
Title
CCFinder : A Multilinguistic Token-Based Code
Clone Detection System for Large Scale Source
Code

Author(s) Inoue, Katsuro

Citation Annual report of Osaka University : academic
achievement, 2001-2002, p. 22-25

Version Type VoR

URL https://hdl.handle.net/11094/51063

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Engineering

IU " • • • ••
SOt~I'WARE

ENG INEER ING

CCFinder: A Multilinguistic Token-Based Code Clone Detection System for Large Scale Source Code
Paper in joumals: this is the firsl page of a papar published in JEEE Trallsactiolls 011 Software Ellgilleerillg.

~ '= .. _ . .;=0

[IEEE Trallsactiolls 011 SO/flVare Ellgilleerillg] 28, 654-670 (2002)

654 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 28, NO.

CCFinder: A Multilinguistic Token-Base
Code Clone Detection System
for Large Scale Source Code

Toshihiro Kamiya , Member, IEEE, Shinji Kusumoto, Member, IEEE, and Katsuro Inoue, Member, IEEE

Abstract-A code clone is a code portion in source files that is identical or similar to another. Since code clones are believed to reduce
the maintainability of software, several code clone detection techniques and lools have been proposed. This paper proposes a new
clone detection technique, which consists of the transformation of input source text and a token·by·token comparison. For its
implementation with several useful optimization techniques, we have developed a tool, named CCFlnder, which extracts code clones in
C, C++, Java, COBOL, and other source flies. As well, metrics for the code clones have been developed. In order to evaluate the
usefulness of CCFinder and metrics, we conducted several case studies where we applied the new tool to the source code of JDK,
FreeBSD, NetBSD, Linux, and many other systems, As a result, CCFinder has effectively found clones and the metrics have been able
to effectively identify the characteristics of the systems. In addition, we have compared the proposed technique with other clone
detection techniques.

Index Terms-Code clone, duplicated code, CASE 1001, metrics, maintenance.

1 INTRODUCTION

A code clone is a code portion in source files that is
identical or similar to another. Clones are introduced

because of various reasons such as reusing code by "copy~
and~paste/' mental macro (definitional computations fre­
quently coded by a programmer in a regular style, such as
payroll tax, queue insertion, data structure access, etc.), or
intentionally repeating a code portion for performance
enhancement, etc, [51. A conservative and protective
approach for modification and enhancement of a legacy
system would introduce clones. Also, systematic generation
of a set of slightly different code portions from a single basis
will bear clones. Clones make the source files very hard to
modify conSistently. For example, let's assume that a
software system has several clone subsystems created by
duplication with slight modification. When a fault is found
in one subsystem, the engineer has to carefully modify all
other subsystems (15]. For a large and complex system,
there are many engineers who take care of each subsystem
and then modification becomes very difficult. If the
existence of clones has been documented and maintained
properly, the modification would be relatively easy; how­
ever, keeping all clone information is generally a laborious
and expensive process. Various clone detection tools have

• T. Knmiya is with Fllllctiolls alld COllfigllratioll Grollp, RPESTO, 1ST.
Gradllate School of Ellgillccrillg Science, Osaka Ulziucrsity, 1-3 Machika­
IIeyama-c!zo, Toyonaka, Osaka 560-8531, Japan.
E-mail: kamiya@ics.es.osaka-Il.ac.jp.

• S. Kllsllmoto mzd K. tnolle are UJitlz tlu: Graduate School of Engineering
Science, Osnka University, 1~3 Mnc!zikmleyama-c!/O, Toyonaka, Osaka
560-8531, Japan. E-mail: Ikllsllmoto.illolleJ@ics.es.OSJJka-ll.ac.jp.

Manuscript received 19 lilly 2000; revised 28 Mar. 2lXH; accepted 17 Sept.
2001.
Recommended for acceptmlce by L. Briand.
For inf()rmation on obtaining reprillts ()f this article, please send e~mail to:
tse@compllter.org,and reference lEEECS Log Number 112550.

+

been proposed and implemented [1], [2], [3], [4], [5], [7], [11],
[141, {15], [171 and a number of algorithms for finding clones
have been used for them, such as line~by~line matching for
an abstracted source program II] and Similarity detection
for metrics values of function bodies [17].

