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Abstract
For an odd prime numbep, we classify the isomorphism classes of finitely gen-
erated torsionA = Z,[[T]]-modules withi = 3 and u = 0, which are free over
Zy,. We apply this classification to the Iwasawa module assedi&t the cyclotomic
Zy-extension of an imaginary quadratic field.

1. Introduction

Let p be a fixed odd prime number amd = Z[[T]] the ring of power series in
one variable ovefZ,. In the classical Iwasawa theory, one studies lwasawa raedup
to pseudo-isomorphism. In this paper, we study Iwasawa teedip toA-isomorphism.
Especially, our aim is to generalize Sumida’s results (t1],[[12]).

For a distinguished polynomial (T) € Z,[T], Sumida introduced the set

My = {[M]Qp

M is a finitely generated torsion-module)
charM) = (f(T)) and M is free overZ, [’

where M]q, is the A-isomorphism class oM and char|/l) is the characteristic ideal
of M. Sumida showed thaiM ) is a finite set if and only if f(T) is a separ-
able polynomial ([11], Theorem 2). Sumida and Koike deteediM ¢y in the case
deg(f(T)) < 2 ([7], Theorem 2.1 and [11], Proposition 10). In this papee deter-
mine the setM ¢ for

fF(T) =T —a)(T = B)T —»),

wherea, B, y are distinct elements opZ, (Theorem 3.5). This is a generalization of
Sumida’s result [12]. (Precisely speaking, we work o@fT]] below whereO is the
ring of integers of a finite extension @,.)

The motivation of this work lies in lwasawa theory. We applyr dheorem to
the lwasawa module associated to the cyclotomjcextension of an imaginary quad-
ratic field. Letk be an imaginary quadratic number field akd/k the cyclotomic
Zy-extension ofk. For eachn > 0, we denote by, the unique intermediate field of
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830 K. MURAKAMI

koo /k with [k, : k] = p". Let A, be the p-Sylow subgroup of the ideal class group of
kn. We putX = I(m A,, where the inverse limit is taken with respect to the reéativ
norms. It is known thaX is a finitely generated torsion-module (cf. [5]). Moreover,

it is known thatX is a freeZy-module.

Therefore, we can apply our theorem to the Iwasawa moduleWe apply our
theorem in the case that = 3 andk = Q(+/—d). In this setting, f(T) can be approx-
imately calculated by the-adic L-functions (see Section 6).

The outline of this paper is as follows. L& be a finite extension o, and Ag
the ring of power series in one variable over the ring of ietsgof E. In Section 2,
we introduce the seM'fE(T) which is the set of isomorphism classes/of-module sat-
isfying some properties. In Section 3, we state our mainrémao(Theorem 3.5). We
define a certain equivalence relatiesi on Z>o X Z>¢ x O and defineZ’ = (Z>o x
Zso x Og)/~'. We defineZ to be a subset ofZ’ satisfying certain conditions. An
element ofZ’ is written as(m, n, X). We also define an equivalence relatienon Z
and considerZ/~. An element ofZ/~ is written as {m, n, X)]. Roughly speaking,
Theorem 3.5 states that there is one to one correspondemedeM'fE(T) and the
equivalence classes &/~. Moreover, we prove Sumida’s result ([12], Theorem 1) in
Corollary 3.8, using our Theorem 3.5. In Section 4, we giver@opof Theorem 3.5.
Section 5 is a preparation for Section 6. In this section, welys the structure of
A-modules. In Section 6, we apply Theorem 3.5 to the lwasawdufeoassociated
to the cyclotomicZ ,-extension of an imaginary quadratic number field. We apply o
theorem in the case that = 3 andk = Q(+/—d) for all d such that 1< d < 10° and
d # 2 mod 3, that is to sayp does not split ink. We determine theA-isomorphism
class of the lwasawa module associatek tim the caseip(k) = 3, wherei,(Kk) is the
Iwasawa-invariant. There are 1109 imaginary quadratic fields Batig these prop-
erties. Among them, there are 1015 fields whdsgare cyclic groups. We can de-
termine [X]q, for these 1015 fields by Proposition 5.2 immediately. Foraieing 94
fields whoseA, are not cyclic groups, there are 66 fields whdg&) is reducible. We
determine K]q, for these 66 fields.

After | submitted this paper, | was informed from Sumida @a#&shi) of the the-
sis by C. Franks where he independently obtained the cleatsifin of A-modules. In
Remark 3.6, | will explain the difference between our metlaod that in Franks.

2. Preliminaries

Let p be an odd prime number. L& be a finite extension over the fiel@d, of
p-adic numbers. LetDg, m, orde be the ring of integers irE, a prime element and
the normalized additive valuation d& such that ord(wr) = 1, respectively. We put
Ag := Og[[T]] the ring of power series ovePg.
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Let M be a finitely generated torsiong-module. By the structure theorem of
Ag-modules (cf. [13], Chapter 13), there isfAg=-homomorphism

¢o: M — (@ AE/(nm‘)> ® (@ AE/(f,—(T)”i)>
[ i

with finite kernel and finite cokernel, wheng , n; are non-negative integers arfig(T) €
Og[T] is a distinguished irreducible polynomial. We put

charM) = (l_[ a™ l_[ fj(T)“J)
i ]

which is an ideal inAg. We define M]g to be theAg-isomorphism class oM.

As in the introduction, for a distinguished polynomi&(T) € Og[T], we consider
finitely generated torsiom\ g-modules whose characteristic ideals afé€T()), and de-
fine the setMf ) by

(1) MGy = {[M]E charM) = (f(T)) and M is free overOg

M is a finitely generated torsior\E-module}

Sumida showed thaM'fE(T) is a finite set if and only iff (T) is separable [11]. Here,
we say f(T) is separable wherf(T) has no multiple roots in an algebraic closure
of E. Sumida also determined () in the casef(T) = (T — a)(T — )T — y),
wherea, B,y € pZ, satisfya # B, B # y, y # a mod p? (see [12], Theorem 1). We
generalize this result to a general separable polynoh§al) with degree 3.

Now we put

&) fF(T) =T —a)(T = B)T —»),

wherew, B and y are distinct elements ot Og. We determine all the elements of
MGy in the next section.

Let [M]e € Mf). SinceM has no non-trivial finiteAg-submodule, there exists
an injective A g-homomorphism

M= Ag/(T—a)® Ag/(T-B)® Ae/(T —y)=:&

with finite cokernel. We write€ for the right hand side. The above fact implies that
every class ot/\/l'ff(T) can be represented by /ag-submodule of€.

Now we fix a notation to express such submodule< inFirst, by using the ca-
nonical isomorphismAg /(T —a) = O (f(T) —» f(a)), we define an isomorphism

€= Ag/(T—a)® Ae/(T —B)® Ag/(T —y) — OF



832 K. MURAKAMI

by (f1(T), fo(T), f3(T)) — (f1(a), f2(8), f3(y)). We identify £ with (9?3 via ¢. Thus
an element in€ is expressed as{, a, ag) € O%’?’. Since the rank oM is equal to 3,
we can writeM in the form

M = ((au, @z, ag), (b1, by, bs), (1, Cz, CS))OE ce,
where (x) o, is the Og-submodule generated by, Further, we can express the action

of T by

T (a1, a2, ag) = (aay, fag, yag),
using this notation.

3. Main result

Let M be anOg-submodule of€ with rank(M) = 3 of the form

M = ((a1, a, ag), (by, b, ba), (c1, G2, C3))o. C E.
Let

s=min{i € Z-o | Ja,b e O¢ s.t. @', a b) € M},
t =min{i € Zso | 3c € O s.t. (0,7',c) € M},
u=min{i € Zso | (0,0,7') € M}.

Then we have
M = ((z%, a, b), (0, 7', ¢), (O, 0,7)) o -

Suppose d1, ap, a3) € M. Since org(a;) > s, there existx € Og such thata; = xxs.
S0 (@, &, az) — x(r%,a,b) = (0,a, — Xa, a3 — xb) € M. Since org(a; — xa) > t, there
existsy € Og such thata, — xa = yx!. Similarly by the same method as above, we
get (0,03 —xb—yc) e M. Finally, there existz € Og such thatag —xb—yc = zz".
Then we haved, ay, ag) = x(r%, a, b) + y(0, 7', ¢) + z(0, 0, 7Y).

The following lemma is a necessary and sufficient conditimnain Og-module M
to be aAg-submodule.

