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Abstract

In this paper we address the following questions for smoathoFthreefolds of
Picard number 1:
e When does such a threefold X possess an open cylinderZJx A*, where Z
is a surface
e When does an affine cone over X admit an effective action aidtiive group
of the base field

A geometric criterion from [26] (see also [27]) says that twe questions above
are equivalent. In [26] we found some interesting famili€d-ano threefolds carry-
ing a cylinder. Here we provide new such examples.

Introduction

All varieties will be defined ovelC. In particular,A" stands for the affin@-space
over C. We say that a projective variety isylindrical if it contains a Zariski open
subsetU ~ Z x A! called acylinder, where Z is a quasiprojective variety. There is
also a more restrictive notion gfolar cylindricity ([26, Section 3]) explained below.
However, both notions coincide for varieties with Picardniner 1.

A classification of cylindrical smooth Fano threefolds o€ddd number 1 is tempt-
ing. In the present paper we make a further step in this diregiroviding in our main
Theorem 0.1 two new families of examples. All Fano threefokde assumed being
smooth unless explicitly stated otherwise. Given a Faneeflold X of indexr = 1,
by a line onX we mean a smooth rational cunke on X such that—Kyx-L = 1. We
let 7(X) denote the Fano scheme ¥f that is, the component of the Hilbert scheme
parameterizing the lines oK. In the setting of Theorem 0.1 the schem(&) is gener-
ically reduced, but can contain non-reduced points (seefEne 1.1 below). The re-
duced scheme(X)eq is purely one dimensional.
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Theorem 0.1. Let X be a Fano threefold of genus=g9 or 10 with
Pic(X) = Z - (—Kx).

If the schemer(X) is non-smooth then X is cylindrical. The Fano threefoldshvét
non-smooth schemg X) form a codimension one subvariety in the corresponding mod-
uli space.

Presumably, a general point of the moduli space of Fano fihid=eof genusgy = 9
or 10 with Picard number 1 corresponds to a non-cylindriegional Fano threefold.
However, we do not dispose at the moment necessary toolssfableshing this. More-
over, we do not know any example of a non-cylindrical ratloRano threefold.

Our interest to the cylindricity problem came from affine gedry, see Corol-
lary 0.2 below. Given a projective embedding— PN, a natural question arises as
to when the affine cone AffCon¥( over X admits an effective action of the addi-
tive group G, of the base field. Indeed, the existence of such an actioniemphat
the automorphism group Aut(AffCon¥() is of infinite dimension, see e.g. [1]. For
instance, the affine cone over a smooth del Pezzo sudacé degreed > 4 anti-
canonically embedded Y admits three independent effecti@-actions [26, 3.3.2].
Moreover, the group Aut(AffCond&)) acts on AffCone§) infinitely transitively off the
vertex [33]*

Applying Theorems 0.1 and 0.3 (see below) we deduce such alamgr

Corollary 0.2. Let X be a Fano threefold of genus=g9 or 10 with Pic(X) ~
Z[—Kx] and with a non-smooth Fano scheme of lin€X). Then any affine cone over
X admits a non-lineaiG,-action? Consequentlythe automorphism group of such a
cone is infinite dimensional.

Some explanations are in order. A linear group action on &neatone overX
induces such an action oX. However, any Fano threefold as in Theorem 0.1 has fi-
nite automorphism group ([36]). In particular, it does ndtrat any effectiveG,-action.
Thus the linear automorphism group of any affine cone 0¢ds one-dimensional and
such a cone does not admit any effective lin€araction. This explains why the (ef-
fective) G,-action as in Corollary 0.2 is non-linear.

The proof of Corollary 0.2 is based on the geometric criterad Theorem 0.3
below, which follows in turn from a more general Corollaryl2.in [27]; cf. also [26,
Theorem 3.1.9]. LetX be a projective variety polarized by an ample dividér and

1Such a cone iflexiblg i.e. the tangent space in any smooth point is generatedrigeia vectors
to the orbits ofG,-actions, see [1]. For the affine cones over projective tiagehis property admits a
characterization in terms of existence of a covering of theety by a family of transversal cylinders,
see [33]. See also [4, Conjecture 1.4] for a conjecturaticglsbetween unirationality of a variety and
the existence of a flexible affine model in its stable biraioclass.

Notice that any such affine cone is normal, see [19, Chapt@rdposition 4.9].
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let U = X \ suppD be a cylinder inX. We say thatJ is H-polar if one can choose
D € |dH| for somed € N ([26]) or, equivalently, D] € Q,[H] in Picg(X), see [27,
Definition 0.2].

Theorem 0.3. Let X be a normal projective variety of dimensianl, H € Pic(X)
be a very ample divispand AffConey (X) be the associated affine cone over X. Then
AffConey (X) admits an effectiv&,-action if and only if X contains an H-polar cylinder.

A priori the existence of an effectiv@,-action on AffConeK) depends upon the
polarization chosen. However, a-polar cylinder inX is alsoH’-polar for anyH’ €
Pic(X) such thatpH ~ gH’ for some positive integerp andq. Assuming that Pic) ~
Z, all ample polarizations oX are proportional and so a cylinder polar with respect to
one is polar with respect to any other.

