
Title C＋＋プログラムを対象とした複雑度メトリクス計測
ツールと 新人研修卒業演習への適用

Author(s) 神谷, 年洋; 楠本, 真二; 井上, 克郎 他

Citation UNISYS技報. 1999, 19(2), p. 138-151

Version Type VoR

URL https://hdl.handle.net/11094/51058

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



1． は じ め に

近年，ソフトウェアの応用分野の拡大と共に，ソフトウェアが大規模・複雑化して

きている．それに伴い，開発期間の短縮やコストの削減・品質の向上が求められてい

る．これらの要求を実現するために数多くのソフトウェア開発支援に関する研究が行

われてきている．

開発支援のアプローチの一つはソフトウェア開発における各作業の効率化である．

開発作業の効率化を目指してこれまでに多くのソフトウェア開発手法やソフトウェア

ツールが開発されてきた．最近では，オブジェクト指向パラダイムが注目され，それ

に基づいた分析法，設計法，プログラミング言語等が数多く提案され，実際の開発現

場でも使われるようになってきている［１］．ソフトウェア部品の再利用が効率よく行え，

結果として生産性や品質向上が実現できるというのがオブジェクト指向の最も大きな

特長となっている．

一方，開発プロセスを改善することで生産性や品質を向上させるという手法も，広

UNISYS TECHNOLOGY REVIEW第 62号, AUG. 1999

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと
新人研修卒業演習への適用

Complexity Metrics Tool for C＋＋ and Its Case Study

神 谷 年 洋，楠 本 真 二

井 上 克 郎，毛 利 幸 雄

要 約 ソフトウェアの品質や生産性の向上を目的として，開発支援のために数多くの手法が

提案され，実践されている．代表的なものとしては，各種CASEツールやソフトウェアメ

トリクス，プロセス成熟度モデルといったものがある．しかし，これらの技術による開発支

援は，主に管理のために用いられており，開発者に対する支援として用いられることは少な

い．従って，開発現場へこれらの技術を導入することは困難なものになっている．本研究で

は，オブジェクト指向に基づく開発プロセスを対象として，開発者個人の作業効率の向上を

目的とした開発プロセスデータの収集とその分析方法について検討した．具体的には，今回

開発した，C＋＋のソースコードを対象としたプロダクト評価ツールの概要と新人研修卒業

演習での適用例について述べる．

Abstract For the purpose of improving quality and productivity of software, many methodologies have in-

troduced in the software development process. For example, object―oriented technologies, CASE tools, soft-

ware metrics, and process maturity models are representative ones. However, they are primarily used for

supporting process management rather than supporting developing activity. Therefore, it is difficult to in-

troduce these technologies into development process. In this paper, we describe a method for collecting

and analyzing process data of object―oriented software development, aiming for software engineer's per-

sonal skill improvement. We have developed a tool as developing environment, by which software engi-

neers collect metrics values from C＋＋ source code and analyze them statistically. Then we applied the

tool to the data collected from the software development project of newcomer training course.

138（356）



く受け入れられている．CMMや ISO 9000 は開発プロセス改善のための枠組みとし

て良く知られている［６］［10］．開発プロセスの改善は，通常，�開発プロセスの現状把握
と分析，�分析結果に基づく改善策の作成と実行，に分けて実施される．更に，こう
した改善を効果的に実施するためには，�の現状把握と分析を定量的かつ客観的に行
うことが望まれる．そのためには，開発プロセスの状態を表す信頼性の高いデータや

