出する.そのため，検出したコードク

ローンは必ずしも集約に適した単位とはなっていない.

3. コードクローン分析ツーJレ:'ArIes 

Aries3)はGUIベースのコードクローン分析ツー

ルであり，リファクタリング支援を目的として開発さ

れている.Ariesは内部で CCFinderを用いている.

3.1 集約に適したコードクローンの検出

Ariesは CCFinderの検出したコードクローンか

ら， 構造的なまとまりを持った部分を集約に適した

コードクローンとして抽出する.函 lはその例を示し

ている.図 1では.AとBの2つのコード片が示さ

れている.AとBそれぞれの灰色の部分は，その部

分が A とBの間の最大長のコードクローンである

ことを示している.コード片 Aではいくつかのデー

タがリスト構造の先頭から頗に連続して格納されてい

る一方コード片Bでは，リスト構造の後方からj頓に

連続してデータが格納されている.これら 2つのコー

ド片には，リスト構造を扱う共通のロジ、ック (for文)

が含まれているが，コード片の最初と最後には，偶然

クローンとなった部分(代入文)も含まれてしまって

いる.集約を目的とした場合，灰色の部分全体よりも

for文のみをコードクローンとして抽出する方が望まし

い.Ariesではこのような場合，灰色で示されたコー

ドクローンから構造的なまとまりを持った部分，つま

りfor文の部分のみを捻出する.

3.2 メトリクスを用いた特徴づけ

Ariesは集約に適したコードクローンがどのように



組込みソフトウェアシンポジウム ESS2005

tail = head; 
for(i = 0; i < 10; i++) 
{ 
tail->next = (struct List勺malloc(sizeof(List));
tail認(List勺tail->next;
泊iI・>i=i;
tail->next = NULL; 

a= I・

コード片A

lor(事ぉ0;$ <$; $++) 
{ 

tail~>next = (struct List ・)malloc(size。町List));
旬日=(List・)tail占nexti
tail->$ = $; 
tail.>next = NULL; 

集約五普のコ-jピメヂ

tail = getTail(head); 
cぉ 100;
foru = 0; j < c; j++) 
{ 

} 

tail->next笥 (structList勺malloc(sizeof(List))o
tail篤 (List勺tail->nexto
tail->J =j; 
tail->next = NULLo 

tail = NULL; 

コード片B

図 1 コードクローン集約の例

Fig. 1 Example of merging two code fragments 

除去できるのかを予測するために，メトリクスを用い

てそれらを特徴づける.そして，それらが既存のどの

リファクタリングパターン1)に適用可能であるかを予

測する.この節では Ariesが用いているメトリクスの

うちのいくつかを簡単に紹介する.

NRV(S):クローンセット食 Sに含まれるコード片

が，どの程度その外部で定義された変数に対し

て参照を行っているかを表す.このメトリクスは

コード片とその周囲との結合度を表しており，値

が低いほど集約が容易である.

NSV(S):NRV(S)と同様，コード片とその周囲と

の結合度を表す.NRV(S)との遣いは，参照で

はなく代入をカウントしている点である.

DCH(S):クローンセット Sに含まれるコード片が

どの程度クラス階層中に広がっているかを表す.

例えば，全てのコード片がある一つのクラス内に

含まれる場合は O.あるクラスとその直接の子ク

ラス内に含まれる場合は 1と，コード片が広い範

囲に存在するほど，この値も大きくなる.

食 ηクローンセット"とは.互いに類似したコード片の集合を主主す.

173 

3.3 絞り込み例 ExtractMethod 

これまでに述べたことから，リファクタリングパ

ターン“ExtractMethod"を行なう際の条件として，

は例えば以下のものが上げられる.

(条件 1)対象となる単位は文単位，

(条件 2)DCH(S)の値がO.

(条件3)NSV(S)の値が 1以下，

“Extract Method"とはメソッド内のコード片に対

して適用されるので.(条件 1)が必要である.また，

全てのコードクローンが間一のクラス内に存在する場

合は容易に集約が可能であるので.(条件2)を設定し

ている.コードクローンの内部において，外部定義変

数に対して代入を行なっている場合は，その変数を引

数として与え，返り値として返し，メソッドの呼び出

し元に反映させなければならない.このような変数が

複数あった場合は新たなデータクラスを定義し，その

オブジェクトを介して値を受け渡す必要がある.しか

し，もしこのような変数が一つの場合は単に return

文を用いて返すだけで良く，容易に集約を行なうこと

ができるので.(条件3)を考慮している.

この条件を用いることによって，ユーザは“Extract

Method"が容易に適用可能であるクローンセットを得

ることができる.しかし Ariesはその集約の有効性ま

では考慮していない.Ariesが提示したクローンセッ

トを集約するか否かはユーザが判断する必要がある.

4. まとめ

本稿では，コードクローン検出ツールCCFinderお

よびコードクローン分析ツール Ariesについて述べ

た.これらを用いてソースコード中に含まれるコ}ド

クローンを検出し，対話的に分析をすることで，効率

的にコードクローンを集約することが可能である.

謝辞本研究は，文部科学省科学研究費補助金特

別研究員奨励費(課題番号:16・8351)の助成そ得た.

参考文献

1) M. Fowler， Refactoring: improving the design 
of exisiing code， Addison Wesley， 1999. 
2) T. Kamiya， S. Kusumoto， and K. Inoue， 
CCFinder: A multi-linguistic tokerトbasedcode 

clone deteciion system for lαrge scale source 

code IEEEτ'ransactions on Software Engineer掛

ing， vo1.28， no.7， pp.654暢670，Jul. 2002. 

3)肥後芳樹3神谷年洋，橋本真二3井上克郎“コー
ドクローンを対象としたリファクタリング支援環

境ヘ電子情報通信学会論文誌， Vo1.88拘D-I，No.2， 
pp.1868-195， Feb. 2005 