Furthermore, shrinking suitably a given cylinder ¥hwith Pic(X) ~ Z we can get
an affine H-polar cylinder with respect to some ample polarizatidnof X. Using
now Theorem 0.3 we conclude that all the affine cones o¢esimultaneously admit
or do not admit an effectivé&G,-action. Thus in this particular case the criterion of
Theorem 0.3 becomes especially simple.

Corollary 0.4. Let X< P" be a smooth projective variety wittic(X) ~ Z. Then
AffCone(X) admits an effectiv&,-action if and only if X is cylindrical.

The reason why we choose to deal with Fano varieties, and spweifically with
rational Fano threefolds, is as follows. First of all, thastence of a non-lineaG,-
action on an affine cone over a projective variéyimplies thatX is birationally unir-
uled [26, Corollary 2.1.4]. Hence under the assumption®ict Z we have to restrict
to Fano varieties, since otherwig€is not birationally uniruled and so the affine cones
over X do not admit a nonlineaG,-action, see [26, 3.2.1].

Furthermore, any cylindrical Fano threefoKl is rational due to the Castelnuovo
rationality criterion for surfaces. Indeed, sin¥eis cylindrical it is birationally equiva-
lent to Z x AL, Let Z be any smooth projective birational model @f Since X
is Fano, it does not admit any nonzero global holomorphigi{itum, and the same
holds for Z. In particular, H%(Z, 2K;) = 0 andHY(Z, 0;) = H%(Z, Q1) = 0. By the
Castelnuovo rationality criterion the surfageis rational. HenceX is rational too.

The list of examples of cylindrical Fano varieties with Retaaumber 1 that we
know so far looks as follows. Clearly, every Fano varie¢ywhich contains the affine
spaceA" as a Zariski open subset is cylindricalThis applies e.g. t®", the smooth
quadric Q in P"*1, and the Fano threefolXs of index 2 and degree 5. Two more

3A well known Hirzebruch problem ([15]) asks to classify themplete complex varieties that
containA" as a dense open subset; see [9] and the references theraitudas on this problem.
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families of cylindrical Fano threefoldX with Picard number 1 are the smooth inter-
sectionsX,., of two quadrics inP® and the Fano threefoldX,, of genus 12 (see [26,
Propositions 5.0.1 and 5.0.2]). Note that a cylindricaljgctive variety does not need
to contain an affine space as an open subset. For instancendteli space of the
latter family has dimension 6, while the subfamily of comjifamations of A2 is only
4-dimensional.

We established in [26, 3.2.2] the polar cylindricity of allet anticanonically polar-
ized del Pezzo surfaces of degreet. It occurs however that those of degree 1 and 2
do not fall in this class [28].

The geometric construction used in the proof of Theorem fvblves a lineL
on X which corresponds to a non-smooth point ofX). We found further fami-
lies of examples whose construction evokes instead a snuaitit [L] € t(X) (see
arXiv:1106. 1312). We expect that the latter families are not contained in ftire
mer ones.

In Section 1 we give a brief overview on Fano threefolds, vétispecial accent
on the property of being rational. Besides, we collect treyme useful facts on the
Hilbert scheme of lines in a Fano threefold. In Section 2 wscdbe two standard
constructions, which give all Fano threefolds of genus 9 AbdSometimes the proofs
are hardly accessible in the literature, so we provide th&he main Theorem 0.1 is
proven in the last Section 3.

1. Generalities on Fano threefolds

We recall that a Fano variety is a smooth projective vardétyith an ample anti-
canonical class-Kx. The Fano index = i(X) is defined via—Kx = rH, where
H € Pic(X) is a primitive ample divisor class. It is well known that< dim X + 1.
We write X = Xq4 for a Fano threefold of degred, whered = H3. The genusg of
X is defined via 3 —2 = —K3 (= drd).

1.1. Rational Fano threefolds. Any Fano threefold X has indexr =< 4.
Furthermore,
e ifr=4thenX ~P3;
e ifr =3thenX ~ Q, whereQ is a smooth quadric ifP*.
We assume in the sequel that Mg(~ Z.
e If r =2 then the degree oX varies in the rangel = 1,..., 5. More precisely,
(1) if d =1 thenX is a hypersurface of degree 6 in the weighted projectiveespac
P(1, 1,1, 2, 3). Such a threefold is non-rational [42], [11];
(2) if d =2 thenX is a hypersurface of degree 4 in the weighted projectiveespac
P(1,1, 1,1, 2). Such a threefold is non-rational [43];
(3) if d = 3 then X is a cubic hypersurface i®*, which is known to be non-
rational [5];
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(4) if d =4 thenX = X, is an intersection of two quadrics iP°. Such a three-

fold is rational [10], [22];

(5) if d =5 thenX = Xs is a linear section (by®) of the GrassmanniaG(2, 5)

under its Pliicker embedding iR°. Such a threefold is rational and unique up to

isomorphism [8], [19], [22].

e If r =1 then the genus oK varies in the rangey = 2,..., 10 and 12. More
precisely,

(& If g=2,3,5, or 8, then the threefolX is non-rational (see [20], [23] for

g =2, [21], [20] for g = 3, [2] for g = 5, [20] and [5] forg = 8);

(b) if g =4 or 6 then a general threefold is non-rational [2], [23], [42];

(c) if g=7,9,10, or 12 therX is rational [22].

