
Title コードクローン分析ツールGeminiを用いたコードク
ローン分析手法

Author(s) 肥後, 芳樹; 楠本, 真二; 井上, 克郎

Citation 第5回 クリティカルソフトウェアワークショップ
（WOCS）予稿集. 2005, p. 211-218

Version Type AM

URL https://hdl.handle.net/11094/51071

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

コードクローン分析ツールGeminiを用いたコードクローン分析手順

肥後 芳樹† 楠本 真二† 井上 克郎†

あらまし ソフトウェアの保守作業を困難にしている原因としてコードクローンが挙げられる．コードクロー
ンとは，ソースコード中の同一，または類似した部分を表す．あるコード片にバグが含まれていた場合，その
コード片のコードクローン全てについて修正の是非を検討する必要がある．我々の研究グループでは，コードク
ローンに対する保守支援を行うため，分析環境 Gemini を開発してきている．本稿では，Gemini を用いた効果
的な分析手順について考察する．また，実際に提案した分析手順を用いて適用実験を行った．

キーワード ソフトウェア保守，コードクローン

1. ま え が き

ソフトウェアの保守作業を困難にする要因の 1つと

してコードクローンが指摘されている [2]．コードク

ローンとは，ソースコード中に含まれる同一または類

似したコード片のことであり，「重複コード」とも呼ば

れる．コードクローンがソフトウェア中に作りこまれ

る原因として，既存コードのコピーとペーストによる

再利用，頻繁に用いられる定型処理，パフォーマンス

改善のための意図的な繰り返し，コード生成ツールに

よって生成されたコードなどがある [1], [4]．コードク

ローンの存在が保守作業を困難にするのは，修正され

るコード片のコードクローンが存在すれば，その全て

のコードクローンに対して修正の是非を検討する必要

があるからである．これまでに多くのコードクローン

検出・保守支援手法が開発されている [1], [3], [7], [9].

我々の研究グループでもこれまでにコードクローン

検出ツールCCFinder [4]と分析ツールGemini [10]

