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Abstract
In this paper we address the following questions for smooth Fano threefolds of

Picard number 1:
• When does such a threefold X possess an open cylinder U' Z �A1, where Z
is a surface?
• When does an affine cone over X admit an effective action of theadditive group
of the base field?

A geometric criterion from [26] (see also [27]) says that thetwo questions above
are equivalent. In [26] we found some interesting families of Fano threefolds carry-
ing a cylinder. Here we provide new such examples.

Introduction

All varieties will be defined overC. In particular,An stands for the affinen-space
over C. We say that a projective variety iscylindrical if it contains a Zariski open
subsetU ' Z � A1 called acylinder, where Z is a quasiprojective variety. There is
also a more restrictive notion ofpolar cylindricity ([26, Section 3]) explained below.
However, both notions coincide for varieties with Picard number 1.

A classification of cylindrical smooth Fano threefolds of Picard number 1 is tempt-
ing. In the present paper we make a further step in this direction providing in our main
Theorem 0.1 two new families of examples. All Fano threefolds are assumed being
smooth unless explicitly stated otherwise. Given a Fano threefold X of index r D 1,
by a line onX we mean a smooth rational curveL on X such that�KX � L D 1. We
let � (X) denote the Fano scheme ofX, that is, the component of the Hilbert scheme
parameterizing the lines onX. In the setting of Theorem 0.1 the scheme� (X) is gener-
ically reduced, but can contain non-reduced points (see Theorem 1.1 below). The re-
duced scheme� (X)red is purely one dimensional.
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Theorem 0.1. Let X be a Fano threefold of genus gD 9 or 10 with

Pic(X) D Z � (�KX).

If the scheme� (X) is non-smooth then X is cylindrical. The Fano threefolds with a
non-smooth scheme� (X) form a codimension one subvariety in the corresponding mod-
uli space.

Presumably, a general point of the moduli space of Fano threefolds of genusgD 9
or 10 with Picard number 1 corresponds to a non-cylindrical rational Fano threefold.
However, we do not dispose at the moment necessary tools for establishing this. More-
over, we do not know any example of a non-cylindrical rational Fano threefold.

Our interest to the cylindricity problem came from affine geometry, see Corol-
lary 0.2 below. Given a projective embeddingX ,! P

N , a natural question arises as
to when the affine cone AffCone(X) over X admits an effective action of the addi-
tive groupGa of the base field. Indeed, the existence of such an action implies that
the automorphism group Aut(AffCone(X)) is of infinite dimension, see e.g. [1]. For
instance, the affine cone over a smooth del Pezzo surfaceS of degreed � 4 anti-
canonically embedded inPd admits three independent effectiveGa-actions [26, 3.3.2].
Moreover, the group Aut(AffCone(S)) acts on AffCone(S) infinitely transitively off the
vertex [33].1

Applying Theorems 0.1 and 0.3 (see below) we deduce such a corollary.

Corollary 0.2. Let X be a Fano threefold of genus gD 9 or 10 with Pic(X) '
Z[�KX] and with a non-smooth Fano scheme of lines� (X). Then any affine cone over
X admits a non-linearGa-action.2 Consequently, the automorphism group of such a
cone is infinite dimensional.

Some explanations are in order. A linear group action on an affine cone overX
induces such an action onX. However, any Fano threefoldX as in Theorem 0.1 has fi-
nite automorphism group ([36]). In particular, it does not admit any effectiveGa-action.
Thus the linear automorphism group of any affine cone overX is one-dimensional and
such a cone does not admit any effective linearGa-action. This explains why the (ef-
fective) Ga-action as in Corollary 0.2 is non-linear.

The proof of Corollary 0.2 is based on the geometric criterion of Theorem 0.3
below, which follows in turn from a more general Corollary 2.12 in [27]; cf. also [26,
Theorem 3.1.9]. LetX be a projective variety polarized by an ample divisorH , and

1Such a cone isflexible, i.e. the tangent space in any smooth point is generated by tangent vectors
to the orbits ofGa-actions, see [1]. For the affine cones over projective varieties this property admits a
characterization in terms of existence of a covering of the variety by a family of transversal cylinders,
see [33]. See also [4, Conjecture 1.4] for a conjectural relation between unirationality of a variety and
the existence of a flexible affine model in its stable birational class.

2Notice that any such affine cone is normal, see [19, Chapter 1,Proposition 4.9].
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let U D X n suppD be a cylinder inX. We say thatU is H-polar if one can choose
D 2 jd Hj for somed 2 N ([26]) or, equivalently, [D] 2 Q

C

[H ] in Pic
Q

(X), see [27,
Definition 0.2].

Theorem 0.3. Let X be a normal projective variety of dimension� 1, H 2 Pic(X)
be a very ample divisor, and AffConeH (X) be the associated affine cone over X. Then
AffConeH (X) admits an effectiveGa-action if and only if X contains an H-polar cylinder.

À priori the existence of an effectiveGa-action on AffCone(X) depends upon the
polarization chosen. However, anH -polar cylinder inX is also H 0-polar for anyH 0

2

Pic(X) such thatpH � q H0 for some positive integersp andq. Assuming that Pic(X)'
Z, all ample polarizations onX are proportional and so a cylinder polar with respect to
one is polar with respect to any other.

Furthermore, shrinking suitably a given cylinder inX with Pic(X) ' Z we can get
an affine H -polar cylinder with respect to some ample polarizationH of X. Using
now Theorem 0.3 we conclude that all the affine cones overX simultaneously admit
or do not admit an effectiveGa-action. Thus in this particular case the criterion of
Theorem 0.3 becomes especially simple.

