
Title Mega Software Engineering

Author(s) Inoue, Katsuro; Garg, Pankaj K.; Iida, Hajimu et
al.

Citation

Version Type VoR

URL https://hdl.handle.net/11094/51070

rights

Note

Osaka University Knowledge Archive : OUKAOsaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

Mega Software Engineering

Katsuro Inoue†,∗, Pankaj K. Garg‡,
Hajimu Iida††, Kenichi Matsumoto††,∗, Koji Torii ††,∗

† Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan

‡ Zee Source, 1684 Nightingale Avenue, Suite 201, Sunnyvale, CA 94087, USA
†† Nara Institute of Science and Technology, Nara 630-0192, Japan

∗ EASE (Empirical Approach to Software Engineering) Project, Senri, Osaka, Japan
inoue@ist.osaka-u.ac.jp, garg@zeesource.net
{iida, matumoto, torii}@is.aist-nara.ac.jp

Abstract

In various fields of computer science, rapidly grow-
ing hardware power, such as high-speed network, high-
performance CPU, huge disk capacity, and large memory
space, has been fruitfully harnessed, e.g., for large scale
data and web mining, grid computing, and multimedia envi-
ronments. We propose that such rich hardware can also cat-
apult software engineering to the next level. Huge amounts
of software engineering data can be collected from tens of
thousands of projects inside organizations, or from outside
an organization through the Internet. The collected data
can be analyzed extensively to extract useful knowledge for
improving organization-wide productivity and quality. We
call such an approach for software engineeringMega Soft-
ware Engineering. In this paper, we propose the concept of
Mega Software Engineering, and demonstrate through sev-
eral examples some of its core technologies. In addition,
we propose an architectural framework for Mega Software
Engineering.

1. Introduction

1.1. Background and Motivation

Over the past few decades, software engineering has de-
veloped and introduced various technologies for software
quality improvement and development efficiency. Various
kinds of approaches for improvement have been proposed
and accomplished so far, e.g., version control, configura-
tion management, component reuse, and software process
improvement, to name a few.

We believe that for the individual programmer or project

manager, however, these software engineering technologies
remain focused on the individual project or programmer.
For instance, code browsing tools typically allow a pro-
grammer to browse through single project code bases. Sim-
ilarly, a navigation system might guide a developer utilizing
data from her activities alone. While organizations can uti-
lize global knowledge, for software reuse and other process
improvements, the individual programmer or manager typ-
ically does not enjoy the benefits ofmulti-project or global
knowledge.

Hence, prevailing organizational software engineering
technologies for individuals are locally optimized to get lo-
cal benefit for the individual developers or projects at most.
They do not oversee global benefit and do not optimize
the technologies using knowledge and software engineering
data of other developers or other projects.

In modern times, the capacity, connectivity and perfor-
mance of various networks ranging from local area net-
work to the Internet are marvelously and rapidly growing.
Huge numbers of computer systems are inter-connected us-
ing complex topologies, and various kinds of information
on those systems can be instantly gathered. For example,
Virtual Private Networks (VPN) has become pervasive in
organizations in the past six months. Software data such
as software process of individual developers or software
products created by project is easily collected through net-
works. Now we are able to collect data from not only a
single project, butall software development activities in-
side an organization (or company). If the organization has
close relation to other software development organizations,
as sub-contractor or co-developer, we can also collect soft-
ware engineering data from the other organizations. Cur-
rently there is a huge collection of Open Source software
on the Internet, and they are sometimes crucial resources

1

for development projects. They are easily searched and col-
lected via Internet tools.

Disk capacity and CPU power of recent computer sys-
tems are astonishingly increasing. Since vast disk space is
available, we can archive project data in very fine granular-
ity. Every change of a product in a project can be recognized
as a single version and be stored into a version control sys-
tem. Every communication made between the developers
can be recorded. Not only single project data, but also we
can store and archive all project data spread over distributed
organizations.

The collected software engineering data includes both
process and product information of target projects. Vari-
ous characteristics can be extracted by analyzing the col-
lected data. Mining a single project data would be a rel-
atively straightforward and light task. On the other hand,
mining through multiple project data, say tens of thousands
of projects, would be a complicated and heavy task. How-
ever, since now we have enormous computational power
and memory space compared to, e.g., 10 years ago, such
analysis becomes a feasible challenge. We may want to
analyze, not only the organizational software engineering
data, but also software engineering data available on the In-
ternet as Open Source projects [33], such as various source
programs, associated documents, version control logs, mail
archives, and so on.

In computer science researches and practices, there are
many successful uses of improved hardware capacity. For
example, WEB data collection and mining such as Google
search engine is a case in the WEB engineering field. In
the high-performance computation field, GRID technology
is an example. We think that the software engineering
field should also share in advantage of the improvement
of network, CPU, disk, and etc. We propose to create a
novel approach in software engineering field, by collecting
various software engineering data through networks exten-
sively, archiving the collected data for a long period, analyz-
ing the huge data deeply, and providing knowledge for orga-
nizational improvement. We call such network and CPU in-
tensive approach for software engineering “Mega Software
Engineering.”

