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1. Introduction

A polynomial mappingf :C" — C™ is called analgebraic embeddingf C”
into C™ for m > n > 1 if f is injective and if the image off is a smooth algebraic
subvariety ofC™. Let Aut(C") be the group of algebraic automorphisms@f. Here
we consider the following conjecture:

Conjecture. Let f :C" — C"! be an algebraic embedding. Th¢h is equiva-
lent to a linear embedding, that is, there exists an algebraic automorghismC"*of
such that® o f is a linear embedding.

For the casen = 1, Abhyankar-Moh [1] and Suzuki [16] (cf. [17]) showed that
the conjecture is true. For the case$ 2, the conjectures are still unsolved, however
Russell [14], [15] has obtained some sufficient conditions for the conjectures to be true
from a view point of ring theory. On the other hand, our approach in this paper is
geometric and different from his. We use a method of compactificatior(s?of

From now on, we will consider the cagse =2 only. Lgt C% < C® be an alge-
braic embedding. We identif¢® with an affine part of the complex projective three-
spaceP? in the standard way. We denote By, the closure of the imag¢ of P3in
and putY, =X\ £(C?). By construction, we see that,  is a hyperplane section of
X, and thatX, \ Y, is biregular toC?, that is, ((/, Y, ) is acompactification ofC2.

We call Y, theboundaryof the compactification. Our main purpose is, for the cases
that the images off are of low degree, to write down explicitly, up to affine transfor-
mations of C3, defining equations of the images and to construct explicitly algebraic
automorphisms ofC® linearizing the defining equations. This explicit way is very im-
portant for us not only to obtain examples but also to find geometric invariants and
inductive methods. In this direction, in our previous paper [12] (cf. [4], [5]), we have
showed that the conjecture is true when the degree of the image is less than or equal
to three. For the case of degree three, we needed a so-¢ddlgdta automorphism

(cf. [11]) to linearize some embedding.
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Next we consider the case of degree four. Then we have the following three possi-
bilities: (1) X is normal and it has at least a triple point; ) is normal and it has
no triple points; (3)X, is non-normal. In this paper, we will treat the case (1). The
cases (2) and (3) will be dealt with elsewhere. Thus it suffices to consider compactifi-
cations §, Y ) ofC? such thatX is a normal quartic hypersurface with at least a triple
point in P2 and Y is a hyperplane section &f . First we will determine the defining
equations of such compactificationX,(Y ) by using the classification of minimal nor-
mal compactifications of©? due to Morrow [10] and the notion cdeparationdue to
Ishii [6] and Ishii-Nakayama [7], which was introduced to classify normal quartic hy-
persurfaces ifP® with irrational singularities (cf. [3], [18]). Finally we will explicitly
construct algebraic automorphisms @ which linearize the defining equations of the
hypersurfacest\ Y of C3 by using a proposition of Russell [14]. Then we shall obtain
a generalization and an analogue of a Nagata automorphism.

From now on to the end of this paper, we assume the following:

AssumpTioN Let X be a normal quartic hypersurface with at least a triple point
in P2 andY a hyperplane section af  such thatY is biholomorphic toC?. Denote
by H the hyperplane ifP® with ¥ = X N H.

We define some notations as follows. L&t Lj%:l Y; be the irreducible decom-
position of Y . We put) := H|x. We note that Suplp) = Y and Oy (X|g) = Op(4).
We putx := SingX ={xi,...,x,} for m > 1. We may assume that; is a triple
point of X. In §2, we shall see thak has only one triple point. Let |J7/; be the
union of lines inX passing througk, which are not contained iy , where the case
[ =0 is allowed. Letm : M — X be the minimal resolution off with exceptional
setE =J;.; E; = (x), where eachg; is irreducible. We denote ﬁ‘ythe proper
transform of a curveC inX byr. Let o : P2 — P3 be the blowing-up at; with
exceptional divisorA , which is isomorphic ®°. Let X be the proper transform of
by o. We puté := Aly and E = |J; E; := X N A, where eachk; is irreducible. We
note thatOA(X|a) = Op2(3). In §2, we shall show thalX is normal and that there
exists a birational morphismi : M — X such thatr = (¢|3) o7 and such thaf is the
minimal resolution ofX. We may assume that, for eadh, E; is its proper transform
by 7. Then our main results are the following:

Theorem 1. Let (X,Y) be a pair satisfying Assumption. Then the weighted dual
graph of Y U E UT is one of theFig. 1, where one denotes smooth rational curves
with self-intersection number8, (—1), (—2), (—3) and (—4) by ®, e, o, A and O
respectively and where eachis an irreducible component of

Theorem 2. For each dual graph o¥ UEUI in Theorem 1 the defining equation
of (X,Y) is, up to automorphisms @, one of the following
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2 (23)z3 + 2071(23 + Brzoz1 + 23) + 22F1(7; 0, 0, a3, aua, s, v, v7) = 0.
: zo(z8z3 + V2022 + 23) + 2125 + 22F1(2/; 0, 0, 0, aua, a5, v, av7) = 0.

1
Fig. 1.
() X:(2d)zs+zg+22F1(es L. az, as, a4, a5, as, a7) = 0.
() X:(zd)zs+z821 +22F(c; 1, 0, a3, s, s, 6, v7) = 0.
() X:(zd)zs+z822 + 22Fu(2'; 1, 1, a3, a4, a5, a6, a7) = 0.
(V) X:(z3)zs+zdza(z0 + 21) + 22F1(z'; 1, 0, as, aa, as, g, av7) = 0.
2 0

V) X
V) X
(VI)  X:(z1zd)z3+ 2321 + 22F2(2'; 1, 1, a3, ovg) = 0.

2 0
(V) X: (z128)z3 + z521(z0 + 21) + 22F2(2; 1, 6, as, ag) = 0.

2 0
(IX) X (z128)z3 + 2021(25 + Bzoz1 + 27) + 22F2(2'; a1, 1, g, va) = 0.

0
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(X)X :(2fz2)z3+ 2321 + 22F3(2/; 1 oz, 3, aug) = 0.

(XI)  X:(z8z2)z3 + 22120 *+ 22) + 22F3(2'; 1, aa, a3, ua) = 0.

(XI) X (z322)z3 + 2021(z3 + Bzoz1 + 23) + 22F3(2'; 1, a, a3, cug) = 0.
(XU X: (28 +z122)2223 + (2§ + 2122) Fa(@”; a1, oz, ) + 2023 = 0.
(XIV) X (23 + z122)z223 + (25 + 2122) Fa(Z"; a1, a2, 8) + 2025 = 0.

. . 3 3 2 2 2 2
Fi(Z'; a1, ..., a7) = oazi + apzg + aszize + cuzgir + aszgie + aezoz] t arzozize

2 2 2
Oélzf + azozs + 3zp21 T Qazoz]

/. .
Fo(2'; a1, o, a3, ) -
.. — 2 2 2
F3(2'; 01, a2, 3, @) i= 12025 + 02125 + 3zg71 + 14202122

. — 2 2
Fa(Z"; o, g, a3) i= aazg + apzoza + szl

where one denotes by = (z0 : z1 : z2 : z3) @ homogeneous coordinate systemP8f
and putsz’ = (z0 : z1 : z2) and z” = (z0 : z1), where one takegz, = O} as H, and
where «;, 8, v, 0 are complex parameters with the following conditipns

1) 5 #+2;

(2) 6 #0;

(3) a2 — 416 =0 for (XII);

(4) a2 —4a18 #0 for (XIV).

