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1. Introduction

In this paper, we study the statistical model of the independent, 0-1-valued obser-

vations with the following distributions:

a+βXi γ

i = υ =

where jct 's are known real numbers called the observation points. It is sometimes more

natural to consider the parameters a and β in the above logistic way than something

like ea/(l + eα)'s. For example, let us cosider a random variable Y on {0, 1} with

small P[Y = 1], where the value 1 stands for a serious accident which we must avoid

definitely. Since we are sensitive on the value P[Y = 1], we take the measurement

log P[Y = 1] instead of the value itself. In this case, the logistic parametrization is

suitable. In the same reason, it is natural to assume that the prior distribution a and

β is uniform, that is, the joint prior density for (α, β) is given by p(a, β) = 1 on R2.

Then we discuss the posterior distribution on (α, β) under a set of observations F; = v;

(ΐ = l , . . . ,/ i) .

By the Bayes formula, the posterior probability density, is given by

if and only if the normalizing constant exists, that is

r r " / e

a+βχi \y' ( \ λ1"^
c '= / / Π -1 ^ T z TZar dadβ < oo.

We obtain in Theorem 1 a necessary and sufficient condition for the existence of the

posterior probability distribution, or equivalently, for c < oo.
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Theorem 1. A necessary and sufficient condition for c < σo is that 1 < m <

n — 1 and

mm \2_^χi -uo =m> < 2_^xiyi < max \2_^χi : B J = m > ,
I ieS J ι=l I Ϊ G 5 J

where we put m = Σ"=ι V; flftd 5 C {1, 2, ...,«}.

Under this condition, we consider a and β to be random variables and use the

notations A and B for a and β in this sense to avoid a confusion with their sample

values a and β.

We are interested in the convergence of the random variables A, B under the ob-

servations j i , )>2»..., ykn satisfying that k number of the observation points are fixed

where the same number n of observations are allocated and the ratio of 1 among them

converges as n -> oc to a value in (0, 1). That is, we assume the following set of ob-

servation points:

xitj (/ = 1, . . . ,/ : j = 1, . . . , n)

with

X i Λ = = Xi,n : = Xi ( i = 1 , . . . , k )

and Xi < jc +i for / = 1 k — 1 with a fixed integer k not less than 2. Let yij be the

set of corresponding observations, for which we assume that

Pi := lim — (/ = 1,... ,k)
n—»oo γι

exist for

and it holds that 0 < pι < 1 (/ = 1, . . . , k).

Then, the posterior density p(a, β\t\,..., tk) for (A, B) under these observations

satisfies that

p(a,β\tu...,tk)

-«.-ΠΠ(ΪT^Γ "*'

(1) = cn~
γ
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= cn~
x exp \n J2 I ^

where cn is the normalizing constant. We put

k

(2) f(a, 0) := ] Γ [/?,(<* + M ) - log {1 + exp(α

^ Γ ' f Ί
G n ( a , β ) : = > \ — ( a + β x i ) — \og{\+exΌ(a + β x i ) } \ .

tt^n -I
The maximal likelihood estimator (dn, βn) is, by definition, a point (a, β) which max-

imize Gn(a, β). Similary, (ά, β) is defined to be (a, β) which maximize f(a, β).

Theorem 2. The maximal likelihood estimator (άn, βn) exists uniquely.

Theorem 3. It holds that (ά,β) exists uniquely, (άn,βn) converges to (ά,β) as

n -^ oo.

Theorem 4. The random variable (A, B) converges to (ά, β) in law.

Corollary 1 (Lehmann [5], A. Ibragimov and R.Z. Khas'Minskii [10]). Assume

that ti/n = Pi + o(n~λ) (i = 1, ...,/:) as n —• oo. Then the distribution of the random

variable ((A — a)/^/n, (B — β)l<sfn) converges to the 2-dimensional centered normal

distribution with the covariance matrix M~ι, where

M=(U V

\ V W

with

k

U =

k

V =

_

The aim of this paper is to justify the Bayesian approach for the logistic parame-

ters by proving the consistency in Theorem 4 and the approximate normality in Corol-

lary 1. The consistency for the natural parameters ea+βXi/(I + ea+βXi) (i = ! , . . . , & )
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with the uniform distribution on [0, 1]* as their joint prior distribution is just the law

of large number. One of the difficulties in our case is that the prior distribution is not

a finite measure, so that we have to start with a condition for the posterior distribu-

tion to be a probability measure. As we already remarked, the logistic parameters are

sometimes more natural than the natural parameters. This fact is also discussed in [1].