メトリクスを用いた分析が必要となる．ソフトウェアメトリクス［９］は，ソフトウェア

プロダクトのさまざまな特性（複雑度，信頼性，効率など）を判別する客観的な数学

的尺度である．メトリクスを用いて開発作業の生産性やプロダクトの状態を評価する

ことで，問題のある作業に対する改善を行う．

しかし，これらの手法は開発者自身の作業を改善するというよりはむしろ，開発プ

ロジェクト全体を円滑に進めるための改善を目的とする．例えば，ある作業の効率が

悪いと判断された場合，その作業に対する開発人員の補充や新しい開発技法の導入と

いった対策がとられ，開発者自身の作業効率向上を目指すという対策はあまりとられ

ていない．

本研究ではオブジェクト指向に基づく開発プロセスを対象として，開発者個人の作

業効率の向上を目的とした開発プロセスデータの収集とその分析方法について検討す

る．更に，分析結果を開発者にフィードバックすることの有効性についても議論する．

なお，今回の報告では，主に，開発プロセスにおける，コーディングとテスト・デバ

ッグを支援することを目的に開発したプロダクト評価ツールについて紹介する．また，

新人研修卒業演習により得られたデータをツールによって分析し，卒業演習の結果に

ついての考察を行う．

2． 準 備

2．1 オブジェクト指向複雑度メトリクス

ソフトウェアメトリクスは，ソフトウェアのさまざまな特性（複雑度，信頼性，効

率など）を判別する客観的な数学的尺度であり，ソフトウェアを統計的な視点から見

ることを可能にする［８］．

例えば，分析フェーズでは，仕様書からソフトウェアの機能の大きさを測定し，そ

れによって開発コストを見積もるためのFP（ファンクションポイント）が提案され

ている［４］．設計や実装のフェーズでは，設計書やソースコードからソフトウェアの複

雑さを測定し，それによってエラーの数を予測するための複雑度メトリクスがよく用

いられている［２］［11］．従来の（オブジェクト指向ではない）ソフトウェアに対しては，

FPとして IFPUG法［５］，複雑度メトリクスとしてHalsted のメトリクス，McCabe の

サイクロマチック数［15］等がある．また，オブジェクト指向ソフトウェアに対する複雑

度メトリクスには，Chidamber らのメトリクス［４］（以下 C & Kメトリクス）が有名

である．

前書きでも述べたように，プロセス改善において，これらのメトリクスは主に管理

のために用いられており，開発者に対する支援として用いられることは少ない．開発

者が複雑度メトリクスを用いることで，プログラム中で特に複雑になっている部分を

特定することができ，プログラムの構造設計などの修正を行うかどうかの判断や，テ

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （357）139



ストを重点的に行う場所の特定が可能になる．特に，開発が個人ではなくチームで行

われる場合や，別の開発者が開発したソースコードを引き継いだ場合など，開発者が

細部を知らないプロダクトを扱わなければならないときには，より客観的に評価でき

ること，より抽象化された（要約された）情報で評価できること，は重要な利点にな

る．

オブジェクト指向ソフトウェアに対する複雑度メトリクスとして，Chidamber ら

は 6種類の複雑度メトリクス（C&Kメトリクス）を提案している［４］．

1） WMC（クラスの重み付きメソッド数；Weighted Methods per Class）……計

測対象クラス��が，メソッド��, …, ��を持つとする．これらのメソッドの複
雑さをそれぞれ��, …, ��とする．このとき，����%��である．適切な間隔尺
度 f を選択して��������によりメソッドを重み付けする．文献［２］と［４］において
は，すべてのメソッドの複雑さが同じであるという仮定をおいて，WMCをメソ

ッドの数とした．本稿でも同じ仮定を用いる．

2） DIT（継承木における深さ；Depth of Inheritance Tree）……DITは計測対象

クラスの継承の深さである．多重継承が許される場合は，DITは継承木におけ

るそのクラスを表す節点から根に至る最長パスの長さとなる．

3） NOC（子クラスの数；Number Of Children）……NOCは計測対象クラスから

直接導出されているサブクラスの数である．

4） CBO（クラス間の結合；Coupling Between Object classes）……CBOは，計測

対象クラスが結合しているクラスの数である．あるクラスが他のクラスのメソッ

ドやインスタンス変数を参照しているとき，結合しているという．

5） RFC（クラスの反応；Response For a Class）……計測対象のクラスのメソッ

ドと，それらのメソッドから呼び出されるメソッドの数の和として定義される（す

なわち，メッセージに反応して潜在的に実行されるメッセージの数である）．

6） LCOM（メソッドの凝集の欠如；Lack of COhesion in Methods）……計測対象

クラス��が�個のメソッド��, …, ��を持つとする．��（���, …, �）を，それ
ぞれメソッド��によって用いられるインスタンス変数の集合とする．������"�����������!�と定義し，������"����������!�と定義する．もし��, …,��がすべて!の時は，��!とする．このとき，
�����������，ただし，値
が 0より小さくなるときは 0，と定義する．

