|

) <

The University of Osaka
Institutional Knowledge Archive

Title Mega Software Engineering

Author (s) ;Toue, Katsuro; Garg, Pankaj K.; Iida, Hajimu et

Citation

Version Type|VoR

URL https://hdl.handle.net/11094/51070

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

Mega Software Engineering

Katsuro Inou€*, Pankaj K. Garg,
Hajimu lidal", Kenichi Matsumotd’*, Koji Torii *
T Graduate School of Information Science and Technology, Osaka University
1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
 Zee Source, 1684 Nightingale Avenue, Suite 201, Sunnyvale, CA 94087, USA
T Nara Institute of Science and Technology, Nara 630-0192, Japan
* EASE (Empirical Approach to Software Engineering) Project, Senri, Osaka, Japan
inoue@ist.osaka-u.ac.jp, garg@zeesource.net
{iida, matumoto, torif @is.aist-nara.ac.jp

Abstract manager, however, these software engineering technologies
remain focused on the individual project or programmer.
In various fields of computer science, rapidly grow- For instance, code browsing tools typically allow a pro-
ing hardware power, such as high-speed network, high- grammer to browse through single project code bases. Sim-
performance CPU, huge disk capacity, and large memory ilarly, a navigation system might guide a developer utilizing
space, has been fruitfully harnessed, e.g., for large scaledata from her activities alone. While organizations can uti-
data and web mining, grid computing, and multimedia envi- lize global knowledge, for software reuse and other process
ronments. We propose that such rich hardware can also cat-improvements, the individual programmer or manager typ-
apult software engineering to the next level. Huge amountsically does not enjoy the benefits wiulti-project or global
of software engineering data can be collected from tens of knowledge

thousand_s of_ projects inside organizations, or from outside Hence, prevailing organizational software engineering
an organization through the Internet. The collected data gchnologies for individuals are locally optimized to get lo-
can be analyzed extensively to extract useful knowledge for| henefit for the individual developers or projects at most.
improving organization-wide productivity and quality. We They do not oversee global benefit and do not optimize
call such an approach for software engineerMgga Soft- 6 technologies using knowledge and software engineering

ware Engineering In this paper, we propose the concept of yata of other developers or other projects.
Mega Software Engineering, and demonstrate through sev-

eral examples some of its core technologies. In addition,
we propose an architectural framework for Mega Software

In modern times, the capacity, connectivity and perfor-
mance of various networks ranging from local area net-
work to the Internet are marvelously and rapidly growing.

Engineering. .
Huge numbers of computer systems are inter-connected us-
ing complex topologies, and various kinds of information
. on those systems can be instantly gathered. For example,
1. Introduction Virtual Private Networks (VPN) has become pervasive in
o organizations in the past six months. Software data such
1.1. Background and Motivation as software process of individual developers or software

products created by project is easily collected through net-
Over the past few decades, software engineering has deworks. Now we are able to collect data from not only a
veloped and introduced various technologies for software single project, butll software development activities in-
quality improvement and development efficiency. Various side an organization (or company). If the organization has
kinds of approaches for improvement have been proposedlose relation to other software development organizations,
and accomplished so far, e.g., version control, configura-as sub-contractor or co-developer, we can also collect soft-
tion management, component reuse, and software procesware engineering data from the other organizations. Cur-
improvement, to name a few. rently there is a huge collection of Open Source software
We believe that for the individual programmer or project on the Internet, and they are sometimes crucial resources

for development projects. They are easily searched and col-1.2 Paper Overview
lected via Internet tools.

Disk capacity and CPU power of recent computer sys- In this paper, we will propose the concept of Mega Soft-
tems are astonishingly increasing. Since vast disk space isvare Engineering and will discuss its feasibility and appli-
available, we can archive project data in very fine granular- cability.

ity. Every change of a product in & project can be recognized rirst we will show a classification of software engineer-

as a single version and be stored into a version control SYSing technologies by the scale of engineering target, and will

tem. Every communication made between the developersyepic distinction between Mega Software Engineering and
can be recorded. Not only single project data, but also wey,itional software engineering in Section 2.
can store and archive all project data spread over distributed

organizations. Section 3 will introduce examples of core technologies

of Mega Software Engineering. The first example is a Mega

The collected software engineering data includes both Software En_g_ineering Environment, analogous to the envi-
process and product information of target projects. Vari- Fonments utilized by tens of thousands of Open Source or
ous characteristics can be extracted by analyzing the col-FT€€ software projects as exemplified by SourceForge [36]
lected data. Mining a single project data would be a rel- OF Gnu Savannah [12]. For organizations, such environ-
atively straightforward and light task. On the other hand, ments are exemplified by Corporate Source [6, 7, 43]. They
mining through multiple project data, say tens of thousands &€ composed of several development tools supporting open
of projects, would be a complicated and heavy task. How- SOUrce development processes, with version control tools
ever, since now we have enormous computational powerSUch as CVS [3], e-mail management tools such as Mail-
and memory space compared to, e.g., 10 years ago, sucf@n [11], and bug tracking tools such as Gnats [10] or
analysis becomes a feasible challenge. We may want toBugzilla [28]. They also provide GUI's that control mul-
analyze, not only the organizational software engineering tiPle Projects and allow browsing from project to project.
data, but also software engineering data available on the InA Project may be performed in widely distributed way in
ternet as Open Source projects [33], such as various sourcée globe, and the project data are gathered and archived at