Technologies in traditional software engineering tend to
be based on limited knowledge in the sense of small data set
of individual developer or project. Mega software engineer-
ing aims at global knowledge in the sense of huge data set
of global projects. Even from existing software engineering
approaches, there will be some technologies that fall into
Mega Software Engineering, although many new methods
and tools will come out soon if we clearly recognize the
importance of Mega Software Engineering.

1.2 Paper Overview

In this paper, we will propose the concept of Mega Soft-
ware Engineering and will discuss its feasibility and appli-
cability.

First, we will show a classification of software engineer-
ing technologies by the scale of engineering target, and will
depict distinction between Mega Software Engineering and
traditional software engineering in Section 2.

Section 3 will introduce examples of core technologies
of Mega Software Engineering. The first example is a Mega
Software Engineering Environment, analogous to the envi-
ronments utilized by tens of thousands of Open Source or
Free software projects as exemplified by SourceForge [36]
or Gnu Savannah [12]. For organizations, such environ-
ments are exemplified by Corporate Source [6, 7, 43]. They
are composed of several development tools supporting open
source development processes, with version control tools
such as CVS [3], e-mail management tools such as Mail-
man [11], and bug tracking tools such as Gnats [10] or
Bugzilla [28]. They also provide GUI’s that control mul-
tiple projects and allow browsing from project to project.
A project may be performed in widely distributed way in
the globe, and the project data are gathered and archived at
servers through private networks or the Internet. Currently,
they provide limited features for deeply analyzing data col-
lected at servers, but they will be important infrastructures
for the data collection of Mega Software Engineering.

We will also show more analytical cases of software
categorization, collaborative filtering, code-clone detection,
and software component search.

We are currently developing a framework for investigat-
ing a wide range of Mega Software Engineering technolo-
gies. The framework is based on Mega Software Engineer-
ing Environment, with standardized databases and various
analysis engines. Section 4 will discuss these.

Section 5 will discuss on our approach and will compare
to related works. We will conclude our discussion in Sec-
tion 6.

2. Overview of Mega Software Engineering

Figure 1 shows the classification of software engineering
technologies based on the scale of engineering targets. The
horizontal axis shows improvement feedback steps, com-
posed of collection (measurement) step, analysis (evalua-
tion) step, and feedback (improvement) step. The vertical
axis represents the scale of the target for software engineer-
ing. We will explain each scale in the following.

2

�� ��
�� �� �� ��

�� �� �� ��

Personal activity data Problem detection
Tool customisation/
activity navigation

Single project data Progress estimation
Process/product
 improvement

Multiple project data
Project comparison/
expertise extraction

Organizational asset
reuse

scale

Collection Analysis Improvement

Figure 1. Scale classification of software en-
gineering technologies

2.1. Software Engineering for Individual Developer

The first scale level includes traditional software engi-
neering technologies which target individual developers.
Data and knowledge for each developer is collected and an-
alyzed, then the result information is fed back to the indi-
vidual developer.

For instance, command history of a tool for a developer
is collected and analyzed so that arrangement of the tool
menu can be improved or we can create a command naviga-
tion feature for the developer. Many software engineering
tools such as software design tools, debug support tools, or
communication support tools are in this category.

2.2. Software Engineering for Single Software De-
velopment Project

The second scale level includes also traditional software
engineering technologies which target a single software de-
velopment project, or a set of closely related development
projects such as product-line development projects. The en-
gineering data for the project is collected and analyzed so
that improvement of the project’s processes and products is
established.

For example, we may collect product data such as the
number of accomplished modules in a project, and then
compare to the scheduled number. So we can know the
current status of the project progress and we can improve
the project process if needed. Process engineering tools and
distributed development support tools are examples of this
scale.

2.3. Software Engineering for Project Collection
(Mega Software Engineering)

There have been little software engineering researches
proposed and realized in this scale, since there had been lim-
itations on network capacity, CPU power, and so on. Now
those limitations have gone away; thus we can collect and
analyze a large volume of data, and we can think about op-
timized strategies beyond individual or project boundaries.
The results of the optimization would produce the benefit to
software development organization, rather than the benefit
to individual developers or projects

For example, we can gather multiple project data sets
from overall organization, and can compare projects to
projects to extract project natures. Analyzed data for project
processes and products are archived as assets of the organi-
zation.

1. Huge data
collection

3. Feedback
for organizational

Improvement

2. Intensive data
analysis

Software development organization
Related organizations

1.

1.
Other data resources,

e.g., Open Source
software

Figure 2. Fundamental steps of Mega Soft-
ware Engineering

As shown in Figure 2, we consider that Mega Software
Engineering is composed of following steps.

