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Introduction

In this paper we consider the unitary ^-groups of compact homogeneous
spaces of Lie groups and in particular, we lay emphasis on the compact
symmetric spaces.

For a compact connected Lie group G with π^G) torsion-free as a symmetric
space it is known that the ^Γ-group K*(G) of G is an exterior algebra on the
elements of K~l(G) induced by the basic representations of G [2], [3], [7],
Making use of this result Hodgkin constructed the Runneth formula spectral
sequence in equivariant K- theory [8], [9]. This spectral sequence is our main
tool in the present study. Besides we find some examples of the .^-groups of
symmetric spaces in [5].

The main theorem of this paper is the following

Theorem A. Let G be a compact connected simply-connected Lie group
together with the involutive automorphism σ and K the subgroup of G consisting of
fixed points of σ. When we write M for the homogeneous space G/K, we have

( i ) There are elements ρ19 •••, p/ of R(G) such that

σ*(pk) = ρk (r+lίgAfg/) for some r and

R(G) = £[>!, — , pr, σ*(pO, •••, σ*(pr), pr+1, — , p/] .

(ii) The natural homomorphism α: Z ® R(K)-*K°(M) becomes a mono-
ΛC<?)

morphism (Section 1) and if we identify an element of Z ® R(K) with
R(.G)

its image by a, then we can write

K*(M) = Λ(/3(Pl-σ*(Pl)), .-., β(pr-σ*(pr)))®(Z

where β(pk—<r*(pk)) w the element of K~l(M) induced by the represen-
tations ρk andσ*(ptϊ) in (ϊ)fork=l, ••-, r (Section 1).

(iii) K*(M) is torsion-free.

The arrangement of this paper is as follows.
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In section 1 we describe the definitions of the a- and β- elements of K*(M)
in Theorem A and summarize some of the facts on the Kϋnneth formula
spectral sequence.

In sections 2-4 we give a remark (Theorem 2.1) on Snaith's collapsing
theorem ([14], Theorem 5.5) for the Kϋnneth formula spectral sequence in
equivariant ^-theory. Professor V.P. Snaith informed the author that Theorem
2.1 is known to him and the author agreed with him in an outline of a proof.
For a proof of Theorem A we have need of Proposition 4.1 obtained as a corollary

to the proof of Theorem 2.1.
Sections 5-8 are devoted to the proof of Theorem A.

1. The a and β constructions and the spectral sequence

Let G be a compact Lie group and H a closed subgroup of G. The A^group
of the homogeneous space G\H has two kind of elements induced by the unitary

representations of G and H.
Over G/H we have the canonical principal //-bundle η. Then, for an H-

vector space F, the vector bundle with fibre V associated with η defines an
element a(V) of K0(GJH). Thus η defines a homomorphism of rings a : R(H)-+
K\GIH) and we see that a is clearly factored through the natural projection
R(H)^Z ® R(H) where R(G) (resp. R(H)) is the complex representation ring

£((?)

of G (resp. H) ([1], [9] §9). We shall denote this factored homomorphism
Z ® R(H)-*K°(GIH) by the same letter a.

BCGO

The other elements are defined in the following way. Consider a represen-

tation of G viewed as a homomorphism of G to the unitary group U(n). If

Pι> p2: G-*U(ri) are representations of G agreeing on H, then we can define a
map /: G/H -> U(n) by f(gH)=p^(g] p2(g)~l for gH^G/H. Then the composi-
tion of /and the inclusion of U(n) to the stable unitary group forms an element

of K~l(GIH). We denote this element by β(ρ1—p2).
Suppose that G is a compact connected Lie group such that πλ(G) is

torsion-free and let K $ denote the equivariant ίΓ-theory associated with G [13].

In [8], [9], Hodgkin constructed a strongly convergent spectral sequence

(1.1) E* * = Ύor$&(K%(X)> K%(Y)) -* F%(X; Y) ,

and showed that there is a natural transformation X of F%(X\ Y) to K$(Xx Y)
and if either X or Y is a free G-space then λ is an isomorphism ([8], Proposi-

tions 6.3 and 7.2).
In particular, when X=G and Y=G/H, a homogeneous space, in the spectral

sequence (1.1), (1.1) becomes

(1.2) EΓ = Tor&UZ, R(H))
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because of K%(G/H)=R(H).