Chidamber らは二つのソフトウェア開発組織でオブジェクト指向言語（C＋＋と

Smalltalk）を用いて開発されたプログラムに含まれるクラスからこれらのメトリク

スの値を算出し，クラス毎のメトリクス値の平均値が大きいほど開発費用が大きくな

ることを実験的に確かめている［４］．また，これらのメトリクスは，オブジェクト指向

で開発されたソフトウェアに対して，従来の複雑さメトリクスよりもエラーの個数と

相関が高いことが示されている［２］．我々も，フレームワークを用いた開発を対象とし

て，クラスの再利用がCBOと RFCに影響を与えることを明らかにし，その適用方

法について検討している［７］．

2．2 オブジェクト指向開発支援

一般に，オブジェクト指向ソフトウェア開発とは，ソフトウェアをいくつかのオブ

140（358）



ジェクトとその相互作用として開発することである［１］．オブジェクトは開発の分析・

設計・実装のフェーズまで一貫して用いることが可能である．

オブジェクト指向開発を支援するための手法，技術として以下のようなものが提案

されてきている．

実装フェーズでは，オブジェクト指向プログラミング言語が使用されている．さら

に，特定のドメインに特化したライブラリであるアプリケーションフレームワークを

利用する［１］．アプリケーションフレームワークとは，開発対象となるソフトウェア分

野に固有のソフトウェアアーキテクチャを構造に反映したライブラリである．特定の

分野に特化することで，大規模な再利用を可能にしている．再利用を行うことで，新

規開発部分の規模が小さくなり，開発期間の短縮と品質の向上が可能になる．GUI

の分野はフレームワークの実用化がもっとも進んでいて，MFC（Microsoft Foundation

Class）等の商品化されたフレームワークが存在する．

分析・設計のフェーズでは，Booch 法［３］，OMT［12］などの手法が提案されている．

最近では，これら複数の方法を矛盾なく統一的に用いるためのモデリング／設計記述

言語UML（Unified Modeling Language）が提案された［16］．UMLという標準的な表

記法の登場により，仕様書・設計書の書式が標準化されつつある．

オブジェクト指向開発のためのCASEツールとしては以下のようなものが開発さ

れてきている．

1） オブジェクト指向設計仕様作成ツール

2） コード生成器（特に視覚的なもの）

3） コンパイラ，デバッガ，lint に類するツール

4） テストベンチ，プロファイラ

5） リバースエンジニアリングおよび報告書作成ツール

6） レポジトリ，（チーム開発に対応した）バージョンコントロールシステム

さらに，UMLが計算機可読文書となり，標準的な文書として用いられるようにな

れば，

7） オブジェクト指向設計仕様書作成ツール

も一般的になると考えられる．

しかし，これらのツールにおいて，メトリクスを用いて統計的な視点からプロダク

トを評価するもの（以下メトリクスツール）は，ほとんど存在しない．メトリクスツ

ールは，開発コストの見積もり，設計の評価・洗練，テストスケジュールの決定，プ

ロダクトの品質評価等の目的に用いることができる．さらに，特にチーム開発におい

て，客観的な評価基準があることは，設計における意思決定や，レビューに有効であ

る．

3． プロダクト計測ツール

3．1 基 本 方 針

本ツールは複雑度メトリクスを用いて，プロダクトの品質評価を定量的に行うツー

ルである．具体的には，複雑度メトリクスを計測して，プロダクトの中で特に複雑な

部分を開発者に通知する機能を持つ．現時点では，標準的な設計書のフォーマットが

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （359）141



クラス階層�

メトリクス値，�
統計分析� ソースコード�

グラフィックユーザーインターフェイス部�

メトリクス分析部�

メトリクスデータ，�
統計分析データ�

ソースコード位置�
データ�

構造データ�

C++プログラム構造抽出部�

新規開発のソースコード�

図 1 プロダクト計測ツールのシステム構成

存在しないため，本ツールはソースコードを対象として分析を行うものとした．

3．2 ツールの概要

プロダクト計測ツールはC＋＋のソースコードからC & Kメトリクスを計測し，