Corollary 0.4. Let X� Pn be a smooth projective variety withPic(X)' Z. Then
AffCone(X) admits an effectiveGa-action if and only if X is cylindrical.

The reason why we choose to deal with Fano varieties, and morespecifically with
rational Fano threefolds, is as follows. First of all, the existence of a non-linearGa-
action on an affine cone over a projective varietyX implies thatX is birationally unir-
uled [26, Corollary 2.1.4]. Hence under the assumption Pic(X) ' Z we have to restrict
to Fano varieties, since otherwiseX is not birationally uniruled and so the affine cones
over X do not admit a nonlinearGa-action, see [26, 3.2.1].

Furthermore, any cylindrical Fano threefoldX is rational due to the Castelnuovo
rationality criterion for surfaces. Indeed, sinceX is cylindrical it is birationally equiva-
lent to Z � A1. Let QZ be any smooth projective birational model ofZ. Since X
is Fano, it does not admit any nonzero global holomorphic pluri-form, and the same
holds for QZ. In particular,H0( QZ, 2K

QZ) D 0 and H1( QZ,O
QZ) D H0( QZ, �1

QZ
) D 0. By the

Castelnuovo rationality criterion the surfaceQZ is rational. HenceX is rational too.
The list of examples of cylindrical Fano varieties with Picard number 1 that we

know so far looks as follows. Clearly, every Fano varietyX which contains the affine
spaceAn as a Zariski open subset is cylindrical.3 This applies e.g. toPn, the smooth
quadric Q in P

nC1, and the Fano threefoldX5 of index 2 and degree 5. Two more

3A well known Hirzebruch problem ([15]) asks to classify the complete complex varieties that
containAn as a dense open subset; see [9] and the references therein forstudies on this problem.
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families of cylindrical Fano threefoldsX with Picard number 1 are the smooth inter-
sectionsX2�2 of two quadrics inP5 and the Fano threefoldsX22 of genus 12 (see [26,
Propositions 5.0.1 and 5.0.2]). Note that a cylindrical projective variety does not need
to contain an affine space as an open subset. For instance, themoduli space of the
latter family has dimension 6, while the subfamily of compactifications ofA3 is only
4-dimensional.

We established in [26, 3.2.2] the polar cylindricity of all the anticanonically polar-
ized del Pezzo surfaces of degree� 4. It occurs however that those of degree 1 and 2
do not fall in this class [28].

The geometric construction used in the proof of Theorem 0.1 involves a lineL
on X which corresponds to a non-smooth point of� (X). We found further fami-
lies of examples whose construction evokes instead a smoothpoint [L] 2 � (X) (see
arXiv:1106.1312). We expect that the latter families are not contained in thefor-
mer ones.

In Section 1 we give a brief overview on Fano threefolds, witha special accent
on the property of being rational. Besides, we collect theresome useful facts on the
Hilbert scheme of lines in a Fano threefold. In Section 2 we describe two standard
constructions, which give all Fano threefolds of genus 9 and10. Sometimes the proofs
are hardly accessible in the literature, so we provide them.The main Theorem 0.1 is
proven in the last Section 3.

1. Generalities on Fano threefolds

We recall that a Fano variety is a smooth projective varietyX with an ample anti-
canonical class�KX. The Fano indexr D i (X) is defined via�KX D r H , where
H 2 Pic(X) is a primitive ample divisor class. It is well known thatr � dim X C 1.
We write X D Xd for a Fano threefold of degreed, whered D H3. The genusg of
X is defined via 2g� 2D �K 3

X (D dr3).

1.1. Rational Fano threefolds. Any Fano threefold X has index r � 4.
Furthermore,
• if r D 4 then X ' P3;
• if r D 3 then X ' Q, where Q is a smooth quadric inP4.

We assume in the sequel that Pic(X) ' Z.
• If r D 2 then the degree ofX varies in the ranged D 1, : : : , 5. More precisely,

(1) if d D 1 then X is a hypersurface of degree 6 in the weighted projective space
P (1, 1, 1, 2, 3). Such a threefoldX is non-rational [42], [11];
(2) if d D 2 then X is a hypersurface of degree 4 in the weighted projective space
P (1, 1, 1, 1, 2). Such a threefoldX is non-rational [43];
(3) if d D 3 then X is a cubic hypersurface inP4, which is known to be non-
rational [5];
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(4) if d D 4 then X D X2�2 is an intersection of two quadrics inP5. Such a three-
fold is rational [10], [22];
(5) if d D 5 then X D X5 is a linear section (byP6) of the GrassmannianG(2, 5)
under its Plücker embedding inP9. Such a threefold is rational and unique up to
isomorphism [8], [19], [22].

• If r D 1 then the genus ofX varies in the rangeg D 2, : : : , 10 and 12. More
precisely,

(a) If g D 2, 3, 5, or 8, then the threefoldX is non-rational (see [20], [23] for
g D 2, [21], [20] for g D 3, [2] for g D 5, [20] and [5] for g D 8);
(b) if g D 4 or 6 then a general threefoldX is non-rational [2], [23], [42];
(c) if g D 7, 9, 10, or 12 thenX is rational [22].
We are interested in Fano threefolds which possess a cylinder. As we explained in

the Introduction, due to the Castelnuovo rationality criterion for surfaces such a three-
fold must be rational. Of course, the projective spaceP

3, a smooth quadricQ in P

4,
and the Fano threefoldX5 are cylindrical since they contain the affine spaceA3 as an
open subset. A cylinder exists in every Fano threefoldX22 or X2�2 [26, Section 5]. In
Theorem 3.1 below we describe families of Fano threefolds with a cylinder among the
X16 (g D 9) and theX18 (g D 10).