1. Huge data collection for a large number of projects

2. Intensive data analysis beyond boundary of projects

3. Information feedback for organizational improvement

Technologies in Mega Software Engineering relate to one
of these three steps. We will show examples of the tech-
nologies in the following section.

3

3. Component Technologies of Mega Software
Engineering

3.1. Mega Software Engineering Environments

An essential component of Mega Software Engineering
is the ability to collect and make available large amounts
of data from tens of thousands of software projects. Rather
than collect such dataa posteriori, we propose that such
data be collected as the software engineering work gets
done. A critical aspect of this is to collect data as aside-
effectrather than as anafter-thought. This implies the ex-
istence of aMega Software Engineering Environment
(MSEE) that can easily accommodate the development ef-
fort of tens of thousands of projects. Fortunately, the Open
Source and Free Software worlds have demonstrated the
feasibility of such environments through the pioneering ef-
forts such as SourceForge [36] and the Gnu software tools.
In the rest of this section we will describe the architecture
of one such MSEE, Corporate Source [43], with which we
are most familiar. The other MSEE’s (e.g., see [15]) have
similar architecture.

Internet/
Intranet

Web
Server

Version
Control
(CVS)

Bugtracking
(GNATS)

Mailing Lists
(Mailman)

Search Engine
(Swish−e)

File
System

Database

Web
Clients

CVS
Clients

Mail
Clients

Figure 3. MSEE architecture

Figure 3 shows the main components of Corporate
Source. As the figure shows, Corporate Source is a web-
based service. Through the web interface, Corporate Source
provides capabilities to:

- Add a new software project to the collection

- Browse through existing projects, using various sorting or-
ders like categories, software name, contact name, or date
of submission.

- Search through the software projects, either through the
source code, software descriptions, mailing list archives, or
issues and bug reports.

When a user adds a new software project, Corporate
Source requires the user to input a set of information about

the software, e.g., who were the authors of the software,
some keywords, a brief software description and title, etc.
Corporate Source takes this information and stores it an
XML file associated with the project. It also instantiates a
version control repository, a mailing list, and a bug tracking
system for that software project. Henceforth, users of Cor-
porate Source can start working on the project using the ver-
sion control repository for their source code management.
As in the case of Open Source software, Corporate Source
requires that all decisions making and discussions about the
software project be carried out using the email discussion
list associated with the project. In this manner, an archive
will be maintained of the history of project decision mak-
ing.

General users of the MSEE are free to browse through
the source code and mailing list discussion forums to get a
better understanding of the software. If they find any prob-
lems or issues with any software, they can input such issues
in the bug tracking system associated with that software.

Hence, an MSEE provides some important features en-
abled by the rapid advances in network, CPU, and disk ca-
pacities:

- Maintain and make visible tens of thousands of software
projects at the same time.

- Collect fine-grained data on each project for multiple ver-
sions, bug reports and their resolution, and feature design
discussions.

- Provide a uniform web-based interface to all information.

- Collect data as side-effect of normal project activities.

3.2. System Categorization

MSEE provides a fundamental vehicle for collecting
thousands of project data sets. From large project data
stored in archives, we frequently want to search similar
project data or related data; thus we need to know the simi-
larity over projects or software systems made by projects.

It is unrealistic to categorize the number of projects by
human hand. For example, SourceForge is a huge WEB
site for Open Source software development projects, and it
contains more than 67,000 projects at this moment. Catego-
rization of each project into project groups is performed by
human hand; however, we need deep expertise of not only
the target project, but also categorization of projects.

We have been studying automatic categorization of soft-
ware systems [22, 24, 41]. The first approach performs clus-
ter analysis for the sets of source code [41]. This is based on
the similarity of two sets of source code, which is defined
as the ratio of the numbers of similar code lines to that of
the overall lines of two software systems. The similar code

4

lines are detected by a combination of a code-clone detec-
tion tool CCFinder [21] mentioned below and a difference
extraction tooldiff [5].

 FreeBSD 2.0
FreeBSD 2.0.5
 FreeBSD 2.1
 FreeBSD 2.2
 FreeBSD 3.0
 FreeBSD 4.0
 4.4BSD Lite
 4.4BSD Lite2
 NetBSD 1.0
 NetBSD 1.1
 NetBSD 1.2
 OpenBSD 2.0
 OpenBSD 2.1
 OpenBSD 2.2
 OpenBSD 2.3
 OpenBSD 2.4
 OpenBSD 2.5
 OpenBSD 2.6
 OpenBSD 2.7
 OpenBSD 2.8
 NetBSD 1.3
 NetBSD 1.4
 NetBSD 1.5

0.5 01

Figure 4. Dendrogram of BSD UNIX using
source-code similarity

Figure 4 is a dendrogram using the similarity as distance,
for several dialects of BSD UNIX operating systems, i.e.,
4.4BSD Lite, FreeBSD, NetBSD, and Open BSD. As you
can see, each dialect is categorized very clearly, so we can
visually identify the evolution of the BSD UNIX operating
systems.

