
Title Empirical Evaluation of Method Complexity for
C++ Program

Author(s) Takehara, Motoyasu; Kamiya, Toshihiro; Kusumoto,
Shinji et al.

Citation IEICE Transactions on Information and Systems.
2000, E83-D(8), p. 1698-1700

Version Type VoR

URL https://hdl.handle.net/11094/51052

rights copyright©2000 Institute of Electronics,
Information and Communication Engineers

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



1698
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.8 AUGUST 2000

LETTER

Empirical Evaluation of Method Complexity for C++

Program

Motoyasu TAKEHARA†, Toshihiro KAMIYA†, Nonmembers, Shinji KUSUMOTO†,
and Katsuro INOUE†,††, Regular Members

SUMMARY This letter empirically evaluates the way how to
calculate the complexity of methods, that is used in the definition
of WMC(Weighted Method per Class), one of the Chidamber and
Kemerer’s metrics. With respect to the results of our experiment,
Halstead’s Software Science metric is the most appropriate one
to evaluate the complexity of the methods.
key words: metrics, object-oriented software, complexity, C++

1. Introduction

WMC(Weighted Method per Class) is one of the Chi-
damber and Kemerer’s metrics (C&K metrics) which
are the most well-known complexity metrics for object-
oriented software. WMC measures the complexity of
the target class and is defined as the total complexity
of the methods included in the class. However, what is
the complexity of a method has not been defined [3].

This letter empirically evaluates the way to cal-
culate methods’ complexity in the class using the data
collected from an actual object-oriented software devel-
opment process.

2. WMC of C&K Metrics[3]

The definition of WMC is as follows:
Consider a class C, with methods M1,. . . , Mn that

are defined in the class C. Let ci,. . . , cn be the com-
plexity of the methods. Then,

WMC =
n∑

i=1

ci.

Here, if all method complexities are considered to be
unity, then WMC = n, the number of methods.

Several research studies have empirically evaluated
the usefulness of C&K metrics [1], [2]. For example,
Basili et al. empirically evaluated that C&K metrics
show to be better predictors than the best set of tra-
ditional code metric. In the evaluations, WMC was
simply measured with the number of methods in each
class.

Manuscript received September 22, 1999.
†The authors are with Graduate School of Engineering

Science, Osaka University, Toyonaka-shi, 560–8531 Japan.
††The author is with Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi,
630–0101 Japan.

Generally, since the size, algorithm and data struc-
ture of a method affect the complexity of it, it is suitable
to calculate the WMC based on the characteristics of
the size, algorithm and data structure.

3. Candidates for WMC

Here, we prepare the following eight candidates of
WMC, each of them uses traditional metric for the
size, algorithm and data structure as the complexity
of a method, respectively. Each of the definition is as
follows:

WMC1: ci is defined as the number of lines of Mi.
WMC2: ci is defined as the number of lines of Mi,

except comments and empty lines.
WMC3: ci is defined as the number of unique variables

referred by Mi.
WMC4: ci is defined as the total number of variables

referred by Mi.
WMC5: ci is defined as the number of unique func-

tions called by Mi.
WMC6: ci is defined as the total number of functions

called by Mi.
WMC7: ci is defined as the McCabe’s cyclomatic

number of Mi.
WMC8: ci is defined as the Halstead’s metrics of Mi.

For WMC7, cyclomatic number was introduced by
McCabe to quantify control flow complexity [6]. It de-
rived from the graphic representation of a program’s
control flow. The node in the graph representation cor-
responds to a decision or target in the program. Cyclo-
matic number equals to the number of disjoint regions.

For WMC8, it is based on the Halstead’s obser-
vation that any computer program can be viewed as
a sequence of tokens that can be classified as either
operators or operands [4]. The basic metrics of it are,
n1: number of unique operators, n2: number of unique
operands, N1: total number of operators, and N2: total
number of operands. Based on the basic metrics, Hal-
stead defined several metrics for length, volume, level
of abstraction and effort. Here, we use the following
one of the Halstead’s metrics for effort estimation:

ci =
1
18

((N1 + N2) log2(n1 + n2))2

(2 + n∗
2) log2(2 + n∗

2)
.



LETTER
1699

Table 1 Type of components.

Component Content Num.
String Operation of string list 10

List, ListNode Operation of queue of string list 8
BigInteger Operation of high number 1

TextAligner Orrangementof the position of word 1
Sorter Sorting data 13

Also, for convenience, we use WMC0 that is the number
of methods in the class.