We are interested in Fano threefolds which possess a cyliddewe explained in
the Introduction, due to the Castelnuovo rationality ciite for surfaces such a three-
fold must be rational. Of course, the projective sp@ a smooth quadri®Q in P?,
and the Fano threefol&s are cylindrical since they contain the affine spackas an
open subset. A cylinder exists in every Fano threefdld or X, [26, Section 5]. In
Theorem 3.1 below we describe families of Fano threefolds wicylinder among the
X16 (g = 9) and theXig (g = 10).

The question remains whethewery rational Fano threefold carries a cylinder. In
particular, whether this is true for all the threefol¥ds, (g = 7), X1s, and Xgs.

1.2. Families of lines on Fano threefolds. In the sequel we need the follow-
ing facts.

Theorem 1.1 ([40], [37], [19, Chapter 3, Section 2], [22, Section 4.21]). Let
X = Xyg—2 be a Fano threefold of genus>g3 with Pic(X) = Z-(—Kx), anticanonically
embedded ifP9+1.4 Then the following hold.
(1) There is a line L on X.
(2) For the normal bundleA{ ,x there are the following possibilities

(Ol) E/VL/X ~ Op1 @ ﬁ]pl(—l), or

(B) Mx = Op1(1) ® Opi(-2).
(3) The reduced schemgX)eq is purely one dimensional.
(4) The scheme(X) is smooth at a poinfL] € z(X) if and only if the corresponding
line L is of type(«).
(5) For g > 7 any line L on X meets at most a finite number of lines on X.

REMARK 1.2. Letg =9 or 10 and PiX) = Z - (—Kx). According to [35] and
[12] every irreducible component of the schemX) is generically reduced. Thus for
a Fano threefoldX as in Theorem 0.1, the set of non-smooth pgiraé the scheme

4Such an embedding exists alwaysgit 4, and for general members of the family for= 3.
5That is, of singular or non-reduced points.
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7(X) is at most finite. On the other hand, for a general Fano tbléeX of this type
the scheme (X) is a smooth, reduced, irreducible curve [34, Section 318, Corol-
lary 5.1.b].

2. Fano threefolds of genera 9 and 10

We need the following lemma.

Lemma 2.1. (a) Any smooth curvd™ of degree7 and genus3 in P2 lies on a
unique cubic surface F= F(I') in P3, and this surface is irreducible.
(b) For any smoothlinearly non-degenerate curvE of degree7 and genus2 in P*,
the quadrics containind” form a linear pencil say Q. The base locus of this pencil
is an irreducible quartic surface F= F(I") in P*.

Proof. We provide a proof of (b); that of (a) is similar. L&t- be the ideal sheaf
of I' € P*. Using the exact sequence

0— 4 (2) > Ops(2) > 0r(2) > 0

we obtain that dinH°(.#(2)) > 2 by the Riemann—Roch theorem. Hence there is a
pencil of quadricsQ throughT.

Assume to the contrary that there exist three linearly iedeent quadric€),, Q-,
and Qs C P* passing througi™. SinceT is linearly nondegenerate, these quadrics
are irreducible. MoreoverQ; N Q; is an irreducible surface. Indeed, otherwiSeis
contained in an irreducible componegstof Q; N Q, with degS < 3. Thus degd" <
2 degS < 6, a contradiction.

ThenQ: N Q2N Q3 =T + L (as a scheme), wherke is a line. Consider the
exact sequence

(211) 0— ﬁFUL —> ﬁ[‘ (&%) ﬁL - F — O,
where the quotient shea¥ is supported ol N L. Since

x(OruL) = —4
and
x(Or ® OL) = x(Or) + x(OL) =0,

we obtain by (2.1.1)
#(I' N L) =dimH%Z) = x(Or & 6L) — x(OruL) = 4.

Thus L must be a 4-secant line df. Hence the projection with centér would map
I" to a plane cubic, a contradiction.
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Let us show finally that~ is irreducible. Indeed, otherwisé would be contained
in an irreducible surfacé’ of degree< 3 in P*. Sincel is assumed to be linearly
non-degenerateF’ must be a linearly non-degenerate surface of degree 3. By [10
Chapter 4, Section 3], eithdf’ is a cone over the twisted cubic & is isomorphic
to the Hirzebruch surfac®,. Proceeding as in the beginning of the proof, it is easily
seen that in both casé®(.7(2)) > h%(Z¢(2)) > 3. Hence there is a two-dimensional
family of quadrics passing through, which leads to a contradiction as before. []

In the next proposition we list the possibilities for thefage F as in Lemma 2.1.
Given a Hirzebruch surfac®, we let| denote a ruling off,, and X the exceptional
section ifn > 0, or just a section ih = 0.

Proposition 2.2. In the notation and assumptions as liemma 2.1 (a)we sup-
pose in addition thatl™ is not hyperelliptic and we let W= P2 and g= 9. In case(b)
of Lemma 2.1we let W= Q C P* be a smooth quadric containinj and g= 10
(such a quadric does exjsseeLemma 2.4below). With these notation and assump-
tions, the surface F= F(I') € P9-° belongs to one of the following classes.

