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1. Introduction

In this paper, we study the statistical model of the independent, 0-1-valued obser-
vations with the following distributions:

a+Bx; 1
P<Yi=1)=m,—’ P(Yi=0)=m
(i=12,...,n),

where x;’s are known real numbers called the observation points. It is sometimes more
natural to consider the parameters @ and B in the above logistic way than something
like e*/(1 + e*)’s. For example, let us cosider a random variable Y on {0, 1} with
small P[Y = 1], where the value 1 stands for a serious accident which we must avoid
definitely. Since we are sensitive on the value P[Y = 1], we take the measurement
log P[Y = 1] instead of the value itself. In this case, the logistic parametrization is
suitable. In the same reason, it is natural to assume that the prior distribution o and
B is uniform, that is, the joint prior density for («, ) is given by p(a, 8) = 1 on R2.
Then we discuss the posterior distribution on (c, 8) under a set of observations Y; = y;
(i=1,...,n).
By the Bayes formula, the posterior probability density, is given by

1 “ e +Pi Y 1 1=y
P(a’ﬂlylv-uaYn):C l_[(1+ea+ﬁxi) <l+ea+ﬂxl.)
i=1

if and only if the normalizing constant exists, that is

n ea+ﬂx, Yi 1 I—yi
C:=//l—[<l+e°‘+ﬁx'> (1+e°‘+ﬁx') dadp < .
i=1

We obtain in Theorem 1 a necessary and sufficient condition for the existence of the
posterior probability distribution, or equivalently, for ¢ < oo.
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Theorem 1. A necessary and sufficient condition for ¢ < oo is that 1 < m <
n—1 and

mmIZx, 1S = m}<2x,y,<max’2x, 1S = m}

ieS ie§

where we put m = ;_ y; and S C {1,2,...,n}.

Under this condition, we consider ¢ and 8 to be random variables and use the
notations A and B for « and B in this sense to avoid a confusion with their sample
values « and B.

We are interested in the convergence of the random variables A, B under the ob-
servations yi, y2, ..., Ykn satisfying that k number of the observation points are fixed
where the same number n of observations are allocated and the ratio of 1 among them
converges as n — oo to a value in (0, 1). That is, we assume the following set of ob-
servation points:

with

Xig=-=Xip=x (@=1,...,k)
and x; < x;4y for i =1...k— 1 with a fixed integer k not less than 2. Let y; ; be the
set of corresponding observations, for which we assume that

t;
Di = lim — (i=1,...,k)

n—oo n

exist for
n
i = Z Yij
Jj=1

and it holds that 0 < p; <1 (i =1,...,k).
Then, the posterior density p(w, Blt, ..., %) for (A, B) under these observations
satisfies that

p(amBltl"”’ )

n B Yij 1 1=yij
( 1 + ex*hxij > ( 1 + ex+bxi >

-1 exp{Z, L Lia + Bx;)}
[Te {1 +exp(a + Bx))

:»

ey

Cn
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k
= c,,—‘ exp l:n Z {;—i(a + fx;) — log(1 + exp(x + ﬂxi))”

i=1
where ¢, is the normalizing constant. We put

k

) fla, B) =) [pia+Bx;) —log {1 +exp(a + Bx)}]

i=l1
k

Gu(a, B) = Z [%(a + Bx;) — log {1 + exp(a + ﬂxi)}] .

i=1

The maximal likelihood estimator (d,, E,,) is, by definition, a point («, 8) which max-
imize G,(«, ). Similary, (&, B) is defined to be («, ) which maximize f(«, B).

Theorem 2. The maximal likelihood estimator (&,,, Bn) exists uniquely.

Theorem 3. It holds that (&, B) exists uniquely, (&, B,) converges to (&, B) as
n — oo.

Theorem 4. The random variable (A, B) converges to (&, B) in law.