We refer to [2], [3], [4] for the meanings of Bayesian approach. Heberman [6] dis-

cussed the logit model with continuum observations, but did not discuss the binary

data case which we discuss in this paper. Johan W. Pratt [7] discussed log likelihood

for his model, but the model did not contain our case. Cox [9] gave a way to get

maximum likelihood estimates, but he did not discuss the existence and uniqueness.

Our results contains some of V.T. Farewell [11].

2. Proof of Theorem 1

For a given set of observation points Xi (/ = 1, . . . ,«) and a set of corresponding

observations y; e {0, 1} with m := Σ"=ι yt and M := ^ " = 1 jc V/, we define a subset Ω

of R2 as the closed convex set generated by the set

£ * , ;*c{ i ,
ieS

Let ΘΩ be the boundary of Ω. Then, the claimed condition in Theorem 1 is equivalent

to P := (m, M) e Ω \ 3Ω, so that it is sufficient to prove that c < σc if and only if

P e Ω\3Ω.

We put

for j = 0, 1,. . . , n, and

Qj = (c(j, βj) := I In — j , max

for j = n, n + 1, . . . , In. Then, it is easy to see that 9Ω is the polygon

QoQi - - Qin-iQin with Q2n = Qo. Let

PQj = (rj cosθj, rj sinθj) (j = 0, 1, . . . , In - 1)

with n > 0 and θ0 < θ\ < < Θ2n-ι < θo + 2π =: θ2n .

Now we prove the "if" part. Assume that P e Ω \ 3Ω. Since P is in the interior
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of the convex set Ω, we have

0/+i — θj π
τ := max — < —

0<j<2n-l 2 2

Co := min r, > 0.

0<j<2n-\

Define

ί 0/-1+0/ 0/+0/+1 1

Ωj := < (r cos φ, r sin 0); — < φ < — — , r > 0 >
for j = 0, 1, . . ., 2n - 1, where 0_i := θ2k-\ - 2π. Then it holds that

2/1-1

| j Ω y = R 2 \ { ( 0 , 0 ) }

and that

/*/* exp(αm + ^M)
c - I I == JαJjβ

^ ̂  1 lί=i (1 + e x P(^ + βχί))ΓΓ

2 / ϊ - l

= f if 1
J=0 Ωj

2n — \ /, Λ

Since \θj — φ\ < τ < π/2 for any (rcosφ, rsinφ) e Ω7, we have

{ptj — m)a + (βj — M)β > cor cos τ

for any (α, β) - (r cosφ, r sin0) e Ωj. Thus,

2 Λ - 1 . .

c < 2 ^ // e χp(~ co^ cos τ) rdrdφ < oo.

i
Now we prove the "only if" part. Assume that P e 3Ω. That is, P is one of

the vertices of the polygon QoQi Q2n~\Qo- Let P = Qj and γ be the angle
Qj-\PQj+\ in the region of Ω. Then γ < π. Therefore, it is possible to take a
half line / = {(m + r cos#, M + r smθ)\r > 0} satisfying that ΔQj-XPl < π/2 and
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ΔQj+\Pl < π/2. This implies that ΔQ(S)Pl < π/2 for any S C {l,...,rc} with

β(S):=(ttS, E / € s * / ) ^ .
Let

Γ := {(α,β) eR 2 ; |αsin6> -βcos6>| < 1, αcos# + β s i n # < 0}.

Then, for any (a, β) e Γ and S c {1, . . . , w}, it hollds that

a(u — m) + yβ(D — Λf) < p,

where (w, f) := 2(5) and p is the diameter of Ω. Thus, we have

ff exp(am + βM)
= // fvΓ-7\ ~Γ~^dθίdβ

J J Πi = l 0 + exP(<* + βχi))
ff exp(αra + βM)

= 11 ^ / ^ rdadβ

= ffj-l ι

J J 2^s e x P ( ^ ( w — m) — β(v —

> [f- I
jj Σs eχp(<^(w — m) — β(v —

Γ

> ίί -^dadβ

= oo .

EXAMPLE 1. We consider the case where x\ = X2 = = xnχ — u ^ v = χnx+\ =

xnχ+1 = -" =xn]+n2 and

Π] Π\+tl2

) Vj = IW] , / V/ = YYl2
' J ' J

i-\ i=n\+\

with 0 < m\ < π\ and 0 < rri2 < «2 Then we have

ff Qxυ(m\(a + uβ)) exp(m2(a + v β))
= 11 dadβ

J J (1 + exp(α + uβ))n] (1 + exp(α + vβ))n2

B(n\ — mi, i
\u — v
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3. Proof of Theorem 2

Note that

ί = l

dGr

ι = l

Since

dGn Λ / (ti \ Xi \

9*i(α, £)
= _ Λ

^ > 0

g\(°°, i-.)<o

for any α, ̂ , there exists a unique a = ot(β) for any β such that gi(α, ^) == 0.