programs, associated documents, version control logs, maif€rvers through private networks or the Internet. Currently,
archives. and so on. they provide limited features for deeply analyzing data col-

lected at servers, but they will be important infrastructures
In computer science researches and practices, there arfor the data collection of Mega Software Engineering.
many successful uses of improved hardware capacity. For We will also show more analytical cases of software
example, WEB data collection and mining such as Google categorization, collaborative filtering, code-clone detection,
search engine is a case in the WEB engineering field. Inand software component search.
the high-performance computation field, GRID technology We are currently developing a framework for investigat-

i_s an example. We thipk that the software_engineering ing a wide range of Mega Software Engineering technolo-
field should also share in advantage of the |mprovementgiesl The framework is based on Mega Software Engineer-

of neltwork, CEU dIka, and etc_. W(_a pr]? plgsi to cljeat_e aing Environment, with standardized databases and various
novel approach In so_twar_e engineering field, by collecting analysis engines. Section 4 will discuss these.
various software engineering data through networks exten-

sively, archiving the collected data for a long period, analyz- ~ S€ction 5 will discuss on our approach and will compare
ing the huge data deeply, and providing knowledge for orga- tp related works. We will conclude our discussion in Sec-
nizational improvement. We call such network and CPU in- 0N 6.
tensive approach for software engineering “Mega Software
Engineering.”
2. Overview of Mega Software Engineering

Technologies in traditional software engineering tend to
be based on limited knowledge in the sense of small data set
of individual developer or project. Mega software engineer- Figure 1 shows the classification of software engineering
ing aims at global knowledge in the sense of huge data setechnologies based on the scale of engineering targets. The
of global projects. Even from existing software engineering horizontal axis shows improvement feedback steps, com-
approaches, there will be some technologies that fall into posed of collection (measurement) step, analysis (evalua-
Mega Software Engineering, although many new methodstion) step, and feedback (improvement) step. The vertical
and tools will come out soon if we clearly recognize the axis represents the scale of the target for software engineer-
importance of Mega Software Engineering. ing. We will explain each scale in the following.

2.3. Software Engineering for Project Collection

oo (Mega Software Engineering)
= . 2
Multiple project dta Project comparison/ Organizationdl a;a There have be_en Iit_tle s_oftware e_ngineering researches
expertise extraction reuse proposed and realized in this scale, since there had been lim-
/JﬁO\ - itations on network capacity, CPU power, and so on. Now
ex oz e — i = those limitations have gone away; thus we can collect and
Single project data P‘rogm etimation Tﬁ?&ﬂiﬂﬁ? a_ma_llyze a Iarge_ volume of Qata,_ and we can think about_op-
timized strategies beyond individual or project boundaries.
g‘“‘:] Lo The results of the optimization would produce the benefit to
= = KARNE = software development organization, rather than the benefit
persona activity data ooty detection Tool customisation/ to individual developers or projects . .
activity navigation, For example, we can gather multiple project data sets
Collection Analysis Improvement from overall organization, and can compare projects to
projects to extract project natures. Analyzed data for project
Figure 1. Scale classification of software en- processes and products are archived as assets of the organi-
gineering technologies zation.

2. Intensive data
analysis

2.1. Software Engineering for Individual Developer

Other data resources,
e.g., Open Source
software

The first scale level includes traditional software enc 1. Huge _dat7
neering technologies which target individual develope collection
Data and knowledge for each developer is collected and
alyzed, then the result information is fed back to the inc
vidual developer.

For instance, command history of a tool for a develop
is collected and analyzed so that arrangement of the t
menu can be improved or we can create a command nav
tion feature for the developer. Many software engineeri
tools such as software design tools, debug support tools Related organizations Software development organization
communication support tools are in this category.

3. Feedback
2N for organizational

. . . Figure 2. Fundamental steps of Mega Soft-
2.2. Software Engineering for Single Software De- ware Engineering

velopment Project

The second scale level includes also traditional software a5 shown in Figure 2, we consider that Mega Software
engineering technologies which target a single software de'Engineering is composed of following steps.
velopment project, or a set of closely related development
projects such as product-line development projects. The en-
gineering data for the project is collected and analyzed so
that improvement of the project’s processes and products is

established. 2. Intensive data analysis beyond boundary of projects

For example, we may collect product data such as the
number of accomplished modules in a project, and then
compare to the scheduled number. So we can know the
current status of the project progress and we can improve
the project process if needed. Process engineering tools andechnologies in Mega Software Engineering relate to one
distributed development support tools are examples of thisof these three steps. We will show examples of the tech-
scale. nologies in the following section.