(1) F € P9°is a normal del Pezzo surface with at worst Du Val singulastior

(2) F < P9% is a non-normal scro)lwhose singular locus\ = Sing(F) is a double
line. Furthermorethe normalization Fof F is a smooth scroll Fof the minimal degree
g—6in P95, and the normalization map: F’ — F is induced by the projection from
a point Pe P95\ F’. The restrictionv|,-1(,) : v~1(A) — A is a ramified double cover.
Letting I'" be the proper transform df in F’, there are the following possibilities.

(@) If g =29 then F ~ FFy, the embeddind@; ~ F’ < P* is defined by the linear

system ¥ + 2l| onFy, and v=1(A) ~ © +1 is a reduced conic on FC P#, which

is either smooth or degenerate. Furthermofg ~ 3% 4+ 4| on F'. If g = 10 then
one of the following holds.

(b) F' ~ Fy = P! x P!, the embeddingy ~ F’ — P° is defined by the linear

system|X + 2| on Fp, v 1(A) ~ £ is a smooth conic on FC P°, and I'" ~

2¥ + 3 on F or

(0) F’' ~F,, the embeddin@, ~ F’ — P° is defined by the linear syste/& + 3|

onFy, v™(A) ~ £+ is a reduced degenerate conic ol € P, and T ~ 2% 45l

on F.

The double lineA is a (13— g)-secant line ofl" i.e. a 3-secant if g= 10 and 4-secant
if g=09.

Proof. SinceF is a complete intersection, it is Gorenstein. By the adjonct
formula wg ~ Op(-1), i.e. F is (possibly non-normal) del Pezzo surface.

Let us show that (1) holds providel is nhormal, and otherwise (2) holds.

If F is normal, then by [14F is either a surface described in (1), or a cone over
an elliptic curveC C P97 of degreeg — 6. Assume to the contrary thdt is a cone.
Let £: F — F be the blowup of the vertex. TheR is a smooth ruled surface over
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C. Let as beforex and!| be the exceptional section and a ruling, respectively, with
»2 = —k. Letting M = £*0¢(1) andT be the proper transform df on F, we can
write M = £ + kl andT" = aX + bl. Then

0=M.-%, g-6=M2=k, ¥?=-k=6-g,
7=0I-M=b, and F'-T=a(6-g)+7>0.

Sincel ~ I' is not an elliptic curvea > 2. This is only possible iy =9, a = 2, and
so k = 3. On the other hand, by adjunction

29(M)—2=(T+Kg) T =8,

a contradiction, sincg(l") = g(I") = 3. Thus (1) holds.

If F is non-normal then by [32, Theorem 8], [39], [7, 9.2.8, is a projection
of a normal surfaceF’ of the minimal degreeg — 6 in P95, It is well known (see
e.g., [10, Chapter 4, Section 3, p.525]) tHat € P9~° is either a Veronese surface
F, € P°, or the image of a Hirzebruch surfa@ under the map given by the linear
system|X + kl|, wherek > n and X —n = g— 6. The case of the Veronese surface
is impossible because the degree of every curve=p P° is even. Thus we have a
birational morphismu: F, — F’. This is either an isomorphism or the contraction of
the negative section. Ldt’ C F, be the proper transform df on F,. We can write
I'" ~ aX + bl, wherea > 2 andb > na. Note thata > 3 if g = 9, sincel" is assumed
being non-hyperelliptic. By adjunction

29(I") —2=2na—2b—(n+ 2)a—na’® + 2ab, degl' =7 = —na+ b +ka,
where, as we have seen already,
degF =g—-6=2k—n, k>n,a>2,b>na, and a>3 if g=09.

The data as in (a), (b), and’Ybrespectively, give three solutions of this system, and
these are the only solutions. In all casksy n and sou: F, — F does not contract
the section. HenceF’ ~ F,. It is easily seen that the remaining possibilities are as
indicated in (2). See also [39] for a description of the iseeimagev—(A) of the
singular locusA of F. O

In the following elementary lemma we describe some famitieines and conics
on the surface-.

Lemma 2.3. The surface F as iifb) and (b') of Proposition 2.2s linearly ruled
that is through a general point of F passes a ljinand this line meets the double
line A.
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In case(b) F contains just a one-parameter family of non-degeneratgospand
a general such conic does not meet the double llnelIn case(b’) F contains no
non-degenerate conic.

Proof. Since in case (b) (resp.’\bthe morphismF’ — F < P# is defined by
a subsystem ofX + 2| (resp.|X + 3l|) the image of any rulind € F’ is a line
on F meetingA. In case (b) the non-degenerate conicsForare just the images of
the sections, sayX; ~ £ on F’. These conics form a one-dimensional family, and
the imagev(%;) of a general sectiort; does not meet\. Assuming in case (pthat
there is a non-degenerate coricon F we obtain the relations=%(C) - (T + 3I) =
2 andv~}(C)- = > 0. These imply thav~}(C)- X = 2 andv~}(C) - | = 0, which
is impossible. O

Now we can strengthen part (b) of Lemma 2.1.
Lemma 2.4. In case(b) of Lemma 2.1the pencilQ contains a smooth quadric.

Proof. Assume to the contrary that every quadric in the pe@cis singular. Let
Q € Q be a general member. By the Bertini theor€nis smooth outsidd=. Since F
is a complete intersectior is smooth at the points df \ Sing(F). If F has at worst
isolated singularities, then so do€s Moreover, in this case all these quadriQshave
a common singularity. Hencé must be a cone, which contradicts Proposition 2.2.