メトリクスに基づいた分析を行うためのツールである．テンプレートを除くC＋＋を

対象としている．ツールはC＋＋で実装されている．ツールのシステム構成図を図 1

に示す．

図中で「プログラム構造抽出部」は，C＋＋ソースプログラムの文法を解析し，定

義されているクラスについて，親クラスやインスタンス変数，メソッドなどを識別す

る．さらに，そのメソッドの定義の内部でどの変数，関数（あるいは他のクラスのメ

ソッド）を参照しているかを解析する．この解析結果を構造データとする．さらに，

クラスがソースコード中のどこで定義されているかという情報も，ソースコード位置

データとして保存する．「メトリクス分析部」は，構造データをもとに，C & Kメト

リクスを計算し，メトリクスの値を統計的に調べることで，異常値を割り出す．

これらメトリクスデータ，統計分析データ，構造データ，ソースコード位置データ

は，「GUI 部」に渡され，利用者の要求によってクラス階層図，メトリクス値や統計

分析の結果，ソースコードの表示などが行われる．

142（360）



図 2 クラス階層の表示例（a）全体（左），（b）部分（右）

3．3 ツールの機能と特長

ツールは以下の三つの情報をGUI により表示する機能を持つ．

1） クラス階層図

クラス階層の表示は，（a）フレームワークのクラス階層も含めた全体の階層図，

（b）新規開発の部分と新規開発のクラスが参照するフレームワークのクラス，

およびそれらの先祖クラス，の 2者から選択できる（図 2（a），（b）参照）．図

中の斜線で示される箱が新規開発のクラスである．

2） C & Kらのメトリクスによる複雑度評価

クラス階層図上で，選択したクラスに対してC&Kメトリクスの評価結果を表

示する．特に，クラス間の参照に関するメトリクスRFCと CBOについては，

結合先のクラスを明示する線を引いて表示することが可能である（図 3参照）．

また，基準値を大きく越えている複雑度を持つクラスには，箱の右側にそれを示

すマークをつけて示す．例えば，「RW」と表示されていれば，RFCとWMCの

値が基準値よりも大きいことを表す（詳細は次節）．

3） ソースコード中でクラスを定義している部分

クラス階層図でクラスを指定して，そのクラスを実際に定義しているソースコ

ードを参照することができる（図 4参照）．

なお，「プログラム構造抽出部」が独立しているため，この部分を取り替えること

で，C＋＋以外のオブジェクト指向プログラミング言語への対応が可能である．また，

メトリクス分析部を変更することで，他のメトリクスの追加も容易に行える．

3．4 メトリクスによる複雑度判定の方針

本ツールが採用したメトリクスは，いずれも測定値が大きいほど複雑であることを

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （361）143



図 4 ソースコードの表示例

図 3 メトリクスの表示例

144（362）



意味する．メトリクスの値が大きなクラスを見つけ出せば，それが複雑なクラスとな

る．また，クラスの種類（例えば，ユーザーインターフェイスを受け持つクラスか，

データベースにアクセスするクラスか）によって，メトリクス値の分布や有効性に大

きな違いがあることが指摘されている［２］．そのため，本ツールはクラスの種類ごとに

基準値を設定し，計測対象のクラスの測定値と基準値との差からそのクラスが複雑で

あるかどうかを判定する．

1） クラスの分類

クラスを機能別に分類する．具体的には，あるクラスの親（または先祖）がフ

レームワークのどのクラスであるかによって，クラスを分類した．フレームワー

クのクラス階層がほぼ機能別に部分木に別れているため，親クラスを見ることで，

機能によるクラスの分類が可能になる．ただし，この分類方法はフレームワーク

やアプリケーションドメインに依存する．

2） メトリクスの基準値の設定

クラスの分類ごとに，過去に収集されたクラスのメトリクス値から，メトリク

スの平均値と標準偏差を求める．

3） 異常値の算定

あるクラスのメトリクスの測定値を�，そのクラスが属する分類におけるメト
リクスの平均値を�，標準偏差を とすると，メトリクスの異常値�は，次式
で計算される．����	���
��"�����# "����$�の場合は複雑であると判断し，クラス名の後ろにメトリクスの頭文字を�
文字並べることで通知する（図 3参照）．