Remark. (1) We can obtain the types (II) and (VI) by considering two different
hyperplane sections of a common quartic hypersurface. Indeed, we can summarize (Il)
and (VI) as follows:

(n+vn  x: (23)23 + zgzl + ZZFl(Z/; 1, 0, a3, g, a5, g, a7) = 0,

where H ={\zo + uuzz = 0} and  : p) € P is a parameter. In (Il) + (VI), we obtain
(I if A =0 and (VI) if X # 0. This phenomenon can occur only for the pair of ()
and (VI).

(2) In Theorem 2, the singular loai = Siky are given as follows:

(1) ~ (IX), (XI1) (XIV) 2= {(0:0:0:1).

X),(Xl) x={(0:0:0:1) (0:1:0:0).
_ 0.0 - a2
Xy x= {(0.0.0.1) (1. > .o.o)}.

For all the cases, the point (0:0:0: 1) is the (unique) triple poinkof and the rests
are rational double points of .-type.
(3) In Theorems 1 and 2, the divisofs= Al and) = H|y are given as follows:
()  E=3E; (E;:line). Y =4y, (Y1 line).
()  E£=3E; (Ey:line). Y =3Y1+Y, (V; : line).
()  &£=3E; (Ey:line). Y =2Y1 +2Y, (¥; : line).
(IV) E=3E; (E1:line). Y =2Y1+ Yo+ Y3 (Y; : line).
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(V) E=3E; (E1:line). Y =Y+ Yo+Y3+Yy, (¥; :line).

(VI) E=3E; (E;:line). Y =Y +Y, (Y1:line, Y, : cuspidal cubic).
(VI) E=2E{+E, (E;:line). Y =3Y1 + Y, (¥; : line).

(VII) E=2E{+E, (E;:line). Y =2Y, + Yo+ Y3 (¥; : line).

(IX) E=2E1+E; (E;:line). Y=Y+ Yo+ Ya+Y, (Y, :line).

(X) E=2E1+E; (E; :line). Y =3Y1+ Y, (¥; :line).

(XI) E=2E1+E; (E;:line). Y =2y, + Yo+ Y3 (¥, : line).

(XIl) E=2E1+E, (E;:line). Y =Yy + Yo+ Y3+ Y, (Y : line).

(XIN) E=Ei+E, (E1:line, E;:conic). Yy =2Y;+2Y, (¥; : line).
(XIV) E=Ei+E, (E1:line, E;:conic).Y =2Y;+ Y, + Y (¥; : line).

Here we introduce some special subgroups of @tY( Let (xi,...,x,) and

(x1,...,x;) be two coordinate systems @". For an elementq; ) of the general lin-
ear groupGL £,C) overC and by, ..., b, € C, there exists an automorphism &f
such thatx] = Z’}zla,-jxj +b; (( =1,...,n). This type of automorphism is called
an affine transformatiorof C". The setA £, C) of all affine transformations of” is
a subgroup of Auf("). Forci,...,c, € C* := C\ {0}, p; € Clxj1,...,x,] (i =
1,....,n—1) andp, € C, there exists an automorphism @f such thatx; = ¢;x; + p;
(¢ = 1,...,n). This type of automorphism is called de Jonquéres automorphism
of C". The setJ £, C) of all de Jonquéres automorphisms of” is a subgroup of
Aut(C"). Let us denote by o, C) v A(n, C) the subgroup of Auf(") generated by
J(n,C) and A @, C).

Theorem 3. For each defining equation dfX, Y) in Theorem 2 there exists an
algebraic automorphisn® of® which transforms the hypersurface\ Y of P3\ H =
C® onto a hyperplane of3. For the type(Vl), one can taked = ®; o ¥ with some
W e J(3,C)V A3, C). For the types(X), (XI) and (XII), one can taked = ®,. For
the other types, one can take € J(3, C) v A(3, C). Here, for two coordinate systems
(x,y,z) and (x’, y’, ') of C3, the automorphismsb; and &, of C3 are defined as
follows

x'=x
ot {yl = gilx,y) — x%z
< {y_fl(-x’ gl(x’ y)_xsz)}/xss

where f1, g1 € C[x, y] with complex parameters; are defined by

fulx,y) = (L +awx +apx?)y + (agx + aax®)y? + (x)y®,

g1(x,y) = {1—awx + (—az + af)x?}y + {—asx + (3araz — as)x*}y*
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+{—x + (205 + 4a1)x*}y® + (Basx®)y* + (3x?)y°.

! —

X =X
Dy q ¥ = y+xfax,y,2)
7=z g(x,y,2),
x'=x
o1y =y —xfalx, v, 2)
7 = z+hy(x,y, 2),

where f>, g2, hs € C[x, y, z] with complex parameters;; are defined by

folx, y,2) = xz+ Y ayx'y,

i,j>0

i .
glny) = ) ay {Z <£>yj_"x"f2k}xi/x,
i20,j>1 k=1
i .
Z ajj {Z <IJ<)(y xfz)jkxkfzk}x,'/x.
i>0,j>1 =1

Remark. (1) For the defining equation ob,, putting ap, = 1 anda;; = 0 for
(i, j) # (0, 2), then we obtain the following automorphism ©f:

ho(x, y,2) -

!

X =X
Py QY = y+alz+y?)
¢ = 2= 2p(rz +y?) —x(xz +y%)2,
x' =x
Oty =y —x(xz+)?)
7 = z+2y(xz +y?) — x(xz +y?)>2

The automorphismb, is called l[dagata automorphisnfcf. [11]). Hence we can re-
gard ®, as a generalization of a Nagata automorphism.

(2) For the defining equation ab,, puttinga; =0 for anyi > 0, we obtain a hyper-
surfacey +x £%z +y%) = 0 in C3 and an automorphism of® which transforms this
hypersurface onto a hyperplane @f. This hypersurface is analogous to the hypersur-
face y +x (z +y?) = 0, which is transformed onto a hyperplane @t by a Nagata
automorphism. Thus we can regadg as an analogue of a Nagata automorphism.

As a consequence of Theorems 2 and 3, we obtain the following:
Theorem 4. Let f: C? < C3 be an algebraic embedding. Assume tixgt is a

normal quartic hypersurface with at least a triple point. Then there exists an algebraic
automorphism® ofC2 such that® o f is a linear embedding.
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Indeed, if one has such an algebraic embedding , by Theore 2.Y{ ) is, up
to automorphisms oP3, one of the types (I) through (XIV) and, by Theorem 3, there
exists an algebraic automorphism @ which transforms the hypersurface C%) =
X;\ Y, of C* onto a hyperplane of®. Thus we obtain Theorem 4.