Thus under our assumptioR has non-isolated singularities. Moreover, by Prop-
osition 2.2 (2)F must be singular along a lina. If some quadricQ € Q is singular
along A, thenF is again a cone, which is impossible. Thus we may assume thaha
eral quadricQ € Q has an isolated singular poift = Pg € A and soF = Q1N Qy,
where Q; (i =1, 2) is a quadratic cone with vertd® € A and P; # P..

The coneQ; contains two different families of pland$, and®, that pass through
the point P;. The second quadri€, cuts out a conidC, on IT,, which also passes
through P;. HenceF contains a one-dimensional family of conics meeting thebtou
line A. This contradicts Lemma 2.3. O

In Theorem 2.6 below we deal with the following setting.

SETUP 2.5. As before, we consider the following two cases:
() Forg=29, we letW = P23 andTI" C P? be a smooth, linearly nondegenerate, non-
hyperelliptic curve of degree 7 and genus 3.
(i) For g =10, we letW = Q C P* be a smooth quadric and be a smooth, linearly
nondegenerate curve of degree 7 and genus Ron
In both cases, we lef = F(I") denote the corresponding surface from Lemma 2.1.
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In the case of a curv& lying on a smooth surfac&, the following result can
be found in [18]. In the present more general form, the reaas announced with-
out proof in [22, Theorems 4.3.3 and 4.3.7]. Besides, we aasteqan explanation
in [22, 4.3.9 (ii)] as to why the assumption in Setup 2.5 (iattthe curvel’ is non-
hyperelliptic is important. The details of the proof can lirfd in an unpublished
thesis [34] (in Russian). For the reader’s convenience vpeodkice them below; see
also [3].

Theorem 2.6. In the notation as inSetup 2.5there exists a Sarkisov link

N

«— L,

De——- X —mmm-deeeo — > F
¢
,”? X

@s2 WV Yxowoﬁx\

N——

whereo is the blowup ofl", oy and ¢g are the anticanonical maps ontogXc P91, x
is a flop X = Xyg—» is a smooth Fano threefold of genus g wRit(X) = Z - (—Kx)
anticanonically embedded iR9*1, and ¢ is the blowup of a line L on X. The excep-
tional divisor F of ¢ is a proper transform of the surface £ F(I') € W. The excep-
tional divisor D of ¢ is a proper transform of a divisor & |—(12—g)K x —(25—2g)L|.
The mapy ! is the double projection with center, lthat is a map given by the linear
system/A—2L| on X, where A~ —Kx is a hyperplane section of X.

Converselyif X is any Fano threefold of genus=g9 or 10 and LC X is a line
then the double projection with center L defines the abovgrdia.

In the proof of Theorem 2.6 we use auxiliary results Lemma Z@rollary 2.8,
Lemma 2.9 and Corollary 2.10. Let us introduce the followitaga. We leto: X — W
be the blowup ofl", D be the exceptional divisor, and lét* = ¢*H, whereH is the
positive generator of Pig{) ~ Z. We have (see e.g. [22, Lemma 2.2.14])

(2.6.3) H*)Y¥=g-8 (H*)?-D=0, H*.-D?=—-H-I'=-7,
and

<3 _ [-23 if g=10,

o= deg'/V”W_{—sz if g=09.

Letting F € X be the proper transform df we getF ~ (12— g)H* — D. The divisor
classes-Ky ~ (13— g)H* — D and F form a basis of Pic{) ~ Z & Z and satisfy the
relations

(2.6.4) -K3 =29-6>0, (-Kg)?-F=3, —Kgz-F?=-2, and F®=g-13.
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Lemma 2.7. The divisor—Ky is nef and big.

Proof. First we show that+-Ky is nef. Consider the casg = 10; the proof in
the caseg = 9 is similar. From the exact sequence

0— 44(3)— O6w@B)— 0r(3) >0
we obtain by the Riemann—Roch theorem
dim H°(71(3)) > dim HO(Gw(3)) — dim HO(&r(3)) = 10.

The members of the linear systgmK | are proper transforms of the members of the
linear system—Kw| = |Ow(3)| passing throughi". Hence

(2.7.5) dim—Ky| > 9.

Notice that an irreducible eleme@ € |—Kyw/| = |Ow(3)| cannot be singular along,
since otherwise we obtai - F-H =3-2-2> 2.7, a contradiction. Applying
Lemma 2.1 it is easily seen that the only reducible memliiers |-Kx| are those
of the form G = F 4 H*. Hence such divisors form a linear subsystem-Ky| of
codimension> 5.

Assume to the contrary that there exists an irreducible eu®von X with
—Kyz-C <0, and letC = o(C) € W. Sinceg(l') = 2, the curvel' does not admit
any 4-secant line. Indeed, otherwise the projection froma kine would sendl” iso-
morphically to a plane cubic, which is impossible. Since

#CNT)=C-D>3H*-C =3degC > 3,
the curveC cannot be a line. IC is contained in a plan&l C P* then by the same

argument

#IINT)>#CNT) > 3degC > 6.