The question remains whetherevery rational Fano threefold carries a cylinder. In
particular, whether this is true for all the threefoldsX12 (g D 7), X16, and X18.

1.2. Families of lines on Fano threefolds. In the sequel we need the follow-
ing facts.

Theorem 1.1 ([40], [37], [19, Chapter 3, Section 2], [22, Section 4.2], [41]). Let
X D X2g�2 be a Fano threefold of genus g� 3 with Pic(X)D Z � (�KX), anticanonically
embedded inP gC1.4 Then the following hold.
(1) There is a line L on X.
(2) For the normal bundleNL=X there are the following possibilities:

(�) NL=X ' O
P

1
� O

P

1(�1), or
(�) NL=X ' O

P

1(1)� O
P

1(�2).
(3) The reduced scheme� (X)red is purely one dimensional.
(4) The scheme� (X) is smooth at a point[L] 2 � (X) if and only if the corresponding
line L is of type(�).
(5) For g � 7 any line L on X meets at most a finite number of lines on X.

REMARK 1.2. Let g D 9 or 10 and Pic(X) D Z � (�KX). According to [35] and
[12] every irreducible component of the scheme� (X) is generically reduced. Thus for
a Fano threefoldX as in Theorem 0.1, the set of non-smooth points5 of the scheme

4Such an embedding exists always ifg � 4, and for general members of the family forg D 3.
5That is, of singular or non-reduced points.
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� (X) is at most finite. On the other hand, for a general Fano threefold X of this type
the scheme� (X) is a smooth, reduced, irreducible curve [34, Section 3.2],[16, Corol-
lary 5.1.b].

2. Fano threefolds of genera 9 and 10

We need the following lemma.

Lemma 2.1. (a) Any smooth curve0 of degree7 and genus3 in P

3 lies on a
unique cubic surface FD F(0) in P

3, and this surface is irreducible.
(b) For any smooth, linearly non-degenerate curve0 of degree7 and genus2 in P

4,
the quadrics containing0 form a linear pencil, say, Q. The base locus of this pencil
is an irreducible quartic surface FD F(0) in P

4.

Proof. We provide a proof of (b); that of (a) is similar. LetI
0

be the ideal sheaf
of 0 � P4. Using the exact sequence

0! I
0

(2)! O
P

4(2)! O
0

(2)! 0

we obtain that dimH0(I
0

(2)) � 2 by the Riemann–Roch theorem. Hence there is a
pencil of quadricsQ through0.

Assume to the contrary that there exist three linearly independent quadricsQ1, Q2,
and Q3 � P

4 passing through0. Since0 is linearly nondegenerate, these quadrics
are irreducible. Moreover,Q1 \ Q2 is an irreducible surface. Indeed, otherwise0 is
contained in an irreducible componentS of Q1 \ Q2 with degS� 3. Thus deg0 �
2 degS� 6, a contradiction.

Then Q1 \ Q2 \ Q3 D 0 C L (as a scheme), whereL is a line. Consider the
exact sequence

(2.1.1) 0! O
0[L ! O

0

� OL ! F ! 0,

where the quotient sheafF is supported on0 \ L. Since

�(O
0[L ) D �4

and

�(O
0

� OL ) D �(O
0

)C �(OL ) D 0,

we obtain by (2.1.1)

#(0 \ L) D dim H0(F ) D �(O
0

�OL ) � �(O
0[L ) D 4.

Thus L must be a 4-secant line of0. Hence the projection with centerL would map
0 to a plane cubic, a contradiction.
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Let us show finally thatF is irreducible. Indeed, otherwise0 would be contained
in an irreducible surfaceF 0 of degree� 3 in P4. Since0 is assumed to be linearly
non-degenerate,F 0 must be a linearly non-degenerate surface of degree 3. By [10,
Chapter 4, Section 3], eitherF 0 is a cone over the twisted cubic orF 0 is isomorphic
to the Hirzebruch surfaceF1. Proceeding as in the beginning of the proof, it is easily
seen that in both casesh0(I

0

(2))� h0(IF 0 (2))� 3. Hence there is a two-dimensional
family of quadrics passing through0, which leads to a contradiction as before.

In the next proposition we list the possibilities for the surface F as in Lemma 2.1.
Given a Hirzebruch surfaceFn we let l denote a ruling ofFn and6 the exceptional
section if n > 0, or just a section ifn D 0.

Proposition 2.2. In the notation and assumptions as inLemma 2.1 (a)we sup-
pose in addition that0 is not hyperelliptic, and we let WD P3 and gD 9. In case(b)
of Lemma 2.1we let WD Q � P4 be a smooth quadric containing0 and gD 10
(such a quadric does exist, seeLemma 2.4below). With these notation and assump-
tions, the surface FD F(0) � P g�6 belongs to one of the following classes.
(1) F � P g�6 is a normal del Pezzo surface with at worst Du Val singularities; or
(2) F � P g�6 is a non-normal scroll, whose singular locus3 D Sing(F) is a double
line. Furthermore, the normalization F0 of F is a smooth scroll F0 of the minimal degree
g� 6 in P g�5, and the normalization map� W F 0

! F is induced by the projection from
a point P2 P g�5

n F 0. The restriction�j
�

�1(3) W �
�1(3)! 3 is a ramified double cover.