Lemma 3.1. Let M= ((z%,a,b), (0,7",c), (0,0,7"))o.. Then the following two
statements are equivalent
(i) The Og-module M is aAg-submodulg
(i) Integers ab, c, s, t and u satisfy

t <orde(B — @) + orde(a),
{u < orde{(y —a)b — (8 — a)rtac},
u < ordg(y — B) + orde(c).
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Proof. We first suppose tha¥l is a Ag-submodule. SdM satisfiesTM C M
and we have
T(x%, a, b) = (an?, Ba, yh)
= a(7®, a,b) + (B — ) ~a(0, 7', )
+{(y —a)b— (B —a)rtacjr (0, 0,7"),
T(0, 7', ¢) = (0, Br', y©)
= (0, ', ¢) + (y — B)er (0, 0, 7").
Since these coefficients belong @, we get (ii). Conversely, if arOg-module M
satisfies (ii),M is naturally anOg[T]-module by the action as above. We show that

M becomes a\g-module. For a positive integer, we putv, = > p_o d T € Og[T]
andv =) ,d,T" € Og[[T]]. Then we have

un(®, a, b)
n n n
= <ns > dek,a) degf by dkyk)
k=0 k=0 k=0
n n n
=) dka*(r% a,b) + a(Z AR dkak)n_t(O, 7', )

k=0 k=0 k=0

+ {b(Z da* =" dkak) - (Z A=) dkak)ntac}n“(o, 0,7").
k=0 k=0

k=0 k=0

BecauseM is an Og[T]-module, we haves,(%, a, b) € M. Thus we obtain

n n
a(Z deg > dkak>7rt € Oe
k=0 k=0

and
n n n n
{b(z ey =) dkak) - (Z AR dkak)ntac}n” € Ok.
k=0 k=0 k=0 k=0

Sinceda®, de X, dy® — 0 (kK — 00), I re otk 3 po o dkBK and 3 g2, dk X converge
in Og. Thus we havey(r$, a, b) € M. For (0,7!,c) and (0, 0,), we can define the
action of the elements ol by the same method as above. O

We use the following lemma to fix a representative of the-isomorphism class
of M.
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Lemma 3.2 (Lemma 1 in Sumida [12].) Let M = {((a1, a2, a3), (b1, by, bs),
(€1, C2, C3)) o, be a Ag-submodule of and w, uy, uz € O \ {0}. Then we have

M == ((u1ay, Uzap, U3ag), (U1b1, U2bz, Usbg), (U1C1, UaCo, UsC)) o,
as Ag-modules.
We take M to be aAg-submodule of¢ with finite index. Then we can write
M = ((7°, a, b), (0, 7", ¢), (0, 0,7")) o,

as we explained in the beginning of this section. By Lemmg &2re exist non-
negative integersn, n and x € Og such that there is an isomorphism

M = ((1, 1, 1), 0™, X), (0, 0,7")) o,

as Ag-modules. In fact, by Lemma 3.M is isomorphic toM’ = ((1, a, b), (0, !, ¢),

0, 0,7"))oe- In the case org(a) <t, by Lemma 3.2,M is isomorphic to{(1, 1,b),

(0,a 1%, ¢), (0, 0,74))o.. On the other hand, in the case p(d) > t, since M’ =
(1,a+nrt,b+c), (0,7 ¢),(0,0,7")) 0., we can proceed by the same method as in the
case ord(a) <t. ThereforeM is isomorphic toM” = ((1,1,b), (0,a'n",c), (0,0,7")) o,

for somea’ € E. By applying the same method as aboM¥; is isomorphic to((1,1,1),

0, 7™, x), (0, 0,7")) . for some non-negative integems, n and x € Ok.

We defineM(m, n, x) by

M(m, n, %) = ((1,1,2), 0™ %), (0, 0,70, C &
Proposition 3.3. Let f(T) € Og[T] be a distinguished polynomial. Then we have
MFy = {IM(M, n, x)]e | m, n, x satisfy(x)},

where[M(m, n, X)]e is the Ag-isomorphism class of ki, n, x) and (%) is as follows

(A 0<m=ordg(f — ),
(%) {(B) 0 < n < orde(y — B) + orde(x),

(C) n=orde{(y —a) = (B —a)r"x}.

Proof. LetM be aAg-module such that\l]g € ME(T). Then we saw thatNl]g =
[M(m, n,x)]e for somem, n, x satisfying é&) by Lemma 3.1. We will show the converse.
We suppose thah,n andx satisfy ¢). By Lemma 3.1 M(m,n,x) becomes a finitely gen-
eratedA g-module. Sincef (T) = (T —a)(T —8)(T —y) annihilatesM (m,n,x), M(m,n,x)
is a torsionAg-module. Moreover, by the definition &fl(m, n, x), M(m, n, X) is a free
Og-module. Finally we show that chaf{(m,n,x)) = (f(T)). The Ag-moduleM(m,n,x)
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is a submodule of with finite index. In fact, since rank. (£) = ranky.(M(m,n,x)) = 3,
E/M(m, n, x) is finite. This implies that chak{(m, n, X)) = char€). Thus we get
[M(m, n, X)]e € MF ). O]

REMARK 3.4. (i) If x =x' mod =", we haveM(m, n, x) = M(m, n, x) since
0,7™ x) = (0,7™, x') + a(0, 0,7") for somea € Og. In particular, if org(x) > n,
we have M(m, n, x) = M(m, n, 0). This means that we may assume tkat 0 or
orde(x) < n.

(i) We have

(y =)y =P _(r=B)x p-« - p)- (y ) — (B —e)r "™x

Al an am "

Therefore if §&) holds, we get
0<n < orde(y — ) + orde(y — B).

Let M(m, n, x) and M(m', n’, X') € M'fE(T). We will investigate a relation among
m, m’, n, n’, x andx’ when M(m, n, x) is isomorphic toM(m’,n’,x") as aAg-module.
We note that we may assumxe= 0 or ord=(x) < n by Remark 3.4 (i).

First of all, we prepare some notation. Fon,f, x) and ', n’, xX’) € Z>o X Z>g X
Ok, we define

(mn,x)~ (M,nN,xX)< m=m,n=n" and x=x" mod n"O.
We put Z’ := (Z>o x Z>o x Og)/~' and introduce a set
3) Z:={(m,n,x)eZ | m n, x satisfy ¢)},

where ) is the inequalities &), (B) and C) in Proposition 3.3 andm, n, x) is the
equivalence class ofn{, n, x). The class(m, n, x) is determined bym, n and x mod
7"Og. We note that the condition<] does not depend on the choice of a representa-
tive of (m, n, x).

For an element for € Og andz =X € Og/x"Og, we define orgd(z) = ords (x mod
™) as follows:

orde(2) == {zng(x) i if 0,

For (m, n, x) and (m’, ', X’) € Z, let k = ordg(x mod=") andl = ordg(x’' —7™). We
define(m, n, xX) ~ (M, n’, x’) as follows.

(I) Supposem # 0.

(&) Whenl + k > n, we define

mn,x)~,n, X)) m=m,n=n and X=X in Og/n"Ok.
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(b) Whenl + k < n, we define

(mn,x)~(,n,xX)< m=m,n=n and
X=¢ex in Og/n"Og for some ¢ e 1+ n'Ok.

(1) Supposem = 0. We define

(mn,x)~(M,n,x)<= m=m =0, n=n,
orde(x modz") = orde(x’ modz") and
1-x=¢(1l-x) in Og/x"Og for some ¢ e Of.

Here, fors < 0, we define 14+ 730 = Of. We can prove that- is an equiva-
lence relation. The following is our main theorem. We wilbpe this theorem in the
next section.

Theorem 3.5. There is a bijectiond:

\ w

[M(m, n, X)]g —— [(m, n, X)],

where M'fE(T) is defined by(1) in Section2, Z is defined by(3) after Remark 3.4,
and ~ is the equivalence relation of Z defined aboy&(m, n, x)]e is the class of
M(m, n, x) defined byProposition 3.3and [(m, n, X)] is the class ofm, n, x).

REMARK 3.6. After we submitted this paper, we learned from Sumidaetkist-
ence of the thesis by Chase Franks where he independenslyifidd the isomorphism
classes ofA-modules withh = 3. He also gave an algorithm to determine the
isomorphism classes for any separabld) which has arbitrary degree [2]. His method
is essentially the same as our paper, but there are someediffes which we will ex-
plain here.

1. We give in this paper an explicit method to compuateandn using the action
of T—a, T — 8 etc. (cf. Lemma 4.1).

2. Our inequalities about orders gf-adic numbers ((5), (6), (7) in Section 4)
are obtained from a different point of view from Franks’ Hiel diot solve completely
his equations which are essentially equivalent to our in#ties, but we solved our
inequalities completely in the case= 3.

3. We explicitly give a subgroupi C Zj such thatM(m, n, x) = M(m', n’, x') if
and only ifm=m, n=n" andx/x" € H (H depends on ofgx)). Also, we use the
higher Fitting ideals (cf. Section 5 and 6). This is a differargument from Franks.
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4. As an application, we apply our classification to the Iwasanodule associ-
ated to the cyclotomi@ p-extension of an imaginary quadratic field (cf. Section 6h O
the other hand, Franks determined the isomorphism clagseoPobntryagin dual of the
p-Selmer group of elliptic curves over the cycloton#g-extension fora = 2.

5. Franks’ method has some merits. He gave an algorithm tmlelechether two
A-modules are isomorphic or not. This algorithm is to checlethler some matrices he
defined belong to GI(Z,). This algorithm works for arbitrary. and separable (T).

REMARK 3.7. When(m, n, x) ~ (m', n’, X’) andl +k < n, we havel = ordg(x'—
a™ = ordg(x — ™).

Sumida determined all elements 8ft ¢ty for f(T) = (T —a)(T —B)(T —y) and
ordp(a — B) = ordp(B — y) = ordp(y —«) =1 ([12], Theorem 1). We can also obtain
the same result from our Theorem 3.5.

Corollary 3.8. (Sumida) Let f(T) be the same a$2) in Section 2and E =
Qp. We assumerdp(e—pB) = ordy(B8—y) = ordy(y —a) = 1. Then we havéiM ¢ 1y =
7 and

M?(”T) ={(0,0,0),(0,1,0),(1,0,0),(0,1,1), (1,ap), (1, 1,0), (0, 1, 2),
where u= (y —«)/(B — ) and (m, n, x) means[M(m, n, X)]q, .

Proof. We prove this corollary using Theorem 3.5. By fixingegersm and n,
we put

Z(m, n) = {the equivalence class @M, n, x) in Z/~ | (M, n, X) € Z}.

Then, by definition, we have
z/~=1][]zmn).
m n

We determine all the elements &@f(m, n) for eachm andn in order to determine all
the elements ofM ¢(T).