2. A collapsing theorem for (1.2)

We have the following

Theorem 2.1. Let G be a compact connected Lie group such that π^G) is
torsion-free and H a closed connected subgroup of G. Then the spectral sequence

E*'° = Tor&UZ, R(H) ^ K*(GJH)

collapses.

From now we write E*'*(X\ Y)G for the r-th term of the spectral sequence
(1.1) and also {E*'*(X\ Y)G} for this spectral sequence.

To prove Theorem 2.1 we reduce this theorem to Theorem 5.5 of [14]

(which requires the conditions that H*(BG, Z) and H*(BH, Z) are polynomial

algebras). For this purpose we prepare two lemmas.

Lemma 2.1. Let T be a maximal torus of H in Theorem 2.1. If the spectral

sequence

E* " = Tor£G)(Z, R(T))^ K*(GIT)

collapses, then so does the spectral sequence

E*Λ = Tor£G)(Z, R(H)) -» K*(G/H) .

Proof. The natural projection G/Γ->G//f induces a morphism of the

spectral sequences

{φr}: {E*'*(G, GIH)G] - {E*'*(G, G/Γ)G} .

For a proof of Lemma 2.1 it is sufficient to to prove that φ2 is injective.
However it follows easily from the facts that φ2=Ύor^^(ί9 i*) where /* is the
restriction of R(H) to R(T) and R(H) is a direct summand of R(T) as an R(G)-
module (via restriction). q.e.d.

By choosing unitary representations of G suitably, we can embed G into a
finite product of unitary groups U such that if we denote this embedding by
i: G-^U, then

(2.1) i* : R( U) -> R(G) is surjective.

Let X be a compact, locally contractible G-space of finite covering dimen-
sion. Then we have

Lemma 2.2. Suppose that the spectral sequence
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E* * = Tor|&(Z, K£(X)) -» K*(UxX)
G

collapses, then so does

£*'* = Torl&(Z, K%(X)) •* K(X).

3. Proof of Lemma 2.2

Here we shall give a proof of Lemma 2.2.
Let L be a compact connected Lie group. We define I(L) to be the kernel

of the augmentation S:R(L)-+Z of R(L) and J(L) the quotient /(L)/(/(L))2.
Then we know that if the fundamental group of L is torsion-free then J(L) is a
free abelian group of rank / where / is the rank of L ([7], Lemma 4.2).

From (2.1) we see obviously that the homomorphism induced by x*

(3.1) if: J(U) -*•/(£) is surjective.

Define J(U, G)=Keri*. We can choose a basis £„ •••,£/, ?„ •••, ̂  for

J(U). such that if(ξl)J •••,*?(?/) form a basis /(G) and *Ί, •••,*>$ a basis for
/(£/, G). For brevity we denote the representatives of these elements in R(U)
by the same notation and then we may assume that

(3.2) i*(vA) = 0 for k = 1, •••, s.

Then we have the Koszul complex given by

(3.3) C* - A(*lf -, χ,,y» ,yi)®R(U)

where d(Xi)=Vi (l^z^ί), d(yj)=ξj (l^j^Γ) and d is a derivation.

Proof of Lemma 2.2. The inclusion X-+UxX induces a morphism {φr}

of {£*'*(E7, Ux X)a} to {£*'*(£7, X)G}.

Using (3.3) we have isomorphisms

E*'*(U,

(3.4)

« Λ(*1; »., ΛjOTorί^Z, ^ί(X)) by (3.2).

Next we consider E*'*(U, X)G. For this we need that

(3.5) K*(U/G) is torsion-free.

Suppose that (3.5) is true for the moment. Then we have an isomorphism

E*'*(U, X)G =
( ' '
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from (2.1) and (3.5).
From (3.4) and (3.6) we see that φ2 induces an epimorphism from the

torsion-part of E*'*(U, UxX)u to that of E*'*(U, X)G, and therefore we see by
β

the assumption that £"*'*( £7, X)G consists of permanent cycles. Moreover when
we consider the morphism of the spectral sequences

ψr: {E* *(U, X)G} - {E* *(G, X)G}

induced by the embedding of G to Z7, it is easy to see that £*'*(G, X)G also con-

sists of permanent cycles.
It remains to prove (3.5). Put X=G in the above. Then, from Lemma

7.3 of [8], it follows that {£*'*([/, U)v] collapses, and (3.6) when X=G follows

from the facts that TorJ ̂ Z, Z) is torsion-free ([8], Lemma 7.2). Hence we see

that {£"*'*([/, G)G} collapses by using the above argument and so K*(UIG) is

isomorphic to a subgroup of K*(U). This shows (3.5). Therefore Lemma 2.2

is proved.