Letting00 be the proper transform of0 in F 0, there are the following possibilities.
(a) If g D 9 then F0 ' F1, the embeddingF1 ' F 0

,! P

4 is defined by the linear
systemj6C2l j on F1, and ��1(3) � 6C l is a reduced conic on F0 � P4, which
is either smooth or degenerate. Furthermore, 00 � 36C 4l on F0. If g D 10 then
one of the following holds.
(b) F 0

' F0 D P

1
� P

1, the embeddingF0 ' F 0

,! P

5 is defined by the linear
systemj6 C 2l j on F0, ��1(3) � 6 is a smooth conic on F0 � P

5, and 00 �
26 C 3l on F0 or
(b0) F 0

' F2, the embeddingF2' F 0

,! P

5 is defined by the linear systemj6C3l j
on F2, ��1(3)�6Cl is a reduced degenerate conic on F0

� P

5, and00 � 26C5l
on F0.

The double line3 is a (13� g)-secant line of0 i.e. a 3-secant if gD 10 and 4-secant
if g D 9.

Proof. SinceF is a complete intersection, it is Gorenstein. By the adjunction
formula !F ' OF (�1), i.e. F is (possibly non-normal) del Pezzo surface.

Let us show that (1) holds providedF is normal, and otherwise (2) holds.
If F is normal, then by [14]F is either a surface described in (1), or a cone over

an elliptic curveC � P g�7 of degreeg� 6. Assume to the contrary thatF is a cone.
Let � W QF ! F be the blowup of the vertex. ThenQF is a smooth ruled surface over
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C. Let as before6 and l be the exceptional section and a ruling, respectively, with
6

2
D �k. Letting M D �

�OF (1) and Q0 be the proper transform of0 on QF , we can
write M � 6 C kl and Q0 � a6 C bl. Then

0D M �6, g� 6D M2
D k, 6

2
D �k D 6� g,

7D Q0 � M D b, and Q

0 �6 D a(6� g)C 7� 0.

Since Q0 ' 0 is not an elliptic curve,a � 2. This is only possible ifgD 9, aD 2, and
so k D 3. On the other hand, by adjunction

2g( Q0) � 2D ( Q0 C K
QF ) � Q0 D 8,

a contradiction, sinceg( Q0) D g(0) D 3. Thus (1) holds.
If F is non-normal then by [32, Theorem 8], [39], [7, 9.2.1],F is a projection

of a normal surfaceF 0 of the minimal degreeg � 6 in P

g�5. It is well known (see
e.g., [10, Chapter 4, Section 3, p. 525]) thatF 0

� P

g�5 is either a Veronese surface
F 0

4 � P
5, or the image of a Hirzebruch surfaceFn under the map given by the linear

systemj6 C klj, wherek � n and 2k � n D g � 6. The case of the Veronese surface
is impossible because the degree of every curve onF 0

4 � P
5 is even. Thus we have a

birational morphism� W Fn ! F 0. This is either an isomorphism or the contraction of
the negative section. Let00 � Fn be the proper transform of0 on Fn. We can write
0

0

� a6C bl, wherea � 2 andb � na. Note thata � 3 if gD 9, since0 is assumed
being non-hyperelliptic. By adjunction

2g(0) � 2D 2na� 2b� (nC 2)a� na2
C 2ab, deg0 D 7D �naC bC ka,

where, as we have seen already,

degF D g� 6D 2k � n, k � n, a � 2, b � na, and a � 3 if g D 9.

The data as in (a), (b), and (b0), respectively, give three solutions of this system, and
these are the only solutions. In all cases,k > n and so� W Fn ! F does not contract
the section6. HenceF 0

' Fn. It is easily seen that the remaining possibilities are as
indicated in (2). See also [39] for a description of the inverse image��1(3) of the
singular locus3 of F .

In the following elementary lemma we describe some familiesof lines and conics
on the surfaceF .

Lemma 2.3. The surface F as in(b) and (b0) of Proposition 2.2is linearly ruled,
that is, through a general point of F passes a line, and this line meets the double
line 3.
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In case(b) F contains just a one-parameter family of non-degenerate conics, and
a general such conic does not meet the double line3. In case (b0) F contains no
non-degenerate conic.

Proof. Since in case (b) (resp. (b0)) the morphismF 0

! F � P4 is defined by
a subsystem ofj6 C 2l j (resp. j6 C 3l j) the image of any rulingl � F 0 is a line
on F meeting3. In case (b) the non-degenerate conics onF are just the images of
the sections, say,6t � 6 on F 0. These conics form a one-dimensional family, and
the image�(6t ) of a general section6t does not meet3. Assuming in case (b0) that
there is a non-degenerate conicC on F we obtain the relations��1(C) � (6 C 3l ) D
2 and ��1(C) � 6 � 0. These imply that��1(C) � 6 D 2 and ��1(C) � l D 0, which
is impossible.

Now we can strengthen part (b) of Lemma 2.1.

Lemma 2.4. In case(b) of Lemma 2.1the pencilQ contains a smooth quadric.

Proof. Assume to the contrary that every quadric in the pencil Q is singular. Let
Q 2 Q be a general member. By the Bertini theoremQ is smooth outsideF . SinceF
is a complete intersection,Q is smooth at the points ofF nSing(F). If F has at worst
isolated singularities, then so doesQ. Moreover, in this case all these quadricsQ have
a common singularity. HenceF must be a cone, which contradicts Proposition 2.2.

Thus under our assumptionF has non-isolated singularities. Moreover, by Prop-
osition 2.2 (2)F must be singular along a line3. If some quadricQ 2 Q is singular
along3, then F is again a cone, which is impossible. Thus we may assume that agen-
eral quadricQ 2 Q has an isolated singular pointP D PQ 2 3 and soF D Q1 \ Q2,
where Qi (i D 1, 2) is a quadratic cone with vertexPi 2 3 and P1 ¤ P2.

The coneQ1 contains two different families of planes5
�

and2
�

that pass through
the point P1. The second quadricQ2 cuts out a conicC

�

on 5
�

, which also passes
through P1. HenceF contains a one-dimensional family of conics meeting the double
line 3. This contradicts Lemma 2.3.