We were interested in applying a clone detection
technique to a huge software system for a division of
government, which consists of one million lines of code in
2,000 modules written in both COBOL and PL/I-like
language, which was developed more than 20 years ago
and has been maintained continually by a large number of
engineers [18], [21]. 1t was believed that there would be
many clones in the system, but the documentation did not
provide enough information regarding the clones. It was
considered that these clones heavily reduce maintainability
of the system; thus, an effective clone detection tool has
been expected.

Based on such initial motivation for clone detection, we
have devised a clone detection algorithm and implemented
a tool named CCFinder (Code clone finder). The underlying
concepts for designing the tool were as follows:

• The tool should be industrial strength and be
applicable to a million-line size system within
affordable computation time and memory usage.

• A clone detection system should have the ability to
select clones or to report only helpful information for
user to examine clones since large number of clones
is expected to be found in large software systems. In
other words, the code portions, such as short ones
inside single lines and sequence of numbers for table
initialization, may be clones, but they would not be
useful for the users. A clone detection system that
removes such clones with heuristic knowledge
improves effectiveness of clone analysis process.

0098·5589102J$17.00 t} 2002 IEEE

Ii

"

.... Reprinted from IEEE TrUlIsacliofls 011 Software Ellgilleeritlg, 28, KAMIYA, T., KUSUMOTO, S., INOUE, K. , CC Finder: A Mullilinguislic Token- Based Code Clone Detection
System for large Scale Source Code, 654-670. Copyright 2002, with permission from IEEE.

22

Osaka University 100 Papers: 10 Selected Papers

The following is a comment on the published paper shown on the preceding page.

A New Code Clone Detection
Tool for Large Scale Source
Code
INOUE Katsuro
(Graduate School of Information Science and Technology)

Introduction

A code clone is a code portion in source files that is identical
or similar to another. Clones are introduced because of var­

ious reasons such as reusing code by 'copy-and-paste', etc [4]. Clones

make the source files very hard to modify consistently. For exam­
ple, let's asswne that a software system has several clone subsys­

tems created by duplication with slight modification. When a fault
is found in one subsystem, the engineer has to carefully modify all
other subsystems[7]. Various clone detection tools have been pro­

posed and inaplemented [1] [2] [4].
In this paper, we have devised a clone detection algorithm and

inaplemented a tool named CCFinder(Code clone finder). The under­
lying concepts for designing the tool were as follows.
(l) The tool should be industrial strength, and be applicable to a
million-line size system within affordable computation time and
memory usage. (2) A clone detection system should have ability
to select clones or to report only helpful infonnation for user to

examine clones, since large nwnber of clones is expected to be
found in large software systems. (3) Renaming variables or edit­

ing pasted code after copy-and-paste makes a slightly different pair
of code portions. These code portions have to be effectively detect­
ed. (4) The language dependent parts of the tool should be limit­
ed to a small size, and the tool has to be easily adaptable to many

other languages.

Source files

Lexical Analysis

Token Sequence

Proposed clone-code detection technique
A clone relation is defined as an equivalence relation (Le., reflex­

ive, transitive, and symmetric relation) on code portions. A clone
relation holds between two code portions if (and only if) they are
the same sequences. For a given clone relation, a pair of code por­
tions is called clone pair if the clone relation holds between the
portions. An equivalence class of clone relation is called clone class.
That is, a clone class is a maximal set of code portions in which a
clone relation holds between any pair of code portions.

Clone detection is a process in which the input is source files
and the output is clone pairs. The entire process of our token-based
clone detecting technique is shown in Figure 1. The process con­
sists offour steps:
(1) Lexical analysis

Each line of source files is divided into tokens corresponding to

a lexical rule of the programming language. The tokens of all
source files are concatenated into a single token sequence, so
that finding clones in multiple files is perfonned in the same
way as single file analysis. At this step, the white spaces (includ­
ing In and \t and comments) between tokens are removed ITom
the token sequence, but those characters are sent to the fonnat­
ting step to reconstruct the original source files.

(2) Transformation
The token sequence is transfomaed with sub-processes (2-1) and
(2-2) described below. At the same time, the mapping infor­
mation from the transfonned token sequence into the original
token sequences is stored for the fonnatting step which comes
later.
(2-1) Transformation by the transformation rules

The token sequence is transfonned, Le., tokens are added,
removed, or changed based on the transfonnation rules.