4． 評 価 実 験

4．1 概 要

本ツールを，1997 年度の日本ユニシス株式会社で行われた新人研修での卒業演習

で得られたデータに適用した．演習課題は，電子メールの配送システムの作成であり，

システムは五つのサブシステム（SMTPサーバ，POPサーバ，DELIVERサーバ，

SMTPクライアント，POPクライアント）から構成されている．開発チームは 4か

ら 5人の開発者で構成され，開発者は各サブシステムを開発する．演習開始時に開発

チームに各サブシステムの仕様が渡され，6日間で，設計，実装，テストを行う．イ

ンストラクターによる受け入れテストに合格した時点で開発が終了する．プログラミ

ング言語としてVisual C＋＋を用い，フレームワークにはMFCを用いた．開発規模

はチームあたり 3000 行程度（再利用分を含まない）である．

4．2 クラスの分類

本実験で作成されたクラスは以下の 6種類に分類される．

1） CDocument 派生クラス（ドキュメントクラス）

親クラスがCDocument であるクラスは，プログラムのデータを処理する部分

が記述される．

2） CView派生クラス（ビュークラス）

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （363）145



親クラスがCViewであるクラスは，ユーザーに対してデータを表示する部分

が主に記述される．

3） CDialog 派生クラス

親クラスがCDialog であるクラスは，ユーザーからデータを受け取る部分と，

ユーザーに対してエラーメッセージを出す部分が主に記述される．

4） CWinApp 派生クラス

親クラスがCWinApp であるクラスは，Windows アプリケーションに特有の

振る舞い（「アプリケーションが前回実行された時のウィンドウの位置と大きさ

を覚えておく」など）が記述される．

5） CFrameWnd派生クラス

複数のビューを持つプログラムの場合，それらを管理するためのコードが

CFrameWndから派生したクラスに記述される．（ユーザーインターフェイスが

複雑になると，複数のビューを切り替える方法は良く用いられる．）

6） その他

1）～5）のいずれにも該当しないクラス．親クラスが無いクラスも含む．

4．3 実験データ

開発された 17 人分のプログラム，141 のクラスから抽出したメトリクスデータを

図 5から図 10 に示す．この図では，クラス分類ごとに，別々のグラフにメトリクス

値をプロットしている．各グラフの，細い線で描かれた一つの多角形が，一つのクラ

スに付いてのメトリクス値を表す（メトリクスの値は，すべてのクラスについての平

均が 1.0 となるように正規化されている）．太い線で描かれた多角形は，その分類に

属するクラスすべてのメトリクス値の平均である．CBO，RFC，WMC，LCOM，DIT

は C & Kメトリクス（NOCはすべてのクラスについて 0であったためグラフには描

かれていない），NIVはクラスのインスタンス変数の数，SLOCはクラスのソースコ

ードの行数である．

5． 分 析

5．1 メトリクス値とエラーの発生状況

図 5から図 10 のグラフから，その他を除く五つの分類について，分類ごとにメト

リクスの分布のパターンがあることが分かる．つまり，分類ごとに異常値の判断基準

を変えることで，より精度の高い分析が可能であると考えられる．

また，分類CWinApp に関しては，すべてのメトリクスについてメトリクス値の分

散がほぼ 0であり，メトリクスによる複雑度分析が上手く行かないことが分かる．

これらのメトリクスデータから，クラスの異常値を計算した．ある開発者が開発し

たプログラムについて，メトリクスの異常値と，発見されたエラーの個数および修正

に要した時間を表 1に示す．異常値が高いクラスにエラーが集中していることが分か

る．

17 人分のすべてのクラスについて，異常値とEc，異常値とEt について，Spearman

の順位相関を求めたものをそれぞれ表 2，表 3に示す（同順位補正を行っている）．

異常値 isum と Ec および Et に順位相関関係があることが，有意水準 1％で確認された．

146（364）