NOTATION.
wy: dualizing sheaf ofV .
Ky: canonical divisor onV .
D|y: restriction of Cartier divisorD to/ .
my . maximal ideal ofOy ,.
multy V: multiplicity of V at general point o .
Excy: exceptional set of birational morphisg: V. — W.
bi(V) :=dimg H (V;R): the i -th Betti number of/ .
(D - C)y,: local intersection number of Cartier divis@ and cu@e Wf vat V.
~: linear equivalence.
(V, v): normal two-dimensional singularity.
pe(v): geometric genus ofW,v ).
pe(ve, -+, vp) = Z;n:l pg(vi).
(—m)-curve: smooth rational curve with self-intersection numbet.
®: O-curve.
e. (—1)-curve.
o: (—2)-curve.
A: (—3)-curve.
O: (—4)-curve.

—m

o (—m)-curve.

2. Preliminaries

In this section, we shall describe fundamental properties of a Fair ( ) satisfying
Assumption in§1l. We use the same notation as that§ih Let Y = UleY,- be the
irreducible decomposition of . We denote by deg the degreE of as a plane curve
of H > P2 We put) := Hlx = Y., ki¥;, where) i_ k;degY; = 4. We putx =
SingX ={x1,...,x,} for m > 1. We may assume that; is a triple point of X .

Let 7 : M — X be the minimal resolution ok  with exceptional set (., E; =

7~ 1(x), where each; is irreducible. L&t be a smooth hyperplane sectioh of  with
I'Mx = () and Hr a hyperplane i such thatl =XNHr. We denote b)E the proper
transform of a curveC irX byr. We setA ‘=Y UE. Here we note thaby = Ox and

x C Y and thatM \ A is biholomorphic toC2. By Kodaira [8] and Ramanujam [13],
we see thatX \ Y and M \ A are biregular taC? and, in particular, thak and/ are
rational surfaces. Then we obtain the following:
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Proposition 2.1 ([12]). () Ho(X,Z)= Ho(Y, Z) = Z.
(i) Hi(X,Z)= Hi(Y,Z)=0.
(i) HaX,Z) ¥ Hy(Y,Z) = D)., L.Y:.
(iv) H3(X,Z)= Ha(Y,Z)=0.
(v) HYX,0yx)=0.
V) plx)=1.
(vii) X is not a cone.
(viii) gcd(degYs,...,degY;)=1
(ix) mult, X <> kmult,Y; VpeY=XnNH).

Remark. (1) We note thafy is connected by (i) and thiat  cannot have any cy-

cles, that is, eacly; is a rational curve without nodes by (i)Y If  contains more than
two lines, thenY consists of lines which meet only at one point. Indeed, this follows
sinceY cannot have any cycles and eadgh is a plane curve.
(2) Sincep, §) = 1 andy; is a triple point, we obtairp, x4) = 1, that is,x; is a
minimally elliptic singular point. Ifx contains at least two points, thef {x1} con-
sists of rational double points. Henag is a unique triple point ofX . By Artin [2]
and Laufer [9], we obtainky ~ 7Ky —Z ~ —Z and Z? = —3, whereZ is the
fundamental cycle ofr—(xy).

Next we consider the projection fromy and the blowing-up ak; to investigate
the compactification X,Y ). We denote by  the number of linesXin  through
Since X is not a cone by Proposition 2.1(vii), we obtairtQV < +oco. Let L be the
union of these lines antl the closure bf\ Y, where the cas¢ # is allowed. Let
I =J;1; be the irreducible decomposition &f . Let: P8 — P2 be the blowing-up
at x; with exceptional divisorA , which is isomorphic ®. Then we haverf\@\A :

P3\ A = P3\ {x1} and O55(A)[a = Op2(—1). We denote by the proper transform of
a subvarietyV  ofP® by 0. We setx := SingX and E = |J, E; := X N A, where each
E; is irreducible. We pu€ = Aly = Y, ¢;E; with >, ¢; degE; = 3, where deg; is
the degree of; as a plane curve o = P2 Sinceo|xz\z : X\ E = X\ {x1}, we can
easily see thatX,Y U E) is a compactification ofC?>. Then we note that C Y U E
and wy = Ox(—€) and thatY U E does not have any cycles.

Let ¢ : P3-.. — P2 be the projection fromx; and ) : P3 — P2 the resolution
of indeterminacy ofy. We putV' :=4(V), E; :=¢(E;) andE = J, E; . Here we
note thaty|, : A = P? and thatl'" is a smooth plane quartic curve. Since d_&ago =
degX —mult,, X =1, we see thaﬂy : X — P? is a birational morphism. In particular,
we obtainy|pz 1 X\ L ¥ P2\ L', ¥ C L andx C L. SinceH is a line in P2
containingY ", we have either that™ consists of finite points or that™ is a line.
SinceT N E is empty and each irreducible componentofmeets both ol and E,
we obtainT NE" =L = (|3)(Exc(|x)). Then we obtain the following:
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M—T—%_
N Ulx
X
Fig. 2.

Proposition 2.2 ([12]). (i) 0< N < +oo, N =hy(X) — 1.
(i) mult,X <>, e;multy E; (Vg € E=XNA).
(i) X is a normal hypersurface with at most rational double pointsdgftype.
(iv) There exists a birational morphism: M — X such that it is the minimal resolu-
tion of X and satisfies the commutative diagramFiy. 2
(v) If v is a line in X throughx,, then7 is a (—1)-curve inM andxN# consists of
at most one rational double point of .-type. Moreover, iftN¥ # (), then the weighted
dual graph ofy U7 (x N7) is a linear tree e—o—o—--—o .
(vi) Y* consists of finite points if and only if each irreducible componentof is a
line throughx;. Then there exists a ling€,,  E in A > P? such thatH" = E,, and
Y= 22:1(F* 'E_jl*)PZ,Y,-* Y
(vii) Y is a line if and only ifY = Y; UY, whereY; is a line throughx; and where
Y, is not a line throughx;. Then one has the following

@ H =Y =Y

(b) Y ¢ E- andY UE" does not have any cyctes

(c) if E* contains a line inP2, then E* consists of lines ifP2.

Proof. It suffices to show (vi) since we obtain all the assertions except (vi) by
Ohta [12]. The first claim in (vi) is obvious. Let us consider the second one in (vi).
Since the morphism)|y : X — P? is surjective, there exists a linE;, C E in A = P?
such thatd™ =E,,". For the intersection divisa) = H|y = Y/_, k;¥; of X, we show
thatk; = -E—jl*)PZ.Y’_* (L<i<t). We putC :=H n Hr, which is a line inP?, and
{P}:=Y,NnC (1<i<t). Since K|u)lc = (X|u)|c, we obtainT NC ={Py,..., P}
and ! (X|w - C)mp, - P = Sioy(X |y - C)mpp - P @s Weil divisors ofC = PL,

By noting thatX|; = Y7i_, k¥ and that ¢|z) o (o],)~* : Hr ® Hr = P? and
C =H =E; ,wegetki =§|y-Clup =(-Cu.p = -Ej oy~ L<i<1).
Thus we obtain (vi). []

Remark. By (iv), we may assume that, for ead), E; is the proper transform
of E; by @. We also note that, for a cur\é K G coincides with the proper trans-

form of C by 7.