4. Proof of Theorem 2.1 and a corollary

Proof of Theorem 2.1. Putting X= G/TΊn Lemma 2.2 where T is a maximal

torus of Hy Lemmas 2.1 and 2.2 imply that {£"*'*(G, G/H)G} collapses because

{E* *(U, UIT)u} does so by Theorem 5.5 of [14]. q.e.d.

Next we describe a result obtained from the proof of Lemma 2.2.

Proposition 4.1 (Cf. [5], Proposition 2.3).

Let G and H be as in Theorem 2.1. Suppose that π^H) is torsion-free and the

restriction i* : R(G)^>R(H) is surjective. Then we have

(i) There exist elements v^ •••, vs of R(G) such that i*(vjg)=Q for k=l, •••, s
and TT^J), •••, π(vs) form a basis for the free abelian group Ker (/(G)->
J(H)) where π is the composition of the natural projections

J(G).
(ii) K*(G/H) is an exterior algebra on /?(ZΊ), •••, β(vs).

Proof. By Theorem 2.1 the spectral sequence

E*'° = Tor^^Z, R(H)) •+ K*(GJH)

collapses. Here we consider the E^-term of this spectral sequence. In section

3 we can substitute the pair (G, H) for the pair (U, G) by the assumption and
put X— a point. Then we have an isomorphism

by using the notation of (3.4) and we see that the edge homomorphism of this
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spectral sequence sends Xj to β(vj) for j=l, •••, s (See [9], §10). This completes
the proof.

5. The classification of symmetric spaces

Let G, Ky σ and M be as in Theorem A and let j: K->G be the inclusion
of K throughout the remainder of this paper.

We know that K is connected ([11, I], Theorem 3.4 in Chapter IV). Now
if K is of maximal rank, then we can easily check Theorem A as follows: Since
the restriction ί*: R(G)->R(K) is injective, all elements of R(G) are fixed by σ*,
and since R(K) is a stably-free module as an Λ(G)-module [12], we see that

(5.1) a:Z® R(K) -> K*(G/K) is an isomorphism
•RCGO

from the spectral sequence (1.2) ([9], §9) and Z ® R(K) is trorsion-free.
β«?)

Therefore it suffices to prove Theorem A when rank G> rank K. When M

is a simply-connected Lie group as a symmetric space, we refer the reader to
[2] and [3] or [7]. M is simply-connected and so it is a direct product of irre-
ducible symmetric spaces. Hence we consider only the irreducible symmetric
spaces such that rank G>rank K. According to the classification of irreducible
symmetric spaces [6], such irreducible symmetric spaces are the following six
types:

AI SU(n)ISO(n)

AH SU(2n)/Sp(n)

BDI(a) Spίn(p-\-q)jSρίn(p) X Spin(q) (wherep and q are odd and

(5.2) Z2= {(!,!),(-!,-?))}

BDΠ(ά) Spin (n) I Spin (n—l) (where n is even)

El E6IPSp(4)

EIV E6/F4

6. Proofs for All, BDII(a) and EIV

The symmetric spaces of types All, BDΠ(ά) and EIV have the properties
such that π^(K) is torsion-free and i*: R(G)-^>R(K) is surjective. Hence we can
apply Proposition 4.1 to this case.

Here we describe Proposition 4.1 for the above three symmetric spaces

explicitly.
Type All (M=SU(2n)ISp(ri)). Let In denote the n X n unit matrix and put

/=(_/ o /' Then σ is given by
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where g is the complex conjugate of g.

Using the notation in [10] we have

(6.1) R(SU(2n)) = Z[\19 -, X 2 Λ_J and R(Sp(n)) = Z[Xlf-, λj

([10], Theorems 3.1 and 6.1 in §13). Then it is clear that

(6.2) *'*(λΛ) = ί*(X2Λ-Λ) = XΛ and σ*(XA) = \2n.k for k == 1, •••, n .