1. Huge data collection for a large number of projects

3. Information feedback for organizational improvement

3. Component Technologies of Mega Software
Engineering

3.1. Mega Software Engineering Environments

An essential component of Mega Software Engineering
is the ability to collect and make available large amounts

of data from tens of thousands of software projects. Rather

than collect such data posteriori we propose that such

data be collected as the software engineering work gets

done. A critical aspect of this is to collect data aside-
effectrather than as aafter-thought This implies the ex-
istence of aMega Software Engineering Environment

(MSEE) that can easily accommodate the development ef-
fort of tens of thousands of projects. Fortunately, the Open

Source and Free Software worlds have demonstrated th
feasibility of such environments through the pioneering ef-

forts such as SourceForge [36] and the Gnu software tools..

In the rest of this section we will describe the architecture
of one such MSEE, Corporate Source [43], with which we
are most familiar. The other MSEE’s (e.g., see [15]) have
similar architecture.

Qa!abase

Version
Control

(cvs)

Web
Clients

Bugtracking
(GNATS)

File
System

Mailing Lists
(Mailman)

Cvs
Clients

-

Web
Server

Internet/
Intranet

<

Mail
Clients

rch Engine
Swish-e)

.

Figure 3. MSEE architecture

the software, e.g., who were the authors of the software,
some keywords, a brief software description and title, etc.
Corporate Source takes this information and stores it an
XML file associated with the project. It also instantiates a
version control repository, a mailing list, and a bug tracking
system for that software project. Henceforth, users of Cor-
porate Source can start working on the project using the ver-
sion control repository for their source code management.
As in the case of Open Source software, Corporate Source
requires that all decisions making and discussions about the
software project be carried out using the email discussion
list associated with the project. In this manner, an archive
will be maintained of the history of project decision mak-
ing.

General users of the MSEE are free to browse through
he source code and mailing list discussion forums to get a
etter understanding of the software. If they find any prob-

lems or issues with any software, they can input such issues
in the bug tracking system associated with that software.

Hence, an MSEE provides some important features en-

abled by the rapid advances in network, CPU, and disk ca-
pacities:

Maintain and make visible tens of thousands of software
projects at the same time.

Collect fine-grained data on each project for multiple ver-
sions, bug reports and their resolution, and feature design
discussions.

Provide a uniform web-based interface to all information.

Collect data as side-effect of normal project activities.
3.2. System Categorization

MSEE provides a fundamental vehicle for collecting
thousands of project data sets. From large project data

Figure 3 shows the main components of Corporate stored in archives, we frequently want to search similar
Source. As the figure shows, Corporate Source is a web-project data or related data; thus we need to know the simi-
based service. Through the web interface, Corporate Sourcéarity over projects or software systems made by projects.

provides capabilities to:

Add a new software project to the collection

Browse through existing projects, using various sorting or-
ders like categories, software name, contact name, or dat

of submission.

Search through the software projects, either through the

It is unrealistic to categorize the number of projects by
human hand. For example, SourceForge is a huge WEB
site for Open Source software development projects, and it
contains more than 67,000 projects at this moment. Catego-
rization of each project into project groups is performed by
%uman hand; however, we need deep expertise of not only
the target project, but also categorization of projects.

We have been studying automatic categorization of soft-

source code, software descriptions, mailing list archives, orware systems [22, 24, 41]. The first approach performs clus-

issues and bug reports.

ter analysis for the sets of source code [41]. This is based on
the similarity of two sets of source code, which is defined

When a user adds a new software project, Corporateas the ratio of the numbers of similar code lines to that of
Source requires the user to input a set of information aboutthe overall lines of two software systems. The similar code

lines are detected by a combination of a code-clone detec- DL[D2[D3[EL[E2[E3[VI[V2[V3[XI][X2

tion tool CCFinder [21] mentioned below and a difference [5ie e A8 o0 - -0t e — o s oo

extraction toodiff [5]. D3:postgresql-7.2.1 | 0.2[0.1 1] o[0.1 of o[o5 o of o

El:gnotepad+-1.3.3 0 0 o af 1 1 0 0 0 0 ©

1 0.5 o E2:molasses-1.1.0 0l 001 1] 1f 1] o0/ 01 O 0O o0

FreeBSD 2.0 E3:peacock-0.4 Of O oOf 1] 1] 1| o] 0of 0 0of 0

FreeBsp 2.0.2 V1:dv2ijpg-1.1 0.1/ 0] o/ o of of 1f[o.8] 1| o o

Freebsh 2.2 V2:libcu30-1.0 02[02[05 o[0.1 olo.8[1|08 o o

FrecBSD 4.0 V3:mipgTools o o[o o o of 1[e8] 1] o o

44850 Li1e2 A — XL:XTermR6.3 o o o o o of of o of 3 1

NetBSD 1.1 — X2:XTermR6.4 Of o of o o of o o o 1f 1

QOpenBSD 2. 0

QpenBSD 2. 1

henbed 2.3 —

GpensD 2.4 Table 1. Categorization of software systems

Coenesn 3.1 — by LSA

QpenBSD 2. 8

ool D

NetBSD 1.4

Net BSD 1.5

Figure 4. Dendrogram of BSD UNIX using of software groups. We further continue this approach to

source-code similarity improve the categorization precision [23].