Since ded” = 7 andT is linearly non-degenerate, we get a contradiction. TBus
is not contained in a plane and so deg> 3. Assume thaC is contained in some
hyperplane® C P*. Then as above

#ONT)>#C NT) > 3degC > 9,

which again leads to a contradiction because Ideg 7. ThereforeC is linearly non-
degenerate and d€3> 4.

On the other handF contains a line, sayr. Let T C X be its proper transform.
We have—Kg - T < 3= —Ky - Y. Therefore, fixing four general points ofi, a
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memberM e |-K«| passing through these points is forced to confdin The family
of all such members has codimension at most 4, while degeneres vary in a family
of codimension at least five, as we observed before. Henge thasts an irreducible
divisor M € |-Ky| containingY. By our assumptiorM -C < 0, and then alsd--C =
M.C —H*-C < 0. Thus the intersectioM N F containsC U T and so by (2.6.3)
we have

degC + 1) =(C + 1) H*
<M-F-H*=—Kz-F-H*=3H*-D)-(2H* - D)-H* =5.

It follows that degC = 4, soC € P* is a rational normal quartic curve. An easy
computation gives diril°(#:(2)) = 6. Picking two distinct points of" let us consider
the family of quadrics fromH?(#z(2)) passing through these points. It has dimension
four. Such a quadric cutf in at least 13+ 2 points, hence contains it. It follows that

dimH(Aur(2)) > 6—2 = 4.

The latter contradicts Lemma 2.1 (b). Therefore in the aase 10 the divisor—Kg
is nef. Since—Kf:( = 29— 6> 0, the divisor—Ky is big. ]

By the base point free theorem we deduce the following result

Corollary 2.8. For some n> 0 the linear systemj—nKy| defines a birational
morphismoay: X — Xo € PN whose image is a Fano threefold with at worst Gorenstein
canonical singularities. MoreoverKy = o5 (—Kx,).

Lemma 2.9. The morphisny is smal| i.e. it does not contract any divisor.
Proof. Assume thadq contracts a prime divisoE ~ —a Ky —BF. Then by (2.6.4)
0= E-(-Kg)?* = (2g — 6)x — 38.
This yields 8 = (2g/3 — 2)x. Since & # F and —Ky is nef by Lemma 2.7, we have

: 4
OS—KX-E-F=3a+2ﬂ=a(§g—1).

Hencea > 0. Furthermore,

2
~a(2%—119+37)H*+a(2€g—3)I5.

]

Sinceo, B is effective we must haveg?/3 — 11g + 37 > 0, a contradiction. ]
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The next corollary is standard.

Corollary 2.10. In the notation as aboveXy has at worst isolated compound
Du Val singularities.

Following the techniques outlined in [22, Section 4.1] wencaow prove
Theorem 2.6.

Proof of Theorem 2.6. I-Ky is ample then the mapy is an isomorphism. In
this case we let = X = X, and x be the identity map. Otherwise by [29] the con-
traction og: X — Xo can be completed to a flop triangle as in diagram (2.6.2). Here
@o is another small resolution oKo. Let C € X andC < X be the flopped and the
flopping curves, respectively. Then induces an isomorphisnX \ € ~ X \ C.

In both cases the divisorKy = ¢*(—Kx,) is nef and big. Furthermore,

and

Since Picf() ~ Pic(X) is of rank 2 the Mori cone NE—)A() is generated by two extremal
rays. One of them has the foriR, [T], where T is a curve in the fiber o (of
@o, respectively) if x is an isomorphism (is not an isomorphism, respectively)t Le
R € NE(X) be the second extremal ray. Sine&;; is nef and big,R is K-negative.
By [31] there exists a contractiop: X — X of R.

Since—Ky — F = 0*0(1) is nef we have{K; — F)-C > 0. ThereforeF -C < 0
and F -C > 0. Since—Ky - F2 = —2 < 0, the divisorF is not nef. Hencef - R <
0 that is, the rayR is not nef. By the classification of extremal rays [33],is a
birational divisorial contraction. Furthermore, tieexceptional divisor coincides with
F. If ¢: X > X contractsF to a point, then by [31]

(—Kg)?-F=4,2o0r1.

On the other hand,«K4)?-F = 3, a contradiction. Hence: X — X contractsF to a

curve Z. In this case bothX and Z are smooth an@ is the blowup ofX with center

Z [31]. Moreover, X is a Fano threefold of Fano index= 1, 2, 3 or 4. The group
PicX is generated byf and
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Therefore, the subgroup generated lByand —K ¢ has indexr in PicX ~ Pic X. This
implies thatr = 1. We have

—K$ = —Kg - (—Kg + F)?
=—K}+2F (—Kg)’—Kg-F?=29-6+6-2=29-2,

i.e. X is a Fano threefold of genug Furthermore,
degZ = —Kx-Z=—Kg-(—Kg + F)-F =3-2=1,

i.e. Z C X is a line. Now an easy computation shows ti&t# F23, so x is not an
isomorphism.