Corollary 1 (Lehmann [5], A. Ibragimov and R.Z. Khas’Minskii [10]). Assume
that t;/n = pi+o(n™") (i =1,...,k) as n — oo. Then the distribution of the random
variable (A — &)//n, (B — B)/ﬁ) converges to the 2-dimensional centered normal
distribution with the covariance matrix M~ where

=)

exp(a + Bx,-)
S (L+exp(@ + Px;))?

with

» = Xk: x; exp(& + Bx;)
T (1 +exp(@ + Bx;))?

i=1

k ) ~ 2
x;exp(@ + Bx;
w=Z i exp(& éxl) '
= (1 +exp(@ + Bx;))?
The aim of this paper is to justify the Bayesian approach for the logistic parame-
ters by proving the consistency in Theorem 4 and the approximate normality in Corol-
lary 1. The consistency for the natural parameters e**#i /(1 + ¢**F¥i) (i = 1,...,k)
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with the uniform distribution on [0, 1]¢ as their joint prior distribution is just the law
of large number. One of the difficulties in our case is that the prior distribution is not
a finite measure, so that we have to start with a condition for the posterior distribu-
tion to be a probability measure. As we already remarked, the logistic parameters are
sometimes more natural than the natural parameters. This fact is also discussed in [1].
We refer to [2], [3], [4] for the meanings of Bayesian approach. Heberman [6] dis-
cussed the logit model with continuum observations, but did not discuss the binary
data case which we discuss in this paper. Johan W. Pratt [7] discussed log likelihood
for his model, but the model did not contain our case. Cox [9] gave a way to get
maximum likelihood estimates, but he did not discuss the existence and uniqueness.
Our results contains some of V.T. Farewell [11].

2. Proof of Theorem 1

For a given set of observation points x; (i = 1,...,n) and a set of corresponding
observations y; € {0,1} with m := Y -, y; and M =Y/ x;y;, we define a subset
of R? as the closed convex set generated by the set

{(ns, in); SC{l,...,n}].
ie§

Let 32 be the boundary of 2. Then, the claimed condition in Theorem 1 is equivalent
to P :=(m, M) e Q\ 9%, so that it is sufficient to prove that ¢ < oo if and only if
PeQ)\oQ.

We put

Qj=(;, Bj:= (Jl min[in ; ﬁ5=1}>
ieS
for j=0,1,...,n, and
Q;=(aj, Bj):= <2n—j, max[in ; 1S =2n —j})
ieS

for j=n,n+1,...,2n. Then, it is easy to see that 92 is the polygon
Q001+ Q2n-1Q2n With Q2, = Qo. Let

5 . .
PQj=(rjcosb;, rjsing;) (j=0,1,...,2n—1)

with r; >0 and ) < 0 < --- < b1 <Oy +2m =: 6y, .
Now we prove the “if” part. Assume that P € '\ 9€2. Since P is in the interior
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of the convex set 2, we have

T 0<j<2n—1 2 2
co = 05,‘12122—1” > 0.
Define
0i_1+6; 0;+0;
Q) = {(rcos¢, rsing); L——2 12 I <9< L5 2”1 , T >0}

for j=0,1,...,2n — 1, where 6_; := 6y_; — 2x. Then it holds that

2n—1

U 2 =R*\ (0,0}

=0

and that

explam + M)
dad
// [T (1 +exp(a + Bx;)) g

exp(am + M)
dad
f,/ Yosexp(afS+BY s xi) «dp

2n—1

1
dad
/f Ysexp (S —m)a + (X5 xi — M) B) @t

2n—1
> / f exp((m — o) + (M — B;)B)dadp.

_OQ

IA

Since |0; — ¢| <t < /2 for any (r cos¢, rsin¢) € Q;, we have
(aj —m)a+(B; — M)B > corcost

for any (o, B) = (rcos¢, rsing) € Q;. Thus,

2k—1

c< Z // exp(—cor cost)rdrd¢ < oo.

_OQ

Now we prove the “only if” part. Assume that P € 9. That is, P is one of
the vertices of the polygon QoQi:--Q2,-1Q0. Let P = Q; and y be the angle
Qj-1PQj. in the region of Q. Then y < m. Therefore, it is possible to take a
half line I = {(m + rcosf, M + rsin6);r > 0} satisfying that ZQ; Pl < n/2 and
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ZQ Pl < m/2. This implies that ZQ(S)Pl < n/2 for any S C {l,...,n} with
Q(S) =S, Y csxi) #P.
Let
I :={(a, B) € R*|asind — Bcosf| <1, acosh + Bsinh < 0}.
Then, for any (o, 8) € T and S C {1, ..., n}, it hollds that

a(u —m)+ p(v—M) < p,

where (u, v) := Q(S) and p is the diameter of 2. Thus, we have
_ exp(am + M)
=[] e s e
explam + M)