を開発してきている．CCFinderは大規模なソフトウェ

アから実用的な時間でコードクローンを検出すること

が可能である．CCFinder の出力はテキストベースで

あり，コードクローンの位置情報はファイル名・行番

号・列番号で表される．しかし，実システムに対して

コードクローン検出を行うと，何万何十万というコー

ドクローンが検出されてしまい，テキスト情報のみで

は検出されたコードクローンの把握，理解は難しい．

そこで，検出したコードクローンの分析には Gemini

を用いる．Gemini はクローン散布図やメトリクスグ

ラフなどさまざまなビューを用いてコードクローン情

報の可視化を行う．Gemini を用いることで，ユーザ

は検出されたコードクローンの量や分布状態をより容

易に把握することができると期待される．

本稿では，Gemini を用いたコードクローンの分析

†大阪大学大学院情報科学研究科，大阪府
Graduate School of Information Science and Technology, Os-

aka University, Toyonaka, 560-8531 Japan

手順について述べる．コードクローン分析を行う目的

としては，例えば以下のものが考えられる．

（ 1） 設計とコードの一貫性確認：コードレビュー

の 1つの目的は，ソースコードと設計情報の間の一貫

性確認である．一貫性確認の 1つの項目として，コー

ドクローンの利用が考えられる．具体的には，設計情

報で重複している部分はソースコードでも重複してお

り，それ以外の部分には重複をしている部分がないか

を確認する．

（ 2） 信頼性の改善：長期間保守をされているシス

テムのソースコードには多くのコードクローンが存在

する可能性が高い．新たなソフトウェア保守の際に，

保守対象のコード片に対するコードクローンを調査す

ることで，変更漏れを防ぐことが可能となる．

（ 3） 保守性の改善：複数のバージョンのソース

コードが与えられたときに，バージョン間でのコード

クローンの遷移を調査し，保守作業の効率化を図る．

例えば，繰り返し修正が加えられているコードクロー

ンは，集約などを行い将来的な修正コストを抑えるべ

きであるかもしれない．一方で，安定しているコード

クローンはシステムの保守コストを悪化させてはいな

いので，リファクタリングは不要であると思われる．

本稿で述べる分析手順は，このうち，1.設計とコー

ドの一貫性の確認を目的としている．もちろん，設計

とコードの一貫性確認にコードクローン分析だけが有

効なわけではない．ソフトウェアのドメインに応じて，

より優先度の高い分析方法は多く存在する．コードク

ローン分析は，対象のドメインにあまり左右されない，

二次的な解析として有効ではないかと思われる．適用

実験では，筆者らが開発した Gemini 自体を対象と

した．

2. コードクローン分析ツール: Gemini

本節では，コードクローン分析ツールGemini [10]

の紹介を行う．全ての機能を紹介することは紙面の都合

上無理があるので，本稿で用いているコードクローン

第 5 回クリティカル・ソフトウェア・ワークショップ 2005 年 11 月

第 5 回クリティカル・ソフトウェア・ワークショップ 2005 年 11 月

の定義，Gemini内部で用いているコードクローン検出

ツール CCFinder，そして本適用実験で用いたクロー

ン散布図，メトリクスグラフ, ファイルリスト，フィル

タリングメトリクス RNR(S)について説明する．

2. 1 コードクローンの定義 [5]