図 5 CDocument派生クラス（サンプル数 19） 図 6 CView派生クラス（サンプル数 17）

図 9 CFrameWnd派生クラス（サンプル数 17） 図 10 その他のクラス（サンプル数 39）

図 7 CDialog派生クラス（サンプル数 15） 図 8 CWinApp派生クラス（サンプル数 17）

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （365）147



これにより，ツールが複雑であると指摘するクラスについて，実際にエラーが発生し

ていることが確認された．

5．2 卒業演習でMFCを用いることについての考察

今回の卒業演習において用いられたフレームワークであるMFCが，開発者にどの

ように理解され，あるいは再利用されたのかを考察する．クラス分類ごとにメトリク

ス値の分布を調べたことによって，本卒業演習には以下のような特徴があることがわ

かった．

1） フレームワークの設計意図が理解されている

六つのクラス分類のうち，その他を除く 5分類（CDocument，CView，CDialog，

CWinApp，CFrameWnd）は開発ツールがスケルトンコードを生成する．その

ため，開発者が機能を作り込まなければ，メトリクス値はスケルトンコードによ

る値になる．たとえば，今回の卒業演習では，17 人の開発者がCWinApp クラ

スに全く機能を作り込んでいないため，その分類に属するクラスすべてのメトリ

クス値が一定となっている（図 8参照）．MFCはドキュメント－ビューアーキ

テクチャをとっており，ドキュメントクラスにデータの格納と変換操作，ビュー

クラスにユーザーインターフェイスを作り込むことが前提となっている．グラフ

によれば，CDocument と CViewのメトリクス値の平均値と分散が大きい．こ

れより，今回の卒業演習では，CDocument と CView分類にのクラスに多くの

機能が作り込まれた．すなわち，開発者がフレームワークの設計意図を理解し，

CDocument と CViewに多くの機能を実装していたことがわかる．

2） 派生が活用されていない

表 1 あるプログラムについてのクラスの異常値とエラー

表 2 異常値とフォールト修正時間（Et）の順位相関関数

表 3 異常値とフォールト個数（Ec）の順位相関関数

148（366）



作成されたすべてのクラスのNOCが 0 になったということは，作成されたク

ラスからさらに他のクラスを派生させた事例がないことを意味する．つまり，卒

業演習で作成されたプログラムは，ライブラリのクラスを再利用していたが，卒

業演習で作成されたプログラムが，さらに再利用される事例がなかったこと（少

なくとも継承という形態では）を示している．さらに，開発ツールが生成するス

ケルトンのクラスは，自動的にライブラリのクラスから派生するようになってい

たことを考えあわせると，開発者が意図的に派生を行った兆候は見られない．こ

の原因は，今回の開発課題で継承を効果的に用いることができるような場面がな

かったか，あるいは，継承という概念の有用性が理解されていなかった，動機付

けが十分ではなかったことが考えられる．

継承はオブジェクト指向開発において，再利用を行うための重要な機能である

ことを考えると，継承させやすい（再利用されやすい）クラスを作ることは教育

上重要である．そのため，継承を使う動機付けが内包されるような演習課題を作

り，また，開発期間を長くして，再利用を起きやすくするべきである．

3） ダイアログクラスは曖昧な性格をもつ

MFCを用いて開発されるアプリケーションでは，ユーザーの入力を受け付け

たりユーザーに警告を行うために，ダイアログが多用される傾向にある．ダイア

ログはこのような雑用に用いられる便利なクラスであると同時に，一通りの機能

を備えたウィンドウでもあり，機能を作り込むことも可能である．そのため，一

般に流通しているソフトウェアのなかには，ダイアログだけでアプリケーション

を構築してしまう事例も見受けられる．MFCにおいては，通常のウィンドウは

ドキュメント－ビューアーキテクチャによって設計されるが，ダイアログクラス

はこのアーキテクチャと関わりを持たない．

今回の卒業演習においては，ほとんどのダイアログクラスのWMC値が小さ