= dad

-// 25 exp (aﬁS+ﬂ ZieSxi) @dp
1

= dad

// > expa(u —m) — v — M)

1
dad
= /r/ S exp(ata —m) — pw— a0y @
1
> // 2nepdadﬁ
r
=27"e " f/dadﬂ:oo .
r

B

ExampLE 1. We consider the case where x| = x2 = -+ = X,, = U #V = X4 =
xn|+2 == -xn1+n2 and
n ny+ny
E yi=mp , E Yi =mj
i=1 i=n+1

with 0 < m; < n; and 0 < m;, < n,. Then we have

o= //(eXP(mn(awﬁ)) exp(ma(a +vp)) wdp
1

1 +exp(a +upB)) (1 +exp(a +vpB))"

= B(ny — my, my)B(ny — my, my).
]
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3. Proof of Theorem 2

Note that
k
G, t |
= I e )= ’
da ;< 1+eXp(a+ﬂxi)) gi(a, B)
k
0G, t .
= Y S ) PR o N 8.
9 i=1 <x’ (” ) 1 +exp(a "’ﬂxi)) 82(ex, B)
Since

g1, B) _ _2": expla + Bx;)
da (1 +exp(a + Bx;))?

i=1

k
gi(=00, B) =

g1(c0, B) = (’——1) <0
1

for any «, B, there exists a unique @ = a(8) for any S8 such that g;(a, 8) = 0.

Then since
da _ 3g1/38
dp 081/
S {xi exp@ + Bx))/[1 + exp(@ + Bx;)*}
Y {exp@ + Bxi)/[1 + exp@ + xi)1)
we have

de:@.p) _ 05243 e
dp da dB 9B

_ Xk: exp(a + Bx;) -
B [1 +exp@ + Bxi)]?

i=l1

k exp(@ + Bx;)
<l (1 +exp@ + Bx) 2

i=1

i x;2 exp(@ + Bx;)
[1+exp(@ + Bx;)]?

i=1

_ Xk: x; exp(a + Bx;) ?
[1 +exp(@ + Bx;)]?

i=1

<0
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by the Cauchy-Schwarz inequality.
We consider @/ as B — oo. Let p € [—00, +oco] be any one of limit points of
a/B as B — oo. We denote by ﬂlim the limit as B — oo along a subset such that
*—> 00
a/B — p.
Case 1: If —p < x, then

o
II

ST

which is absurd.
Case 2: If —p > x4, then

0= lim g(@ B)
Bx—>00
k "
= Z >0
i=1 n

which is absurd.
Case 3: If there exists x;, such that x;, < —p < x;,+1, then we have

0= ﬂlim g1, B)

()
=Y (=-1)+>) =
n n

i=ip+1

Hence,

0= lim g (@ B)
Bx—00

k t l() 1 1
=y (=- Z + lim ————
n pr—co 1 +exp(@ + pB)

i=ig+1
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Hence,

io—1

t t; A 1
1)+ w i ex, tim
Z * (n ) Z:x'n Fio g 1 +exp(@ + pB)

i=1

io—1
t t 1
; b o)+ iy im —— | o
= Yo Z(n ) Z:n ﬁ*l—r>nool+exp(&+)\ﬁ)

i=ijy+1 i=1

Thus, limg,—c g2(@, B) < 0.

In the same way, we can prove that limg.— _ 82(&, B) > 0. Therefore, there
exists a unique B, such that g,(@, B.) = 0. Putting &, = @(B,), we have proved that
(G, By) is the unique point which maximizes the function G,(c, B).

4. Proof of Theorem 3

The unique existence of (&, B) can be proved exactly in the same way as for that
of (&, Bn).
Let us take § > 0 and ny such that for any n > ny,

l

t.
d<—-—<1-6 (@(=1,...,k).
n
Lemma 1. Let

o(x, p) = px —log(1 + &%)

be a function on x e Rand p e R with 0 <8 < p <1-6§ <1 for some § > 0. Then,
we have

. max ¢(x, p) = plogp+(1 — p)log(l — p)
@) xeR

< &logd+(1 —46)log(l —6) <O,

(ii) max ¢(x, p) < —8|x|
§<p=<1-é
and
p(x, p') /
(iii) ——— — 1| < C|p" — p| for some constant C > 0.
¢(x, p)

Proof. (i) Since

dp 1
—=p—1+
0x P 1+e*

is a monotone decreasing function in x and takes value 0 at x = log p — log(1l — p),
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we have

¢(log p —log(1 — p), p)

plogp+ (1 — p)log(l — p)
< élogs+ (1 —46)log(l1 —6) <O.