As for the last statement of Theorem 2.6, the existence oagrdin (2.6.2) follows
from [19]. Herel is (as a scheme) the base locus of the linear subsysi¢rKy| C
|Ow(13—g)|. It remains to show that in the cage= 9 the curverl™ is not hyperelliptic.
Assume the converse. It was shown already thatoes not admit a 5-secant line. On
the other hand, by [10, Chapter 2, SectionI5jadmits a 4-secant line, saly. The
projection fromN defines a linear system of degree 3 and dimensidhonI". Hence
the curvel is hyperelliptic and trigonal. However, this is impossib&nce otherwise
the linear systemsgj and g3 on I' define a birational morphisit — P x P! whose
image is a divisor of bidegree (2, 3). This contradicts thsuagption thatg(I') = 3.
Now the proof of Theorem 2.6 is completed. ]

Corollary 2.11. In the notation as above we have\D ~ W\ F.
In the next proposition we describe the flopped and the flappimrves in (2.6.2).

Proposition 2.12. In the notation as above we l& € X and C € X be the
flopping and the flopped curyveespectively. Then the following hold.
(1) Any irreducible componertf?i C X either is a proper transform of a linejLl# L
on X meeting Lor (in the case where L is of typ@)) is the negative sectio@ of
the ruled surfacer ~ Fj.
(2) The curveC is a disjoint union of theC;s.
(3) For any C; we have

N % = Ops(=1) @ Opa(~1)

or
N 3 = Ot ® Opa(~2).

It follows that x coincides with the Reisl pagoda[38] near eachC;.
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(4) The curveC in X is a disjoint union of theC;'s, where eachC; is the proper
transform of a(13— g)-secant line ofl".

Proof. Recall thaC and C are exceptional loci ofpy and oy, respectively. The
assertion (1) is proven in [18, Proposition 3, (iv)] and [Zxpposition 4.3.1], while
(2) and (3) in [6, Proposition 4] and [6, Corollary 12, Thaord 3], respectively. By
(2) the curveC is a disjoint union of theC;’s. Since the construction of a flop is
local and symmetric (i.e. flopping an irreducible curve we a@e irreducible one), the
flopped curveC in X must be in turn a disjoint union of its irreducible comporsent
Finally (-K; —F)-C; = —1. Therefore 1= (—Ky — F)-Ci = 0*6w(1)-Ci. Soa(Cy)
is a line. Since—Ky .Ci = 0, this line must be (13- g)-secant. ]

In the next theorem we provide a criterion as to when the sarfa as in The-
orem 2.6 is normal.

Theorem 2.13. In the notation ofTheorems 1.Jand 2.6, the surface F is normal
if and only if L is a line of typg«) on X.

Proof. We use the notation of Proposition 2.12. Assume thas of type (8),
and letC, denote the flopped curve oX which corresponds to the negative section
¥ of the ruled surfacee ~ F3. By Remark 5.13 in [38],F is not normal aloncCo.
Since the Picard number(X) = 2 andC is contracted by, it cannot be contracted
by o. SinceCy is a smooth rational curves is an isomorphism at a general point of
Co. So F is also non-normal along (Co).

Assume to the contrary thdt is of type @), while F is non-normal. TherF is
singular along a lineA. Clearly A # T, so F is also non-normal and singular along
o~1(A). The mapy is an isomorphism near a general rulifgc F ~ F,. Letting
f = x1(f), the surfaceF is smooth alongf andoy(f) = ¢o( f) is a line onog(F) =
@o(F) ~ F,. Let| C F be a general line on a non-normal scrbllandi be its proper
transform onF. An easy computation shows thag(l) is again a line onoo(F) =
@o(F) ~ Fy. Thus we may suppose that= f. On the other hand, N Sing(F) # 9,

a contradiction. O

3. Construction of a cylinder

In this section we prove Theorem 0.1. Recall that under isumptionsX =
Xog-2 is @ Fano threefold ifP9™! of genusg = 9 or 10 with PicK) = Z - (—Kx)
and with a non-smooth Fano schemgX). Such a threefoldX exists indeed by virtue
of Theorem 2.6. The following result fixes the first assertidrirfheorem 0.1.

Theorem 3.1. Under the assumptions as above the variety X contains adgylin
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Proof. Assuming that the schem#&X) is not smooth at a pointl]] € 7(X), it
suffices to construct a cylinder W \ F (see Corollary 2.11).

By Theorem 1.1 (4L is a line of type B) on X. According to Theorem 2.13 the
surfaceF is non-normal. So by Proposition 22 = Sing(F) is a double line onF.
Consider the following diagram:

where ¢ is the projection fromA, p is the blowup ofA, andq = £ o p. We show
below thatq is a P'*-9-bundle overP9-8. Let E € W be the exceptional divisor and
F € W be the proper transform of.

In the caseg = 10 the fibers of are intersections of our smooth quadw¢ C P4
(see Setup 2.5) with planes IP* containing A. Thereforeq is a P-bundle overP?,
whose fibers are the proper transforms of linesAinc P* meeting A. The morphism
q: W — P2 is given by the linear systerrp* Gy (1) — E|. SinceF ~ 2p*Ow(1) — 2E,
the imageq(F) = £(F) is a conic onP2. Since A w == Oa @ O (1), the P1-bundle
E — A is that of the Hirzebruch surfacB; — P. Furthermore, its negative section
¥ is a fiber ofq. It follows that the open se/ \ F ~ W \ (F U E) is an A'-bundle
over P2\ q(F U ). By [24, Theorem 2] or [25, Theorem], this bundle is trivialer
a Zariski open subseZ € P2\ q(F U ¥). This gives a cylinder contained W \ F
and also a cylinder orX.