Now we introduce a notion of separation from Ishii [6] and Ishii-Nakayama [7].
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This notion was introduced to classify normal quartic hypersurface®3irwith ir-
rational singularities (cf. [3], [18]). Here we shall show only the existence and the
uniqueness of separation.

Derinimion 2.3 ([6], [7]). Let (S, C, D) be a triplet consisting of a nonsingular
projective surfaceS , a smooth cur@ ¢h and an effective anti-canonical divisor
D of §. Assume thatC is not a component 8f . Let: T — S be a birational
morphism from a nonsingular projective surfafe  afg D effective divisors of
T. (T,Cr, Dr) is said to be aseparationof (S, C, D), if the following conditions are
satisfied:

() Kr+Cr~p*(Ks+C).
(i) K+ Dy ~0.

(i) Cr < p*(C), Dr < p*(D).
(iv) Supp(Cr )N SuppOr ) =0.

Proposition 2.4 ([6], [7]). Separation exists uniquely.

Proof. If SuppC N Supp@ ) is empty, then the identity — S is a separation.
Hence we may assume that Supp( $upp® )# 0. Let p; : T1 — S be the blowing-
up at a pointP; € SuppC )N Supp@ ) andB; the exceptional divisor. We consider
Cr, = p;(C)— By and Dy, := p;(D) — B1. We note thatCr, is the proper transform of
C and Cyz, - Dyy) = (C - D) — 1. If SuppCy,) N Supp@r,) # 0, then we blow up at a
point P, € SuppCr,) N Supp@z,), and similarly we can defin€z, and Dz,. Thus, by
continuing this procedure, we finally get a separation.

Conversely, let T, Cy, Dy ) be a separation &,C,D ) apndT — S the bira-

tional morphism. We note that is a composite of blowing-ups. By Definition 2.3(i)
and (iii), Cr is the proper transform of i and hence it is a smooth curve iso-
morphic toC . Let Exgp = J;_, B; be the decomposition into connected components.
We denote byn; the number of irreducible componentsBof and Rut  p(By).
Let v be ap-exceptional curve. Sinc€r anBy  apenef, by the adjunction for-
mula, v is either a ¢1)-curve with Cr - ) = (Dr - v9) = 1 or a 2)-curve with
(Cr -v) = (Dr - 7) = 0. Hence the weighted dual graph Bf iS one vererr a
linear tree e—o—o—--—0 .

By Definition 2.3(i),(ii),(iii) and the negative definiteness of the intersection matrix
of Excp, there exists an effective divisd8  with Su@p( ) = Exesuch that
(1) Kr ~p*Ks+B;

(2) p*C=Cr +B;

(3) p*D =Dr +B.

Then we obtainp,.(Cr) = C, p«(Dr) = D and SuppC N Supp® ) ={P1,..., P,}. By

noting (C-D) = (p*C-p*D) = (Cr-B) and by computing the intersection humbersBof
and its irreducible components, we gét-(D)p, =n; (1 <i <r). Hencep is obtained
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Fig. 3.

by (C - D)p, times blowing-ups at the points which are on the proper transforns of
and are infinitely nea; for each<di <r. Since C-D)p, (1 <i <r) depend only

on the triplet §, C, D ),p and T are unique. Sinc€7 is the proper transformCof

by p, Cr is also unique. Hence, by (2) and (3, ang are also unique. Thus we
obtain the uniqueness of separation. ]

Here we return to our situation. Sineémy ,, = Oy (—Z) by Laufer [9], we have
that Z =7*(Aly) = 7(€) and Z < (7)*(¥|3)* @ |3)«(E). From this, we easily see
that the triplet §4, T, Z) with birational morphism|5) o7 : M — P2 is a (unique)
separation of the tripletPg, T, (/|5).(€)). Since Proposition 2.1(jii) also holds for
the compactification ¥/, A ) ofC?, by using the Noether formula, we obtaﬁz@(?) +
bo(E) = by(M) = 10— K2, = 13. ThusY UE consists of thirteen irreducible components
and @|3) o7 : M — P? is a composite of twelve blowing-ups. Hence, if we know the
shape of the divisor(|5).(€) and the intersection of  and {|5).(€), then we can
obtain the process of the twelve blowing-ups and the weighted dual graﬁthE U
TUT by using the construction of separation in the proof of Proposition 2.4.

In the last part of this section, we prepare a proposition to write down the defining
equation of &, Y ). First we put = ()|z) o7 and ¢ := w o 7~1. Then we obtain the
commutative diagram in Fig. 3. Lek be the linear system associatedito M — X.
Then A :=7,A is the linear system associated¢a P2--- — X. Let M, and M; be
the C-vector spaces associated Ao aﬁdespectively. We note that dim = dim=
3. Let H; (0< i < 3) be four general hyperplanes ¥ such thatx, € Hy, H1, H» and
x1 ¢ Hz. We can takeHr ad{3. We putL; =H, (0<i<2). Let wo: wy: wy)
and o : z1 : z2 : z3) be homogeneous coordinate systemsPéfand P° respectively.
By considering suitable automorphisms Bf and P3, we may assume that; = (O :
0:0:1),H ={z; =0} (0<i <3)andL; ={w; =0} (0 < j < 2). Then we
note thatH ={cozo+ c1z1 + c2z2 = 0} and H = {cowp + cywy + cow, = 0} for some
(co:c1:c) € P2 Let F andG be the homogeneous polynomialsugf w1, w» of
degree four and three which define the divisbrsand @|Y)*(?) respectively.

Proposition 2.5 ([12]). (i) A= |f| and M is spanned by sections correspond-
ing to the divisorsr™(H;|x) (0 <i < 3).
(i) AC |T*| = |Op2(4)] and M, is spanned by sections corresponding to the divisors
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Li + @])«(€) (0<i <2)andT . In particular, the birational mapp, the imageX
and the boundaryy are given as follows

70 = woG (wo, w1, wy)
b 71 = w1G (wo, w1, wy)
72 = waG (wo, w1, wy)

73 = F(wo, w1, wy).

X : F(z0, 21, 22) — 723G (20, 21, 72) = 0.
Y : F(z0,21,22) — 23G(20, 21, 22) = 0, cozo+c121+ 222 =0.