In Theorem 2.6 below we deal with the following setting.

SETUP 2.5. As before, we consider the following two cases:
(i) For gD 9, we let W D P3 and0 � P3 be a smooth, linearly nondegenerate, non-
hyperelliptic curve of degree 7 and genus 3.
(ii) For gD 10, we letW D Q � P4 be a smooth quadric and0 be a smooth, linearly
nondegenerate curve of degree 7 and genus 2 onQ.
In both cases, we letF D F(0) denote the corresponding surface from Lemma 2.1.
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In the case of a curve0 lying on a smooth surfaceF , the following result can
be found in [18]. In the present more general form, the resultwas announced with-
out proof in [22, Theorems 4.3.3 and 4.3.7]. Besides, we can quote an explanation
in [22, 4.3.9 (ii)] as to why the assumption in Setup 2.5 (i) that the curve0 is non-
hyperelliptic is important. The details of the proof can be found in an unpublished
thesis [34] (in Russian). For the reader’s convenience we reproduce them below; see
also [3].

Theorem 2.6. In the notation as inSetup 2.5there exists a Sarkisov link

(2.6.2)

QD QX OX OF

0 W X0 X L,

 

!

 - !

 

!

�0
 

!

�

 

!

�

 

!

'0  

!

'

!

 -

 

!

 - !

 

!

 

!

 -

where� is the blowup of0, �0 and '0 are the anticanonical maps onto X0 � P
g�1, �

is a flop, X D X2g�2 is a smooth Fano threefold of genus g withPic(X) D Z � (�KX)
anticanonically embedded inP gC1, and ' is the blowup of a line L on X. The excep-
tional divisor OF of ' is a proper transform of the surface FD F(0) �W. The excep-
tional divisor QD of � is a proper transform of a divisor D2 j�(12�g)KX�(25�2g)Lj.
The map �1 is the double projection with center L, that is, a map given by the linear
systemjA� 2Lj on X, where A� �KX is a hyperplane section of X.

Conversely, if X is any Fano threefold of genus gD 9 or 10 and L� X is a line,
then the double projection with center L defines the above diagram.

In the proof of Theorem 2.6 we use auxiliary results Lemma 2.7, Corollary 2.8,
Lemma 2.9 and Corollary 2.10. Let us introduce the followingdata. We let� W QX!W
be the blowup of0, QD be the exceptional divisor, and letH�

D �

�H , where H is the
positive generator of Pic(W) ' Z. We have (see e.g. [22, Lemma 2.2.14])

(2.6.3) (H�)3
D g� 8, (H�)2

�

QD D 0, H�

�

QD2
D �H � 0 D �7,

and

QD3
D � degN

0=W D

�

�23 if g D 10,
�32 if g D 9.

Letting QF � QX be the proper transform ofF we get QF � (12� g)H�

�

QD. The divisor
classes�K

QX � (13� g)H�

�

QD and QF form a basis of Pic(QX) ' Z�Z and satisfy the
relations

(2.6.4) �K 3
QX
D 2g�6> 0, (�K

QX)2
�

QF D 3, � K
QX �
QF2
D �2, and QF3

D g�13.
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Lemma 2.7. The divisor�K
QX is nef and big.

Proof. First we show that�K
QX is nef. Consider the caseg D 10; the proof in

the caseg D 9 is similar. From the exact sequence

0! I
0

(3)! OW(3)! O
0

(3)! 0

we obtain by the Riemann–Roch theorem

dim H0(I
0

(3))� dim H0(OW(3))� dim H0(O
0

(3))D 10.

The members of the linear systemj�K
QXj are proper transforms of the members of the

linear systemj�KWj D jOW(3)j passing through0. Hence

(2.7.5) dimj�K
QXj � 9.

Notice that an irreducible elementG 2 j�KWj D jOW(3)j cannot be singular along0,
since otherwise we obtainG � F � H D 3 � 2 � 2 � 2 � 7, a contradiction. Applying
Lemma 2.1 it is easily seen that the only reducible membersQG 2 j�K

QXj are those

of the form QG D QF C H�. Hence such divisors form a linear subsystem inj�K
QXj of

codimension� 5.
Assume to the contrary that there exists an irreducible curve QC on QX with

�K
QX �
QC < 0, and letC D � ( QC) � W. Since g(0) D 2, the curve0 does not admit

any 4-secant line. Indeed, otherwise the projection from this line would send0 iso-
morphically to a plane cubic, which is impossible. Since

#(C \ 0) D QC � QD > 3H�

�

QC D 3 degC � 3,

the curveC cannot be a line. IfC is contained in a plane5 � P4 then by the same
argument

#(5 \ 0) � #(C \ 0) > 3 degC � 6.

Since deg0 D 7 and 0 is linearly non-degenerate, we get a contradiction. ThusC
is not contained in a plane and so degC � 3. Assume thatC is contained in some
hyperplane2 � P4. Then as above

#(2 \ 0) � #(C \ 0) > 3 degC � 9,

which again leads to a contradiction because deg0 D 7. ThereforeC is linearly non-
degenerate and degC � 4.

On the other hand,F contains a line, say7 . Let Q7 � QX be its proper transform.
We have�K

QX �
Q

7 � 3 D �KW � 7 . Therefore, fixing four general points onQ7 , a
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member QM 2 j�K
QXj passing through these points is forced to containQ7 . The family

of all such members has codimension at most 4, while degenerate ones vary in a family
of codimension at least five, as we observed before. Hence there exists an irreducible
divisor QM 2 j�K

QXj containing Q7 . By our assumptionQM � QC < 0, and then alsoQF � QC D
QM � QC � H�

�

QC < 0. Thus the intersectionQM \ QF contains QC [ Q7 and so by (2.6.3)
we have

deg(C C 7) D ( QC C Q7) � H�

�

QM � QF � H�

D �K
QX �
QF � H�

D (3H�

�

QD) � (2H�

�

QD) � H�

D 5.