This approach is very effective in the cases that similar
software systems such as ancestor or descendant versions
are compared. On the other hand, it is not well applicable
to the cases that target software systems share little number
of source code lines, since the resulting similarity values
are almost 0 and the difference of such values has almost no
meaning.

For such cases, it seems that we would need catego-
rization of software systems not by the shared source code
lines, but by shared features or libraries used by the sys-
tems. Those features and libraries would be well reflected
by analysis of the keywords involved in the source code.

We propose an approach of categorization of software
systems using LSA (Latent Semantic Analysis) [25] for the
keywords appearing in the source code of the target sys-
tems [22, 24]. LSA is a method for extracting and repre-
senting the contextual-usage meaning of words by statisti-
cal computations applied to a large corpus of text. It has
been applied to a variety of uses ranging from understand-
ing human cognition to data mining.

Table 1 shows the similarity values which is the cosine
of the column vectors of the resulting matrix by LSA. We
have chosen 11 software systems from SourceForge, and
software groups D1–D3, E1–E3, and V1–V3, and X1–X2
are categorized by hand in the same groups at SourceForge.
Two systems having 1 mean very similar, and those with 0
mean no similarity in the keyword lists.

Groups E, V, and X have very high similarities inside
the groups. The result shows that although there are some
outliers, it would give us a good intuition of categorization

��� ��� ��� ��� �	� �	�
��
��
�� ��� ��
���	� � � � ���	� � ��� ��� ��� ��� ����� � ��� � ��� � � � � ��� � ��� � � � �
����� �! �" #�$ � ��� �	��� %	� ��� � � ��� � � � � ��� � ��� � � � �
����� &('	") *�� ��" #�$ � ��� ��� � ��� � ��� � � � ��� � � � ��� + � � �
���	� *�,�'�) ��&�-���.�� ��� ��� � � � � � � � � � � � �
�	��� �/'�$ -�" " ��" � ��� ��� � � � ��� � � � � � ��� � � � �
�	��� &���-�0 '	0(1 � ��� % � � � � � � � � � � �

��	� �	2	� 3 &�*�� ��� � ��� � ��� � � � � � � 4�5 6 � � �

���� $ � �(0(7	�	�	� ��� � ��� � ��� � ��� + � ��� � � 4�5 6 � 4�5 6 � �

���� ��3 &(*�8'	'�$ " � � � � � � � 4�5 6 � � �
����� ��8��� �:9���� � � � � � � � � � � � �
���� ��8��� �:9���� % � � � � � � � � � � �

Table 1. Categorization of software systems
by LSA

of software groups. We further continue this approach to
improve the categorization precision [23].

By adding such automated categorization tool as an anal-
ysis feature, managers and developers are easy to find sim-
ilar projects or related projects to a target project, and they
can obtain useful knowledge of past projects.

3.3. Selecting Similar Cases by Collaborative Fil-
tering

In previous approach described above, we are able to
know sets of software systems, which are very similar.
However, we cannot specify which one system is the most
similar one to a particular software system. Collaborative
filtering can answer the most related one [34]. We have
been studying it as a mean of identifying software features
from activity data [30]. Here, we propose to apply the col-
laborative filtering technique to find a system (or project)
from thousands of systems.

We assume that there is a list ofα metrics M =
{m1,m2, . . . , mα} and a list of β systems P =
{p1, p2, . . . , pβ}. Value vij can be obtained by applying
metricmi to the data set of systempj . In similarity com-
putation between two systemspa andpb, we first isolate the
metrics, which had been applied to both of these systems,
and then apply a similarity computation to the value of the
isolated metrics. For example, two systems are thought of
as two vectors in theα-dimensional metric-space. The sim-
ilarity between them is measured by computing the cosine
of the angle between these two vectors. Once we can iso-
late the set of the most similar systems based on the similar-
ity measures, we can estimate metric valuevij even when
a metricmi is not available. In such case, an estimation
value, such as a weighted average of the metric values of
these similar systems, is employed.

This means that collaborative filtering is robust to the
defective data sets. In contrast, the conventional regression
analysis requires the complete matrix of metric values, and
it is unrealistic to assume complete data sets for all systems.

5

If a project manager found deviation from the project
plan in schedule, he/she has to do corrective action to
bring expected future schedule performance in line with the
project plan [32]. In such situation, the project manager
may want to know a viable solution to the problem. Collab-
orative filtering can present a set of the most similar systems
to the ongoing system, so that we can explore the product
and process data collected in these similar systems, and we
would find a concrete solution. We think that to proceed
Mega Software Engineering effectively, we need to provide
not only a bird’s-eye view of software systems and projects,
but also concrete information useful for software developers
and project managers.