From (6.2) we see easily that i* is surjective and π(\k—\2n-k) (l^k^n— 1)
form a basis for the free abelian group Ker(J(SU(2ri))-+J(Sp(ri))). Therefore
we get from Proposition 4.1 that

Proposition 6.1. The notation being as in (6.1)),

K*(SU(2n)ISp(n)) = Λ^λ.-λ .̂,), -, ̂ (λ^-λ^)) .

Type BDH(a) (M=Spin(2n)/Spm(2n— 1)). σ is given by

σ(g) = — e2nge2n for any g<=Spin(2n)

where e2n is the generator of the Clifford algebra C2H in the 2w-th position

([10], §H).
From Theorem 10.3 in §13 of [10],

R(Spin(2n)) = Z[\\Pzn\ -, X*-2(p2»), Δ2

+

M, Δ2~] ,
( ' } R(Spin(2n-l)) = Ztλ1 .̂,), -, X-̂ ,..,), Δlfi.J

using the same notation. Then we can easily verify that

-2 and

From (6.4) we see that i* is surjective and the element A2n~A.2n holds the
conditions required in (i) of Proposition 4.1 and therefore we have by Proposi-
tion 4.1

Proposition! 6.2. The notation being as in (6.3),

K*(Spm(2n)/Spin(2n-l)) =

Type EIV (M=EJF4). We look at the Dynkin diagrams of E6 and F4

with the irreducible representations corresponding to the vertexes and their

dimensions written next to the vertexes:
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78
(6.5)

p λ2ρ' λV Adf
o —o< a- _o

26 273 1277 52

where \kpr (k=l or 2) is the greatest component of \kρ' (See Supplement and

Table 30 of [4]).
The involutive automorphism σ of EQ for EIV is the normal extension of a

symmetry of the Dynkin diagram E6 indicated by the arrow in the diagram (6.5)

(See [11, II], p. 130). Hence it follows immediately that

(6.6) σ*(λVι) = λV2(l^£^3) and σ*(AdEβ) = AdEβ .

Consider the highest weights of pl and pf and their dimensions, then we get

(6.7) i*(pi) = Px+l

and moreover we obtain

(6.8)

by enumerating the all weights of the adjoint representations AdE% and AdF4.
From (6.7) and (6.8) we see that /*: R(E6)-^R(F4) is surjective because of

R(F4)=Z[p', X2p', λ3/)', AdF4] [15], and therefore from (6.6) and Proposition

4.1 follows

Proposition 6.3 (Cf. [5]). The notation being as in the diagram (6.5),

K*(EJF4) -

7. Proofs for BDI(a) and El

Let L be a compact connected Lie group, H be a closed connected subgroup
of maximal rank of L andy: H->L the inclusion of H. Then,

Proposition 7.1. For a compact L-space X, there is a natural homomorphίsm

of K%( X)-mo dules j*: K£(X)-*K%(X) such thatj*(l)=l, and therefore j*j* is an
identity isomorphism where j* is the restriction

Proof. The proof is immediate from Proposition (3.8) of [13].
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Type BDI(ά) (M = Spίn(2m + 2n + 2)/Spin(2m + 1) X Spίn(2n + 1)). σ is

given by

<r(S) = ~0ι '••> *2 *+ι)£(*2m+Γ *ι)

for any g^Spin(2m+2n-\-2) where ek is the generator of the Clifford algebra
C2m+1 in the k-th position for A=l, • •-, 2m+l ([10], §11). Then we have

(7 1) (̂
* *•*(σ \

using the notation in (6.3).