(2-2) Parameter replacement
After step 2-1 each identifier related to types, variables, and
constants is replaced with a special token. This replacement

Clone Detection ______________________ • ____ _ .

Mapping from
Transformation

~-----,------~

Transformed Token Sequence

!
Match Detection

Transformed Sequence ------....
into Original

Clones on
Transformed Sequence I

,
Formatting I

,

Figure 1. Clone detecting process

Clone-pairs/
Clone-classes

23

makes code-portions with different variable names to become
clone pairs.

(3) Match Detection
From all the sub-strings on the transfonmed token sequence, equiv­
alent pairs are detected as clone pairs. Each clone pair is repre­
sented as a quadruplet (LeftBegin, LeftEnd, RightBegin,
RightEnd), where LeftBegin and LeftEnd are the beginning and
tenmination positions (indices in the token sequence) of a lead­
ing clone, and RightBegin and RightEnd belong to another fol­
lowing clone for a clone pair.

(4) Formatting
Each location of clone pair is converted into line numbers on
the original source files.

Tool CCFinder has been implemented in C++ and runs under
Windows 95fNT 4.0 or later. CCFinderextracts clone classes from
C, C++, Java, FORTRAN, LISP and COBOL source files. The
tool receives the paths of source fi les, and writes the locations of
the extracted clone classes to the standard output. CCFinder uses
a suffix-tree algorithm [6] with both time and space complexities
O(m 11) , where 111 is the maximwn length of involved clones and
n is the total length of the source file. Ifwe would naturally assume
that 11/ does not depend on n and it is bounded by some fixed length,
the time and space complex.ities will practically be O(n).

o

100000

.00000

o 100000

~~A
~ "-.. \ \..
.~

..
. ;:!.~::,

': ' .:":(.
~ • ,'II,

,
~ . '. ',':-;-,

, '.
;. :!~'~~

-.'. I>x
.:'~.

!! _ . lt~~
, ' .. :';::',

". "":-. .. -
. ~

. F:l :l. .

Case study
The purpose of the case studies was to evaluate our token-based

clone-detecting teclmique and the metrics. The target source files
were widely available files of 'industrial ' size. In all the case stud­
ies, CCFinder was executed on a PC with Pentium III 650MHz
and 640MB RAM, which seem to be moderate, non-special hard­
ware specification for PC these days. In the following discussion
we wi ll use elapsed time on this Pc.

JDK 1.3.0 [8] is a commonly used Java library, and the source
files are publicly available. Tool CCFinder has been applied to all
source files ofJDK, about 570k lines in total, in 1877 files. It takes
about 3 minutes for execution on the PC. Figure 2 shows a scat­
ter plot of the clone pairs having at least 30 same tokens (about 13
lines). Both the vertical and horizontal axes represent lines of
source fi les. The fi les are sorted in alphabetical order of the file
paths, so that files in the same directory are also located nearby on
the axis. A clone pair is shown as a diagonal line segment. Only
lines below the main diagonal are plotted. [n Figure 2, each line
segment looks like a dot since each clone pair is small (average
39, up to 628 lines) in comparison to the scale of the axis. Most
line segments are located near the main diagonal line, and this means
that most of the clones occur within a file or among source fi les at
the near directories.

There are several crowded areas, marked A, B, C, D, and E.

B
Figure 2.
Seatter pial lor JDK 1.3.0

: '. _., . ®
, .. --'" . -..:. .. -", , . - -~.

<.. ,'. ~.-~::~~£

24

Osaka University 100 Papers: 10 Selected Papers

311 */
321 public class MultiButtonUI extends ButtonUI {
33 I

public static ComponentUI crea teUr (JComponent a)
ComponentUI rnui = new MultiButtonUI () ;
return MultiLookAndFeel . createUIs (roui ,

1601
1611
1621
1631
1641

((MultiButtonUI)
a) ;

roui) . ui 5 ,

1 Ii'i 1

(a) MultiB uttonULj ava

311 * /
321 public c l ass MultiColorChooserUI extends ColorChooserUI {
331

1601
1611
1621
1631
1641
16.'i1

public static ComponentUI crea teUl (JComponent a)
Cornponent UI mui = new MultiColorChooserUI () ;

\

return MultiLookAndFeel . createUIs (roui ,
((MultiColorChoose rUI)

a) ;

(b) MultiColorChooserULj ava

These two files are identical except fo r three identifie rs shown in bold style.