4. Empirical Evaluation

In order to evaluate which WMC is the most appro-
priate one, we apply these WMCs to an experimental
software development project.

4.1 Outline of Experiment

The experimental project was performed in a computer
company. The main characteristics of the project are:
(1) Subjects are new employees of the computer com-
pany, who have just graduated from college. (2) Each
subject selects one class (component) out of six classes
shown in Table 1 and codes it using Visual C++. (3)
Specification for each class is described by an instruc-
tor. Especially, the interface of each class is clearly
defined. Thus, the complexity of each class depends on
the implementation of the methods in it. (4) Each class
is finally tested by the instructor.

4.2 Empirical Data

In the experiment, we finally collected data from 41
classes. The experimental data is shown in Table 2. We
calculated the value of each WMC based on the final
program code. As space is limited, Table 2 shows the
maximum, minimum, average and standard deviation
for each WMC.

Table 2 also shows the value of modifications of the
classes. It represents the total number of lines which
were influenced by changing the program during the
program development. It is reported that the quan-
tity of modifications correlates closely with the number
of faults that were injected and removed from the pro-
gram [5]. Thus, we consider that the quantity of modifi-
cations indirectly represents the complexity of the class
and it is appropriate to evaluate the WMCs.

4.3 Analysis

Table 3 shows the correlation coefficient between each
of WMCs and the modifications. Most candidates for
WMC are higher correlation with the modifications
than WMC0. As the results, these WMCs can evaluate

Table 2 Empirical data.

Max. Min. Average std. dev.
WMC0 34 7 19.26 9.09

WMC1 897 23 305.36 186.36
WMC2 751 23 278.24 165.30
WMC3 23 11 66.80 31.93
WMC4 612 11 281.51 172.84
WMC5 139 0 62.31 46.27
WMC6 190 0 86.21 66.30
WMC7 174 7 64.68 40.83
WMC8 28892 9 7431.94 6111.53

Modifications 84 0 15.90 18.31

Table 3 Correlation coefficient.

WMC0 WMC1 WMC2 WMC3 WMC4 WMC5 WMC6 WMC7 WMC8

0.44 0.65 0.61 0.46 0.47 0.37 0.46 0.58 0.70

the complexity of the class better than WMC0. Es-
pecially, WMC8 which uses Halstead’s metric as com-
plexity of the methods, is highest correlation with the
modifications. As the results, in this experiment, Hal-
stead’s metric is the most appropriate to evaluate the
methods’ complexity of WMC.

5. Conclusion

This letter has empirically shown that in calculating
the WMC, it is appropriate to evaluate the complexity
of the methods in the class instead of only counting the
number of methods. Especially, WMC using Halstead’s
metric represents the internal complexity of the class
more correctly.

As future research work, it is necessary to conduct
the similar experiment for the data collected from an
practical object-oriented software development process.

Acknowledgement

We would like to thank the support of Mr. Yukio Mohri
and Mr. Yuichi Obata of Nihon Unisys corporation for
the experimental project described in Sect. 4. Also, this
reserach was supported in part by a grant from the
Telecommunications Advancement Foundation.

References

[1] V.R. Basili, L.C. Briand, and W.L. Melo,“A validation of
object-oriented design metrics as quality indicators,” IEEE
Trans. Software Eng., vol.22, no.10, pp.751–761, 1996.

[2] L.C. Briand, J. Daly, V. Porter, and J. Wust,“Predicting
fault-prone classes with design measures in object-oriented
systems,” Proc. 9th ISSRE, pp.334–343, 1998.

[3] S.R. Chidamber and C.F. Kemerer,“A metrics suite for ob-
ject oriented design,” IEEE Trans. Software Eng., vol.20,
no.6, pp.476–493, 994.

[4] V.Y. Shen and S.M. Thebaut, Halstead’s Software Sci-
ence, in Encyclopedia of Software Engineering, ed., J.J.
Marciniak, vol.1, pp.534–535, John Wiley & Sons, 1994.

[5] S. Kusumoto, K. Matsumoto, T. Kikuno, and K. Torii, “On



1700
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.8 AUGUST 2000

a measurement environment for controlling software devel-
opment activities,” IEICE Trans., vol.E74, no.5, pp.1051–
1054, May 1991.

[6] T.J. McCabe and C.W. Butler, “Design complexity mea-
surement and testing,” Commun. ACM, vol.32, no.12,
pp.1415–1425, 1989.