I}lgﬁ( @(x, p)

(i1) For any x > 0, we have
o(x, p) < px — loge* < —éx.
On the other hand, for any x < 0, we have
¢(x, p) < px < bx.

Thus we have (ii).
(iii) Since

X

12

=

dlogep|
ap |~

1
8

by (ii), we have

|log ¢(x, p') —log (x. p)| < élp’ -l
which implies (iii).
Lemma 2. For any x; # xj, there exists a constant C > 0 such that
(a+Bx;)’ + (@ + Bx;)* = C& + B?)
holds for any o and B.
Proof. We have
(o + Bx;)* + (a + Bx;)*

2(a+ﬂx—i+xj>2+2 pr 2
2 2
C1p

v

and

(@ + Bx;)* + (& + Bx;)>
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.Xz- 2 _xz
J i 2
> 5@+ px) + 5——(a+Bx))
xi+xj X; +xj

_(ox; + Bxix ;) + (ax; + Bxix;)?

X +x7
_ 2{oc(x,~ - Xj)/2}2 + 2{a(x,- +.Xj)/2 + ﬂx,-xj}z

21 2
X; +Xj

> CQCYZ
with some positive constants C; and C,. Thus we have
(@ + Bx)* + (o + Bx)* = C(o” + B7)
with C := (1/2) min{C;, C,} > 0. (]
Lemma 3. There exists a constant D > O such that
Gu(a, f) < —D(@* + B1)'/?
for any n > ng and (a, B) € R%.

Proof. Since
k N
G, B)=) ¢ (a + Bxi, ;') :
i=1

where ¢ is defined in Lemma 1, we have

A

Gnla, B) = —d(la + Bxi| + | + Bx;])

< —8{(a+Bx)’ + ( + Bx;)*}/?
< —5C(@a* + pY)'
with D =8C by Lemmas 1 and 2. |

Now we shall complete the proof of Theorem 3, since
G,(0,0)=—klog2
and by Lemma 3, for any (a, ) with a? + 82 > (klog2/C)?

Gn(a, B) < —klog?2,
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it holds that

klog2)2‘

A2, A2
an+ﬂn§< C

Since G, converges to f uniformly in any bounded region as n — oo, for any subse-
quence {n’} of {n} such that

a*:= lim &, , B*:= lim B,
n'—o0 n’—o00

exist, it holds that
lim G,(@y,By) = lim f(@y, Bw)
n—0o0 n'—oo

f@*, B < f@,p.

On the other hand, since

| £ (@&, B) — Gu(@n, Byl
max fla, B) — max
a2+p2<(k log2/D)? a2+p2<(klog2/D)?

< sup |f(a, B) — Guler, B)l = O
a?+B2<(klog2/D)?

Gn(a7 ﬂ)

as n —> oo, f(a*, B*) = f(&,B). The uniqueness of the («, 8) which maximizes
f(a, B) implies that (a*, B*) = (&, B). This also implies that &, — & and B, — B
as n — oo, which completes the proof.

ExampLE 2. For Example 1, we have

N v m u my
&y = log + lo

v—Uu ny —mg u—v ny —my
~ 1 ml(nz—mz)
By = lo .

u—v - my(ng —m)

5. Proof of Theorem 4

Lemma 4. It holds that

k
v (a + Bxi, ’;) = f(@, B)(1+ OG,))
=1

l

where §, ;= max; |(t;/n) — p;| and O(6,) is uniform in @ and B as n — oo.
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Proof. Take § > 0 such that 2§ < min; p; and max; p; + 26§ < 1. Then by (1),

there exists no such that for any n > ny, it holds that

<dé G=1,...,k).