いことから，ダイアログに多くの機能を持たせなかったことがわかる．すなわち，

ほとんどのダイアログは単に情報を表示するだけ，あるいは単に入力を受け付け

るだけの単純な機能を受け持っていた．しかし，例外的に多くの機能を作り込ま

れたダイアログクラスも観察された．MFCを用いた開発の場合，ダイアログク

ラスにアプリケーションの多くの機能を詰め込むような実装は，フレームワーク

の設計意図を無視することになる．しいては，わかりにくい設計につながりかね

ない．教育現場での対策としては，�ダイアログクラスは単にユーザーの入力を
受け付けたり，警告を発するような単純な目的にしか使用しないように指導する，

あるいは，�そもそもダイアログクラスを実装しないような開発をする，などの
対策が必要であると思われる．

6． ま と め

本研究では，オブジェクト指向に基づくソフトウェア開発プロセスにおける，コー

ディングとデバッグを支援することを目的としたプロダクト評価ツールについて述べ

た．現在，ツールの有効性を評価するために収集したデータのさらなる分析を予定し

ている．

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （367）149



今後の課題としては，次の三点があげられる．

1） より多くのプロジェクトに対して，メトリクスを収集し，ツールの有用性を評

価する．

2） プロダクト評価ツールを拡張する．C & Kメトリクス以外のメトリクスや，C

＋＋以外のプログラミング言語を扱えるようにする．上流工程のCASEツール

のデータを扱えるようにする．

3） メトリクスを改良する．クラス分類をさらにおしすすめて，ツールによる複雑

度の判定を，人間の判定に近くなるようにする．

謝辞 評価実験に協力いただいた，総合教育部 IT教育推進室の高橋優亮氏に感謝い

たします．メトリクスツールの共同開発者である奈良先端技術大学院大学の高林修司

氏に感謝いたします．

参考文献 ［１］ 青木淳：オブジェクト指向システム分析設計入門, 株式会社ソフト・リサーチ・セン
ター（1993）.

［２］ V. R. Basili, L. C. Briand, and W. L. Melo :“A Validation of Object-Oriented Design
Metrics as Quality Indicators”, IEEE Transaction on Software Engineering, Vol. 20,
No. 22, pp. 751―761（1996）.

［３］ G. Booch : Object-Oriented Analysis and Design with Applications, 2nd Edition,
The Benjamin／Cummings Publishing Co., Inc（1994）.

［４］ S. R. Chidamber and C. F. Kemerer :“A Metrics Suite for Object Oriented De-
sign”, IEEE Transaction on Software Engineering, Vol. 20, No. 6, pp. 476―493（1994）.

［５］ IFPUG : Function Point Counting Practices Manual, Release 4.0, International
Function Point Users Group（1994）.

［６］ 飯塚悦功編：ソフトウェアの品質保証 ISO―9000―3 対訳と解説, 日本規格協会（1992）.
［７］ 神谷, 別府, 楠本, 井上, 毛利：“オブジェクト指向プログラムを対象とした複雑度メト

リクスの実験的評価”, 電気学会論文誌C 117 巻 11 号, pp. 1586―1592（1997）.
［８］ M. Lorenz and J. Kidd : Object-Oriented Software Metrics―A Practical Guide,

PTR Prentice Hall, Inc.（1994）. 宇治邦明監訳, オージス総研訳：オブジェクト指向ソ
フトウェアメトリス―現実的な運用のためのガイド：, 株式会社トッパン（1995）.