In the caseg = 9 the fibers of¢ are planes ilW = P3. The intersection of such
a plane with the cubic surfacE consists of the double lin&\ and a residual line
|. Thereforeq is a P?-bundle overP?!, and F U E intersects each fiber along a pair
of lines.

More precisely, we havé& >~ Fy and F >~ F; (see Proposition 2.2 (2a)). Further-
more,q|g andq|g, respectively, yieldP-bundles with rulings being lines in the fibers
of g. A simple computation shows th#&t|z ~ 2% +1, where X (resp.i) is a section
(a ruling, respectively) of the triviaP'-bundle E — A. Notice thatX is a line in a
fiber of g andl is a section ofg. The finite mapp|s: F — F yields a normalization
of F. For the curveF |z there are the following two possibilities:

() F|g = A1, whereA; € |2% + 1] is irreducible, or

(i) Flg =T + Ag, whereAp € |Z +1] is a (1, 1)-divisor.

We claim thatw \ F ~ W\ (F U E) contains a cylinder. In what follows we deal with
case (i) only; case (i) can be treated in a similar fashiomer& exists exactly one
fiber of g, say I, such thatE, F and I1,, meet along a common lin&. Blow-
ing up W° := W\II,, along the irreducible curvée N F N W° we obtain anF;-
bundle 7 : W° — Al together with the proper transforns® and E° on W° of F
and E, respectively. The exceptional divisdfif is ruled overA?! with rulings being
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the (~1)-curves in the fibers isomorphic . There is a naturaP!-bundle structure
p: W° — E? which defines in each fiber gf the rulingF; — P. The mapp sends
E° and F° to the intersectiond&=® N E and F° N E7, respectively. The complement
We \ (Ef U E°UF°) ~ W\(EUF UTly,) ~ W\ (F UTl,) is again aP!-bundle
over E2 \ (E° U F°), where I, := p.([l,). This bundle is trivial over a Zariski
open subseZ C EZ and admits a tautological section defined By < W°. After
trivialization the mapp: p~1(Z) — Z becomes the first projectiod x P! — Z. The
second projection of the tautological section defines a hismp f: Z — PL. The auto-
morphismt — (t — f(2))~* of Z x P! sends this section to the constant section ‘at
infinity. The Al-bundle p: W° \ E{ — E? being trivial over Z it defines a cylinder
p~HZ)\ E; ~ Z x AL, as required. O

Proof of Theorem 0.1. The first assertion of Theorem 0.1 is @seguence of
Theorem 3.1. Let us show the second one. Recall that the auypbism group of
a Fano threefold of genug = 9 or 10 with PicK) = (—Kx) - Z is finite [36].

Fix a moduli space#y of the Fano threefolds of gengs= 9 or 10 with PicK) =
(—Kx) - Z. It can be defined using GIT, and is unique up to a birationalivadence.
Let .#Z £y be the moduli space of pairX(L), where X is a Fano threefold as above
and L is a line onX. Consider a natural projection: .#.¥y — .#4 whose fiber
over the point K] e .#y which corresponds tX is isomorphic tor(X) up to a fi-
nite cover, since the automorphism group AQt(is finite, as we mentioned before.
By Theorem 1.1 (3) we have di#y = dim.#Z.Z4 — 1. By Theorem 2.6# .2 is
isomorphic to the moduli space of embedded curi’es W of degree 7 and genus
g =12—g.

Let further .7y C .44 be the closed subvariety formed by all Fano threefolds
whose Fano scheme(X) is non-smooth, and Iet///.,zﬂ; C # Ly be the subvariety
formed by all pairs X, L) such thatL is of type (). Then.Zy = n(//l.iﬂ’g). Since
such a Fano threefolX contains at most a finite number gf)tlines (see Remark 1.2)
we have dim#y = dimg///,,iﬂ’g. Now the second assertion of Theorem 0.1 is immediate
in view of the following claim. ]

Claim 3.2. Let J7; be the Hilbert scheme parameterizing the curfesn W of
degree7 and arithmetic genus JI') = 12—g. ThendimJZg = 91— 7g. If the surface
F = F(I") is smooth alond", then 7y is smooth at the corresponding point. Further-
more the subscheme?; of 7 parameterizing the curveF with F(I") non-normal
has codimensior2.

Proof. Assuming that(I") is smooth alongl’, we consider the following exact
sequence of vector bundles oviér

(3.2.6) 0— At/e = SMw = A5 wlr — 0.
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Taking into account the relations

deg.4r/F = 29(I') — 2 + degll’
and
degArwlr =T -F

we obtain by (3.2.6) thaH(.4t,w) = 0 and dimHO(,/VF/W) = 91— 7g. Now the first
two assertions follow by the standard facts of the deforomatheory.

The proof of the last assertion is just a parameter count. Bpdsition 2.2 the
dimension of the family of curve§ with a non-normal surfacé-(I") equals 13 and
11 in cases (a), (b) and’fbrespectively, while the family of all non-normal surface
F is of codimension 15-g. ]

REMARK 3.3. Note that the family of all Fano threefoldé with Picard num-
ber 1 of genus 9 or 10 with a non-smooth Hilbert scheme of lin@§) is irreducible,
since . # £y ~ Hj is.
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