We first assume(fn, n, x)] € Z/~, where [m, n, x)] is the equivalence class of
(m, n, x). Then by Proposition 3.3Mi(m, n, x) is a Ag-module satisfying 4), (B) and
(C). By the inequality ), we have 0< m < 1. Now we investigatd [, Z(m, n) for
m=0, 1.

() Supposem = 0.

In this case, by the inequalitieB) and C), we have 0< n < 1. Whenn > 2,
we get org(x) = 0 by (C). This contradicts toB). Whenn = 0, we have(0, 0,x) =
(0, 0, 0). Therefore we geZ(0, 0) = {[(0, 0, 0)}. Whenn = 1, we haveZ(0, 1) =
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{[(0, 1, O)], [0, 1, 1)],[(0, 1, 2)}. By the definition of the equivalence relation, we have
(0, 1,x) ~ (0, 1,x) if and only if

ord,(x mod p) = ordp(x' modp) and 1—x =e(l—Xx)
for somes € Z. By the definition of org(x mod p), we have

0 X ¢ pZyp,

ordp(x mod p) = {Oo X € PZy.

We investigate the case gk modn) = 0. Supposex = 1. Then we have

[(0, 1, 1)]={(0, 1,x) | (0, 1, 1)~ (0, 1,x)}
= {(0, 1,x) | ordy(x) = 0, 0 = (1 — x) for somee € Z}}
={(0, 1,x) | x = 1 mod p}
={(0,1,1).

Supposex = 2. Then we have

[0, 1, 2)]= {(0, 1,x) | ordy(x) = O, —1=¢(1—x) for somes e Z;}
={0,1,x)|x#0,1
={0,1,2),...,(0,1,p-1).

Therefore we ge&(0, 1) = {[(0, 1, 0)], [(O, 1, 1)], [O, 1, 2)}.

(1) Supposem = 1.

By Remark 3.4 (ii), we have & n < 2. Whenn = 0, we haveZ(1,0)= {[(1, 0, 0)]..
Whenn = 1, we haveZ(1, 1) = {[(1, 1, 0)]}. In fact, we suppose(], 1,x)] € Z(1, 1).
Then we havex = 0 by (C). Whenn = 2, we haveZ(1, 2)= {[(1, 2,up)]}. Indeed, we
suppose (@, 2,x)] € Z(1, 2). For somev € Z%, we have

2 _
(s ),
y—a)p—-u
¥ "% p mod p?,
— o

=

by (C). Thus,

Z/~={[(0,0,0)], [0, 1, 0)], (1,0, 0)], [0, 1, 1)}, (1, 2,up)], [(1, 1, O)], [0, 1, 2)}.

We complete the proof by Theorem 3.5. 0
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Corollary 3.9. Let f(T) be the same a§2) in Section 2and E= Q,. We as-
sumeordy(a — B) = ordp(8 — y) = ordp(y —a) = 2. Then we havét M¢q) = p +
18 and

,0),(0,1,1), (0,1, 2), (0, 2,0), (0, 2, 1),

p), (0,2,p+1),(1,0,0), (1, 1,0),

y O)! (1! 2p)1 ey (1! 2! (p_ 1)p)1 (1! 3,Up), ,
,0),(2,2,0), (2, 8p), (2, 4,up?)

Q
My =

P NN -

where u= (y —«)/(B — ) and (m, n, x) means[M(m, n, X)]q,

Proof. We use the same notation as Corollary 3.8. By definitwe have
z/~=1][]zmn).
m n

We determine all the elements &f{(m, n) for eachm andn in order to determine all
the elements of/\/l?("T).

We first assume(fn, n, x)] € Z/~, where [m, n, x)] is the equivalence class of
(m, n, x). Then M(m, n, x) becomes a\g-module satisfying A), (B) and ). By the
inequality (A), we have 0< m < 2. Now we investigatd [,, Z(m, n) for eachm.

() Supposem = 0.

In this case, by the inequalitieB) and C), we have 0< n < 2. In fact, if
ordy(x) > 1, we getn < 2 by (C) and if ordy(x) = 0, we getn < 2 by (B). When
n =0, we have(0, 0,x) = (0, 0, 0) andZ(0, 0) = {[(O, O, O)}. Whenn = 1, we have
Z(0,1)={[(O, 1, 0)],[(0, 1, 1)], [0, 1, 2)}} by the same method as Corollary 3.8. When
n =2, we have

4 Z(0,2)={[(0, 2, 0)], [0, 2, 1)], [0, 2, 2)], [0, 2, p)]. [(0, 2, p + 1)]}.

In fact, we suppose(Q, 2,x)] € Z(0, 2), then we hav& = 0 or ordy(X) < 1. We first
investigate the case gytk) = 0. Then, (0, 2,x) ~ (0, 2,x’) if and only if

0=ordy(x) = ordy(x) and 1—x=¢e(1—x’) for some ¢e Zy.

By the same method as above, we get

[(0, 2, 1)]={(0, 2, 1},

[(0,2,2)]={(0,2,x) | X # 0,1},

(0,2,p+ Dt ={(0, 2,x) | ordp(x) = 0, =p = &(1 — x) for somee € Z}}
=1{(0,2,1+xp) | 1= x5 < p}.




840 K. MURAKAMI

Next, we investigate the case @fd) =1, let x = p. Then we have

[(0, 2,p)] ={(0, 2,x) [ordp(X) =1, 1— p = &(1—X) for somee € Z}
={0,2,xp) | 1=x1 < p}.

Thus we get (4).

(I) Supposem = 1.

By the inequalities B) and C), we have 0< n < 3. If ordy(x) < 1, we have
n <3 by (B). If ordp(x) > 1, we haven < 2 by (C). Whenn =0, we haveZ(1,0)=
{[(1,0,0)}. Whenn =1, we haveZ(1, 1) = {[(1, 1, 0)], [1, 1, 1)}. We suppose
[(1,1,x)] € Z(1,1). Then we hav& = 0 or ord,(X) = 0. We suppose ogfX) = 0.
We havel = ordy(x—p) = 0. This is the casebj. By the definition of the equivalence
relation, (1, 1,x) ~ (1, 1,x’) if and only if

X =ex’ for some ¢ ¢ Zy.

Here we note that = ordg (X’ — p) = 0. Then we have

[(1, 1,X)] = {(1, 1,x) | X = &x’ for somee € Z}}

={(1,1,x) | X # 0}.

Therefore we getZ(1, 1) = {[(1, 1, 0)], [(1, 1, 1)}. Whenn = 2, we haveZ(1, 2) =
{4, 2,x)]x=0,p2p,..., (p—=1)p}. In fact, we suppose(1, 2,x)] € Z(1, 2). By
the inequality C), we have

2= ordy{(y —a) — (B —)p *x}.

If ordp(x) = 0, the order of the right hand side is 1. This is contradictidhus we
may assume X ordy(x). If ordp(x) > 2, we get (1, 2,x)] = {(1, 2, 0}. We suppose
ordp(x) = 1. Then(1, 2,x) ~ (1, 2,x) if and only if

X = X.

Here we note that this is the cas&) (sincel = ordy(x' — p) > 1. For eachx = ¢p,
where 1< ¢ < p, we have

[(1, 2,x)] = {(1, 2,x)}.

Thus we getZ(1, 2)={[(1, 2,X)] | x=0,p, 2p, ..., (p—1)p}. Whenn = 3, we have
Z(1,3)={[(1, 3,up)]}. In fact, we suppose(], 3,x)] € Z(1, 3). By the same method
as in the case = 2, we get org(x) = 1 and(1, 3,x) ~ (1, 3,up) if and only if

X =¢eup for some ¢ €1+ pZy.
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Here we note that this is the cada) Gincel = orde(up— p) = 1. Moreover, by C),
we have

3 —
x=[1- LI ap for some v € Z7.
y—a)B—« P

Since 1- vp*/(y — @) € 1+ pZp, we have

[(1, 3,up)] = {(1, 3,x) | X = eup for somee € 1+ pZy},

whereu = (y —a)/(B —«). Thus we getZ(1, 3)= {[(1, 3,up)]}.

() Supposem = 2.

By the same method as (I) and (ll), we g&(2, 0) = {[(2, 0, O)}}, Z(2, 1) =
{2, 1,00, 2(2,2)={[(2, 2, 0)}, Z(2,3)={[(2, 3,upA)]} and Z(2,4)={[(2, 4,up?)]}.
Thus we complete the proof. ]

4. Proof of Theorem 3.5

For any¢ € Ag, we define a mafil; = IM}Y': M — M by TTe(y) = &y.

Lemma 4.1. Let q= #(Og/(x)) and M= M(m, n, x). Then we have

#(Ker(TIY _,y)/IM(TTT_p)) = qlordeC=A=-m,
#(Ker(l_[%,y))ﬂm(HM,a)(T,ﬁ))) — q{Orde(VfaHOrde(yfﬂ)fn},
where N= Im(I1r_,)).
Proof. We first compute Kef{r_,)). Fory € M = M(m, n, x), there exist
A1, A2, A3 € O such that
y = A1(1, 1, 1)+ 2»(0, 7™, x) + 23(0, 0,7")
= (A1, M1 + Aomt™, Ag 4+ AoX + )szTn).

Thus we havellir_,)(y) = (&« — ¥)A1, (B — ¥)(k1 + Xom™), 0). If y € Ker(TTi1_,)),
we geti; = 0 and iy + A,r™ = 0, sincew, B and y are distinct elements oOk.

