
Title Towards Logging Optimization for Dynamic Object
Process Graph Construction

Author(s) Ishio, Takashi; Wakisaka, Hiroki; Manabe, Yuki
et al.

Citation IEICE Transactions on Information and Systems.
2013, E96-D(11), p. 2470-2472

Version Type VoR

URL https://hdl.handle.net/11094/51042

rights copyright©2013 Institute of Electronics,
Information and Communication Engineers

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University



2470
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

LETTER

Towards Logging Optimization for Dynamic Object Process Graph
Construction

Takashi ISHIO†a), Member, Hiroki WAKISAKA†b), Yuki MANABE††c), Nonmembers,
and Katsuro INOUE†d), Fellow

SUMMARY Logging the execution process of a program is a popular
activity for practical program understanding. However, understanding the
behavior of a program from a complete execution trace is difficult because
a system may generate a substantial number of runtime events. To focus on
a small subset of runtime events, a dynamic object process graph (DOPG)
has been proposed. Although a DOPG can potentially facilitate program
understanding, the logging process has not been adapted for DOPGs. If
a developer is interested in the behavior of a particular object, only the
runtime events related to the object are necessary to construct a DOPG. The
vast majority of runtime events in a complete execution trace are irrelevant
to the interesting object. This paper analyzes actual DOPGs and reports that
a logging tool can be optimized to record only the runtime events related to
a particular object specified by a developer.
key words: dynamic analysis, logging, program understanding, dynamic
object process graph

1. Introduction

Logging the execution process of a program is a popular ac-
tivity for practical program understanding [1]. However, it
is challenging to record and analyze a substantial number
of runtime events. For example, developers are investigat-
ing a web server problem. Developers have to identify the
requests from clients that caused the failures from an execu-
tion trace, even if the vast majority of events in the trace are
related to successful requests.

To focus on a small subset of runtime events which are
related to the behavior of a single object, a dynamic object
process graph (DOPG) can be used [2], [3]. A DOPG is a
partial control-flow graph for a single object, which con-
nects only executed instructions such as branches, method
calls, and field access related to the object. Figure 1 shows
a source code fragment including three control-flow paths.
While its control-flow graph includes 11 nodes, a DOPG
for an object created by the shaded path includes 6 nodes
as shown on the right side of Fig. 1. The other nodes are
excluded from the DOPG because they are irrelevant to the

Manuscript received May 17, 2013.
Manuscript revised July 19, 2013.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.
††The author is with the Graduate School of Science and Tech-

nology, Kumamoto University, Kumamoto-shi, 860–8555 Japan.
a) E-mail: ishio@ist.osaka-u.ac.jp
b) E-mail: h-wakisk@ist.osaka-u.ac.jp
c) E-mail: y-manabe@cs.kumamoto-u.ac.jp
d) E-mail: inoue@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.E96.D.2470

Fig. 1 A sample source code fragment, its control-flow graph and a
DOPG for an object created from the shaded control-flow path.

object.
A developer is often interested in the behavior of a par-

ticular object in an execution trace. Although a simple log-
ging tool for DOPG may record all the runtime events and
then permit a developer to choose a preferred DOPG, it re-
quires a lot of time and space to record a numerous run-
time events and most events are unlikely to be relevant to
the interesting behavior. Therefore, this paper discusses an
optimization approach for DOPG construction that involves
reducing the number of runtime events to be recorded; it re-
quires a developer to specify the method calls for the object
of interest. For example, if a developer is interested in only
the shaded path in Fig. 1, the developer can specify the inter-
esting object that receives a method call at line 3. A logging
tool can discard runtime events for objects that reach line 6
and ignore events on paths between line 6 and the end node.

This paper investigates whether actual DOPGs in pro-
grams can be specified by method calls and whether a log-
ging tool can be optimized for a DOPG. Because there is no
empirical data of DOPGs in literature, the paper analyzes
actual DOPGs from a benchmark suite and discusses possi-
ble optimizations.

2. Analysis

A basic idea for optimization is to identify the objects of in-
terest to a developer. This paper evaluates whether a DOPG
can be specified by method calls because a developer will
not know the precise shape of a DOPG of interest before
execution. If a smaller number of method calls are enough

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers



LETTER
2471

A1

A2

A3

Fig. 2 DFA accepting method calls on each control-flow path.

to identify an object for a DOPG, a logging tool can ignore
additional runtime events that are irrelevant to the DOPG.