あるトークン列中に存在する 2 つの部分トークン

列 α，β が等価であるとき，αと β は互いにクローン

であるという．またペア（α，β）をクローンペアと呼

ぶ．α，β それぞれを真に包含する如何なるトークン

列も等価でないとき，α，βを極大クローンと呼ぶ．ま

た，クローンの同値類をクローンセットと呼ぶ．ソー

スコード中でのクローンを特にコードクローンという．

2. 2 コードクローン検出ツール: CCFinder

CCFinder [4]はプログラムのソースコード中に存

在する極大クローンを検出し，その位置をクローンペ

アのリストとして出力する．検出されるコードクロー

ンの最小トークン数はユーザが前もって設定できる．

CCFinderのコードクローン検出手順（ソースコー

ドを読み込んで，クローンペア情報を出力する）は以

下の 4つの STEPからなる．

STEP1（字句解析）: ソースファイルを字句解析

することによりトークン列に変換する．入力ファイル

が複数の場合には，個々のファイルから得られたトー

クン列を連結し，単一のトークン列を生成する．

STEP2（変換処理）: 実用上意味を持たないコー

ドクローンを取り除くこと，及び，些細な表現上の違

いを吸収することを目的とした変換ルールによりトー

クン列を変換する．例えば，この変換により変数名は

同一のトークンに置換されるので，変数名が付け替え

られたコード片もコードクローンであると判定するこ

とができる．

STEP3（検出処理）: トークン列の中から指定さ

れた長さ以上一致している部分をクローンペアとして

全て検出する．

STEP4（出力整形処理）: 検出されたクローンペ

アについて，ソースコード上での位置情報を出力する．

2. 3 クローン散布図

クローン散布図の簡単なモデルを図 1に示す．散布

図の原点は左上隅にあり，水平軸，垂直軸は，それぞ

れソースファイルの並び (f1から f6)に対応している．

両軸上で，原点から順にそれぞれのソースファイルに

含まれるトークンが並んでいる．座標平面内に点がプ

ロットされている部分は，その両軸の対応するトーク

ンが一致することを意味する．したがって，散布図の

主対角線は，両軸の同じ位置のトークンを比較するこ

とになり，全ての点がプロットされることになる．一

定の長さ (CCFinder で設定される最小一致トークン

数) 以上の対角線分が，検出されたクローンペアであ

る．図 1では，f1 から f6 までのファイルが，それぞれ

a b a f g h b c b d c e i j k a b c

a b a f g h b c b d c e i j k a b c

f1
f2

f3
f4

f5
f6

f1 f2 f3 f4 f5 f6

: Matched position

f1, f2, …, f6 : File
a, b, …, k : Token

図 1 クローン散布図モデル

���������
	���	
���������
���

���

���

���������
	���	
���������
���

���

���

(a) 初期値

���������
	���	
���������
���

���

���

���������
	���	
���������
���

���

���

(b) DFL 軸の下限を変更

図 2 メトリクスグラフモデル

3つのトークンを含んでいる．ファイルの並びはファ

イル名の辞書順となっている．検出されるクローンペ

アは f1 と f6 に含まれるトークン列”ab”と，f3 と f6

に含まれるトークン列”bc”である．

2. 4 メトリクスグラフ

メトリクスグラフは検出されたコードクローンをメ

トリクスを用いて特徴づける．特徴づけされたコー

ドクローンはクローンセット単位で表される．メトリ

クスグラフの簡単なモデルを図 2 に表す．メトリク

スグラフは多次元並行座標表現 [6] を用いている．こ

のグラフで用いられているメトリクスは，RAD(S)，

LEN(S)，RNR(S)，POP (S)，DFL(S) の 5 つで

ある．ここでは，RNR(S) を除く 4 つのメトリクス

について簡単に説明を行う．RNR(S)については 2. 6

節を参照されたい．

RAD(S): クローンセット S 内のコード片が含まれ

るファイル集合 F が，ファイルシステムの中でディレ

クトリ構造的にどれだけ分散しているかを表す．ディレ

クトリ構造を表す木構造を考え，F 内の全てのファイ

ルに共通の親ノードの中で最も下位層に存在するノー

コードクローン分析ツール Gemini を用いたコードクローン分析手順

ドまでの距離を求め, S 内でのその最大値を RAD(S)

として定義する．

LEN(S): S 内に含まれるコード片のトークン数の

平均値を表す．

POP(S): S 内のコード片単位の要素数である．

POP (S) が高いということは，同形のコード片が多

く存在することになる．

DFL(S): S に含まれるコード片に共通するロジッ

クを実装するサブルーチンを作り，各コード片をその

サブルーチンの呼び出しに置き換えた場合の減少が予

測されるトークン数を表す．

5つのメトリクスは図 2の縦軸となっており，それ

ぞれにメトリクス名のラベルがついている．このグラ

フではクローンセット毎に 5つの縦軸上の点を結ぶ折

れ線が引かれている．ユーザはこれら 5つの座標の上

限と下限を変更することで任意のクローンセットを選

択することが可能である．例として図 2(b)は，DFL

軸の下限値を変更した状態を表している．この変更に

よって，図 2(a)では選択状態であったクローンセット

S2 が非選択状態となっている．

2. 5 ファイルリスト

ファイルリストでは，ユーザは定量的に特徴的な

ファイルを選択することができる．以下のメトリクス

がファイルを定量的に特徴付けるために用いられて

いる．

NOL(F): ファイル F の行数を表す．

NOT(F): F のトークン数を表す．

NOC(F): F に含まれているコードクローンの数

を表す．

ROC(F): F がどの程度重複化しているかを表す．

NOF(F): F がコードクローンを共有しているファ

イルの数を表す．

ファイルリストはテーブル形式で実装されており，

各行に 1つのファイルがそのメトリクス値と共に表示

される．ファイルリストは行のソーティング機能があ

り，各メトリクス値の昇順，あるいは降順にファイル

を並び替えることが可能である．また，ファイルリス

トはクローン散布図と連携しており，ファイルリスト

において選択されたファイルがクローン散布図で強調

表示される．

2. 6 フィルタリングメトリクス: RNR(S)

ここではフィルタリングメトリクス RNR(S)につ

いて述べる．RNR(S)はクローンセット S 中に含ま

れるコード片がどの程度非繰り返しであるかを表すメ

トリクスである．例えば，以下のトークン列を考える．

x a b c a b c∗ a∗ b∗ c∗ y.