Figure 3. Example of clone found in JDK

roui) . uis ,

Area A corresponds to source files of j ava/ awtl * . java, B,
C, and D to javax/swing/* . java, and E to org/omgl

COREA/ * . java. Dcontains many 'clone files', that is, very sim­
ilar source fi les. Some of them contain an identical class defini­
tion except for their different parent classes. Figure 3 shows parts
of the two fi les as examples, namely Mul tiBu t tonUr. java
and Mul tiColorChooserUI . java. Differences are only in
lines 32, 161, and 163. According to the comments of the source
files, a code generator named AutoMul ti has created these files.
To modi fy them, the developer should obtain an automatic code
generation tool called AutoMult i (it is not included in JDK),
edit, and apply it correctly. Ifthe developer does not have the tool,
all the files have to be updated carefully by hand. In this case, these
code portions have two different names : the base classes and the
type oflocal variables named mui. Redesign techniques for Java
are presented in [3] and might be applicable to this case. Also, using
generic type for Java, as proposed in [5], would enable to rewrite
them as a shared code.

in the case studies. Our current clone detection tool does not accept
source files written in two or more programming languages.
However, today some software systems are implemented in multi­
languages (e.g., C and C++, Java and HTML, etc). We are trying
to extend the tool to accept source programs written in several pro­
gramming languages at the same time.

The longest clone (1647 token, 627 lines) was found between
src/comlsun/javal swingiplaflwindowslWindowsFileChooserUlJava
and src/javaxlswingiplaflmetallMetalFileChooserUlJava (marked
F in Figure 2). Each of the two classes WindowFileChooserUl
and MetalFileChoosrUl has nine internal classes, one constructor,
and 45 methods, all of which, except three of the metllods, are clones.

Conclusions
In this paper, we have presented a clone detecting technique

with transformation rules and a token-based comparison, as well
as important optimization techniques to improve peiformance and
efficiency. We have also proposed metrics to select interesting clones.
They have been applied to several industrial-size software systems

References

[I] B.S. Baker, "A Program for Identify ing Duplicated Code", Proc. Com­
puting Science and Statistics: 24th Symposium 011 the In telface, 24, pp.
49-57 Mar. 1992.

[2] M. Balazinska, E. Merlo, M. Dagenais, B. Lns.-c, and K.A. Kontogian­
nis, "Measuring Clone Based Reengineering Opportunities", Proc. 6th
[EEE [nt'/ SymposiulII011 SojtwareMetrics (METR[CS '99), pp. 292-303,

Boca Raton, Florida, Nov. 1999.

[3] M. Balazinska, E. Merlo, M. Dagenais, B. Lagiie, and K.A. Kontogian­
nis, "Partial Redesign of Java Software Systcms Based on Clone Analy­
sis", Proc. 6tll IEEE Workillg COli!, 011 Reverse Eng. (WCRE '99), pp.
326-336, Atlanta, Georgia, Oct. 1999.

[4) I.D. Baxter,A. Yallin, L. Moura, M. Sant' Anna, and L. Bier, "Clone Detec..
tion Using Abstract Syntax Trees", Pl'oc. [EEE [111'/ COli! on Software
Mailllenalice ([CSM) '98, pp. 368-377, Bethesda, Maryland, Nov. 1998.

[5] G. Bracha, M. OdersJ..."Y, D. Stoulamire, and P. Wadler. "GJ Specifica­
tion". http://cm.bell-labs.comlcrnlcslwholwadler/pizzalgj/

[6) D. Gusfield, Algorithms 011 Strillgs, Trees. and Sequences, pp. 89- 180.
Cambridge University Press 1997.

[7] B. Lague, E.M. Merlo, J. Mayrnnd, and 1. Hudepohl. "Assessing the Ben­
efits oflncorporating Function Clone Detection in a Development Process",
Proc. IEEE lilt'! COIlf. 011 Software Mailllelltlnce ([CSM) '97, pp. 31 4-

32 1, Bari, Italy. Oct. 1997 .

[8] The source for Java Technology. http://java.sun.coml

25