3. Determination of Boundaries

In this section, we shall give a proof of Theorem 1. L& ¥ ) be a pair satisfying
Assumption in§1l. We use the same notation as that§ih and §2. First we obtain
classifications of the divisory and £ as follows:

Proposition 3.1. There exist the following seven possibilities for the dividor
(i) Y =4Y; (Y1:line). In this casex C ¥; and x = {x1} or {x1, A.}.
(i) Y=3Y1+Ys (Y;:line). In this casex C Y1 andx = {x1} or {x1, A.}.
(i) ¥ = 2Y1 + 2Y> (Y; : line). In this case,Y1 NY, = {x1} andx NY; = {x1} or
{xl, A*} (i = 1, 2)
(iv) Y =2Y1+ Y, (Y1 : line, Yo : conic). In this case,Y; and Y, meet tangentially to
the second order at;, andx C Y1 andx = {x1} or {x1, A.}.
(V) Y=Y1+Y, (Y1:line,Ys: cuspidal cubic). In this case,Y; and Y, meet tangen-
tially to the third order atx;, andx = {x;} = SingY>.
(Vi) Y = 2Y1 + Yo + Y3 (Y; : line). In this case,Y;, Y, and Y3 meet only atx;, and
x CYyandx ={x1} or {x1, A.}.
(Vi) Y = Y1+ Yo+ Y3+ Y4 (Y; : line). In this case,Y;, Y2, Y3 and Y, meet only atxg,
and x = {x1}.

Proof. We note that the divisqy is a plane quartic curve. By Proposition 2.1(ii)
and (viii), we see thafy is not an irreducible quartic and that = Suppdoes not
have any cycles. Hence we obtain the above seven cases for the giviSyr Proposi-
tion 2.1(ix) and 2.2(v), we get the position and the number of elements of the singular
locus x . Thus we complete the proof. ]

Proposition 3.2. There exist the following five possibilities for the divistr
() &€ =3E; (E1:line). In this casex N A C Ej.
(i) €=2E1+E; (E; :line). In this casex N A C E;.
(i) € = E1+ E, (E1 : line, E5 : conic). In this case,E; and E; meet tangentially to
the second order at a point, andN A C E1 N E.
(v) € = E1+ E, + E3 (E; : line). In this case,Eq, E; and Ez meet only at one point,
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andxNA C E1NE,NEs.
(v) € =E; (E;: cuspidal cubiy. In this casex N A C SingEj.

Proof. We note that the divisd is a plane cubic curve. SincE = SuppE does
not have any cycles, we obtain the above five cases for the difis@y Proposition
2.2(ii), we have the position gf N A in E. Thus we have the assertion. U

From now on, we will investigate the five cases for the divigorin Proposi-
tion 3.2. For each case, we will determine the intersectio ofand E* and get the
weighted dual graph oA by using separation. Next we will transform the smooth
compactification #, A ) ofC? into a minimal normal compactificatiomd’, A’) of C?
by blowing-up and blowing-down in the boundary  repeatedly. Then the weighted
dual graph ofA’ must be a linear tree of smooth rational curves by Ramanujam [13]
(cf. [10], [12]). Here a smooth compactificatios,(C ) 6P is said to beminimally
normal if the pair satisfies the following two conditions:
(1) the curveC = J; C;, which is the irreducible decomposition, has at most ordinary
double points;
(2) if C;is a (—1)-curve, then there exist at least three irreducible components of
which are different fromC; and intersecy;

3.1. The casef = 3line. Let £ = 3E; (E1 : line) be the restriction oA  taX.
Then we have the following two cases:
(1) Y" consists of finite points;
(2) Y is a line.
3.1.1. The caseéY" consists of finite points.
Lemma 3.3. () H =E; .
(i) Any lines inX passing through; are contained inY .
(iy T"NE =Y  (at most four points

Proof. By Proposition 2.2(i) and (vi), we obtain the assertions easily. [

Proposition 3.4. For the caseY  consists finite points, one has the following five
possibilities
() Y =4r; (v1:line). In this case,( - Ey )y = 4
(i) Y =3Y1+Yz (¥; :line). In this case T - Ey )y- =3, (T - E1 )y = 1.
(i) ¥ =2v1+2Y, (¥; : line). In this case (T - E1 )y~ =2 (i =1 2)
(iv) Y =2Y1 + Yo + Y5 (Vi : line). In this case(T - E1 )y- =2, (T - E1 )y~ =1 ( =
2, 3).
(V) Y=Y1+Yo+Ys+Y, (Y :line). In this case,(T -E1 )y~ =1 (=12 3 4)
Moreover, for the casesi), (ii), (iii), (iv) and (v), one obtains the weighted dual
graphs ofY UE of type(I), (1), (1), (IV) and (V) in Theorem lrespectively.
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Proof. By Proposition 2.2(vi) and Lemma 3.3(iii) and by using separation, we
have the assertions. ]

3.1.2. The caséY is a line. By Proposition 2.2(vii), we note that ¥ UY,
where Y; is a line throughx; and whereY; is not a line throughy; and thatH" =
Y =Y, . Then we obtain the following:

Lemma 35. () Yo #Ei,Y: =Y, NE; .
(ii) There exists only one ling in X through x; such thatl; ¢ Y.
(i) " C Er \ V1.
(V) T'"NE"=Y; Ul; (exactly two points

Proof. (i) Sincey|y : X — P? is a birational morphism, we obtaif,” # E; .
SinceY; is a line in H throughx;, we obtain¥, = H NE; =Y, NE; .
(ii) By Proposition 2.2(i), we obtain the assertion easily.
(iii) Since I, is a line throughr; andl; ¢ H, we obtain;” c E; \H =E; \7Y; .
(iv) As mentioned before Proposition 2.2, we obtdin N E° = ({|3)(Exc@ly)) =
Yl* UE*. O

Proposition 3.6. For the caseY " is a line, one has the following
() T Ei)y=3 @ E)-=0 Y2 )5 =1
(i) Y=Y1+Y, (Y1:line, Y, : cuspidal cubic), whereY; and Y, meet tangentially to
the third order atx; and x = {x;} = SingY>.
Moreover, one obtains the weighted dual graphf/oth E UT of type (VI) in Theorem
1

Proof. Sincel NE =Y: Ul , we obtain the following three cases:

*

D) C Ex)yp =1, € E )y =
@ O F)y =2 O FE)p =2,
@) (I - Ey)y=3 ([ -Ex )z =1

(1) In this case, we note that4 (T" - ¥2 )3+ < 3. By using separation, we obtain
the weighted dual graph of, U E; U Exc((|y) oc7) = Y U E Ul in Fig. 4. Since
YUE is the simple normal crossing boundary curve of a smooth compactification of
C?, by contracting suitable—<{1)-curves inY UE successively, we obtain the weighted
dual graph of the boundary of a minimal normal compactificatiorCéfwhich is not

a linear tree. This is a contradiction.

(2) In this case, we note thaff?z*)y—l* = 1. Similarly to the case (1), we obtain the
weighted dual graph of UEUL; in Fig. 5, and we obtain the weighted dual graph of
the boundary of a minimal normal compactification ©f which is not a linear tree.
This is a contradiction.