It follows that degC D 4, so C � P

4 is a rational normal quartic curve. An easy
computation gives dimH0(IC(2))D 6. Picking two distinct points on0 let us consider
the family of quadrics fromH0(IC(2)) passing through these points. It has dimension
four. Such a quadric cuts0 in at least 13C 2 points, hence contains it. It follows that

dim H0(IC[0(2))� 6� 2D 4.

The latter contradicts Lemma 2.1 (b). Therefore in the caseg D 10 the divisor�K
QX

is nef. Since�K 3
QX
D 2g� 6> 0, the divisor�K

QX is big.

By the base point free theorem we deduce the following result.

Corollary 2.8. For some n> 0 the linear systemj�nK
QXj defines a birational

morphism�0W QX! X0 � P
N whose image is a Fano threefold with at worst Gorenstein

canonical singularities. Moreover�K
QX D �

�

0 (�KX0).

Lemma 2.9. The morphism�0 is small, i.e. it does not contract any divisor.

Proof. Assume that�0 contracts a prime divisor4 � ��K
QX��

QF . Then by (2.6.4)

0D 4 � (�K
QX)2
D (2g� 6)� � 3�.

This yields� D (2g=3� 2)�. Since4 ¤ QF and�K
QX is nef by Lemma 2.7, we have

0� �K
QX �4 �

QF D 3� C 2� D �

�

4g

3
� 1

�

.

Hence� > 0. Furthermore,

4 � �

�

2g2

3
� 11gC 37

�

H�

C �

�

2g

3
� 3

�

QD.

Since�
�

4 is effective we must have 2g2
=3� 11gC 37� 0, a contradiction.
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The next corollary is standard.

Corollary 2.10. In the notation as above, X0 has at worst isolated compound
Du Val singularities.

Following the techniques outlined in [22, Section 4.1] we can now prove
Theorem 2.6.

Proof of Theorem 2.6. If�K
QX is ample then the map�0 is an isomorphism. In

this case we letOX D QX D X0 and � be the identity map. Otherwise by [29] the con-
traction �0 W QX ! X0 can be completed to a flop triangle as in diagram (2.6.2). Here
'0 is another small resolution ofX0. Let OC � OX and QC � QX be the flopped and the
flopping curves, respectively. Then� induces an isomorphismQX n QC ' OX n OC.

In both cases the divisor�K
OX D '

�(�KX0) is nef and big. Furthermore,

�K 3
OX
D �K 3

QX
D 2g� 6, (�K

OX)2
�

OF D (�K
QX)2
�

QF D 3,

and

�K
OX �
OF2
D �K

QX �
QF2
D �2.

Since Pic(OX)' Pic( QX) is of rank 2 the Mori cone NE(OX) is generated by two extremal
rays. One of them has the formR

C

[T ], where T is a curve in the fiber of� (of
'0, respectively) if� is an isomorphism (is not an isomorphism, respectively). Let
R� NE( OX) be the second extremal ray. Since�K

OX is nef and big,R is K -negative.

By [31] there exists a contraction' W OX ! X of R.
Since�K

QX �
QF D � �O(1) is nef we have (�K

QX �
QF) � QC > 0. Therefore QF � QC < 0

and OF � OC > 0. Since�K
OX �
OF2
D �2 < 0, the divisor OF is not nef. Hence OF � R <

0 that is, the rayR is not nef. By the classification of extremal rays [31],' is a
birational divisorial contraction. Furthermore, the'-exceptional divisor coincides with
OF . If ' W OX ! X contracts OF to a point, then by [31]

(�K
OX)2
�

OF D 4, 2 or 1.

On the other hand, (�K
OX)2
�

OF D 3, a contradiction. Hence'W OX! X contracts OF to a
curve Z. In this case bothX and Z are smooth and' is the blowup ofX with center
Z [31]. Moreover, X is a Fano threefold of Fano indexr D 1, 2, 3 or 4. The group
Pic OX is generated byOF and

�

1

r
'

�KX D
1

r
(�K

OX C
OF).
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Therefore, the subgroup generated byQF and�K
QX has indexr in Pic QX ' Pic OX. This

implies thatr D 1. We have

�K 3
X D �K

OX � (�K
OX C
OF)2

D �K 3
OX
C 2 OF � (�K

OX)2
� K

OX � F
02
D 2g� 6C 6� 2D 2g� 2,

i.e. X is a Fano threefold of genusg. Furthermore,

degZ D �KX � Z D �K
OX � (�K

OX C
OF) � OF D 3� 2D 1,

i.e. Z � X is a line. Now an easy computation shows thatOF3
¤

QF3, so � is not an
isomorphism.

As for the last statement of Theorem 2.6, the existence of a diagram (2.6.2) follows
from [19]. Here0 is (as a scheme) the base locus of the linear subsystem�

�

j�K
QXj �

jOW(13� g)j. It remains to show that in the casegD 9 the curve0 is not hyperelliptic.
Assume the converse. It was shown already that0 does not admit a 5-secant line. On
the other hand, by [10, Chapter 2, Section 5]0 admits a 4-secant line, say,N. The
projection fromN defines a linear system of degree 3 and dimension� 1 on0. Hence
the curve0 is hyperelliptic and trigonal. However, this is impossible, since otherwise
the linear systemsg1

2 and g1
3 on 0 define a birational morphism0 ! P

1
� P

1 whose
image is a divisor of bidegree (2, 3). This contradicts the assumption thatg(0) D 3.
Now the proof of Theorem 2.6 is completed.