3.4. Code-Clone Detection

As an example of deep analysis for the large collection
of software engineering data beyond project boundaries, we
will show code-clone detection tools CCFinder and Gemini
for large scale of source code [21, 40].

Code clone is a code fragment in a source file that is iden-
tical or similar to another. CCFinder takes a set of source-
code files as an input, and generates a list of code-clone lo-
cations as the output. For efficient detection, CCFinder first
performs a lexical analysis of the input source code, and
obtains a single sequence of tokens. This token sequence is
normalized and transformed to remove the effect of the dif-
ference of user-defined names or that of other meaningless
clones. The resulting token sequence is analyzed to gener-
ate clone locations using the index tree algorithm [14]. The
output of CCFinder is sent to Gemini to visualize distribu-
tion and characteristics of clones in the system.

Figure 5 is an example of the display of Gemini. This is
the scatterplot of detected clones between two GUI libraries
Qt [39] and GTK [13]. These two libraries are developed
independently in different organizations. Qt (version 3.2.1)
is composed of 929 files and about 686K lines in total. GTK
(version 2.2.4) consists of 658 files and 546K lines in total.

Each dots in the scatterplot represents existence of code
clones with more than 30 tokens. Smaller tokens less than
30 tokens are eliminated here. The left-upper pane shows
clones inside Qt, and the right-lower pane shows clones in-
sider GTK. The result is symmetrical to the main diagonal
line, so the right-upper half is omitted.

The left-lower pane shows clones between Qt and GTK.
The overall clone density in this pane is generally lower
than others, but there is one exceptional portion annotated
by “a”, where there are many clones, meaning that two sys-
tems share most code. This portion is the font handler for
both Qt and GTK, and we knew by reading readme files that
the font handler of Qt is imported from GTK.

Using the code clone detection technique, we can deter-
mine similarity of source codes, leading to categorization of

Figure 5. Scatterplot of clones between Qt
and GTK

software systems. Also, we can create an effective search
tool for similar code portion to the huge archive of organi-
zational software assets.

The code clone detection requires high CPU power and
huge memory space for million of source codes. For exam-
ple, for two versions of Open Office [31], which are about
10M lines of code in total, CCFinder requires 68 minutes
on Pentium IV 1.5GHz with 1 GByte memory. However,
we think that they are affordable computer environment and
analysis time.

3.5. Software Component Search

In the world of the Internet, or even inside a single orga-
nization, there would be many cases such that similar soft-
ware components (code portions) are developed indepen-
dently in different projects day by day.

Collecting software components and archiving them for
reuse of the components are important issues. Construct-
ing well-organized software libraries would be a very im-
portant objective in the organization; however, it requires a
large amount of human resources if it would be developed
by hand, and also it is very difficult to keep the libraries
consistent and useful.

We have designed an automatic software component li-
brary that analyzes a large collection of software compo-
nents, indexing them for efficient retrieval, and ranking
them by the importance of components. We have proposed
a novel method of ranking software components, called

6

Internet / Organization
Repositories

Software Component
Searcher

Component
rank engine

Ranked
component

archive

Query handler

SPARS-J

Java
classes

Raw
component

archive

Query/
reply

Figure 6. Architecture of SPARS-J

Component Rank, based on the analysis of actual use re-
lations of components and also based on convergence of the
significance values through the use relations [20].

The use relations among software components are repre-
sented by a directed graph, and the eigenvector with eigen-
value 1 for the adjacent matrix of the directed graph is com-
puted. The sorted order by the values of each component in
the eigenvector is the result rank for the component, and
it shows its relative significance, i.e., more used compo-
nents directly or indirectly by other components are ranked
higher.

Using the component rank computation as a core rank-
ing engine, we are currently developing Software Prod-
uct Archiving, analyzing, and Retrieving System for Java,
calledSPARS-J[37]. Figure 6 shows SPARS-J architecture.
Various Java source programs have been collected, and they
are stored in the raw component archive. Each class in Java
is considered as a component here. The collected compo-
nents are ranked by the component rank engine and stored
at the ranked component archive.

A component searcher, who is trying to build a software
system, will give SPARS-J queries for some typical defini-
tion or typical usage of a class to build, by keywords possi-
bly found in source code. These queries are analyzed at the
query handler, and they are given to the ranked component
archive. The keywords are searched through the archive,
and the matched components are sorted by the ranks. The
result component list is returned to the searcher through the
query handler.

The archive currently contains more than 170,000 Java
classes. It takes about one whole day for the component
rank engine to parse, index, and rank all of them on a PC
server with Pentium IV of 3GHz clock speed and 8 GByte
memory.

Figure 7 shows a display result for a query keyword
“bubblesort” for SPARS-J. The result is returned almost in-
stantly to the searcher through a WEB browser.