［９］ P. Oman and S. L. Pfleeger : Applying Software Metrics, IEEE Computer Society
Press（1997）.

［１０］ M. C. Paulk, et al : The Capability Maturity Model : Guidelines for Improving the
Software Process, Addison Wesley Publishing Co., Inc.（1995）.

［１１］ M. Pighin and R. Zamolo :“A Predictive Metric Based On Discriminant Statistical
Analysis”, Proceeding of 19th ICSE, Boston, Massachusetts, USA, pp. 262―270（1997）.

［１２］ J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy and W. Lorensen : Object Ori-
ented Modeling and Design, Prentice Hall（1991）.

［１３］ C. R. Symons :“Function Point Analysis : Difficulties and Improvements”, IEEE
Transaction on Software Engineering, Vol. 14, No. 1, pp.2―10（1988）.

［１４］ D. Takach and R. Puttick : Object-Technology in Applications Development, Addi-
son Wesley Publishing Co., Inc.（1994）., 上野南海雄, 守屋政美監訳：アプリケーション
開発のオブジェクト指向テクノロジー, アジソン・ウェスレイ・パブリッシャーズ・ジ
ャパン（1997）.

［１５］ 山田茂, 高橋宗雄：ソフトウェアマネジメントモデル入門―ソフトウェアの品質の可
視化と評価法, 共立出版株式会社（1993）.

［１６］ UML Summary, ver. 1.1（1997）.（taken from http : ／／www.rational.com／）.

150（368）



執筆者紹介 井 上 克 郎（Katsuro Inoue）
1979 年 3 月大阪大学基礎工学部情報工学科卒業．1984
年 3 月同大学大学院基礎工学研究科博士後期課程修了．同
年 4月同大基礎工学部情報工学科助手．同年 8月ハワイ大
学マノア校情報工学科助教授．1989 年 5 月大阪大学基礎
工学部講師．1991 年 11 月同大助教授．1995 年 12 月同大
教授．1999 年 4 月より奈良先端科学技術大学院大学教授
併任．工学博士．ソフトウェア工学の研究に従事．ACM，
IEEE，電子情報通信学会，情報処理学会，日本ソフトウ
ェア科学会各会員．

楠 本 真 二（Shinji Kusumoto）
1988 年 3 月大阪大学基礎工学部情報工学科卒業．1991
年 6 月同大学大学院基礎工学研究科博士後期課程中退．同
年 7月同大学基礎工学部情報工学科助手．1996 年 2 月同
大学講師．工学博士．ソフトウェアの生産性や品質の定量
的評価，プロジェクト管理に関する研究に従事．電子情報
通信学会，情報処理学会，IEEE各会員．

神 谷 年 洋（Toshihiro Kamiya）
1996 年 3 月大阪大学基礎工学部中退．1998 年 3 月同大
学院基礎工学研究科博士前期課程修了．同年 4月同大学院
基礎工学研究科博士後期課程入学．メトリクス及びオブジ
ェクト指向に関する研究に従事．情報処理学会会員．

毛 利 幸 雄（Yukio Mohri）
1974 年青山学院大学理工学部物理学科卒業，同年日本
ユニシス（株）入社，社内外に対する情報処理技術分野の教
育に従事，現在総合教育部 IT教育推進室に所属．ソフト
ウェア技術者協会会員．

C＋＋プログラムを対象とした複雑度メトリクス計測ツールと新人研修卒業演習への適用 （369）151


	1. はじめに
	2. 準備
	2. 1 オブジェクト指向複雑度メトリクス
	2. 2 オブジェクト指向開発支援

	3. プロダクト計測ツール
	3. 1 基本方針
	3. 2 ツールの概要
	3. 3 ツールの機能と特長
	3. 4 メトリクスによる複雑度判定の方針

	4. 評価実験
	4. 1 概要
	4. 2 クラスの分類
	4. 3 実験データ

	5. 分析
	5. 1 メトリクス値とエラーの発生状況
	5. 2 卒業演習でMFC を用いることについての考察

	6. まとめ
	参考文献
	執筆者紹介