Corollary 2.11. In the notation as above we have Xn D ' W n F.

In the next proposition we describe the flopped and the flopping curves in (2.6.2).

Proposition 2.12. In the notation as above we letQC � QX and OC � OX be the
flopping and the flopped curve, respectively. Then the following hold.
(1) Any irreducible componentOCi � OX either is a proper transform of a line Li ¤ L
on X meeting L, or (in the case where L is of type(�)) is the negative section6 of
the ruled surface OF ' F3.
(2) The curve OC is a disjoint union of theOCi ’s.
(3) For any OCi we have

N
OCi = OX
' O

P

1(�1)� O
P

1(�1)

or

N
OCi = OX
' O

P

1
� O

P

1(�2).

It follows that � coincides with the Reid’s pagoda[38] near each OCi .
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(4) The curve QC in QX is a disjoint union of theQCi ’s, where each QCi is the proper
transform of a(13� g)-secant line of0.

Proof. Recall that OC and QC are exceptional loci of'0 and �0, respectively. The
assertion (1) is proven in [18, Proposition 3, (iv)] and [22,Proposition 4.3.1], while
(2) and (3) in [6, Proposition 4] and [6, Corollary 12, Theorem 13], respectively. By
(2) the curve OC is a disjoint union of the OCi ’s. Since the construction of a flop is
local and symmetric (i.e. flopping an irreducible curve we get an irreducible one), the
flopped curve QC in QX must be in turn a disjoint union of its irreducible components.
Finally (�K

OX �
OF) � OCi D �1. Therefore 1D (�K

QX �
QF) � QCi D �

�OW(1) � QCi . So � ( QCi )

is a line. Since�K
QX �
QCi D 0, this line must be (13� g)-secant.

In the next theorem we provide a criterion as to when the surface F as in The-
orem 2.6 is normal.

Theorem 2.13. In the notation ofTheorems 1.1and 2.6, the surface F is normal
if and only if L is a line of type(�) on X.

Proof. We use the notation of Proposition 2.12. Assume thatL is of type (�),
and let QC0 denote the flopped curve onQX which corresponds to the negative section
6 of the ruled surfaceOF ' F3. By Remark 5.13 in [38], QF is not normal along QC0.
Since the Picard number�( QX) D 2 and QC0 is contracted by�0, it cannot be contracted
by � . Since QC0 is a smooth rational curve,� is an isomorphism at a general point of
QC0. So F is also non-normal along� ( QC0).

Assume to the contrary thatL is of type (�), while F is non-normal. ThenF is
singular along a line3. Clearly3 ¤ 0, so QF is also non-normal and singular along
�

�1(3). The map� is an isomorphism near a general rulingOf � OF ' F1. Letting
Qf D ��1( Of ), the surfaceQF is smooth alongQf and�0( Qf )D '0( Of ) is a line on�0( QF)D
'0( OF) ' F1. Let l � F be a general line on a non-normal scrollF and Ql be its proper
transform on QF . An easy computation shows that�0(Ql ) is again a line on�0( QF) D
'0( OF) ' F1. Thus we may suppose thatQl D Qf . On the other hand,Ql \ Sing( QF) ¤ ;,
a contradiction.

3. Construction of a cylinder

In this section we prove Theorem 0.1. Recall that under its assumptions X D
X2g�2 is a Fano threefold inP gC1 of genusg D 9 or 10 with Pic(X) D Z � (�KX)
and with a non-smooth Fano scheme� (X). Such a threefoldX exists indeed by virtue
of Theorem 2.6. The following result fixes the first assertionof Theorem 0.1.

Theorem 3.1. Under the assumptions as above the variety X contains a cylinder.
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Proof. Assuming that the scheme� (X) is not smooth at a point [L] 2 � (X), it
suffices to construct a cylinder inW n F (see Corollary 2.11).

By Theorem 1.1 (4)L is a line of type (�) on X. According to Theorem 2.13 the
surfaceF is non-normal. So by Proposition 2.23 D Sing(F) is a double line onF .
Consider the following diagram:

NW

W P

g�8

 

!

q
 

!

p

 

!

�

where � is the projection from3, p is the blowup of3, and q D � Æ p. We show
below thatq is a P11�g-bundle overP g�8. Let NE � NW be the exceptional divisor and
NF � NW be the proper transform ofF .

In the casegD 10 the fibers of� are intersections of our smooth quadricW � P4

(see Setup 2.5) with planes inP4 containing3. Thereforeq is a P1-bundle overP2,
whose fibers are the proper transforms of lines inW � P4 meeting3. The morphism
q W NW! P

2 is given by the linear systemjp�OW(1)� NEj. Since NF � 2p�OW(1)� 2 NE,
the imageq( NF) D � (F) is a conic onP2. SinceN

3=W ' O
3

� O
3

(1), theP1-bundle
NE ! 3 is that of the Hirzebruch surfaceF1 ! P

1. Furthermore, its negative section
N

6 is a fiber ofq. It follows that the open setW n F ' NW n ( NF [ NE) is anA1-bundle
over P2

n q( NF [ N6). By [24, Theorem 2] or [25, Theorem], this bundle is trivialover
a Zariski open subsetZ � P2

n q( NF [ N6). This gives a cylinder contained inW n F
and also a cylinder onX.

In the caseg D 9 the fibers of� are planes inW D P3. The intersection of such
a plane with the cubic surfaceF consists of the double line3 and a residual line
l . Thereforeq is a P2-bundle overP1, and NF [ NE intersects each fiber along a pair
of lines.