* がついたトークンはそれが繰り返しトークン列に含

まれていることを表している．このトークン列を入力

として与えた場合，CCFinder は以下の 2つのコード

片をクローンとして検出する．

F1. x a b c a b c∗ a∗ b∗ c∗ y,

F2. x a b c a b c∗ a∗ b∗ c∗ y.

コード片 F1は 6トークンから成り，そのうち 1トー

クンが繰り返しトークンである．一方コード片 F2も

6トークンから成り，そのうち 4トークンが繰り返し

トークンである．この場合，これらのコード片からな

るクローンセット S1 の RNR(S1)は，

RNR(S1) =
5 + 2

6 + 6
=

7

12
= 0.583̇

となる．これまでの経験からRNR(S)の値が低い場合

は，C言語であれば連続した printfや scanfであっ

たり，Java言語であれば連続した import文であった

りと，目で確認を行ってもあまり意味のないコードク

ローンであることがわかっている．RNR(S)を用いる

ことでこのようなコードクローンを取り除くことが可

能となる．また，RNR(S) はメトリクスグラフで用

いられいているだけでなく，クローン散布図において

も用いられている．クローン散布図では RNR(S)が

低いコードクローンは青く描画され，他のクローンと

区別がつくようになっている．

3. 効果的な分析手順

上記の特徴から，Gemini を用いた効果的であると

思われる分析方法を提案する．なお，STEP2A, 2B,

2Cは順序不同である．

提案する分析手順¶ ³
STEP1: 大まかな把握

STEP2A: 要素数の多いクローンセットの特定

STEP2B: トークン数の多いクローンセットの

特定

STEP2C: 多くのファイルとクローンを共有し

ているファイルの特定µ ´
以降本節では，各 STEPについての説明を行う．

STEP1: 大まかな把握

新規でコードクローン分析を行う場合は，まずク

ローン散布図を用いてコードクローンの分布状態を大

まかに把握するとよい．クローン散布図では，マウス

カーソル位置の垂直方向のファイル，水平方向のファ

イルのパスがリアルタイムで表示されるため，目立つ

部分にマウスカーソルを移動させるだけで，その部分

がどのファイルであるのかを知ることができる．

以下の 2つの部分が目立ちやすい部分である．

• 一定の範囲内にコードクローンが密集している

第 5 回クリティカル・ソフトウェア・ワークショップ 2005 年 11 月

部分

• 同じようなパターンが繰り返し現れている部分

また，クローン散布図はメトリクス RNR(S)を考慮

したコードクローンの表示を行っている．ユーザは

RNR(S)の閾値を決めることが出来る．RNR(S)の

値が閾値未満のコードクローンは青色，閾値以上の

コードクローンは黒色で描画される．目立つ部分の

コードクローンの多くが青色の場合は，その部分に注

意を払う必要は少ないと思われる．

STEP2A: 要素数の多いクローンセットの特定

要素が多いということは，その機能がソフトウェア

の多くの箇所で実装されていることを表しており，ソ

フトウェアの象徴的な処理部分であると考えられる．

また，要素が多いということは，その部分にバグが検

出された場合，多くの箇所で同様の修正を行わなけ

ればならないことを示しており，このようなコードク

ローンは望ましくないと捉えることができる．このよ

うなことから，要素数の多いクローンセットはリファ

クタリングの対象となるのではないのかとも考えら

れる．

要素数の多いクローンセットの特定にはメトリクス

グラフを用いる．要素数を表すメトリクスは POP (S)