By adding such automated categorization tool as an anal-
ysis feature, managers and developers are easy to find sim-
"ilar projects or related projects to a target project, and they
can obtain useful knowledge of past projects.

Figure 4 is a dendrogram using the similarity as distance
for several dialects of BSD UNIX operating systems, i.e.,
4.4BSD Lite, FreeBSD, NetBSD, and Open BSD. As you
can see, each dialect is categorized very clearly, so we can . o) .
visually identify the evolution of the BSD UNIX operating 3-3- Selecting Similar Cases by Collaborative Fil-
systems. tering

This approach is very effective in the cases that similar
software systems such as ancestor or descendant versions In previous approach described above, we are able to
are compared. On the other hand, it is not well applicable know sets of software systems, which are very similar.
to the cases that target software systems share little numbeHowever, we cannot specify which one system is the most
of source code lines, since the resulting similarity values similar one to a particular software system. Collaborative
are almost 0 and the difference of such values has almost ndiltering can answer the most related one [34]. We have
meaning. been studying it as a mean of identifying software features

For such cases, it seems that we would need categofrom activity data [30]. Here, we propose to apply the col-
rization of software systems not by the shared source coddaborative filtering technique to find a system (or project)
lines, but by shared features or libraries used by the sys-from thousands of systems.
tems. Those features and libraries would be well reflected We assume that there is a list of metrics M =
by analysis of the keywords involved in the source code. {mi,mso,...,m,} and a list of 3 systems P =

We propose an approach of categorization of software {p1,p2,...,ps}. Valuewv;; can be obtained by applying
systems using LSA (Latent Semantic Analysis) [25] for the metricm; to the data set of systepy. In similarity com-
keywords appearing in the source code of the target sys-putation between two systermg andp;, we first isolate the
tems [22, 24]. LSA is a method for extracting and repre- metrics, which had been applied to both of these systems,
senting the contextual-usage meaning of words by statisti-and then apply a similarity computation to the value of the
cal computations applied to a large corpus of text. It hasisolated metrics. For example, two systems are thought of
been applied to a variety of uses ranging from understand-as two vectors in the-dimensional metric-space. The sim-
ing human cognition to data mining. ilarity between them is measured by computing the cosine

Table 1 shows the similarity values which is the cosine of the angle between these two vectors. Once we can iso-
of the column vectors of the resulting matrix by LSA. We late the set of the most similar systems based on the similar-
have chosen 11 software systems from SourceForge, anity measures, we can estimate metric valyeeven when
software groups D1-D3, E1-E3, and V1-V3, and X1-X2 a metricm, is not available. In such case, an estimation
are categorized by hand in the same groups at SourceForge/alue, such as a weighted average of the metric values of
Two systems having 1 mean very similar, and those with 0 these similar systems, is employed.
mean no similarity in the keyword lists. This means that collaborative filtering is robust to the

Groups E, V, and X have very high similarities inside defective data sets. In contrast, the conventional regression
the groups. The result shows that although there are someanalysis requires the complete matrix of metric values, and
outliers, it would give us a good intuition of categorization itis unrealistic to assume complete data sets for all systems.

If a project manager found deviation from the project [heneemera ity zedsaseitd o1 e 21 revipertyispe tyos figpos o
Wertical Ihome/eleutheraly-higosstudyiAnalyzedSourceiCiatkipanga-1.2 Sipango/opentypesfbgpos.c

plan in schedule, he/she has to do corrective action to
bring expected future schedule performance in line with the
project plan [32]. In such situation, the project manager
may want to know a viable solution to the problem. Collab-
orative filtering can present a set of the most similar systems
to the ongoing system, so that we can explore the product
and process data collected in these similar systems, and w
would find a concrete solution. We think that to proceed
Mega Software Engineering effectively, we need to provide
not only a bird’s-eye view of software systems and projects,
but also concrete information useful for software developers
and project managers.