Thereforey = (0, 0,A37") and Ker{Ir—,)) = (0, 0,7"Og). On the other hand, by
Y = (A1, A+ o™, A1 + A2X + Agw"), we have

Hr—ayT—p)(y) = Mr—o)((@ — B)A1, 0, (v — B)(A1 + AoX + Az7"))
=(0,0, (v —a)(y — B)(A1 + A2X + Aam")).
Thus we have It —)T-p) = (0, 0, 7O~ D+ode=A ) and

#(Ker(TIr—))/IM(N(r_ar-p))) = #(w" O [n @ EV=N+OEE=DOE)
— lorde(y—a)-+orck(y—)-n)
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Next we putN = Im(ITt_,)). We have
Ker(H(’\%,a)) — (ﬂordE(a_y)+mOE, 0, 0),
Im(H(“{_ﬁ)) — (nordE(a—y)+ordE(a—ﬂ)OE, 0, 0)

Therefore we get

#(Ker(T1} _))/IM(ITY}_p))) = gl f-m, .

Corollary 4.2. Let[M]g,[M]e € Mf ;) and M= M(m,n,x), M’ = M(m',n’,x).
If [M]g = [M']g, then we have re=m' and n=n'.

Proof. SinceM = M', we haveN = Im(T1}{_,,) = Im(IT}_ ) = N" and therefore
Ker(TTY_,))/IM(TTY_p)) == Ker(TY_,))/Im(TTYY ).
This impliesm = m’' by Lemma 4.1. We geb = n’ by the same method. O
The isomorphism
€= Ag/(T—a) @ Ag/(T—B) @ Ag/(T —y) » OF°
defined in Section 2, induces an isomorphism
EQo.E - E®®

such that €,(T), f2(T), 3(T)) @ y = (fal@)y, f2(B)y, fa(y)y).

Proposition 4.3. Let [M]g, [M']e € ME(T), M = M(m, n, x), M’ = M(m, n, X')
and ¢ M — M’ be a Ag-isomorphism. We define an E-linear map by the follow-
ing commutative diagram

M—2 oW

<p®ll l¢’®l

ERw.E — £®p.E

L®ll \Ll®l

EEBB = 5 EEBB_
A

In the diagram ¢ and ¢’ are natural inclusiongSection 2) When we take the stand-
ard basis of B3, F, corresponds to a diagonal matrix

a O 0
0 a O for some @, ap, ag € O¢.
0 0 a3
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Proof. Consider the mafi: M — M. ThenTI induces a magrg: E®3® — E®3
and the following commutative diagram
Il

M—T s M

<p®ll L(p@l

EQoE — E®p.E

L®1\L lt@l

EEB3 = 5 EEB3_
B

Thus we get
(1) FEo(t®1)o(p®1)(X) =(®1)e(p®1)(TX)
for x € M. Let A be the matrix corresponding t65. By the diagram, we get
(®) Fao(t®1)o(p @ 1)(TX) = (t®1)o (¢ ® 1)(Q(Tx)).
By (1) and the diagrams, the left hand side of {s
Fao(l®1)o(p®1LN(TX) = FaoFgo(t ®1)o(p ® 1)(X).
The right hand side offj is

(t®1)o(p ®1)(TY(X)) = Feo(t®1)o (¢ ® 1)(9(x))
=FgoFao(t ®1)o (p ® 1)(X).

Since this holds for anx € M, we haveFao Fg = Fgo Fa. Taking the standard basis
of E®3, Fg corresponds to the matrix

a 0 O
B:(O,B O).
0 0 vy
a 0 O a 0 O
A(O B o):(o B O)A.
0O 0 vy 0 0 vy

Sincew, B andy are distinct elements and we get

aa O 0
A= 0 a O with ag, ay, ag € E.

0 0 a3

Therefore we have
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Becauseg((1, 1, 1))= (a1, a2, a3) € M/, we geta;, a, andaz € Og. Furthermore, by
the same argument f@*, we havea;,a,%,a;* € Og. So we getay,a,a3 € Of. [

By the commutativity of the diagram, we obtain the followingrollary.

Corollary 4.4. Suppose that MFa, ¢, ¢ and ¢’ are the same a®roposition 4.3
Then we have

(Fao(t®1)o(p ® N(M))oe = (L ® 1)o (¢’ ® 1) 0 g(M))o,.

Proposition 4.5. Let[M]g,[M']e GME(T) and M= M(m,n,x), M’'= M(m,n,x’).
Then the following two statements are equivalent
(i) We have M= M’ as Ag-modules
(if) There exist g ap, ag € Of satisfying

(5) orde(a; — a;) > m,
(6) orde(agx — apx’) > n,
©) orde{ag —ay — (@ —a)7 "X} = n.

Proof. We first prove (i) implies (ii). IfM is isomorphic toM’ as aAg-module,

there exists a\ g-isomorphismg: M — M’. By Proposition 4.3, there exists a diagonal
matrix A which can be written as

a O 0
0 a O such that ay, ap, ag € O,
0 0 a3

which corresponds tg. We have

Fao(t® 1)o (¢ ® 1)(M) = FaA(M(m, n, X))
= ((a1, az, ag), (0, a7™, agx), (0, 0,a37")) o,

and

(t®1o(p ®1L)og(M)=(®1)o (¢ ®1)(M')
={((1,1,1), (0,x™, x), (0, 0,7")) o -

By Corollary 4.4, we get

((a-l! a, a3)1 (01 a27va a3X), (0! 0:a37rn))OE = ((1! 1! 1)1 (O!ﬂm! X/)v (0! Oinn))OE'
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Because the left hand side is contained in the right hand sidehave
(a1, &, ag) = a1(1, 1, 1)+ (@2 — ay)7r~™(0, =™, X')
+{ag—a — (ap —a))w "X}7 "(0, 0,7"),
(0, a7™, azx) = ap(0, 7™, x) + (agx — apxx')wr "(0, 0,7").

Since these coefficients should belong@g, we have (5), (6), (7). It is easy to prove
that (i) implies (i). ]

We can simplify the inequalities (5), (6), (7). The followins easy to see.
Lemma 4.6. The followings are equivalent

(i) There exist @ ap, ag € Of satisfying(5), (6), (7),
(i) There exist @ a, € Of satisfying

(8) orde(a, — &) = m,
9) orde(x — ax’) > n,
(10) orde{l—a; — (@2 —ay)7 "X’} > n.

Corollary 4.7. Let[M]g,[M']e € ME(T) and M= M(m,n,x), M' = M(m,n,x’).
Assumeordg(X) < n. If [M]g = [M']g, we haveordg(x) = ordg(X').

Proof. If ords(x) < orde(X’), by the inequality (6), we have < ordg (agx—axx’) =
orde(x). This contradicts to the assumption gfd) < n. If we assume org(x) >
orde(x"), we would get the same contradiction. Therefore we obtada (@) = orde(X').

O

To prove Theorem 3.5, we prepare a lemma and some propasition

Proposition 4.8. The following two statements are equivalent
(i) We have Mm, n, x) = M(m, n, 0) as Ag-modules
(i) We have(m, n, x) ~ (m, n, 0), where ~ is the equivalence relation defined 8ec-
tion 3.

Proof. We show that (i) implies (ii). If org(x) < n, we have orgd(x) = ordg(0)
by Corollary 4.7, which is a contradiction. So we havegdrd > n and M(m, n, X) =
M(m, n, 0). Then(m, n, x) = (m, n, 0) by Remark 3.4 (i). ]

Let M = M(m,n,x) and M’ = M(m,n,x’). Now we suppose that' # 0 and the ex-
istence ofay, ap € OF satisfying (8), (9) and (10). By Proposition 4.5 and Lemm@, 4.
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M is isomorphic toM’. From the inequalities (8) and (9), there aev € O such
thata, —a; = #™Ms and x — apx’ = #"v. Thus we have

(12) a; = % - nx_':v —nr"™Ms,

12) a2=nm5+a1=%—§v.

By the inequality (10), we get

(13) XX —aMs—7"v + 7"%w =x" —x

for somew € Ok.

Lemma 4.9. Let m n # 0 and orde(X) < n. The following two statements are
equivalent
(i) There exist g a, € Of satisfying(8), (9), (10),
(i) We haveorde(x) = orde(x") and there exist sv, w € O satisfying(13).

Proof. We have already proved that (i) implies (ii). We witbge that (i) implies
(). We puta; anda, by the equalities (11) and (12). Sinog n # 0 and or@(x) =
orde(x’) < n, we havea;, a € Og. Then we have
pw—a=7a"s, x—ax =xa"
and

l—a;—(ap—a))mr ™x = n"w.
Therefore we get (8), (9) and (10). ]

Proposition 4.10. Let m n % 0 and ords(X) < n. Then the followings are
equivalent
(i) We have Mm, n, x) = M(m, n, x’) as Ag-modules
(i) We have(m, n, x) ~ (m, n, X).

Proof. We first suppose thaM(m, n, X) is isomorphic to M(m, n, X) as a
Ag-module. Letk = ordg(x) and | = ordg(x’ — #™). By Lemma 4.9, we have
ordeg(x) = ordg(x’) = k and there exiss, v, w € O such that

XX —aMs—z"v + 7"X'w = x —x.

We pute = xx' ! e Of. Dividing the above equality bx’, we have

an
X' —7Ms— <" +7'w=1-c¢.
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Thus we have

orde(1—¢) > min{ordE((x’ —a™)s), orde (—nx—:]v), ordE(n”w)}

> min{l, n—k, n} = min{l, n —k}.

In the case (a) > n—k, we have ord(1 —¢) > n—k. Thus we getX = ex’ = X’
in Og/n"Og. Therefore we havém, n, x) ~ (m, n, X). In the case (b) < n—k, we
have or¢(1—¢) > | andX = ex’ in Og/n"Og. Therefore we gefm, n, x) ~ (m, n, X’).
Conversely we assume thén, n, x) ~ (m, n, X’). In the case (a), we have = X’ in
Og/n"Og and &’ — x)/7" € Og. Puts = w =0 andv = (X — X')/x" € Og. Then
we get

"—aMs— 7"+ 7"%w =% —x.