であるが，フィルタリングメトリクス RNR(S)も同

時に用いた方が好ましい．なぜなら，これまでの経験

から，繰り返し部分は要素数の多いクローンセットに

なりがちであることがわかっているからである．以下

の部分を変更することで，要素数の多いコードクロー

ンを特定することができる．

• RNR 軸の下限を上げて，繰り返し部分の多い

コード片から成るクローンセットを取り除く

• POP軸の下限を徐々に上げていき，該当クロー

ンセット数が少なくなるようにする

メトリクスグラフの絞込みの結果，該当したクロー

ンセット一覧は，クローンセットリストと呼ばれる

ビューに表示される．ユーザはこのリストから任意の

クローンセットを選択し，そのソースコードを閲覧す

ることができる．

STEP2B: トークン数の多いクローンセットの特定

トークン数が小さいコードクローンは，偶然の一致

によるものが存在するが，トークン数の大きいコード

クローンはそのほとんどがコピーとペーストにより生

成されたものであると考えられる．通常コピーとペー

ストの後には，変数名の付け替えや呼び出すメソッド

の変更など細かな修正が行われる．もしこの修正漏れ

があった場合はバグが発生してしまう．トークン数の

大きいコードクローンを特定し，そのような確認作業

を行うことは有効ではないかと思われる．

トークン数の多いクローンセットの特定にもメトリ

クスグラフを用いる．要素数の多いクローンセットの

���������
	��
��

��� �

������� �

����� �

��������� �"! #%$'& �%(*)
+%, -%�.(�/��103254%�,�6�758 & ($

�����.��9�: $ �
�.
 ,%6�758 �
��

;<;>=@? ACBED@F G1H I ,%6�758�J K1L�K
#�$M& �%(*N O

P>PQP

RRR

���������
	��
��

��� �

������� �

����� �

��������� �"!��������� �"! #%$'& �%(*)
+%,#%$'& �%(*)
+%, -%�.(�/��103254%�-%�.(�/��103254%�,�6�758 & ($,�6�758 & ($