Put G=Spin(2m+2n+2), K=Spin(2m+ 1) X Sρin(2n+ 1), G,=Spin
Z2

(2m+2n+l) and Kl=Spin(2m+\)xSpin(2n), then we have an isomorphism
Z2

induced by the external product homomrphism

(7.2)

by use of the Kttnneth formula spectral sequence in K^ ([8], [9] and [12]).
Furthermore, since the restriction R(G)—>R(G1) is surjective, we have isomor-
phisms

by (7.2)
/?(Gι)

(7.3) ac Λ(^(Δ2

+

OT+2M+2-Δ2-M+2n+2))®(Z ® ΛίΛΓ,)) by Prop. 6.2

Let;*: K^G/K^K^G/KJ be the homomorphism induced by the pro-
jection G/K^G/K and * : K^GJK^K^GJK) the homomorphism of
K*(GjK)-modules mentioned in Proposition 7.1. K*(G/K1) is torsion-free by
(7.3) andj* is injective by the property of/*. Therefore,

(7.4) K*(GIK) is torsion-free.

Here we have a natural homomorphism of rings

φ:

which is well-defined by (7.4). Then φ is injective because j*φ is so, and also
it is easy to see that φ is surjective by the fact that j*j*= identity. Hence we
conclude that

Proposition 7.2. The notation being as in (6.3), K*(Spin(2m+2n+2)l
Spin(2m-\- 1) X Spίn(2n+ 1)) is torsion-free and equals the ring
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Λ(/3(Δ2

+

M+2Λ+2- Δ2-M+2n+2))® (Z ® Λ(S/>m(2m+ 1) X Spin(2n+ 1))) .
jR(Spin(2»»+2»+2)) ^2

Type El (M=E6IPS(4) ). cr is the composition of the involutive automor-
phism of E6 for EIV and the inner automorphism (See [11, II], p. 131). So we
have from (6.6)

(7.5) σ*(\k

Pl) = \kp2(l^k^3) and σ*(A^6) - AdEβ

using the notation the diagram (6.5).
From the argument in p. 131 of [11, II] we know that E6 has Sp(3) X SU(2)

as a subgroup which is contained in PSp(4) and F4 where Z2 is the subgroup of
Sp(3)χSU(2) consisting of (1,1) and (-1, -1).

Setting G=E6, K=PSp(4 )y G,=F, and K1=Sp(3)xSU(2) the similar

argument to BDI(ά) shows that

Proposition 7.3. The notation being as in the diagram (6.5), K*(EJPSp(4))
is torsion-free and equals the ring

R(PSp(4))) .
-

8. Proof for AI

In the case of ^4/-type, σ is given by σ(g)—g for any g^ SU(n) where g is
the complex conjugate of g.

From Theorems 3.1 and 10.3 in §13 of [10], we have

R(SO(2m+l)) = Z[λn ..-, λj where \k = \k(p2m+l) (l^k^
( ' ) R(SO(2nί)} = Z[\19 -, \M.l9 λi, λ-]/- where \k = \*(p2m)

(l^k^m-l) and λ^ = λ?(p2m)

using the same notation.

First we consider the case when n is odd. Put n=2m+l. Then,

(8.2) i*(λA) = /*(X2W+1_*) = \k and σ*(XΛ) = \2m+1-k for ft=l, -, m
clearly.

Using the Koszul complex

C* - Λfo, -, x^)®R(SU(2m+l))

where rf(^) = λ2m+1_fe( = \2m+l.k~8(\2m+l.k)) (l^k^2m) and rfis a derivation,
we shall show

(8.3)
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For a proof we define El (I<^l<z2m) to be the subcomplex ΛJ?(so(2m+1))
(x19 ••-, xλ of C* <g) jR(*SΌ(2m+l)). Then there exist a natural short exact

Λ(S£7C2m+l»

sequence of complexes

and an isomorphism of complexes

defined by the correspondence #->#Λ?/+I, #e £"/ for = 1 , , 2m— 1 . This permits
us to apply the induction on / and then we obtain

H*(Eg) = Λ(50(2m+l))/(%1,..., λ;) ,

H*(Em+l) = Λ(xm_l+1-xm+ί, —, *m— #m+ι)

for 7=1, •••, m. Thus (8.3) is proved.
From [9], §10 it follows that the element #Λ— Λ?2Jf f+1_Λ converges to

β(\k— ̂ zm+i-Ar) m the spectral sequence (1.2) for Λ=l, •••, /w. Hence we have

Proposition 8.1. ΓAβ notation being as in (8.1),

In a similar way when n is even, we can prove the following

Proposition 8.2. The notation being as in (8.1),

K*(SU(2m)ISO(2m)) =

This completes the proof of Theorem A.
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