3.4. Code-Clone Detection

As an example of deep analysis for the large collection
of software engineering data beyond project boundaries, we P o o 25 B
will show code-clone detection tools CCFinder and Gemini B ®
for large scale of source code [21, 40].
Code clone is a code fragment in a source file thatisiden- Figure 5. Scatterplot of clones between Qt
tical or similar to another. CCFinder takes a set of source- and GTK
code files as an input, and generates a list of code-clone lo-
cations as the output. For efficient detection, CCFinder first
performs a lexical analysis of the input source code, andsoftware systems. Also, we can create an effective search
obtains a single sequence of tokens. This token sequence igol for similar code portion to the huge archive of organi-
normalized and transformed to remove the effect of the dif- zational software assets.
ference of user-defined names or that of other meaningless The code clone detection requires high CPU power and
clones. The resulting token sequence is analyzed to generhuge memory space for million of source codes. For exam-
ate clone locations using the index tree algorithm [14]. The ple, for two versions of Open Office [31], which are about
output of CCFinder is sent to Gemini to visualize distribu- 10M lines of code in total, CCFinder requires 68 minutes
tion and characteristics of clones in the system. on Pentium IV 1.5GHz with 1 GByte memory. However,
Figure 5 is an example of the display of Gemini. This is we think that they are affordable computer environment and
the scatterplot of detected clones between two GUI libraries analysis time.
Qt [39] and GTK [13]. These two libraries are developed
independently in different organizations. Qt (version 3.2.1) 3.5. Software Component Search
is composed of 929 files and about 686K lines in total. GTK
(version 2.2.4) consists of 658 files and 546K lines in total. In the world of the Internet, or even inside a single orga-
Each dots in the scatterplot represents existence of codenization, there would be many cases such that similar soft-
clones with more than 30 tokens. Smaller tokens less thanware components (code portions) are developed indepen-
30 tokens are eliminated here. The left-upper pane showsdently in different projects day by day.
clones inside Qt, and the right-lower pane shows clones in- Collecting software components and archiving them for
sider GTK. The result is symmetrical to the main diagonal reuse of the components are important issues. Construct-
line, so the right-upper half is omitted. ing well-organized software libraries would be a very im-
The left-lower pane shows clones between Qt and GTK. portant objective in the organization; however, it requires a
The overall clone density in this pane is generally lower large amount of human resources if it would be developed
than others, but there is one exceptional portion annotatedby hand, and also it is very difficult to keep the libraries
by “a”, where there are many clones, meaning that two sys-consistent and useful.
tems share most code. This portion is the font handler for We have designed an automatic software component li-
both Qtand GTK, and we knew by reading readme files that brary that analyzes a large collection of software compo-
the font handler of Qt is imported from GTK. nents, indexing them for efficient retrieval, and ranking
Using the code clone detection technique, we can deterthem by the importance of components. We have proposed
mine similarity of source codes, leading to categorization of a novel method of ranking software components, called

Java

@O © @ [httosdemospars inforsearchce fa=bubblesor t85E ARCHELIBJEGT= 1111111111

classes

=1 | S SPARS-J search result]

Internet / Organization
Repositories
™
¥ - +—>
W f Query/ \
\J@g‘ reply

Software Com/onent SPARS-J

Searcher

Figure 6. Architecture of SPARS-J

Component Rank, based on the analysis of actual use re-
lations of components and also based on convergence of the
significance values through the use relations [20].

The use relations among software components are repre-
sented by a directed graph, and the eigenvector with eigen-
value 1 for the adjacent matrix of the directed graph is com-
puted. The sorted order by the values of each component in
the eigenvector is the result rank for the component, and
it shows its relative significance, i.e., more used compo-
nents directly or indirectly by other components are ranked
higher.

SPARS

Search I

[pubblesert

19 groups (28 classes) found

1
» [BubbleSort

Description: javasbout.com
Last modified: Sat Feb 9 23:14:52 2002
BubbleSott java (LOC: 43, # of Methods: 1)
Word info: "bubblesort" (occurrence 1)

Rank: TO0¢ CWE700)
Used by 4 classes.

» CEBubbleSort

File name:

Description: www.awprofessionalcom

Last modified: Sat Feb 9 23:14:52 2002

BubbleSott java (LOC: 43, # of Methods: 1)
Word info: "bubblesort" (occurrence 1

Rank: TO0¢ CWAF00)

Used by 4 classes.

File name:

» 1BubblefortTest

Description: www.developer.com

Last modified: Tue Jan 25 13:55:30 2003

BubbleS ot T est java (LOC: 311, # of Methods: 2)
Wordinfo: "bubblesort"(occurrence 8)

Rank: T2 O

Used by 1 clags.

File name:

Using the component rank computation as a core rank-
ing engine, we are currently developing Software Prod-
uct Archiving, analyzing, and Retrieving System for Java,
calledSPARS-J37]. Figure 6 shows SPARS-J architecture.
Various Java source programs have been collected, and they
are stored in the raw component archive. Each class in Java
is considered as a component here. The collected compo-
nents are ranked by the component rank engine and stored
at the ranked component archive.