There are 28 classes having the keyword. Similar or the
same classes are merged into 19 groups out of 28 classes,

Figure 7. Query result of SPARS-J for “bub-
blesort”

and these 19 groups are sorted by the component ranks.
BubbleSort is the first ranked groups with two classes
found from two different sites. The second group contains
one classBubbleSortTest .

The details of listed classes, which include the source
code, various metric values, and various links to other
classes, can be viewed simply by clicking on the WEB
browser.

This system would become a very powerful vehicle to
manage organizational software assets. It is easy to col-
lect all source code created in an organization at the raw
component archive. Then, the analysis for the ranking and
the retrieval for the query are performed fully automatically,
without using human hand. So the cost of the software as-
set management would reduce drastically, and the develop-
ers can leverage past assets for efficient development and
reliable products.

7

4. Implementation of Mega Software Engineer-
ing Framework

To investigate various technologies in Mega Software
Engineering, we are currently developing a tool collection
environment calledMega Software Engineering Frame-
work, as shown in Figure 8. We do no intend to build a
single huge system to perform all the steps in Mega Soft-
ware Engineering, but we would build a framework to help
to establish individual technologies in Mega Software En-
gineering.

Versioning
(CVS)

Mailing
(Mailman)

Issue
tracking

(GNATS)

Other tool
data

Format
Translator

Format
Translator

Format
Translator

Format
Translator

Process data archive
(XML format)

Product data archive
(CVS format)

Code clone
detection

Component
search

Metrics
measurement

Project
categorization

Cooperative
filtering

Corporate
Source

GUI

Managers

Developers

Project x
Project y
Project z

. . .

Figure 8. Architecture of Mega Software En-
gineering Framework

This framework is composed of following three tool col-
lections.

- Corporate Source as a Mega Software Engineering Environ-
ment, which manages project progress and collects project
data

- Product and Process data archives

- Analysis tool set which extracts various feedback informa-
tion

As described in Section 3.1, Corporate Source em-
ploys version management tool CVS, mail management
tool Mailman, and issue (bug) tracking tool Gnats [10].
Corporate Source provides control and unified GUI for
these tools; however, we can employ other tools for ver-
sion control, mailing, or issue tracking. Note that the data
collection by Corporate Source can be done non-intrusively.
Checking into CVS repositories, sending mails, and track-
ing issues are performed as daily activities for software de-
velopment and maintenance, not as special activities for the
data collection.

As the central archives of this framework, we prepare a
product data archive in the CVS format and a process data
archive in an XML format. The product data archive di-
rectly reflects to the repositories of each project in the CVS
format. The process data is obtained by transforming log
files of CVS, Mailman, and Gnats into a standard format in
XML, and it is stored into an XML database that is imple-
mented by PostgreSQL with XML extension. This frame-
work can easily handle process data obtained by other tools
if the data is transformed into the standard format in XML.

The process data and product data in the archives are an-
alyzed by a tool for measuring various metrics data and by
the tools presented in previous sections. The analysis re-
sults are given back to the developers and managers. We
will add some analysis tools here. Also, we are designing
a unified GUI for analysis results, which would accomplish
effective feedback to the developers and managers, leading
to the organizational benefit.

5. Discussions

5.1. Distinction and Relation to Other Software En-
gineering Technologies

- Global Software Development

Due to the rapidly increasing network capacity and speed,
and differentiated cost structures, Global Software Devel-
opment is an active area of software engineering research
and practice [17]. Although analysis shows deficiency
of global software development, compared to same site
work [16, 18], the importance of Global Software Devel-
opment will increase from now on and strong support tools
to ease site distance barrier are really needed. For ex-
ample, Herbsleb and Mockus have proposed an “expertise
browser” to help locate far flung experts and contributors of
software modules [26].

The Mega Software Engineering framework provides a fun-
damental environment of code sharing and message ex-
changing for Global Software Development. Also, our ap-
proach provides directly needed knowledge or asset to de-
velopers or managers, rather than assistance of finding ex-
pertise.

- Knowledge Sharing

There are several researches in which light-weight knowl-
edge is extracted and shared among developers [4, 42].
In [4], link information is analyzed and provided as re-
lated knowledge. In [42], a system automatically provid-
ing source-code components that is not well identified or
understood by the developer is proposed.

The light weight approach focuses on a single developer
or a single project. Our approach explores knowledge or

8

information which is based on deeper analyses of multiple
projects and a huge collection of software engineering data.

- Measuring and Analyzing Open Source Project Data

A measurement tool collection for CVS and mail data has
been proposed in [9]. It generates various statistical val-
ues for Open Source development projects. Also, CVS data
is used for getting various process metric values in [8].
In [27], it analyzes CVS data to classify the causes of
changes made to software products.