Then since

we have

ύί/3 9of Jj6 9/3

"2

- Σ

^ [ l + e x p ί α + ̂

Xj)

< 0
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by the Cauchy-Schwarz inequality.

We consider a/β as β -> oo. Let p e [—00, +00] be any one of limit points of

a/β as β —> ex). We denote by lim the limit as β -> 00 along a subset such that

a/β -+ p.

Case 1: If —p < x\, then

0 = lim gi(a, β)
θ * H O O

which is absurd.

Case 2: If —/? >

w

then

0 = lim gι(a, β)
*-»oo

which is absurd.

Case 3: If there exists xio such that xio < — p < xio+\, then we have

0 = lim gι(a, β)

Hence,

lim
β*->oo

< Xin = 0.

Case 4: If p = xio for some i0 = 1, 2,

0 = lim gι(a, β)

, k, then

I'O-I

ί L + U m

β*^cv 1 + exp(α + pβ)
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Hence,

lim g2(a, β) =
β*-> oo

Σ Xi I — — 1 I + >^JC; — + x , n l i m
V* ) j ^ n ° £*->oo 1 + exp(α +

i=in+\

< Xin

i=i, 0 + l i=\
+ exp(α + λβ)

= 0.

Thus, < 0.
In the same way, we can prove that l im^^-oo g2(oi, β) > 0. Therefore, there

exists a unique βn such that g2(ci, βn) = 0. Putting άn = a(βn), we have proved that

(άn, βn) is the unique point which maximizes the function Gn(a, β).

4. Proof of Theorem 3

The unique existence of (ά, β) can be proved exactly in the same way as for that

of (άn/βn).

Let us take δ > 0 and n 0 such that for any n > n0,

δ <- <l-δ (i = l , . . . , i k ) .

Lemma 1. Let

be a function on x e R a m / /? G R w/ί/z O < δ < / ? < 1 — δ < I for some δ > 0.

(i)

(ϋ)
and

(iii)

Proof. 0)

φ(x,

φ(x

Since

P')

P)
1

max(p(x,p) = plogp+ (l - p)\og(l - p)
xeR

< 51ogδ + (l -δ) log( l -δ) < 0,

max φ(x, p) < —δ\x\
8<p<\-8

< C\p' — p\ for some constant C > 0.

dφ 1
—- = p - 1 +
dx F \+ex

is a monotone decreasing function in x and takes value 0 at x = log/? — log(l — p),
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we have

Z. Hou

, p) = φQogp - log(l - p), p)

= p log p + (1 - p) log(l - p)

(l-δ)\og(l -δ)<

(ii) For any c > 0, we have

φ(x, p) < px — logex < —δx.

On the other hand, for any x < 0, we have

φ(x, p) < px < δx.

Thus we have (ii).

(iii) Since

3 logφ

dp

X

φ

1
< —

by (ii), we have

\\ogφ(x, p') -\ogφ(x, p)\ < -\pr - pi
o

which implies (iii).

Lemma 2. For any Xi ^ Xj, there exists a constant C > 0 such that

(a + βxd2 + (a + ̂ x,) 2 > C(a2 +

for any a and β.

Proof. We have

D

and
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x x2

> - r ^ i a + βxif + Ύ^ia + βxj)2

xf + Xj xf + Xj

xj + βxiXj)2 + (axi + βxiXj)

xf+x2

2
/ - x7 )/2}

x + x

>C2a
2

with some positive constants C\ and C2. Thus we have

(a + βxi)2 + (a + >6xy)
2 > C(α2 + ^ 2 )

with C := (l/2)min{Ci, C2} > 0. D

Lemma 3. There exists a constant D > 0 such that

Gn{a,β)<-D(a2 + β2)x/1

for any n > no and (a, β) e R2.

Proof. Since

where φ is defined in Lemma 1, we have

Gn(a,β) < -δ(\a +

with D = δC by Lemmas 1 and 2. D

Now we shall complete the proof of Theorem 3, since

Gn(0,0) = - H o g 2

and by Lemma 3, for any (a, β) with a2 + β2 > (k\og2/C)2

Gn(a,β)< -Hog2,
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c t

Since Gn converges to / uniformly in any bounded region as n —> oo, for any subse-

quence {n1} of {n} such that

of* := lim an> , β* := lim βn<

exist, it holds that

Jirn^ Gn(άn>, βn>) = Jim^ /(«„', βn>)

= f(<x*,β*) < f(ά,β).