(3) In this case, we note thal'{ - 72*)71* = 1. By using separation, we obtain the
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v, ¥, Y
& e o

Y1 Eq I

Fig. 5.

weighted dual graph of U E Ul; of type (VI) in Theorem 1. At the same time, by
looking at the process of the separation, we know that B =})),, = (I' - Y2)x and,
in particular, thatY, is a cuspidal cubic. O

3.2. The casef =2line+line. Let £ = 2E,+E, (E; : line) be the restriction of
A to X. We set{P} :=E; NE, . Then we have the following two cases:
(1) Y" consists of finite points;
(2) Y is a line.
3.2.1. The caséY" consists of finite points.
Lemma 3.7. () H =E; or E; .
(i) There exists only one ling in X throughx; such thatl; ¢ Y.
i) " #{P}.
vy T'NE =Y Ul (at most five poinls

Proof. Similarly to Lemma 3.5, we obtain the assertions. ]

Lemma 3.8. Assume tha? = E; . Then one obtains the following
() &' cE\{P}, (T E)p=1
(i) There exists a unique irreducible componefit of ¥ such thaty; = {P} and
T 'E_z*)f'l* =3
(iii) (T~ -E_l*)f_l* =1.
(V) V=Y +3 0 kY.



522 T. OHTA

Proof. We havey, C E, \ {P} clearly. Sincex Ny = {x;} and¥ N A C E,
we know by Proposition 2.2(v) thatn/; = () and/; is a (~1)-curve inX \ x. Since
(T -h)x = (E2 - I}y = 1, we obtain T 'E_Z*)H* = 1. Thus we have (i). By (i) and
Lemma 3.7(iv), we obtain (ii). By (ii) and Proposition 2.2(vi), we obtain (iii) and (iv).

]

Proposition 3.9. Assume that? = E; . Then one obtains the following three
cases
(i) Y=3Y1+Y, (Y :line). In this caseY; ={P},
T 'fl*)ﬁ* =3 (T 'E*)g* =1
B )y =3 (T B ) = 1
(i) Y =2Y1+Y,+Ys (¥, :line). In this caseY; = {P},
" E )y =2 @0 E )y =@ -E1 )y =1,
" E )y =3 T E ) =1
(iiy Y=Y+ Yo+ Y3+ Y, (V; : line). In this caseY, = {P},
T E)y=1(=123 4
(- E )y =3, (T B )y =1 )
Moreover, for the case§), (i) and (iii), one obtains the weighted dual graphsot)
EUT of type (VII), (VIII) and (IX) in Theorem 1respectively.

Proof. By Lemma 3.8 and by using separation, we obtain the assertionsl_]

Lemma 3.10. Assume that? =E, . Then one obtains the following
() b CEx \{P}, (T -E1)=1
(i) There exists a unique irreducible componéfit of ¥ such thatY,-l* = {P} and
T E_l*)fl* =3
(iii) (T~ ~E_2*)f_1* =1
(V) Y=Y, +3> 4 kiY:.

Proof. By using (i), we obtain (ii),(iii) and (iv) easily. Hence it suffices to show

(i). First we havel;” c E1 \ {P} clearly. Now we note that ¥ (T" - E1 ) < 4.

We assume thatl{ - E1 )i+ = 2 (resp. 3, 4). Similarly to the proof of Proposition

3.6, we obtain the weighted dual graph BfU E U/, and we get the weighted dual
graph of the boundary of a minimal normal compactificationC3fin Fig. 6(a) ¢esp.

(b), (c)), where we denote b¥; and E/, the proper transforms of; and E, respec-
tively. However, these graphs are not linear trees. This is a contradiction. Thus we ob-
tain @ - Ey )+ = 1. O

Proposition 3.11. Assume thaif = E, . Then one obtains the following three
cases
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Fig. 6.

(i) Y=3v1+Y, (¥ :line). In this caseY, = {P},

(T E1 )y =3, (T - Er ) = 1,

T E2 )y =3 (T E )y =1

(i) Y =2Y1+Yo+Ys (Y; :line). In this caseYs; = {P},
(T Ei )y =3 (T -E ) =1,

T E)y=2 0T E)yp=0C E)p =1

(iiy Y = Y1+ Yo+ Ya+Y, (Y, : line). In this case,Y; ={P},
By =3 [T E )y =1,

M E)y-=1G=1234)

Morgover, for the casef), (i) and (iii), one obtains the weighted dual graphs%tJ
E U1 of type(X), (XI) and (XIl) in Theorem 1respectively.

Proof. By Lemma 3.10 and by using separation, we have the assertionsl]

3.2.2. The caséY  is a line. By Proposition 2.2(vii), we note that ¥ UY,
where Y; is a line throughx; and whereY, is not a line throughy; and thatd " =
Y =Y, . Sincey|y : X — P? is a birational morphism, we also note tHEf #
E1 ,E, . Then we obtain the following:

Lemma 3.12. (i) Y, is a line throughP .
(i) Yi"={pP}).
(iii) There exist exactly two lineg and l, in X through x; such thatl/;,l, Z Y.
(v) ;" cE"\{P} (i=12)
(v) T'NE =Y, Ul; UL (exactly three poins

Proof. By Proposition 2.2(vii)Y UE =Y, UE; UE, does not have any
cycles. Hence,  passes through the intersection poit /&f andE, . This shows
(). Similarly to Lemma 3.5, we obtain (ii),(iii),(iv) and (v) easily. ]
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I
Y,
~ E> ~
Y1 I
E,
Fig. 7.
I
E> Ys
Y1 I
Ey
Fig. 8.

Proposition 3.13. The caseY is a line cannot occur.

Proof. We obtain the following three cases:
(1) ok CE \{P}.
(2) 1_1* C_*El \_{*P}, b CE> \{P}
(3) Ii,l, CE; \{P}
(1) In this case, we obtain[( -E_g*)p =1fori =1 2 sincex Nl; = (). Hence we
have € Ez )y~ =2 and { - E1 )y~ = 1. By Lemma 3.12(v), we obtaif( -E1’) =
(T" - E1)g- = 1. This is a contradiction.
(2) In this case, we obtain( - E; )z- = 1 sincex N7z = . We also obtainT{ -
E )y =3, @ Ei)y =1, T Ex ) =3 and T 72 )y = 1. Similarly to
the proof of Proposition 3.6, we obtain the weighted dual graply of E Ul; U5 in
Fig. 7, and we obtain the weighted dual graph of the boundary of a minimal normal
compactification ofC? which is not a linear tree. This is a contradiction.
(3) In this case, we obtairl( - Ez’) = (T" - E2 )j- = 4 by Lemma 3.12(v). Hence
we obtain T - Ey )y- =1 and { - Ey )= + (T - E1 )5- = 3. We may assume that
(T"-Ey )~ =2 and { - Ep )5 = 1. Then we note thatl{ - 72" )y- = 1. Similarly to
the case (2), we obtain the weighted dual graphvaf E U/, Ul; in Fig. 8, and we
obtain the weighted dual graph of the boundary of a minimal normal compactification
of C? which is not a linear tree. This is a contradiction. ]
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3.3. The case€ = line + conic. Let & = E1 + E, (E; : line, E» : conic) be
the restriction ofA toX. ThenE; andE, meet tangentially to the second order at
one point, which is denoted b . By Proposition 2.2(vi) and (vii), we know that
consists of finite points andl” = E; .