These approaches are also considered to be examples of
analysis techniques in Mega Software Engineering. How-
ever, their systems are more specific to getting the objective
statistical values or classification. We are trying to build a
more flexible framework for a large collection of projects, in
which we can extract both inter-project knowledge of pro-
cess and product for various objectives. Thus, we employ
an exchangeable standard format in XML for process data,
and use a standard database to archive it. Once the data is
in the form of a standard database, we can apply various
techniques for data mining for traditional data.

- Measurement-Based Improvement Framework

There are a large number of researches and practices
on frameworks of measurement and improvement. Goal
Question Metrics paradigm is an example in which suit-
able metrics are derived from measurement objectives [1].
The frameworks of software process improvement such
as CMM [35] and SPICE [38] are also cases that aim
measurement-based improvement for organization, and Per-
sonal Software Process targets improvement for personal
capability [19].

We might consider that Mega Software Engineering would
be an improvement framework similar to those. However,
Mega Software Engineering is different in the sense that it
assumes organizational-wide huge data collection of many
projects and software systems, rather than a single person or
single project. Also, the analyses made by Mega Software
Engineering are more intensive and deeper ones compared
to per-project metric values made by some frameworks.

- Experience Factory

Vic Basili’s group has developed and successfully applied
the concept of an “Experience Factory,” where organiza-
tions systematically collect and reuse past experiences [2].
Indeed, Neto et al. propose a “knowledge management”
framework for storing such experience base for organiza-
tions [29]. We believe that Mega Software Engineering is
an evolution of the Experience Factory concept, enriched
from the “communal” aspects of Open Source software de-
velopment. Hence, instead of requiring a separate organiza-
tional element that captures and packages relevant “experi-
ence elements,” we propose to directly capture the contents

of software engineering activities, and make “experience”
available through deep analysis of this raw data.

5.2. Benefit of Mega Software Engineering

The objectives and approaches of the feedback for or-
ganizational benefit would be generally vague and hard to
formalize. In our examples shown in Section 3, we sim-
ply gave the analysis results as “organizational knowledge”
back to the developers and managers. Even with such a
simple feedback strategy, we would expect organizational
benefits, such that the projects will be well controlled and
the productivity will increase drastically due to the reuse of
past product and process data. Also, we would expect to
improve reliability of products using fault data of similar or
related projects.

These improvements are heavily rely on the fact that
we can fairly easily create organization-wide huge assets of
past products and processes, which had not been well struc-
tured or managed by human hand or by traditional software
engineering technologies.

5.3. Feasibility of Mega Software Engineering

We can say that Mega Software Engineering has been
already achieved in some part as shown in Section 3. Data
collection would be generally straightforward by using cur-
rent technologies, such as Open Source development tools.
Analyses for the collected data would be more difficult and
would need more elaboration. However, current technolo-
gies for large-scale analysis on WEB, database, and source
program will be good resources for the needed analyses.
The goal of the feedback for the organizational benefit is
sometimes unclear as mentioned above. Once a clear goal
would be defined, we could design a more elaborative sys-
tem to get an effective feedback.

We do not think that there is a single system which sup-
ports all the steps of the collection, analysis, and feedback
in Mega Software Engineering. The system becomes so
huge and it would not be well designed. We would prefer
to have a flexible framework with various pluggable tools
which can be replaced for the objectives and approaches of
the data collection, analysis, and feedback.

6. Conclusions

We have proposed a novel concept of Mega Software En-
gineering, and presented several of its core technologies.
Also, we have shown an architecture of the Mega Soft-
ware Engineering framework that is currently under devel-
opment.

Previous work in software engineering research has
given limited attention to data collection and analysis of

9

tens of thousands of projects. Now we can have very pow-
erful hardware at hand and we can apply various technolo-
gies to huge data collection and intensive analysis. There-
fore, we believe that we are at the best starting point of
Mega Software Engineering for organizational and commu-
nal benefit.

References

[1] V. R. Basili. Goal Question Metrics Paradigm, in Ency-
clopedia of Software Engineering (J. Marciniak ed.), pages
528–532. John Weily and Sons, 1994.

[2] V. R. Basili and G. Caldiera. Improve Software Quality by
Reusing Knowledge and Experience.Sloan Management
Review, Fall:55–64, 1995.

[3] B. Berliner. CVS II: Parallelizing Software Development.
In Winter USENIX Conference, Washington, D.C., 1990.

[4] D. Cubranic, R. Holmes, A. Ying, and G. C. Murphy. Tool
for Light-weight Knowledge Sharing in Open-source Soft-
ware Development. In3rd WS Open Source SE, pages 25–
30, Portland, OR, USA, 2003.

[5] Diffutls. http://www.gnu.org/software/diffutils/.
[6] J. Dinkelacker and P. Garg. Corporate Source: Applying

Open Source concepts to a corporate environment (Position
Paper). In1st WS Open Source SE, Toronto, Canada, 2001.

[7] J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progres-
sive Open Source. InICSE, Orlando, Florida, 2002.