�����.��9�: $ �
�.
 ,%6�758 �
��

;<;>=@? ACBED@F G1H I ,%6�758�J K1L�K
#�$M& �%(*N O

P>PQP

RRR

図 3 Gemini の論理アーキテクチャ

絞込みと似ており，POP (S)の代わりに LEN(S)を

用いればよい．

STEP2C: 多くのファイルとコードクローンを共

有しているファイルの特定

多くのファイルとコードクローンを共有している

ファイル内に存在するコードクローンは，現在の設計

ではまとめることが困難なものであるかもしれない．

プログラミング言語に適切な抽象化機構が存在してい

ないのが原因であるかもしれないが，このようなコー

ドクローンが多く存在する場合は，設計をみなしたほ

うが良いのかもしれない．またこのようなコードク

ローンは，アスペクト思考プログラミングの「横断的

関心事」であるかもしれない．

多くのファイルとコードクローンを共有している

ファイルの特定にはファイルリストを用いる．ファイ

ルリストには，コードクローンの検出対象となってい

るファイルの一覧が表示されている．これらのファイ

ルをメトリクス NOF (F)の値の降順にソーティング

をすることによって，多くのファイルをクローンを共

有しているファイルを特定することができる．また，

ファイルリストでファイルを選択すると，クローン散

布図の該当ファイルの部分が強調表示される．

4. 適 用 実 験

本実験の目的は，提案した分析手順を用いるとどの

ようなコードクローンが発見されるかを調査すること

である．本実験の対象は Gemini のソースコードであ

る．筆者らが作成したソフトウェアを対象とすること

で，検出されたコードクローンが設計情報に含まれる

ものかどうかを判断することができる．Geminiのソー

スコードの総ファイル数は 126個，総行数は約 26,000

行である．図 3は Geminiの論理アーキテクチャを表

した図である．Gemini は分析の開始時に CCFinder

の出力ファイルを読み込み，各種メトリクスを計算し，

データベースを構築する．分析時は，各 UIはデータ

ベースから必要は情報を入手し，さまざまな形でユー

ザに提示する．ユーザは，各 UIを用いてインタラク

ティブにコードクローンの分析を進めることができる．

コードクローン分析ツール Gemini を用いたコードクローン分析手順

�

�

�

�

�

�

(a) 全体

���

���

���

���

���

���

(b) 部分 A を拡大

(c) 部分 B を拡大

���

���

���

���

(d) 部分 C を拡大

図 4 クローン散布図

4. 1 STEP1:大まかな把握

図 4(a) は Gemini のソースコード全体のクローン

散布図である．本実験ではこのクローン散布図上の目

立つ部分，A，B，C がどのようなコードクローンで

あるかの調査を行った．

4. 1. 1 部分 A: クローンペアデータ

図 4(b) は図 4(a) の A の部分を拡大したものであ

る．a1，a2，a3の３つのファイル (クラス)に多くの

コードクローンが保有されている．これら 3つのクラ

スは各々クローンペアデータを構成するためのクラス

である．a1 は 1 つのファイル内に存在するクローン

ペアデータを表すクラスであり，a2 の部分はいくつ

かのファイル内のデータを表すクラスであり，a3 は

対象ソースコード全体のデータを表すクラスである．

つまり a3 は複数の a2を要素として持ち，さらに a2

は複数の a3 を要素として持つ構造となっている．消

費メモリ量を抑えるためにこのような構造となってい

る．ソースコードを閲覧したところ，実際にクロー

ンとなっていたのは，クローンペアの情報をクローン

散布図に書き込むメソッド群であった. 高いスケーラ

ビリティを実現するために，検出されたクローンの量

によって異なった粒度でクローン散布図に書き込む実

装としているため，似たような処理の流れを持ったメ

ソッドが対象に定義されている．これは設計情報に含

まれるクローンであった．

4. 1. 2 部分 B: Tableビュー

図 4(c) は図 4(a) の B の部分を拡大したものであ

る．この部分はディレクトリ単位で類似している部分

が多数存在している．図 4(c)の太枠 (赤)の部分は類

似度の高いディレクトリを表している．この部分は，1

第 5 回クリティカル・ソフトウェア・ワークショップ 2005 年 11 月

つのディレクトリにつき，１つの Tableビューを作成

している．Table ビューとは，J2SDK の標準ライブ

ラリに含まれる javax.swing.JTable を継承して作成

したビューを意味する．1つの Tableビューは以下 6

つのクラスから構成される．

• テーブルの実体となるクラス

• テーブルのデータを表すクラス

• テーブルの行の並び替え機能を実装するクラス

(2つ)

• テーブルの見た目 (色，セルの幅など)を制御す

るクラス

• テーブルのポップアップメニューを構成するク

ラス

Gemini には Tableとして実装されているビューが

複数存在する．例えば，対象ソースコードの Table

ビュー (ファイルリスト)，検出されたクローンセット

の Table ビュー，1 つのクローンセットに含まれる

コード片の Tableビューなどがそうである．これらの

Tableビューでは扱うデータは異なるが，その機能は

非常に類似している．実際に新しい Tableを作成する

場合，既存のリストの実装部分をコピーし，細かい変

更を加えていくという方針で実装を行ったため，非常

に類似したディレクトリとなっている．これも設計情

報に含まれるクローンであった．

4. 1. 3 部分 C: ScatterPlotPanel

図 4(d) は図 4(a) の C の部分を拡大したものであ

る．この部分は，クローン散布図を描画する Panelを

実装しているファイル (クラス) である．このファイ

ルにはコードクローンが集中している部分が二箇所存

在した．c1の部分は，マウスイベント (クリックやド

ラッグなど) が発生した時に呼び出されるメソッドの

定義部分であった．これらのメソッドの中では，イベ

ントが発生した座標がどのファイルに該当するのかを

求めるために位置計算を行っており，その部分がコー

ドクローンとなっていた．c2の部分はコードクローン

の描画の位置計算を行っている部分である．クローン

散布図は拡大表示機能などがあるために，位置計算を

行う部分が複数箇所に存在してしまっている．これら

は 1つのメソッドにまとめられることなく実装されて

しまっていたため，コードクローンとなっていた．こ

れらは，設計情報に含まれないクローンであった．

4. 2 STEP2A:要素数の多いクローンセットの

特定

同形のコード片が最も多かった 2つのクローンセッ

トがどのようなものであったかを述べる．なお，予め

メトリクス RNR(S) を用いて，その値が 0.5 未満の

クローンセットは除いてある.