X' (x
By Lemma 4.9,M and M’ are isomorphic as\g-modules. In the case (b), We have
X = ex’ in Og/7"Og for somee € 1+ 7'Og. Since org(l—¢) > 1, we have (I—
e)/ (X —n™) € Og. Putv =w =0 ands = (1 —¢)/(X' —7™) € Og. Then we get

!’ !/

XX —1™s—a"v+7"%w = x —eX.

By Lemma 4.9, we geM(m, n, x) = M(m, n, ex’) = M(m, n, X). ]
The following propositions treat the case= 0 and the casa = 0.

Proposition 4.11. Suppose m= 0, n # 0 and orde(x) < n. Then the followings
are equivalent
(i) We have MO, n, x) = M(0, n, x’) as Ag-modules
(i) We have(0, n, x) ~ (0, n, x').

Proof. Suppose that1(0, n, x) is isomorphic toM(0, n, x’) as aAg-module. By
Proposition 4.5 and Lemma 4.6, there exast a, € Of satisfying (9) and (10). By
the inequality (9), we hav& = a,x’. By the inequality (10), we havd —a,x’ =
a;(1— x'). Therefore we get

orde(x) = orde(x) and 1—x =ag(1—x).

Thus we get(0, n, x) ~ (0, n, X’). Conversely we suppose théd, n, x) ~ (0, n, x').
There existsa; € Of such thatl —x = a;(1—x’). Puta; = x/x. Then we have
(9) and (10). Indeed, we have-da; — (ap — ay))7 ™X =1 —a; — (ap — ay)x’ = 0.
By Proposition 4.5 and Lemma 4.64(0, n, x) and M(0, n, X") are isomorphic as\g-
modules. O

Proposition 4.12. Suppose n= 0. The followings are equivalent
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(i) We have Mm, 0,x) =~ M(m, 0,x’) as Ag-modules
(i) We have(m, 0, x) ~ (nv, 0, X').

Proof. By Remark 3.4 (i), we hav#l(m, 0,x) = M(m, 0,x’) = M(m, O, 0) and
(m, 0,x) = (m, 0,x’) = (m, 0, 0). ]

Now we can prove Theorem 3.5.

Proof of Theorem 3.5. ForM(m, n, X)]g € M'E(T), we may assume = 0 or
ordg(X) < n by Remark 3.4 (i). At first,® is well-defined by Corollary 4.2 and Prop-
ositions 4.8, 4.10, 4.11 and 4.12. The surjectivity folldinam Proposition 3.3 and Re-
mark 3.4. On the other hand; is injective by Propositions 4.8, 4.10, 4.11 and 4.12.

O

5. Complementary properties

In this section, we show some propositions in order to detenthe Iwasawa
module associated to an imaginary quadratic field in the segtion.
For a non-negative integer, we putw, = wn(T) = (1 + T)?" — 1.

Proposition 5.1. For a distinguished polynomial (T) € Z,[T], let E be the split-
ting field of f(T) over Q. Then the natural map

v M?(pT) — M5ry (IM] ~ [M @4 Agle)
is injective.

Proof. We suppose thafl ®, Ag = M’ ®@, Ag for [M] and [M'] € M?("T). Since
M ® Ag = M" as A-modules, we geM" =~ M™ as A-modules, where is the degree
of the extensionE/Qy.

We assume thatl 22 M’ as A-modules. SinceM is a finitely generated\-module,
M is a profinite module and we havel = I(@ M/m"™M wherem = (7, T). Since
M 2% M’, there exists a positive integérsuch thatM /m'M % M’/m'M’ ([11], Prop-
osition 5). Because both/m'M and M’/m' M’ are of finite length, we can decompose
these modules into indecomposable modules

M/m'M =@Ni®a, M//m'M’z@Nqu,
i i

where N;’s are indecomposable modulds; # N; (i # j) ande, € are non-negative
integers. By Krull-Remak—-Schmidt's theorem, there exiswuch thate # €. Fur-
thermore we have

(M/m' M)n — @ Ni@nq! (M//ml M/)n — @ NiGBnq.
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Thus we getne # ng for somei. By Krull-Remak—Schmidt’s theorem, we have
(M/m' M)" 2£ (M’/m! M")". This impliesM" % M™. This contradicts to our assumption.
U

Let f(T) € Zp[T] be a distinguished polynomiak the splitting field of f (T) and
we put

(M) =T —a)(T =BT =),
wherea, 8 andy € 7Og as in Section 2.

Proposition 5.2. Let E and f(T) be as above andM]g € M'E(T). If M is a
cyclic Ag-module then we have

M = M(orde (B — @), orde(y — @) + ordg(y — B), umr ®%F~)
as Ag-modules where u= (y — a)/(8 — ).
Proof. LetM =~ M(m, n, x) C £. Suppose thaM is cyclic and put
M= {((a b, c))r. C&

for somea,b,c € Og. Because (1,1,1g ((a,b,c)) ., we have (1,1,13= h(T)(a,b,c) =
(h(er)a, h(B)b, h(y)c) for someh(T) € Ae. Therefore we gel, b, c € Of. Since
(0,7™, x) and (0, 0,z") € ((a, b, ¢))a., Wwe have

(0,7™, x) = a(T)(a, b, ¢) = (a(x)a, (B)b, a(r)c),

(0,0,7") =r(T)(& b, ) = (r(e)a, r(B)b, r(¥)c)
for someq(T) andr(T) € Ag. Since T —«) | q(T) and T —a)(T — B) | r(T), we
getm = orde(q(B)) = orde(8 — o) andn = orde(r (y)) = orde(y — ) + orde(y — B).
On the other hand, by Proposition 3.3 and Remark 3.4, we have ordg(8 — «)
andn < ordg(y — «) + orde(y — B). Therefore we obtairm = ordg (8 — «) andn =
orde(y — @) + orde(y — B). Furthermore,

(T-)1,1,1)=0.p-0a,y—a)
=B—a)r "0, 7™, X) +{y —a—(B—a)r " "™x}x7"(0, 0,7").

Because ord{y —a— (B —a)r "X} > n, we havex = (y —a)/(B—a)r™(1—n"v/(y —
«)) for somev € Og. By Remark 3.4 (i), we get

M(m, n, x) = M(orde(8 — @), orde(y — @) + ordg(y — B), ur ®% ¥ "), O
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Proposition 5.3. Let f(T) be as above. Assunwdz(o — 8) = orde(B — y) =
orde(y —«) = 1 and ordg (o) > orde(B8) > orde(y). Then we have

MEq =1(0,0,0),(0,1,0), (1, 0,0), (0, 1, 1), (1, @x), (1, 1, 0), (0, 1, 2),

where u= (y —a)/(8 — «) and (m, n, x) means[M(m, n, X)]e. The following is the
table of the structure 0®©g-modules MwoM for Ag-modules M.

M M /woM

M(, 0, 0) | Oe/(@) & Oe/(B) ® Oe/(v)
M(©, 1, 0) Oe/(B) ® Og/(ay)
M(©, 1, 1) Og/() ® Oe/(By)
M@, 1,2) Oe/(B) ® Og/(ay)
M(1, 0, 0) Ok/(y) @ Og/(aB)
M(1, 1, 0) Oe/(y) ® Og/(aB)
M(1, 2,ur) Oke/(By)

Proof. The former is Corollary 3.8. We show the latter. LM]E € ME(T).
There existm, n and x such that

M =(1,1,1),0x"x),(0,0,7") 0,
and we have
wOM = ((Ol, ﬁ! y)! (0,,37Tm, )/X), (0! O!Vnn))OE'
Since Ok is a principal ideal domain, we can use the structure theareen the prin-

cipal ideal domain. We consider the mah,,: M — M and take (1, 1, 1), (O™, x)
and (0, 0z") as a basis oM. Then we have

T, 1, D=0ol,1, )+ B —a)r "0,z x)
+{y —a— (B —a)r "x}z (0, 0,7"),
T, 7™, x) = (0, Bz™, yX)
= B0, 7™, X) + (y — B)xxz (0, 0,7").

(14)
(15)

By the equalities (14) and (15), the matrix correspondinglig is

o 0 0
( B—a)r™ B 0 )
ly—a-B-a)z "™}z (y=Bxz" y

In order to verify the table, we have only to transform thistiixaby elementary row
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and column operations. For example, the chse= M(0, 1, 0), we get the matrix

o 0 0
( B—« B 0).
(y—a)yr* 0 y

By the elementary row and column operations, we have

1 0 O
0o 8 0]
0 0 ay

So we getM/wgM = Og/(B) ® Og/(ay). The rest of the table can be checked by
the same method. ]

Proposition 5.4. Let f(T) = (T — «)g(T), wherea € pZ, and (T) € Z[T]
is a distinguished irreducible polynomial of degr@e Let E be the splitting field of
o(T) over Q. If [M(m, n, X)]e € Image@: M?("T) — M'?(T)([M] > [M ®a Ag]E)),
we have

ordg(x) = m.