[8] D. Draheim and L. Pekacki. Process-Centric Analytical
Processing of Version Control Data. InInt. WS Principles
of Software Evolution, pages 131–136, Helsinki, Finland,
2003.

[9] D. German and A. Mockus. Automating the Measurement
of Open Source Projects. In3rd WS Open Source SE, pages
63–68, Portland, OR, 2003.

[10] Gnu. Gnats Project. http://www.gnu.org/software/gnats.
[11] Gnu. Mailman Project. http://www.lists.org.
[12] Gnu. Savannah Project. http://savannah.gnu.org.
[13] GTK Project. http://www.gtk.org.
[14] D. Gusfield. Algorithms on Strings, Trees, and Sequences,

pages 89–180. Cambridge University Press, Mass., 1997.
[15] T. J. Halloran, W. L. Scherlis, and J. R. Erenkrantz. Beyond

Code: Content Management and the Open Source Devel-
opment Portal. In3rd WS Open Source SE, Portland, OR,
USA, 2003.

[16] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An Empirical Study of Global Software Development: Dis-
tance and Speed. InICSE, pages 81–90, Toronto, Canada,
2001.

[17] J. D. Herbsleb and D. Moitra. Global Software Develop-
ment. IEEE Software, 18(2):16–20, 2001.

[18] J. D. Herbsleb and D. Moitra. An Empirical Study of Speed
and Communication in Globally Distributed Software De-
velopment.IEEE TSE, 29(6):481–494, 2003.

[19] W. S. Humphrey.Introduction to the Personal Software Pro-
cess. Addison-Wesley, 1996.

[20] K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component Rank: Relative Sig-
nificance Rank for Software Component Search. InICSE,
pages 14–24, Portland, OR, 2003.

[21] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multi-
Linguistic Token-based Code Clone Detection System for
Large Scale Source Code.IEEE TSE, 28(7):654–670, 2002.

[22] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Au-
tomatic Categorization for Evolvable Software Archive. In
Int. WS Principles of Software Evolution, pages 195–200,
Helsinki, Finland, 2003.

[23] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic Categorization Tool for Open Software Reposito-
ries. InWS Open-Source in an Industrial Context, Anaheim,
CA, 2003.

[24] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. On
Automatic Categorization of Open Source Software. In3rd
WS on Open Source SE, pages 79–83, Portland, OR, 2003.

[25] T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to
latent semantic analysis.Discourse Processes, 25:259–284,
1998.

[26] A. Mockus and J. D. Herbsleb. Expertise Brower: A Quan-
titative Approach to Identifying Expertise. InICSE, pages
503–512, Orlando, FL, 2002.

[27] A. Mockus and L. G. Votta. Identifying Reasons for Soft-
ware Changes Using Historic Database. InICSM, pages
120–130, San Jose, CA, 2000.

[28] Mozilla. Bugzilla Project. http://www.bugzilla.org.
[29] M. G. M. Neto, C. B. Seaman, V. Basili, and Y. Kim. A

Prototype Experience Management System for a Software
Consulting Organization. InSEKE 2001, Buenos Aires, Ar-
gentina, June 2001.

[30] N. Ohsugi, A. Monden, and S. Morisaki. Collaborative
Filtering Approach for Software Function Discovery. In
Int. Symp. Empirical SE (ISESE), vol.2, pages 45–46, Nara,
Japan, 2002.

[31] Open Office Project. “http://www.openoffice.org”.
[32] Project Management Institute, A Guide to the Project Man-

agement Body of Knowledge 2000 Edition, 2000.
[33] E. S. Raymond.The Cathedral and the Bazaar. O’Reilly,

1999.
[34] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based

Collaborative Filtering Recommendation Algorithms. InInt.
World Wide Web Conf. (WWW10), pages 285–295, Hong
Kong, 2001.

[35] Software Engineering Institute, Carnegie Mellon University,
http://www.sei.cmu.edu/cmm/.

[36] SOURCEFORGE.net. http://sourceforge.net/.
[37] SPARS Project, Osaka University Software Engineering

Lab. http://www.spars.info/SPARS/index.html.en.
[38] SPICE Project. http://www.sqi.gu.edu.au/spice/.
[39] Trolltech. Qt. http://www.trolltech.com.
[40] Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.

Gemini: Code Clone Analysis Tool. InInt. Symp. Empirical
SE (ISESE), vol.2, pages 31–32, Nara, Japan, 2002.

[41] T. Yamamoto, M. Matsusita, T. Kamiya, and K. Inoue.
Measuring Similarity of Large Software Systems Based on
Source Code Correspondence. Technical Report of Dept. of
ICS, Osaka University, IIP-03-03-02, 2002.

[42] Y. Ye and G. Fischer. Supporting Reuse by Delivering Task-
Relevant and Personalized Information. InICSE, pages 513–
523, Orlando, FL, 2002.

[43] ZeeSource. Corporate Source. http://www.zeesource.net/.

10