— = Di
n
Then by (iii) of Lemma 1, there exists a constant C such that
1

] (a + Bxi, ;) =p(a+Bx; , p)1+& ,)

with |& .| < C|(t;/n) — p;i| for any i =1, ..., k. Therefore, we have
k /
% (a + B, ;’) = f(@. A)(1 +&)

with

|&,] < C max
1

14
- Pi| = 0(8y).
n

To prove Theorem 4, it is sufficient to prove that for any given ¢ > 0,

lim // pla, Blt1, ..., t)dadpB = 1.

n—>oo
(G@—¢,6+€)x(B—e, B+e)

Note that
k
p(ot,ﬂh‘],...,tk)=c,,—lexp|:n2(p(ol+ﬁx,, )}
i=1

with

k
= // exp |:n Z(p <a + Bx;, ;—1):] dadpB.
i=1

By Theorem 3, Lemmas 1 and 3,

max f(x,B)=f(@ B) <0
(a,B)eR?

(1) plim f )=~

For any A > 0, let

Q(A) = {(a, B) e R f(a, B) > A — A},
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where we put A = f(&, B). Since by Theorem 3, (&, B) is the unique point which
maximizes f together with (3) and the fact that f is continuous, we can take A such
that

) QBA)C(@—¢e,a+e)x (B—e, B+e).

Since 2(A) is a nonempty bounded open set, it has a positive area, say S > 0. More-
over, by (1) and Lemma 4, there exists n; such that for any n > n; and (a, 8) € 2(A),

k
L

E <p(a+ﬂxi,—) > A —2A.
n

i=1

Hence for any n > n;, we have

k
3) // exp l:n ;go (a + Bxi, ;_’):| dadB > A-200g,

Q(A)

On the other hand, by (1), (2), (3) and Lemma 1, there exists n, such that for any
n >n, and (a, B) ¢ Q54),

k
t.
D¢ <a+ﬂx,», —') < A—4A.
n
i=1

Also by (1), Lemmas 3 and 4, there exists n3 such that for any n > n3 and («, B) €
R?,

k
Y’ (a+ﬂx,-, t—") < 1f@ B) < —2C@+ ),
n 2 2

i=l

Hence, for any n with 0 < n < 1, («, B) ¢ Q(5A), and n > n4 := n, vV n3 we have
* f 1
> o (a + Bxi, —’) < —5Cn(’? + BN+ (1 = n)(A —4A).
n
i=1

Therefore, taking a small n > 0 such that
(1 —=n)(A—-4A) < A —3A,

we have

k
t ,

e <a+ﬂx,-, —) <—C@+p)2+A-3A
n

i=1
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for any («, B) ¢ (5A) and n > ny4 with some constant C’ > 0. Hence, we have

f/ expl: Z¢<a+ﬂx,, )]dadﬁ

R2\Q(5A)

IA

f/ exp[—C'n(e® + BH)'? + (A — 3A)n] dadp

A3 / / exp[-C'(@* + 8%)'/*] dadp

C// (A=3A)n

IA

“

IA

for any n > n4 with some constant C” > 0.
Let

I, = /f pla, Blty, ..., tr)dadB.

(@—e,a+e)x (B—e, B+e)

Then by (4), we have

I, > //p(a,ﬂltl,...,tk)dadﬂ

ot [[ | w 3o (o 5. ) |aaar

i=1

Q(5A) !
Putting
k
5 J(j) = /fexp l:n2¢(a+ﬂx,,—>} dadp
Q.jA) i=1
and
k
(6) L(j):= // exp|:n2<p<a+ﬁx,, >:|d dg,
RA\Q(jA) =l
we have
I, > Cn—lj(j) = L
J(5)+ L(5)

O 1
T I +LG)  1+{LG)/IA)
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Let ng :=n; V ng. Then, for any n > ny, we have by (5) and (6) that

Thus,

J() > e(A—-ZA)nS and L(5) < C”e(A_g’A)".

In > _1—
T 1+CVSlemAn

from which lim,_.o I, = 1 follows. O

Lehmann gave conditions B(1)-B(4) for the asymptotic normality in [5]. The con-

dition B(1) follows Theorem 4, the other conditions B(2)-B(4) are verified easily. Thus
we have Corolloary 1.

The author wishes to thank his supervisor Professor Teturo Kamae (Osaka City
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