A component searcher, who is trying to build a software
system, will give SPARS-J queries for some typical defini-
tion or typ_lcal usage of a class to bu'lc_j’ by keywords possi- found from two different sites. The second group contains
bly found in source code. These queries are analyzed at th%ne clasBubbleSortTest
query handler, and they are given to the ranked component
archive. The keywords are searched through the archive, The details of listed classes, which include the source
and the matched components are sorted by the ranks. Theqge, various metric values, and various links to other
result component list is returned to the searcher through theclasses can be viewed simply by clicking on the WEB

guery handler. browser.
The archive currently contains more than 170,000 Java

classes. It takes about one whole day for the component This system would become a very powerful vehicle to
rank engine to parse, index, and rank all of them on a PCmanage organizational software assets. It is easy to col-
server with Pentium 1V of 3GHz clock speed and 8 GByte lect all source code created in an organization at the raw
memory. component archive. Then, the analysis for the ranking and

Figure 7 shows a display result for a query keyword the retrieval for the query are performed fully automatically,
“bubblesort” for SPARS-J. The result is returned almost in- without using human hand. So the cost of the software as-
stantly to the searcher through a WEB browser. set management would reduce drastically, and the develop-

There are 28 classes having the keyword. Similar or theers can leverage past assets for efficient development and
same classes are merged into 19 groups out of 28 classesgliable products.

Figure 7. Query result of SPARS-J for “bub-
blesort”

and these 19 groups are sorted by the component ranks.
BubbleSort is the first ranked groups with two classes

4. Implementation of Mega Software Engineer- As the central archives of this framework, we prepare a

ing Framework product data archive in the CVS format and a process data
archive in an XML format. The product data archive di-

To investigate various technologies in Mega Software rectly reflects to the repositpries of each projectin th_e CVs
Engineering, we are currently developing a tool collection format. The process data is obtained by transforming log
environment calledMega Software Engineering Frame- files of CVS, Mailman, and Gnats into a standard format in
work, as shown in Figure 8. We do no intend to build a XML, and it is stored into an XML database that is imple-
single huge system to perform all the steps in Mega Soft- mented by PostgreSQL with XML extension. This frame-

ware Engineering, but we would build a framework to help work can easily handle process data obtained by other tools
to establish individual technologies in Mega Software En- if the data is transformed into the standard format in XML.

gineering. The process data and product data in the archives are an-
alyzed by a tool for measuring various metrics data and by

the tools presented in previous sections. The analysis re-
‘ — ‘ — — sults are given back to the developers and managers. We
T will add some analysis tools here. Also, we are designing

i T T i ‘T ! T a unified GUI for analysis results, which would accomplish
effective feedback to the developers and managers, leading
to the organizational benefit.

5. Discussions

Format Format Format Format
Trandlato) Translato) Trandlatoy Trandlato)

%

5.1. Distinction and Relation to Other Software En-

Managers Wailing m gineering Technologies
(cvy) (Mailman) data
n N
v P - Global Software Development
jecty
Corporate Project z
Developers 51 . Due to the rapidly increasing network capacity and speed,

and differentiated cost structures, Global Software Devel-
opment is an active area of software engineering research
and practice [17]. Although analysis shows deficiency
of global software development, compared to same site
work [16, 18], the importance of Global Software Devel-
This framework is composed of following three tool col- OPment will increase from now on and strong support tools
lections. to ease site distance barrier are really needed. For ex-
ample, Herbsleb and Mockus have proposed an “expertise
Corporate Source as a Mega Software Engineering Environforowser” to help locate far flung experts and contributors of
ment, which manages project progress and collects projeckoftware modules [26].
data

Figure 8. Architecture of Mega Software En-
gineering Framework

The Mega Software Engineering framework provides a fun-
Product and Process data archives damental environment of code sharing and message ex-
_ . . . changing for Global Software Development. Also, our ap-
Analysis tool set which extracts various feedback informa- proach provides directly needed knowledge or asset to de-
tion velopers or managers, rather than assistance of finding ex-

As described in Section 3.1, Corporate Source em- Pertise.

ploys version management tool CVS, mail ma”agemeDtKnowledge Sharing
tool Mailman, and issue (bug) tracking tool Gnats [10].

Corporate Source provides control and unified GUI for
these tools; however, we can employ other tools for ver-
sion control, mailing, or issue tracking. Note that the data
collection by Corporate Source can be done non-intrusively.
Checking into CVS repositories, sending mails, and track-
ing issues are performed as daily activities for software de-
velopment and maintenance, not as special activities for theThe light weight approach focuses on a single developer
data collection. or a single project. Our approach explores knowledge or

There are several researches in which light-weight knowl-
edge is extracted and shared among developers [4, 42].
In [4], link information is analyzed and provided as re-
lated knowledge. In [42], a system automatically provid-

ing source-code components that is not well identified or
understood by the developer is proposed.

information which is based on deeper analyses of multiple of software engineering activities, and make “experience”
projects and a huge collection of software engineering data.available through deep analysis of this raw data.
Measuring and Analyzing Open Source Project Data 5.2. Benefit of Mega Software Engineering
A measurement tool collection for CVS and mail data has

been proposed in [9]. It generates various statistical val- The objectives and approaches of the feedback for or-
ues for Open Source development projects. Also, CVS dataganizational benefit would be generally vague and hard to
is used for getting various process metric values in [8]. formalize. In our examples shown in Section 3, we sim-
In [27], it analyzes CVS data to classify the causes of ply gave the analysis results as “organizational knowledge”
changes made to software products. back to the developers and managers. Even with such a