More precisely, we haveNE � F0 and NF � F1 (see Proposition 2.2 (2a)). Further-
more,qj

NE and qj
NF , respectively, yieldP1-bundles with rulings being lines in the fibers

of q. A simple computation shows thatNF j
NE � 2 N6 C Nl , where N6 (resp. Nl ) is a section

(a ruling, respectively) of the trivialP1-bundle NE ! 3. Notice that N6 is a line in a
fiber of q and Nl is a section ofq. The finite mappj

NF W
NF ! F yields a normalization

of F . For the curve NF j
NE there are the following two possibilities:

(i) NF j
NE D 11, where11 2 j2 N6 C Nl j is irreducible, or

(ii) NF j
NE D
N

6 C10, where10 2 j N6 C Nl j is a (1, 1)-divisor.
We claim thatW n F ' NW n ( NF [ NE) contains a cylinder. In what follows we deal with
case (ii) only; case (i) can be treated in a similar fashion. There exists exactly one
fiber of q, say N5

1

, such that NE, NF and N5
1

meet along a common lineN6. Blow-
ing up NWÆ

WD

NWn N5
1

along the irreducible curveNE \ NF \ NWÆ we obtain anF1-
bundle O� W OWÆ

! A

1 together with the proper transformsOFÆ and OEÆ on OWÆ of NF
and NE, respectively. The exceptional divisorOEÆ

1 is ruled overA1 with rulings being
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the (�1)-curves in the fibers isomorphic toF1. There is a naturalP1-bundle structure
� W

OWÆ

!

OEÆ

1 which defines in each fiber of� the ruling F1! P

1. The map� sends
OEÆ and OFÆ to the intersectionsOEÆ

\

OEÆ

1 and OFÆ

\

OEÆ

1 , respectively. The complement
OWÆ

n ( OEÆ

1 [
OEÆ

[

OFÆ) ' NWn( NE [ NF [ N5
1

) ' W n (F [ 5
1

) is again aP1-bundle

over OEÆ

1 n ( OEÆ

[

OFÆ), where5
1

WD p
�

( N5
1

). This bundle is trivial over a Zariski

open subsetZ � OEÆ

1 and admits a tautological section defined byOEÆ

1 ,!
OWÆ. After

trivialization the map� W ��1(Z)! Z becomes the first projectionZ � P1
! Z. The

second projection of the tautological section defines a morphism f W Z! P

1. The auto-
morphism t 7�! (t � f (z))�1 of Z � P1 sends this section to the constant section ‘at
infinity’. The A

1-bundle � W OWÆ

n

OEÆ

1 !
OEÆ

1 being trivial over Z it defines a cylinder

�

�1(Z) n OEÆ

1 ' Z � A1, as required.

Proof of Theorem 0.1. The first assertion of Theorem 0.1 is a consequence of
Theorem 3.1. Let us show the second one. Recall that the automorphism group of
a Fano threefold of genusg D 9 or 10 with Pic(X) D (�KX) � Z is finite [36].

Fix a moduli spaceMg of the Fano threefolds of genusgD 9 or 10 with Pic(X)D
(�KX) � Z. It can be defined using GIT, and is unique up to a birational equivalence.
Let ML g be the moduli space of pairs (X, L), where X is a Fano threefold as above
and L is a line on X. Consider a natural projection� W ML g ! Mg whose fiber
over the point [X] 2 Mg which corresponds toX is isomorphic to� (X) up to a fi-
nite cover, since the automorphism group Aut(X) is finite, as we mentioned before.
By Theorem 1.1 (3) we have dimMg D dim ML g � 1. By Theorem 2.6ML g is
isomorphic to the moduli space of embedded curves0 � W of degree 7 and genus
g(0) D 12� g.

Let further M 0

g �Mg be the closed subvariety formed by all Fano threefoldsX

whose Fano scheme� (X) is non-smooth, and letML
0

g � ML g be the subvariety

formed by all pairs (X, L) such thatL is of type (�). Then M 0

g D �(ML
0

g). Since
such a Fano threefoldX contains at most a finite number of (�)-lines (see Remark 1.2)
we have dimM 0

g D dimML
0

g. Now the second assertion of Theorem 0.1 is immediate
in view of the following claim.

Claim 3.2. Let Hg be the Hilbert scheme parameterizing the curves0 on W of
degree7 and arithmetic genus pa(0) D 12� g. ThendimHg D 91�7g. If the surface
F D F(0) is smooth along0, thenHg is smooth at the corresponding point. Further-
more, the subschemeH 0

g of Hg parameterizing the curves0 with F(0) non-normal
has codimension2.

Proof. Assuming thatF(0) is smooth along0, we consider the following exact
sequence of vector bundles over0:

(3.2.6) 0! N
0=F ! N

0=W ! NF=Wj0 ! 0.
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Taking into account the relations

degN
0=F D 2g(0) � 2C deg0

and

degNF=Wj0 D 0 � F

we obtain by (3.2.6) thatH1(N
0=W) D 0 and dimH0(N

0=W) D 91� 7g. Now the first
two assertions follow by the standard facts of the deformation theory.

The proof of the last assertion is just a parameter count. By Proposition 2.2 the
dimension of the family of curves0 with a non-normal surfaceF(0) equals 13 and
11 in cases (a), (b) and (b0), respectively, while the family of all non-normal surfaces
F is of codimension 15� g.

REMARK 3.3. Note that the family of all Fano threefoldsX with Picard num-
ber 1 of genus 9 or 10 with a non-smooth Hilbert scheme of lines� (X) is irreducible,
sinceML 0

g 'H 0

g is.
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