Proof. Let M] € M?("T) and M ® Ag = M(m, n, x) C £. There is a natural
injective map

M — A/(f(T)) = A/(T —a) & A/(9(T))
([13], Lemma 13.8). By this injective map, we have
M = ((a, 1T + ¢1), (82, b2T + 2), (83, P3T + C3))z, C A/(T —a) ® A/(9(T))

for somea;, b andc € Z,. BecauseM ®4 Ag = {(ar, b T + 1), (@2, b T + ),
(ag, bsT + c3))o, by the same argument before Lemma 3.1, we can write

M ®a Ae = ((ay, 01T + ), (0,05T +¢3), (0, 3)) o
for somea/, bl andc € Z,. Furthermore there is an injective map ([13], Lemma 13.8)
Ag/(T—a)® Ag/(9(T)) — &, (s(t), u(t)) = (s(e), u(B), u(y)),

where 8 and y are the roots ofy(T) in E. By this map,M ®4 Ag is isomorphic to
the module

M’ = ((a], biB + ¢y, by + ¢}), (0,058 + 5, by + ¢5), (0, ¢, ¢3))or C E.
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Sincep andy are conjugate, we have arth; 8 +c)) = ordg (byy +c;) and ora (b8 +
;) = orde(byy + ¢). By the same arguments after Lemma 3.2, we get

M’ = ((1,1, 1), (0,7™, x), (0, 0,7")) o,

for somem, n, x which satisfym = ordz(x). Indeed, we may assume e, + c;) <
orde(c;). By Lemma 3.2, we have

M’ = (1, by + ¢, biy +¢)), (0, b8 + ¢, bhy + ), (0, 3, C)) o
In the case org(b;8 + c;) < ordeg(b,8 + c), we have
b.B + c. C.
M’ 2= ((1, 1,0y +c), [0, ZZ—2, b +c’), (o,—3, )> :
<‘ wra) ( bip+c, 22 U bip e 7)o,

Since or@(bjy + c;) < ordg(b,y + ¢;) < orde(c3), we get

M/g<(1,1,l),(01b/2ﬂ+c/2,b/2y+c/2),(0, / c L c )>
biB +cy by +¢; bip +c ' by +¢i//o.

=<(1’1’1)'(0’b:2ﬂ+c:2'b:27/+c:2)’(0’0' / A I C -biz)/+c:2)> _
biB +c; by +c; biy +¢; bB+c, biy+ci//o,

Thus we get
b/ J / / b/ C/
m=0rdE( /213+C/2), n=ordE( N G S G - - /2]/+ 2)’
big +c; biy +¢; by +c, by +c
—m DB+ by +¢c
by +¢ by +c

X=m

Therefore we obtairm = ordz(x). On the other hand, in the case et + c;) >
orde(by8 + ¢;), we have

M’ = (al, (b —b5)B + (1 — &3), (0] —b2)y + (1 — €2)), (0,058 + o, by + €3), (0,65, C5)) o

Because org(b; 8 + c; — (b, + ¢,)) = orde (b, + ¢;), we get the same conclusion as
in the case orgl(b;8 + ¢;) < ordg(b,8 + C5). O

Proposition 5.5. Let f(T) = (T —a)g(T), wherea € pZ, and (T) € Zy[T] is
an irreducible polynomial of degre2. Let E be the splitting field of (TT) over Qp.
We assumerdg (o — B) = ordg(8 — y) = orde(y — ) = 1,

M/woM = Z/p'Z @ Z/p'Z (i, ] € Z=1)
and E/Qp is a totally ramified extension. Then we have

V(M) =M@y Ae = M(0, 1, )= Ag/(T —a) & Ag/(T = )T — ).
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Proof. SinceM/woM = Z/p'Z&Z/p! Z, we haveM /woM ®4 Ag = O /(n?) &
Og/(7?). Since E/Qp, is a totally ramified extension, ogfx) = 2 ordy() > 2. Thus
we get or@(8) = ordz(y) = 1. Because org(z?) = 2i and org(7%) = 2] are even,
we get

M ®a Ag = M(O, 1, 1)

by the table of the Proposition 5.3. The isomorphidf{0, 1, 1)~ Ag/(T — a) &
Ag/(T = B)(T —y) is Lemma 3 in Sumida [12]. O

Corollary 5.6. Let f(T), g(T) and E be as inPropositions 5.5and [M]q, €

M?(”T). We assume the same conditionsRibposition 5.5and we put ¢T) = T2 +
¢ T + ¢co. Then
(a) Suppose = 5. For n> 0, we have

#(M/wnM ® AE) — pordE(wn(a)wn(ﬂ)wn(V)) — p6n+2+0rdE(a).

(b) Suppose p=3. For n> 1, we have

porde(wn(a)wn(ﬁ)wn(y)) — p6n+orde(a)+4 orcs(co—3)-2
if  ords(co — 3) = ords(cy — 3),

#M/wonM ® AEg) = ord _3)—
p E(wn(@)on(B)on(r)) — p6n+orda(a)+4 orek(Co—3)-2

if ordg(co — 3) > ords(c; — 3).

Proof. PutN = ((1, 1, 1), (0, 1, 1), (0, Or))». C £. By Proposition 5.5, we have
M ®a Ag = N as Ag-modules. Thus we have

M/a)nM ® Agp (M [N AE)/a)n(M [N AE) = N/a)nN

as Ag/wnAg-modules. By the same method as Proposition 5.3, we conlidemap
I, : N — N and take (1, 0, 0), (0, 1, 1) and (0,®) as a basis ofN. The matrix
corresponding td1,, is

wn(e) 0 0
( 0 wn(B) 0 ) :
0 (@n(B) —on(y))r ™t wn(y)

We first consider the case (a). We have groh(8) — wn(y)) = orde(8 — y) +
nordg(3) = 2n+ 1 (cf. [7], Lemma 2.5). Furthermore, we have pf@d,(«x)) = 2n +
orde(), and we get orgd{(wn(8) — wn(¥))mt} = 2n < orde(wn(B)) since
orde(wn(B)) = orde(wn(y)) = 2n + 1. Thus we can transform the above matrix into

j.[2n+ordE(a) 0 0
0 ™ 0 |.
0 0 7.L,2n+2
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This implies N/wnN = Og /(720" %@)) @ Og /(72") @ Ok /(72"H2).
Next, we prove the case (b). Far> 1, we have

2ora(cop—3)+2n—1 if ords(co— 3) < ords(c; — 3),

orde (wn(B)) = {2 orck(c; — 3) + 2n if ords(co — 3) > ords(cy — 3).

On the other hand, fon > 1, we have

=2org(co—3)+2n—1 if ords(co— 3) < ords(c; — 3),

orde(n(p) - w”(y)){> 2 ords(cy —3) + 2n if ords(co — 3) > ords(c; — 3)

(cf. [7], Lemma 2.5). The rest can be proved by the same medsothe case (a).[]

In order to determine the structure &f, we will use the higher Fitting ideals. For
a commutative ringR and a finitely presente®-module M, we consider the following
exact sequence

Rm—f>R“—>M—>O,

wherem and n are positive integers. For an integer 0 such that 0<i < n, the
i-th Fitting ideal of M is defined to be the ideal dR generated by alln(—i) x (n—i)
minors of the matrix corresponding tb. This definition does not depend on the choice
of the above exact sequence (see [9]).

Proposition 5.7. Let f(T) = (T —a)9(T), wherea € pZ, and (T) € Zy[T] is
an irreducible polynomial of degre2. Let E be the splitting field of (JT) over Q.
Let [M]e € MF;, and M= M(m, n, x).
(1) Assume m=0 and (y — B)xz " € Of. Then we have

(T —a, (@=B)a—y)) if x=1,

Fitty.a(M) = {(T —o, (@ =B —y)A-x)7 ") i x#L

(2) Assume n=0 and (8 —a)r ™ € Of. Then we have

Fitth A(M) = (T =y, (@ = ¥)(B - ¥)).

3)
(T=B,B-y)r™") if n=orde(z™—Xx),
(T—,B, y—F ) if n > ordg(r™ — x).

M —X

Fitty (T —a)M) = {
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Proof. By the action ofl, we have
T1 1, )=(x B, y)
=a(l,1,1)+ (B—a)r ™0, 7™, X)
+{y —a—(B—a)r ™x}x (0, 0,7"),
T(O,7™, x) = (0, Bz™, ¥X)
= B0, 7™, x) + (y — B)x7 (0, 0,7"),
T(0,0,7") = (0, 0,7").

Then we get the following matrix

T—a —-B-a)r™ —{(y—a)=(B—-a)r "™x}x"
0 T-8 —(y — B)xx ™" .
0 0 T—y

We first show (1). Under the assumption of (1), the matrix is

T-a —B+a —{(y-a)—(B—o)xjz™"
0 T-8 —(y = B)xz "
0 0 T—y

By elementary row and column operations, we can transfomnatbove matrix into

T—a (@—y)A—xX)x™™(T-8) 0
( 0 (T=B)T —vy) 0)
0 0 1

Therefore we get
Fitty A(M) = (T —a, (@ = B)(& — 7). (@ — B)a — B) (L = X))

_ (T —a, (= B)a—y)) if x=1,
o {(T —o, (0—B)a—p)L—x)z™™) if x#1.

Next we show (2). Under the assumption of (2), the matrix is

T—a —B—a)x™ —(y—ao)+B—a)r~™x
( 0 T-p —(y — B)X )
0 0 T-y

By elementary row and column operations, we can transfomnatiove matrix into

T—«a 1 0
0 T-p8 0 .
0 0 T—y
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Therefore we get
Fitt; A(M) = (T —a)(T = B8), (T = B)T = y), (T —a)(T —y), (T — )
=(T -y, (@=y)B-y).
Finally we show (3). We note that
(T—a)M =((0,8—a,y —), (0, B—a)x™, (y —)x), (0, 0, ¥ —)")) o

(0,B—a,y —a), (0,0, ¥ —a)r")) o, if n<ordg(z™— x),
{((O, B—a,y—a), (0,0, —a)(@™ = X))o, if n>ordg(z™ — x).