(1)位置計算を行っている部分: 対象システム内の

位置から，クローン散布図上での位置を求める計算部

分がクローンとなっていた．ここで絞込まれたコード

クローンは，4. 1. 3節で述べたコードクローンと同一

のものであった．この座標変換は，クローン散布図に

データを描画する上で不可欠なものである．クローン

散布図にはさまざまな機能があり，随所でデータの変

換を行う必要がある．そのため，複数箇所で作業変換

を行ってしまっており，コードクローンとなっている．

また，このクローンセットのRAD(S)の値は 0，つま

り全てのクローンが 1つのファイル内に含まれている

ことを表しており，集約を行うことは可能である．し

かしクローンの長さが短いここと，外部に強く依存し

ていることから集約をするべきかは疑わしい．

(2)Table ビューの行の並び替え部分: Table とし

て実装されているビューの行の並び替えを行っている

メソッドの一部がクローンとなっていた．ここで絞り

こまれたコードクローンは，4. 1. 2節で述べたコード

クローンの一部であった．前述のように，Gemini に

はさまざまな情報を一覧表示するための Tableビュー

が存在する．全ての Tableビューは 2つのクラスを用

いて行単位での並び替え機能を実装している．この中

で定義されていたメソッドがコードクローンとなって

いた．

4. 3 STEP2B:トークン数の多いクローンセット

の特定

ここではコード片が最も大きかったコードクローン

がどのようなものであったかを述べる．なお，予めメ

トリクス RNR(S) を用いて，その値が 0.5 未満のク

ローンセットは除いてある. クローン散布図を実装し

ているファイル (クラス)には，マウスによるドラック

部分を拡大する機能と，選択をする機能がある．いず

れの操作中もどこからどこまでをドラッグしているの

かをユーザに伝えるために，開始部分から現在位置ま

でを対角線とする長方形を描く実装となっている．し

かし，ズーム時と選択時で，描かれる長方形が塗りつ

ぶされるか，塗りつぶされないかの違いがあるため，

異なるメソッドで実装を行っている．各機能は 1つの

メソッドとして実装されており，そのメソッドが最も

トークン数を多いコードクローンとして検出された．

なお，1 つのコード片のトークン数は 568(97 行) で

あった．このメソッドはコピーとペーストにより作成

されたものである．

4. 4 STEP2C:多くのファイルとコードクローン

を共有しているファイルの特定

ここでは最も多くのファイルとコードクローンを共

有していたファイルがどのようなものであったかにつ

いて述べる．

Tableビューを実装しているクラスがそれぞれ他の

10個のクラスとコードクローンを共有していた．共有

していたコードクローンは，スクロールバーを生成し

コードクローン分析ツール Gemini を用いたコードクローン分析手順

ている部分，リスナーを登録している部分，マウスの

右ボタンがクリックされた時にポップアップメニュー

を表示するメソッドなど，Javaの GUIの特徴的な部

分が多くのファイルに共有されているコードクロー

ンであった．これらのコードクローンは，このソフト

ウェア独自の処理部分を実装しているというよりは，

Javaでの GUIを実装する場合の定型的な処理部分で

あった．

5. 考 察

ここでは，クローン散布図，メトリクスグラフ，ファ

イルリストの特徴をまとめる．

5. 1 クローン散布図

• 対象ソフトウェアのどの部分にどの程度のコー

ドクローンが存在するのかを俯瞰的に知ることがで

きる．

• ファイルよりも大きな単位での類似部分を知る

ことができる．例えば，図 4(c)のコードクローンは複

数のディレクトリが類似していることを表している．

• クローン散布図において目立つコードクローン

はある程度の領域内に密集している部分 (図 4(b)，図

4(d))や，繰り返し同じパターンが出現している部分

(図 4(c))である．

• クローン散布図において目立つ部分は，必ずし

もその部分に存在するコードクローンが特徴的である

ことを示しているわけではない．なぜなら，目立つ部