These approaches are also considered to be examples gimple feedback strategy, we would expect organizational
analysis techniques in Mega Software Engineering. How- benefits, such that the projects will be well controlled and
ever, their systems are more specific to getting the objectivethe productivity will increase drastically due to the reuse of
statistical values or classification. We are trying to build a Past product and process data. Also, we would expect to
more flexible framework for a large collection of projects, in improve reliability of products using fault data of similar or
which we can extract both inter-project knowledge of pro- related projects.

cess and product for various objectives. Thus, we employ These improvements are heavily rely on the fact that
an exchangeable standard format in XML for process data,We can fairly easily create organization-wide huge assets of
and use a standard database to archive it. Once the data Rast products and processes, which had not been well struc-
in the form of a standard database, we can apply varioustured or managed by human hand or by traditional software
techniques for data mining for traditional data. engineering technologies.

Measurement-Based Improvement Framework 5.3. Feasibility of Mega Software Engineering

There are a large number of researches and practices

on frameworks of measurement and improvement. Goal We can say that Mega Software Engineering has been
Question Metrics paradigm is an example in which suit- already achieved in some part as shown in Section 3. Data
able metrics are derived from measurement objectives [1].collection would be generally straightforward by using cur-
The frameworks of software process improvement suchrent technologies, such as Open Source development tools.
as CMM [35] and SPICE [38] are also cases that aim Analyses for the collected data would be more difficult and
measurement-based improvement for organization, and Perwould need more elaboration. However, current technolo-
sonal Software Process targets improvement for personapies for large-scale analysis on WEB, database, and source
capability [19]. program will be good resources for the needed analyses.
The goal of the feedback for the organizational benefit is
sometimes unclear as mentioned above. Once a clear goal

be an improvement framework similar to those. However, would be defined. w Id desian a more elaborativ
Mega Software Engineering is different in the sense that it ould be detined, e could design a more elaboratlve sys-
tem to get an effective feedback.

assumes organizational-wide huge data collection of many , . . .
projects and software systems, rather than a single person or We do not think that there is a single sys_tem which sup-
rts all the steps of the collection, analysis, and feedback

.) 0
single project. Also, the analyses made by Mega SoftwareP) :
Engineering are more intensive and deeper ones compare{i1 Mega Software Engineering. The system becomes so

to per-project metric values made by some frameworks. uge and it WPUId not be well QeS|gn¢d. We would prefer
to have a flexible framework with various pluggable tools

Experience Factory which can be replaced for the objectives and approaches of
the data collection, analysis, and feedback.

We might consider that Mega Software Engineering would

Vic Basili's group has developed and successfully applied
the concept of an “Experience Factory,” where organiza-)
tions systematically collect and reuse past experiences [2].6. Conclusions

Indeed, Neto et al. propose a “knowledge management”

framework for storing such experience base for organiza- We have proposed a novel concept of Mega Software En-
tions [29]. We believe that Mega Software Engineering is gineering, and presented several of its core technologies.
an evolution of the Experience Factory concept, enrichedAlso, we have shown an architecture of the Mega Soft-

from the “communal” aspects of Open Source software de-ware Engineering framework that is currently under devel-

velopment. Hence, instead of requiring a separate organizaespment.

tional element that captures and packages relevant “experi- Previous work in software engineering research has
ence elements,” we propose to directly capture the contentgyiven limited attention to data collection and analysis of

tens of thousands of projects. Now we can have very pow- [21] T. Kamiya, S. Kusumoto, and K. Inoue. CCFinder: A Multi-
erful hardware at hand and we can apply various technolo-

gies to huge data collection and intensive analysis. There-
fore, we believe that we are at the best starting point of [22

Mega Software Engineering for organizational and commu-
nal benefit.

References

(1]

(2]

(3]
(4]

(5]
(6]
(7]
(8]

9]

(10]
[11]
(12]
[13]
(14]

(15]

(16]

(17]

(18]

(19]

[20]

V. R. Basili. Goal Question Metrics Paradigm, in Ency-
clopedia of Software Engineering (J. Marciniak eghages
528-532. John Weily and Sons, 1994.

V. R. Basili and G. Caldiera. Improve Software Quality by
Reusing Knowledge and Experiencé&loan Management
Review Fall:55-64, 1995.

B. Berliner. CVS II: Parallelizing Software Development.
In Winter USENIX Conferenc&Vashington, D.C., 1990.

D. Cubranic, R. Holmes, A. Ying, and G. C. Murphy. Tool
for Light-weight Knowledge Sharing in Open-source Soft-
ware Development. 18rd WS Open Source Sgages 25—
30, Portland, OR, USA, 2003.

Diffutls. http://www.gnu.org/software/diffutils/.

J. Dinkelacker and P. Garg. Corporate Source: Applying
Open Source concepts to a corporate environment (Position
Paper). InLst WS Open Source Skronto, Canada, 2001.