Lemma 3.14. (i) There exists only one ling in X through x; such thatl; ¢
Y.
(i) ' NnE =Y Ul (at most five poins
) (T E ) =1 (T - E2)p = 7.
(v) There exists a unique irreducible componéht of ¥ such that¥;, " = { P}.
i) (T"-E1)p=2
(Vi) Y =2V, + 37,4 ki Vi

Proof. Similarly to Lemma 3.3, we obtain (i),(ii) and (iii) easily. Since we can

obtain (v) and (vii) by using (iv) and (vi), it suffices to show (iv) and (vi).

(iv) Sincexniy =0, similarly to the proof of Lemma 3.8(i), we obtail (-E7 )z = 1.

By using (iii), we obtain T - E2 )p= (T - E2)— (T -E; )» =8—1=7.

(vi) Let 7 : (P2 — P2 be the blowing-up a with exceptional curee . L&}’ and

(E;") be the proper transforms df~ and E; by 7 respectively. Here we note that

E., E; ande meet only at one point, which is denoted PY and that each pair of

them meets transversally &'. By using (iv), we obtain @*)’-(E_z*)’)(Pz)/.P, =6, that

is, ") and ") meet tangentially to the sixth order &. Hence T ) and E; )

meet transversally aP’. Thus we obtain ) - (E1 ))p =1 and T - E;1 )p = 2.
U

Proposition 3.15. One obtains the following two cases
() Y =2v1+2Y, (Y; :line). In this caseY; ={P},
T 'E*)ﬁ* =2, (T 'E*)ﬁ* =2,
T E )y =7, (T E2 ) = 1.
(i) Y =2Y1+Yo+Ys (Y; :line). In this caseY; = {P},
T E)g=2 T Ei )y =0 El)p =1,
" E )y =7 (T - E ) = 1.
Moreover, for the casef) and (ii), one obtains the weighted dual graphs%tJEUT
of type (XIll) and (XIV) in Theorem 1respectively.

Proof. By Lemma 3.14 and by using separation, we obtain the assertions.]
3.4. Non-existence of the cas€ = line+line+line. Let& =E,+E,+E3 (E; :

line) be the restriction oA toX. Here we note thak;, E> and Ez meet only at one
point. We set{ P} := SingE”". Then we have the following two cases:
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(1) Y" consists of finite points;
(2) Y is a line.
3.4.1. The caséY" consists of finite points.
Lemma 3.16. (i) One may assume tha& =E; .
(i) There exist two lineg; and/, in X throughx; such thatl/y,l, ¢ Y.
(i) & #{P} (i=1,2)
(iv) One may assume th& C E; \ {P} andl;’ C E;” \ {P} (j =2 or 3)
(v) T'"NE =Y Ul; Ul (at most six points
Vi) T E)-=16=12)

Proof. Similarly to Lemma 3.14, we obtain the assertions. ]
Proposition 3.17. The caseY consists of finite points cannot occur.

Proof. Since 1< Y,z (py (T - E2 )o < 2 by Lemma 3.16(iv) and (vi), we
obtain T"-E;")p > 2. Hence we know by using Lemma 3.16(iii) and (v) thae T~
and that there exists a unique irreducible compongnof ¥ such thaty;,” = {P}. We
note thaty2 (I - E ")~ = 2 and

iy

Then we obtain

2
12=C"E) =T -E)p+ Z(F* 'F*)ﬁ* + Z(F* ~f*)7’_*
i=1 i#i1
<@ -E)p+5.

Hence we obtainI{ -E ") > 7. On the other hand, at most one Bf , E, andEs
meetsI" tangentially atP . Hence we obtait (-E")p = S.(T -E; )p < 4+1+1=6.
This is a contradiction. O

3.4.2. The caséY is a line. By Proposition 2.2(vii), we note that ¥ UY>
where Y3 is a line throughx; and whereY, is not a line throughy; and thatd =
Y =Y, . Then, similarly to Lemma 3.16, we obtain the following:

Lemma 3.18. (i) Y, is a line throughP .
(i) ¥1"={P}.
(iii) There exist exactly three lindg, I, and /3 in X throughx; such thatly, I, I3 Y.
(v) ;" cE"\{P} (i =1 2 3) One may assume thaf c E; \ {P}.
V) T'’NE =Y, UL UL, Ul (exactly four points
V)T E)-=13G=1223)
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Proposition 3.19. The caseY is a line cannot occur.

Proof. By Lemma 3.18(vi), we obtaiM(-E"), = (T"-E") -0 (T"-E");- = 9.
On the other hand, we obtai (- E')p =Y o, (I - E;)p <4+1+1=6. This is a
contradiction. ]

3.5. Non-existence of the cas€ is a cuspidal cubic. Let £ = E; (E; :
cuspidal cubic) be the restriction af . We put{P} := SingE; . By Proposi-
tion 2.2(vi), we see that” is a line. By Proposition 2.2(vii), we note that YsUY>
where Y; is a line throughx; and whereY, is not a line throughy; and thatH "~ =
Y =Y, . Then we obtain the following:

Lemma 3.20. (i) There exists only one ling in X through x; such thatl; ¢
Y.
i) T'"NE =Y, UL (exactly two points
(iy Pe¥y, UL .

Proof. Similarly to Lemma 3.18, we obtain (i) and (ii). Hence it suffices to show
(iii). Now we have the following two cases:
1) P¢Y:L UL ;
(2 PeY, UL
We assume thaP ¢ ¥;” UT; . Then we easily obtain¥g - Ey ) = (Y2 - E1 )y = 3,
(T"-E1 )~ =1 and § -E1 )y = 11. Since we know the intersection Bf, E; and
Y, , we obtain by using separation the weighted dual grapﬁLofEUlAl. We note that
YUE is the boundary curve of a smooth compactificationCG3f which is not simple
normal crossing. By applying the blowing-ups three times on Singwe obtain the
weighted dual graph of the simple normal crossing boundary of a smooth compacti-
fication of C2 in Fig. 9, where we denote byr{), (Y»), (1)’ and (E1) the proper
transforms ofYy, Y5, I, and E; respectively. By contracting suitable-{)-curves in
this boundary successively, we obtain the weighted dual graph of the boundary of a
minimal normal compactification of? which is not a linear tree. This is a contradic-
tion. Hence we obtairP € ¥; UT; . O
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QY (E) (7
Fig. 10.

We define a pointQ by{P,Q} := ¥, UL’ = T NE;. Then we have the
following two cases:
(1) The intersection of ~ and E;" at P is tangential.
(2) The intersection of* and E; " at P is not tangential.

Proposition 3.21. The casef is a cuspidal cubic cannot occur.

Proof. (1) We assume that the intersectionTof and E; at P is tangential.
Then we obtainl{ - E; )p =3 and T - E1 )p = 9. Now we assume thdi = {Q}.
Sincex NIy = (), by Proposition 2.2(v)/; is a (—1)-curve inX \ x. Since { - l1)¢ =
(E1-)x =1, we obtain T"-E; ) = 1. This is a contradiction. Hence we obtdip =
{Q}. From this and by Proposition 2.2(vii), we obtail,( - E1 )= (Y2 - E1 )o = 3,
that is,Y, and E; meet only atQ tangentially to the third order. Similarly to the
proof of Lemma 3.20, we obtain the weighted dual graph?oﬂ E Ul and, by ap-
plying the blowing-up at a certain point df;, we obtain the weighted dual graph of
the simple normal crossing boundary of a smooth compactificatiofiofn Fig. 10,
where we denote byf(t)’, (172)’, (lAl)’ and (E,)’ the proper transforms ofy, Y, I; and
E1 respectively. By contracting suitable-{)-curves in this boundary successively, we
obtain the weighted dual graph of the boundary of a minimal normal compactification
of C? which is not a linear tree. This is a contradiction.