In the casen < ordg (7™ — x), by the action ofT, we have
T(Ov ﬂ -,y _a) = (01 ﬂ(ﬂ —C(), )/()/ —Ol))
=p0O,f—a,y—a)+(y =B "0, 0, ¥ —)7"),
T(0,0, ¥ —a)r") = (0,0, ¢ —a)x").

Thus we get the following matrix

( T aﬂ —(VT—_ﬁ))/ﬂfn )

Therefore we get
Fith A(T-o)M)=(T =B, T—y, (y =B ")
=(T-B -8

In the casen > orde(#™ — x), by the same method as above, we get the follow-
ing matrix
y—8
T — —
p am—x |.
0 T—y

FittlyA((T—a)M)z(T—ﬂ,T—y, y_ﬂ)

M —X

=(T_,s,”_ﬁ). 0

Tm—X

Therefore we get

6. Numerical examples

In this section, we introduce some numerical examples whiete computed using
Pari-Gp.
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Let p = 3 andk = Q(+v/—d) whered is a positive square-free integer. For sim-
plicity, let d % 2 mod 3. Our assumptiod # 2 mod 3 implies thatp = 3 is inert
or ramified ink. This assumption is also needed to get the isomorphism (&@wb
In this section, we determine th&-isomorphism class of the lwasawa module associ-
ated tok = Q(+~/—d) in the range 1< d < 10° with A,(k) = 3, wherex,(K) is the
lwasawax-invariant with respect to the cyclotomi,-extension. There are 1109 im-
aginary quadratic fields satisfying these properties.

Let ko /k be the cyclotomicZ y-extension ofk. For eachn > 0, we denote by
k, the intermediate field ok, /k such thatk, is the unique cyclic extension ovédsr
of degreep". Let A, be the p-Sylow subgroup of the ideal class group lof. We
put X = I(@ An, where the inverse limit is taken with respect to the reéathorms.
Then X becomes & [[Gal(k./K)]]-module. Since there is a ring isomorphism be-
tweenA = Z[[T]] and Z[[Gal(ks /K)]] which depends on the choice of a topological
generator of Gak,,/k), X becomes a finitely generated torsiarrmodule. Let f(T)
be the distinguished polynomial which generates cKar(t is known thatX is a free
Zy-module so K]g, € M?(”T) and we can apply Theorem 3.5 to the lwasawa mod-
ule X.

We can calculate the polynomidl(T) mod p" for small n numerically. Lety be
the Dirichlet character associated kp w be the Teichimiler character ani@ be the
least common multiple ofp and conductor ofyx. By the Iwasawa main conjecture,
there exists a power serigg-1,(T) € A such that

char(X) = (9y-1.(T)).
Here, g,-1,(T) is the p-adic L-function constructed by Iwasawa. We can approximate

0,-1,(T) such as

1 .
oM = =51 > axo @)@+ T)"@ mod wy,

O<a< fop",(a, fopM)=1

wherei,(a) is the unique integer such thatw=(a) = (1 + p)"® mod p"*! and 0<
in(a) < p". By Weierstrass preparation theorem ([13], Theorem 7h@xet existsi, 1, €
A such thatg,1,(T) = f(T)u,-1,(T). Thus we can getf (T) approximately ([13],
Proposition 7.2). For the detail about computatiorgpf,(T), see [1] and [4]. We com-
puted f(T) by Mizusawa’s program Iwapoly.ub ([8], Research, PrograyniApproxi-
mate Computation of lwasawa Polynomials by UBASIC), ancmefd Fukuda's table
for the A-invariants of imaginary quadratic fields [3].
Now we classify the lwasawa modubé. There are two cases

() A is a cyclic group,
(I Ap is not a cyclic group.

In order to determine the structure of, we use the following fact. In our case,
exactly one prime is ramified irk,,/k and it is totally ramified. So there are
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A-isomorphisms
(16) X/won X = Aq

for any non-negative integers ([13], Proposition 13.22).

We determine theAn-isomorphism class oK by the information on the structures
of A, for somen > 0.

There are 1015 fields whosk&, are cyclic groups among 1109 fields. First of all,
we determine the isomorphism classes in the case (I). Inctidg, X becomes aAg-
cyclic module by Nakayama’s Lemma. Thus we can use Propasii2 to get

M = M(orde(B — @), Orde(y — ) + orde(y — ), ur %),

In the above range ofl, no f(T) splits completely inQp[T], so we have to consider
the minimal splitting fieldE of f(T), which is quadratic oveQ,.

EXAMPLE 6.1. Letk = Q(+~/—886). Then we have’g =~ Z/9Z (cf. [10]). By
using Mizusawa’'s program [8], we have

f(T) = (T — 195)(T2 + 291T + 429) mod 8.
By Hensel's lemma, there exist € Z, and g(T) € Z,[T] such that

f(T) = (T —)g(T),

wherea = 195 mod 8 andg(T) = T2+48T 4186 mod 3. Sinceg(T) is an Eisenstein
polynomial, E/Q, is a totally ramified extension. LeE be the minimal splitting field
of g(T) and g(T) = (T — B)(T — y), whereg, y € E. Because8y = 186 mod 3, we
get ord:(B) = orde(y) = 1 and or@(x — y) = orde(e — y) = 1. Since  — y)? =
(B +y)?>—4By = 1560 mod 8, we have ord(8 —y) = 1. By Proposition 5.1 and 5.2,
we getX ®, Ag = M(1, 2,ur), whereu = (y —a)/(8 — «).

Next, we determine the isomorphism classes in the caseT{tigre are 94 fields
whose Ag are not cyclic groups. There are 66 fields whasgare not cyclic groups
and whosef (T) is reducible. We will determineX]q, for these 66 fields. We can de-
termine theA-isomorphism class oK for 60 fields by Proposition 5.5. The following
example is a case that we can determine thésomorphism class oX by Propos-
ition 5.5.

EXAMPLE 6.2. Letk = Q(+/—6583). In this case, we hawky ~ Z/3Z & Z/3Z
(cf. [10]). We have

f(T) = (T —96)(T?+ 96T 4 696) mod 3.
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By Hensel's lemma, there exist € Z, and g(T) € Zp[T] such that

f(T) = (T —)g(T),

whereo = 96 mod 3 and g(T) = T? 4+ 96T + 210 mod 3. Let E be the minimal
splitting field of g(T) and g(T) = (T — B)(T — y), whereg, y € E. Then,E/Q, is a
totally ramified extension and we get efd — 8) = orde(B — ) = orde(y — @) = 1,
orde(«) = 2 and or@(B8) = orde(y) = 1. Therefore we geX ® Ag =~ M(0, 1, 1) by
Proposition 5.5.

There are remaining 6 fields which we cannot determine thectstre of X by
Proposition 5.5. For these fields, we have to investigate abion of the group
'y = Gal(k/k). Explicitly, the remaining 6 fields ar@(~/—9574), Q(+/—30994),
Q(+/—41631), Q(v/—64671), Q(v/—82774), Q(~/—92515).

ExampPLE 6.3. Letk = Q(+~/—9574). In this case, we hawky =~ Z/3Z & Z/9Z
(cf. [10]) and Ay = Z/3Z & Z/9Z & Z/27Z. \Ne have

f(T) = (T —192)(T? + 1173T + 1422) mod 3.

By Hensel's Lemma, there exist € Z, andg(T) € Z[T] such that

f(T) = (T —a)g(T),

wherea = 192 mod 8 and g(T) = T2 + 201T + 207 mod 3. Let E be the splitting
field of g(T) andg(T) = (T — B)(T —y), whereg, y € E. Because the discriminant of
g(T) is 3?-4397 mod 3 and 4397 is a quadratic nonresidu&/Q, is an unramified
extension. Since the discriminant df(T) is 2 - 3% . 43.89- 1039 mod 3, we get
orde(e — B8) = orde(B —y) = orde(y —a) = 1 and or@(«) = orde(8) = orde(y) = 1.
By checking the structures ofy and A; as Og-modules, we get

X ®x A = M(0, 1, 1),M(0, 1, 2),M(1, 0, 0) or M(1, 1, 0).

Now we investigate the structure &, as al';-module. We have an isomorphisfy =~
Z/27Z®Z/9Z & Z/3Z. Furthermore, Pari-Gp gives explicit generators whicteghis
isomorphism. Leta;, a, and ag be the generators which was computed. (We do not
write downay, a, andag because they are complicated.) leetbe the generator of ;,
which was computed by Pari-Gp. We compute,

(O’ - l)al = 3ap — ag,
(0 — 1)az = 6ay,

(0 — 1)az = 18a; + 6ay.
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There is a topological generatér € Gal(k,,/k) such thatc is an extension ofy. By
this topological generator, we have an isomorphism

Z,[[Gal(kss /K)]] 2 A = Z,[[T]] such that & < 1+T.

We regardX as aA-module by this isomorphism. We note th&(T) depends on the
choice ofs, but we can easily check that E(T) does not depend on the choice @f
BecauseZ,[[T'1]] = A/wiA, we get

Tal = 3a2 — as,
Taz = 6(12,

Tag = 18a; + 6ay,

whereT = T modw;. Now we have
(T2 + 18)a; + 6a; = 0,

(T —6)az =0,
3Ty =0,
27a; = 0,

9a, = 0.

Therefore we can calculate the 1-st Fitting idealAf® Ok;
Fitty Ag/wae (A1 ® Og) = (T, 3) modowy,

where Fit{ A, /0. (A1 ® Og) is the 1-st Fitting ideal ofA; ® Og as aAg/wi1Ag-
module. On the other hand, by Proposition 5.7 (1) and (2),Md®0, 1, 2), M(1, 0, 0),
M(O, 1, 1), we have

(T, 3) mod w; if M= M(,1,?2),
Fitt ag/mae(M/01M) = {(T —y,9) modw, if M = M(Z, 0, 0),
(T—o,9) modw; if M= M(,1,1).