On the other hand, since

\f(ά,β)-Gn(άn,βn)\

max /(α, β) — max Gn(a, /
2<(fclog2/D)2 a2+y82<(itlog2/D)2

< sup l/(<^» ^) ~~ Gn(a, β)\ —> 0
«2+β2<(Hog2/D)2

as π ^ oo, f(a*,β*) = f(ά,β). The uniqueness of the (α, β) which maximizes

f(a,β) implies that (a*,β*) - (ά,β). This also implies that άn -> a and βn -+ β

as n -> oo, which completes the proof.

EXAMPLE 2. For Example 1, we have

v
log log m2

βn =

υ — M n\ — m\ u — v ri2 — rri2

m 1 (n 2 -m 2 )
log

— πi\)

5. Proof of Theorem 4

Lemma 4. /ί holds that

1 = 1

where δn := max,- \(U/n) — pi\ and O(δn) is uniform in a and β as n —> oo.
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Proof. Take δ > 0 such that 2δ < min, p x and max/ pxr + 28 < 1. Then by (1),

there exists «o such that for any n > ΠQ, it holds that

<δ (i = l , . . . , it).

Then by (iii) of Lemma 1, there exists a constant C such that

with \ξifn\ < C\{ti/ή) — pi\ for any / = 1, . . . , / : . Therefore, we have

k

i=\

with

a + βxh±)=f(a,β)(l+ξn)

= 0{δn).< Cmax n~Pi

To prove Theorem 4, it is sufficient to prove that for any given ε > 0,

lim ff p(a,β\tu...,tk)dadβ = l.

Note that

— lp(a,β\tu...,tk) = cn exp

with

[ k

n^φίa
1

i, - J Idadβ.

By Theorem 3, Lemmas 1 and 3,

max f(a,β) = f(ά/β)<0
(α,£)eR2

(1) lim f(a9β) = -oo.
a2+β2-κx>

For any Δ > 0, let

Ω(Δ) := {(o, β) e R 2 ; / ( α , β)>A- Δ},

D
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where we put Λ := f(ά,β). Since by Theorem 3, (ά,β) is the unique point which

maximizes / together with (3) and the fact that / is continuous, we can take Δ such

that

(2) Ω(5Δ) C (a - ε, a + ε) x (β - ε, β + ε).

Since Ω(Δ) is a nonempty bounded open set, it has a positive area, say S > 0. More-

over, by (1) and Lemma 4, there exists n\ such that for any n > n\ and (a, β) e Ω(Δ),

:/, - ) > Λ - 2 Δ .
i=\

Hence for any n > ιt\, we have

(3) (f exp L Σ Ψ (« + β*i> £ ) 1 dadβ > e{A~2A)nS.
Ω(Δ) L / = 1 -I

On the other hand, by (1), (2), (3) and Lemma 1, there exists n2 such that for any

n > n2 and (a, β) £ Ω(5Δ),

Xi, - I < Λ - 4 Δ .
, =i ^ n l

Also by (1), Lemmas 3 and 4, there exists n^ such that for any n > n^ and (a, β) e

R2,

i = l

Hence, for any ?; with 0 < η < 1, (α, ̂ ) ^ Ω(5Δ), and n > n4 := n2 v n3 we have

it

Σ<
Therefore, taking a small η > 0 such that

(1 -r/)(Λ-4Δ) < Λ - 3 Δ ,

we have

k , v
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for any (α, β) £ Ω(5Δ) and n > n$ with some constant C > 0. Hence, we have

/ /
exp

R2\Ω(5Δ)

dadβ

< ίί exp[-Cfn(a2 + β2γ/2 + (A-3A)n

'(Λ-3Δ)" ίί exp [-C\a2 + β2)1'2} dadβ

(4)

< e

< C"e(A-3A)n

for any n > n4 with some constant C" > 0.

Let

In := /Y p(a,β\tι,...,tk)dadβ.

(ά-ε,ά+ε)x(β-ε,β+ε)

Then by (4), we have

In > if p(a,β\tu...,tk)dadβ

Ω(5Δ)

= c π - 1 /Y exp

Putting

(5)

and

(6)

we have

Ω(5Δ)

7(7):=yjexp
ΩO'Δ) - ί = 1

exp

R2\Ω(>Δ)

^ c/.M dαd/J,

7(5)

7(5) + L(5)

/(I) 1

L(5)
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Let no := n\ v rc4. Then, for any n > «o, we have by (5) and (6) that

/(I) > e(A-2A)nS and L(5) < C V Λ - 3 Δ ) Π .

Thus,

1

from which lim^oo In = 1 follows. D

Lehmann gave conditions B(l)-B(4) for the asymptotic normality in [5]. The con-

dition B(l) follows Theorem 4, the other conditions B(2)-B(4) are verified easily. Thus

we have Corolloary 1.

The author wishes to thank his supervisor Professor Teturo Kamae (Osaka City
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