A metric for interesting object identification is com-
puted for class C as follows. First, DOPGs are extracted
from all instances of class C. Each DOPG is translated into
a deterministic finite automaton (DFA), which includes only
method call events. Figure 2 shows three DFAs correspond-
ing to three DOPGs of control-flow paths in Fig. 1. Next, the
shortest unique path lk is computed for each DFA Ak. A se-
quence of method calls is unique to Ak if only Ak has the path
from the initial state (the other DFAs reject lk). In Fig. 2, the
shortest unique paths are indicated by solid edges (10 of 11
edges). To identify an object as relevant to a DOPG, the ob-
ject must traverse one of the paths. For example, an object
was identified as relevant to A1 when it received the method
calls at line 1 and line 3. Finally, the metric R(C) for class
C is calculated using the following formula:

R(C) =
Predict(C)

Trace(C) + Predict(C)

where Trace(C) is the total number of edges in the paths
lk (solid edges), Predict(C) is the total number of remain-
ing edges (dashed edges). If R(C) is high; a logging tool
can ignore more runtime events for irrelevant objects on an
average. In case of Fig. 2, R(X) = 1

10+1 = 0.09. This indi-
cates that if three control-flow paths are equally selected, a
logging tool has to record most of the events for the class.

To compute the R(C) metric in general programs, ac-
tual DOPGs are extracted from five applications in the Da-
Capo benchmarks: avrora, batik, lusearch, pmd, and
xalan. The applications include 1015 classes in total. The
analysis excluded 212 classes, which included at least one
object that satisfied one of the following conditions.

• The object has been concurrently accessed by two or
more threads. This is because a DOPG has not been
defined for a multi-threaded program.
• The object has used recursive calls, because realizable

paths of recursive calls cannot be represented by DFA.
• The DFA of the object has more than 50 states. This

condition excludes objects globally used in an applica-
tion since such a class is likely to be a utility class [4].

In Fig. 3, R(C) is plotted for each class in a descend-
ing order. 535 classes (66% of the analyzed classes) have
R(C) = 1. Each of these classes is represented by a single
DOPG, i.e., each class is used by a particular sequence of
method call sites. To construct a DOPG for these classes,
a logging tool requires only the first single instance cre-

Fig. 3 R(C) value of 803 classes in descending order.

ated in an execution. A pointer/alias analysis, which iden-
tifies source code locations where an object may be used,
is also effective for minimizing logging. Many classes are
included in this category because a single object is created
for a particular feature (or business logic). For example,
DisplayManager class in batik manages display proper-
ties of the system. ClockDomain class in avrora manages
a dataset for the whole system.

183 classes (24%) have 0 < R(C) < 1. Each of these
classes has more than two DFAs. The average Predict(C)
are 4 method call sites. A logging tool can ignore sections
of runtime events for these classes as described in Sect. 1. In
this group, instances are set up in different ways after their
instantiation. For example, StyleSheet and PathParser
classes in batik are included in this group.

The other 85 classes (10%) have R(C) = 0. Their
instances have received the same sequence method calls
except for the final method call. Therefore, optimiza-
tion using method calls are not effective for these classes.
GenericText class in batik is an example of this category.

3. Conclusion

This paper analyzed actual DOPGs in terms of the R(C) met-
ric. The result shows optimized logging could be imple-
mented for 90% of the classes. Although the DOPGs used
in this paper depend on the DaCapo benchmark, optimized
logging for DOPG construction is a promising approach.

Before a new optimized logging tool can be built, two
issues need to be addressed. First, the result might miss
some DOPGs, because the benchmark does not cover all
possible execution paths in the programs. More test cases
for improving the path coverage are required to evaluate the
effectiveness of the optimization approach more precisely.
Secondly, the new logging tool should incorporate a pointer
analysis (or an alias analysis) to identify method call sites
relevant to interesting objects, because an object can be ma-
nipulated by various methods. Furthermore, the effect of
the precision of the pointer analysis on the performance of a
logging tool should be evaluated.



2472
IEICE TRANS. INF. & SYST., VOL.E96–D, NO.11 NOVEMBER 2013

Acknowledgement

This work was supported by JSPS KAKENHI Grant Num-
ber 23680001.

References

[1] A. Zeller, Why Programs Fail — A Guide to Systematic Debugging,

Second ed., Morgan Kaufmann, 2011.
[2] J. Quante and R. Koschke, “Dynamic object process graphs,” J. Sys-

tems and Software, vol.81, pp.481–501, 2008.
[3] J. Quante, “Do dynamic object process graphs support program un-

derstanding?,” Proc. ICPC, pp.73–82, 2008.
[4] A. Hamou-Lhadj and T. Lethbridge, “Summarizing the content of

large traces to facilitate the understanding of the behaviour of a soft-
ware system,” Proc. ICPC, pp.181–190, 2006.