J. Dinkelacker, P. Garg, D. Nelson, and R. Miller. Progres-
sive Open Source. IICSE Orlando, Florida, 2002.

D. Draheim and L. Pekacki. Process-Centric Analytical
Processing of Version Control Data. Int. WS Principles

of Software Evolutionpages 131-136, Helsinki, Finland,
2003.

D. German and A. Mockus. Automating the Measurement
of Open Source Projects. Brd WS Open Source Sgages
63-68, Portland, OR, 2003.

Gnu. Gnats Project. http://www.gnu.org/software/gnats.
Gnu. Mailman Project. http://www.lists.org.

Gnu. Savannah Project. http://savannah.gnu.org.

GTK Project. http://www.gtk.org.

D. Gusfield. Algorithms on Strings, Trees, and Sequences
pages 89-180. Cambridge University Press, Mass., 1997.
T. J. Halloran, W. L. Scherlis, and J. R. Erenkrantz. Beyond
Code: Content Management and the Open Source Devel-
opment Portal. IrBrd WS Open Source SPortland, OR,
USA, 2003.

J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter.
An Empirical Study of Global Software Development: Dis-
tance and Speed. ICSE pages 81-90, Toronto, Canada,
2001.

J. D. Herbsleb and D. Moitra. Global Software Develop-
ment. IEEE Software18(2):16-20, 2001.

J. D. Herbsleb and D. Moitra. An Empirical Study of Speed
and Communication in Globally Distributed Software De-
velopment.IEEE TSE 29(6):481-494, 2003.

W. S. Humphreylntroduction to the Personal Software Pro-
cess Addison-Wesley, 1996.

K. Inoue, R. Yokomori, H. Fujiwara, T. Yamamoto, M. Mat-
sushita, and S. Kusumoto. Component Rank: Relative Sig-
nificance Rank for Software Component Search.IG8E
pages 14-24, Portland, OR, 2003.

10

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]
[32]

[33]

[34]

[35]

[36]
[37]

[38]
[39]
[40]

[41]

[42]

[43]

Linguistic Token-based Code Clone Detection System for
Large Scale Source CodEEE TSE 28(7):654-670, 2002.

] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. Au-

tomatic Categorization for Evolvable Software Archive. In
Int. WS Principles of Software Evolutiopages 195-200,
Helsinki, Finland, 2003.

S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue.
Automatic Categorization Tool for Open Software Reposito-
ries. INWS Open-Source in an Industrial Contegkhaheim,
CA, 2003.

S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue. On
Automatic Categorization of Open Source Software3ridh
WS on Open Source Sfiages 79-83, Portland, OR, 2003.
T. K. Landauer, P. W. Foltz, and D. Laham. Introduction to
latent semantic analysiRiscourse Processeg5:259-284,
1998.

A. Mockus and J. D. Herbsleb. Expertise Brower: A Quan-
titative Approach to Identifying Expertise. ICSE pages
503-512, Orlando, FL, 2002.

A. Mockus and L. G. Votta. Identifying Reasons for Soft-
ware Changes Using Historic Database. IGEM pages
120-130, San Jose, CA, 2000.

Mozilla. Bugzilla Project. http://www.bugzilla.org.

M. G. M. Neto, C. B. Seaman, V. Basili, and Y. Kim. A
Prototype Experience Management System for a Software
Consulting Organization. IBEKE 2001Buenos Aires, Ar-
gentina, June 2001.

N. Ohsugi, A. Monden, and S. Morisaki. Collaborative
Filtering Approach for Software Function Discovery. In
Int. Symp. Empirical SE (ISESE), valgfages 45-46, Nara,
Japan, 2002.

Open Office Project. “http://www.openoffice.org”.

Project Management Institute, A Guide to the Project Man-
agement Body of Knowledge 2000 Edition, 2000.

E. S. Raymond.The Cathedral and the BazaaO'Reilly,
1999.

B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based
Collaborative Filtering Recommendation AlgorithmsIm
World Wide Web Conf. (WWW1Q)ages 285-295, Hong
Kong, 2001.

Software Engineering Institute, Carnegie Mellon University,
http://www.sei.cmu.edu/cmm/.

SOURCEFORGE.net. http://sourceforge.net/.

SPARS Project, Osaka University Software Engineering
Lab. http://www.spars.info/SPARS/index.html.en.

SPICE Project. http://www.sgi.gu.edu.au/spice/.

Trolltech. Qt. http://www.trolltech.com.

Y. Ueda, Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue.
Gemini: Code Clone Analysis Tool. Int. Symp. Empirical
SE (ISESE), vol,pages 31-32, Nara, Japan, 2002.

T. Yamamoto, M. Matsusita, T. Kamiya, and K. Inoue.
Measuring Similarity of Large Software Systems Based on
Source Code Correspondence. Technical Report of Dept. of
ICS, Osaka University, [IP-03-03-02, 2002.

Y. Ye and G. Fischer. Supporting Reuse by Delivering Task-
Relevant and Personalized Informationl@SE pages 513—
523, Orlando, FL, 2002.

ZeeSource. Corporate Source. http://www.zeesource.net/.