(2) We assume that the intersection Bf and E; at P is not tangential. Then we
obtain T -E,)p =2, T -E1 )o = 10 and, similarly to (1)Y; = {Q}. By Proposition
2.2(vii), we obtain {2 - E1) = (Y2 - E1 ) = 3, that is,Y,” and E; meet only at

Q tangentially to the third order. Similarly to the proof of (1), we obtain the weighted
dual graph ofY U E Ul; and, by applying the blowing-ups twice on a certain point
of E;1, we obtain the weighted dual graph of the simple normal crossing boundary of
a smooth compactification a2 in Fig. 11, where we denote byy)’, (¥2), (1)’ and

(E1) the proper transforms of;, Y», 1 and E; respectively. By contracting suitable
(—1)-curves in this boundary successively, we obtain the weighted dual graph of the
boundary of a minimal normal compactification @ which is not a linear tree. This

is a contradiction. O
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Fig. 11.

4. Construction of Linearizing Automorphisms

In this section, we shall prove Theorems 2 and 3. For each weighted dual graph
of YUEUT of type (1) through (XIV) in Theorem 1, we know by its proof the shape
of the divisor @|5).(€) and the intersection of the divisols and {/|5).(€). Hence,
by Proposition 2.5, we can write down the defining equation Xf X ) of the same
type as in Theorem 2. Next we construct an automorphisnCdiwhich transforms
the hypersurfacex \ Y of C2® onto a hyperplane of£® which shows Theorem 3. It
suffices to consider the defining equations & ¥ ) of type (VI), (X), (XI) and (XII).
Indeed, for the other types, we can easily construct such automorphisms, which are el-
ements of the subgroug ,@B) Vv A(3, C) of Aut(C3). Here we denote byx(y,z ) a
coordinate system of® and by Aut C[x, y, z] the group of C-algebra isomorphisms
of the polynomial ring of three variables,y and ov@r Then we obtain the nat-
ural group isomorphism AgtC[x, v, z] = Aut(C3®), o — &,, where ®, is defined

by

x' = o(x)
@10 Y =a(y)
7 = o(z).

In the following, we shall mainly describe elements of AQ{x, y, z].

4.1. The type (VI). For this type, it suffices to consider the following hyper-
surface ofC3:

(1 +ayx +azxx?)y + (azx + agx?)y? + xy> + x3z + asx? = 0,
whereq; are complex parameters. After performing the two coordinate transformations
x'=x,y =y+asx?, 7 =z andx” =x', y" =y, " = +p(’', y') wherep &', y')
is a suitable polynomial ok’ and y’, we obtain the following hypersurfacg of C:

S1: (L +awx +axx?)y + (asx + asx?)y? +xy3 +x32 = 0,

wherea; are complex parameters. Hence it suffices to construct an automorphism of
C2 which transformss; onto a hyperplane of®. According to Proposition 2.2 in Rus-
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sell [14], we defineC-algebra homomorphisms,, 1 : C[x, v, z] — CJx, y, z] as fol-
lows:

o1(x) == x
o1: ¢ o1(y) = falx,y) +x32
o1(z) = {g1(x, o1(y)) — y}/x3,

T1(x) = x
Ty { m1(y) = galx, y) —x%
11(2) = {y = falx, 72(»))} /x5,

where f1, g1 € Clx, y] are defined by

filx, ¥) = (L+arx +azx?)y + (azx + agx?)y? + (x)y?,
g1(x,y) = {1 —awx + (—az + ad)x®}y + {—azx + (3a1az — as)x*}y*
+{—x + (2a5 + da1)x*}y* + (5azx?)y* + (3x%)y°.

Proposition 4.1. o1, 1 € Aute Clx, y, z] and o;l = 71. In particular, the auto-
morphism®,,, transformssS; onto a hyperplane of® and ¢, = &,.

Proof. First we check that; and; can be defined a§-algebra endomorphisms
of C[x, y, z]. Now we get the following equalities by computing directly:

1) filx, g1(x, ¥)) = g1lx, fa(x,y)) =y mod ).

By using (1), we obtain

fAilx,y) = filx, y) +x3%2 = 01(y)

2
@ = filx, ga(x, 01(y))) mod ).

By using (2) and (1) again, we obtain

y = gl(x’ fl(xv y)) = gl(x’ fl(x’ gl(-x’ O']_(y))))
= gi(x, 01(y)) mod (°).

Similarly, we obtainy = fi(x, 71(y)) mod 3). Thus we see that both af(z) and
71(z) are polynomials ofx ,y z and hence we can defineand r; as C-algebra
endomorphisms ofC[x, y, z]. Since we can easily checkymi(x) = m01(x) = x,
o111(y) = mo1(y) = y and o171(z) = 1101(z) = z, we obtainoy, i € Aute Clx, vy, 7]
and 01_1 =T71. O
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4.2. The types (X), (XI) and (XII). For these types, it suffices to consider the
following hypersurfaceS, of C3:

Sriytx|xz+ Z a;jxiyj =0,
i,j>0

whereq;; are complex parameters. Now we construct an automorphis@i? efhich
transformssS, onto a hyperplane of®. We defineC-algebra homomorphisms,, 7 :
Clx, y,z] — C[x, y, 7] as follows:

oa(x) == x

021 02(y) =y +xfalx, v, 2)
o2(z) = 7z — galx, y, 2),
To(x) = x

21§ T2(y) =y —xfax, v, 2)
m2(z) = 2+ ha(x, y, 2),

where f>, g2, ho € Clx, y, z] are defined by

folx,y,2) = xz+ ) ayx'y,
i,j>0
i |
ga(x.y.2) = > @ {Z (z)y’_kxkfz"}f/x,
i>0,j>1 k=1
J .
ho(x,y.2) = Y aij {Z (i)(y —sz)f‘kxkfzk}X’/X«
i>0,7>1 k=1

Proposition 4.2. o,, » € Aute Clx, y, z] and agl = 7. In particular, the auto-
morphism®,,, transformssS, onto a hyperplane of® and ¢! = @,.

Proof. For anyj > 1, we note tha divide$ /., (/)y/*x* £5 and 31, () (v—
xf2)/~*xk f¥. Thereforeg, and h, are polynomials ofr, y,z and, in particulasp and
75 can be defined a§-algebra endomorphisms d@i[x, y, z]. Here we can check the
equalitiesoy(f2) = m(f2) = f» by direct computation. By using these equalities, we
can easily get,m(x) = moa(x) = x, 0212(y) = 02(y) = y and o27(z) = 202(2) = z.
Hence we obtairr,, 72 € Autc Clx, y, z] and o, ' = 7. O
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