Therefore we have
X®r A =M(0,1,2) or M(1,1,0).

We investigate the modulél «)(M /w1 M). By Proposition 5.7 (3), foM(0,1, 2),
M(1, 1, 0) we get

(T,3) modw; if M =M(0,1,2),

Fitty acjoae (T —@)(M /w1 M)) = {AE/wlAE it M =M, 1,0).

We can compute the following from the above data

Fittl,AE/wlAE((T — C()A]_ ® OE) = (T, 3) mod w;.
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Therefore, we geX ® 4 Ag =~ M(0, 1, 2).

By the same method as above, we can determine the isomorpiésses ofX

of Q(+/—30994),Q(+~/—82774) andQ(+/—92515). For the 3 fields, we can show that
X ®r A = M(O, 1, 2).

Finally we determine the structure of for remaining 2 fieldsQ(.~/—41631) and
Q(+/—64671).

EXAMPLE 6.4. Letk = Q(+/—41631). In this case, we hav&, =~ Z/3%*Z @
7/3Z (cf. [10]) and A; = Z/3*Z & Z/3°Z & Z./3Z computing by Pari-Gp. We have

f(T) = (T — 42)(T? — 279T + 594) mod 3.
By Hensel's lemma, there exist € Z, and g(T) € Z[T] such that

f(T) = (T —)g(T),

wherea = 42 mod 3 and g(T) = T? 4 36T + 108 mod 3. Let E be the minimal
splitting field of g(T) and g(T) = (T — B)(T — y), whereg, y € E. Then E/Q, is
a totally ramified extension with ogdo — 8) = orde(y — a) = 2, orde(B8 — y) = 3,
orde(«) = 2, and or@(B8) = orde(y) = 3. Letw be a prime element oE. In this case,
the elementsM(m, n, x) € M, which satisfy the conclusion of Proposition 5.4 are

(0,0, 0), (0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2), (0, 241), (O, 3, 1),
(0, 3, 1+ ), (0, 3, 1+ 7?), (1, 0, 0), (1, 1, 0), (1, 1, 1), (1, %),
(1,2, 27), 1, 3,7), (1, 3,7 + 79, (1, 3,7 + 272, (1, 4,un), ’
(2,0,0), (2,1,0), (2, 2,0), (2, 372), (2, 4,un?), (2, 5,un?)

whereu = (y —a)/(B — «). By checking the structures dky and A; as Og-modules,

we get
X ®a Ag 2= M(0, 3, 1), M(0, 3, 1+ ), M(0, 3, 1+ 7?),
M(1, 3,7 + 72), ML, 3,7 +27%) or M(2, 3,ur?).

We have an isomorphismd\, =~ Z/81Z & Z/9Z & Z/3Z. Let a1, a, and a3 be the
generators which were computed by Pari-Gp. By Pari-Gp we:hav

(0 — 1a; = 54a; + 6ay + ag,
(0 — 1)ap = 54a,,
(0 — 1)ag = 54a; + 3az,

for a certain generatos of I';. By the same method as = Q(+~/—9574), we fix
a topological generatof € Galk,/k) such thats is an extension otr. Because
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Zp[[T1]] = A/w1A, we have

(T2 — 54T — 54)a; — 3a, = 0,
54 a;—Ta, =0,

ﬁal = 0,
81a; = 0,
§Cl2 = 0,

whereT = T modw,;. Therefore we get the 1-st Fitting ideal #f ® Ok;
Fitty Acjwae (A1 ® Og) = (T, 3) modws.

On the other hand, by Proposition 5.7 (1) and (2), we have

(T—a 9) modw; if M =M(Q,3, 1),
Fittl,AE/wlAE(M/wlM) = { (T, 3) mod w, if M= M(0, 3, 1+ n),
(T—a 7% modw, if M =M@, 3, 1+ 72),

for M(0, 3, 1), M(0, 3, 1+ ) and M(0, 3, 1+ 7?). Therefore we have
X ®a Ag = M(0, 3, 1+ ), M(1, 3,7 + 7?), M(4, 3,7 + 27%) or M(2, 3,ur?).

As in the cas&k = Q(+/—9574), we investigate the structure af € a)(M/wiM).
By Proposition 5.7 (3), we get

(T.3) modw; if M=M(@©,3, 1+x),
. AE/a)lAE if M= M(l, 3,JT +JT2),
Pt ac/one (T —)M/@M) =3 =y iod it M = M(L, 3,7 + 272),
AE/a)lAE if M= M(Z, 3,U7T2).

We can compute from the above data
Fittl,AE/wlAE((T — a)Al (03] OE) = (T, 3) mod w1.

Therefore we geX ® » Ag = M(O, 3, 1+ x).

We can determine the structure Qf(~/—64671) by the same method as above.
For Q(~/—64671), we can show thaX ® , Ag =~ M(O, 3, 1+ 7).

The following is the table of theX ® , Ag for the fields such thaf\y is not cyclic
and f(T) is reducible. Herem,n, x representX ® Ag =~ M(m,n, x), and ram. /unram.
means thak/Qj is ramified /unramified extension, respectively. We markgdofp the
remaining 6 fields for which we determined the structures xarfple 6.3 and 6.4.
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Table 1.

d |ordg(e—p)|orde(B—y) | orde(y —a) | E/Qz [m|n| X Ao
6583 1 1 1 ram. |0|1] 1 (3,3
8751 1 1 1 ram. |0|1] 1 (3,3
9069 1 1 1 ram. |0|1] 1 3,3

(%) | 9574 1 1 1 unram.[ 0 (1| 2 |(3%3)
12118 1 1 1 ram. |0|1] 1 3,3
16627 1 1 1 ram. |01 1 (3,3
21018 1 1 1 ram. |01 1 (3,3
23178 1 1 1 ram. |01 1 (3,3
24109 1 1 1 ram. |01 1 (3,3
25122 1 1 1 ram. |0|1] 1 (3,3
29569 1 1 1 ram. |01 1 (3,3
29778 1 1 1 ram. |01 1 (3,3
29994 1 1 1 ram. |01 1 (3,3

(x) | 30994 1 1 1 unram.[ 0 [1] 2 [(3%3)
31999 1 1 1 ram. |01 1 (3,3
34507 1 1 1 ram. |01 1 (3,3
34867 1 1 1 ram. |0 |1| 1 3,3)
35539 1 1 1 ram. |0|1| 1 3,3
37213 1 1 1 ram. | 0|1 1 3,3
37237 1 1 1 ram. | 0|1 1 3,3
38226 1 1 1 ram. |0|1| 1 (3,3)
38553 1 1 1 ram. |0|1| 1 (3,3
38926 1 1 1 ram. |0 |1| 1 (3,3)
40299 1 1 1 ram. |0 |1| 1 3,3)
41583 1 1 1 ram. |[0[1] 1 | (3,3)

(%) | 41631 2 3 2 ram. [0 [3|1+x (3 3)
41671 1 1 1 ram. |01 1 (3,3
45210 1 1 1 ram. |01 1 (3,3
45753 1 1 1 ram. |01 1 (3,3
45942 1 1 1 ram. |01 1 (3,3
46198 1 1 1 ram. |0|1] 1 3,3
47199 1 1 1 ram. [0 [1| 1 |[(3%3)
48667 1 1 1 ram. |0|1] 1 3,3
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Table 2.

d Jordg(e—B) |orde(B—y) | orde(y —a) | E/Qz [m|n| X Ao
49074 1 1 1 ram. |0|1] 1 (3,3
51142 1 1 1 ram. |0|1] 1 (3,3
52858 1 1 1 ram. |0|1] 1 (3,3
53839 1 1 1 ram. |01 1 (3,3
53862 1 1 1 ram. |0|1] 1 (3,3
54319 1 1 1 ram. |01 1 (3,3
54853 1 1 1 ram. |01 1 (3,3
56773 1 1 1 ram. |01 1 (3,3
59478 1 1 1 ram. |01 1 (3,3
59578 1 1 1 ram. |01 1 (3,3
60099 1 1 1 ram. |01 1 (3,3
64671 2 3 2 ram. [0 3|1+ 7 [(33)
68314 1 1 1 ram. |01 1 (3,3
72591 1 1 1 ram. |01 1 (3,3
75273 1 1 1 ram. |01 1 (3,3
75354 1 1 1 ram. [0[1] 1 [(3%3)
75790 1 1 1 ram. [0[1] 1 [ (3, 3)
75841 1 1 1 ram. [0[1] 1 [ (3, 3)
78181 1 1 1 ram. [0[1] 1 [(& 3)
80233 1 1 1 ram. |0|1]| 1 (3,3)
80242 1 1 1 ram. [0[1] 1 [(33)
80746 1 1 1 ram. |0|1]| 1 (3,3)
82774 1 1 1 unram.[ 0 [1] 2 [(3%3)
87727 1 1 1 ram. [0[1] 1 [ (3, 3)
87979 1 1 1 ram. [0|1] 1 [(33)
88134 1 1 1 ram. [0[1| 1 [(3%3)
88242 1 1 1 ram. |0|1] 1 (3,3
92515 1 1 1 unram.[ 0 |1 2 [(3%3)
94998 1 1 1 ram. |0|1] 1 (3,3
95691 1 1 1 ram. |0|1] 1 (3,3
97555 1 1 1 ram. |01 1 (3,3
98277 1 1 1 ram. |0|1] 1 (3,3
98929 1 1 1 ram. |0|1] 1 (3,3
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