分に存在するコードクローンは 1種類ではなく，複数

の種類のコードクローンが混在している場合があるか

らである．

• 目立ちやすさとコードクローンの位置が関係し

ている．要素数の多いコードクローンであっても，複

数のファイル内に点在してしまうような場合は，ク

ローン散布図上でそれらは互いに離れた部分に描画さ

れてしまい，目立ちにくい．

5. 2 メトリクスグラフ

• 対象ソフトウェアに存在する特徴的なコードク

ローンを見つけることができる．クローン散布図で

は，コードクローンの位置が目立ちやすさに影響を与

えてしまうが，メトリクスグラフではそのようなこと

はない．

• メトリクス RAD(S) を用いることによってク

ローンセット内の要素がどの程度ファイルシステム上

で散らばっているか (クローン散布図上ではなれた位

置に描画されているのか)を知ることができる．

5. 3 ファイルリスト

• 定量的な情報に基づいてファイルを選択するこ

とができる．クローン散布図のように，コードクロー

ンの位置に影響されることはない．

前述したようにクローン散布図では，目立ちやすさ

とコードクローンの位置が関係している．例えば，100

個のコードクローンを含んでいるファイル (ファイル

Aとする)があるとする．もしこの 100個のコードク

ローンが全て，他の 1つとのファイル (ファイル Bと

する)と共有していた場合は，クローン散布図上では，

水平方向がファイル A，垂直方向がファイル Bの領域

内にコードクローンが密集しているのが目立つと考え

られる．しかし，100個の異なるファイルと共有して

いた場合は，特定の領域にコードクローンが密集する

ことはなく，クローン散布図上でそのようなファイル

を見つけることは困難である．しかし，ファイルリス

トを用いれば，NOC(S) の値を確認するだけで，そ

のファイルにどの程度コードクローンが含まれている

のかを定量的に知ることができる．

6. 関 連 研 究

門田ら [8]は COBOLで記述されたレガシーコード

に対してコードクローン検出を行い，バグとの関係を

調査している．この研究では，各ファイルにおいてそ

のファイルのクローンとなっている行の割合，ファイ

ル中の最大長クローンとそのファイルの改版数を定量

的に比較し，一定以上の割合でクローンが含まれてい

る場合や，非常に長いコードクローンが含まれていた

場合，そのファイルの改版数が多くなることが示され

いる．

また，Kimら [3]は，複数のバージョンに対してコー

ドクローン検出を行い，その情報がソフトウェア保守

に利用できると提唱している．例えば，同様の修正が

各コード片に施されているコード片は，将来の修正コ

ストを抑えるためにリファクタリングをするべきでは

ないかと考えられる．

7. ま と め

本稿ではコードクローン分析ツール Gemini を用い

た分析手順について述べた．また，適用実験では設計

情報に含まれるもの，含まれないもの，プログラミン

グ言語に依存したものなど，さまざまなコードクロー

ンが検出された．既に，提案手法を複数の実ソフト

ウェアに対して適用しはじめている．これらの分析結

果に基づいて，コードクローン分析方法の改善を行う

予定である．

謝辞 本研究は一部，日本学術振興会 科学研究費補

助金 基盤研究 (A)(課題番号：17200001)，文部科学省

科学研究費補助金 特別研究員奨励費 (課題番号：16・

8351)の助成を得た．
文 献

[1] I.D. Baxter, A. Yahin, L. Moura, M.S. Anna, and

L. Bier, Clone Detection Using Abstract Syntax

Trees, Proc. 14th International Conference on Soft-

ware Maintenance, pp.368-377, Bethesda, Maryland,

第 5 回クリティカル・ソフトウェア・ワークショップ 2005 年 11 月

Mar. 1998.

[2] M. Fowler, Refactoring: improving the design of

existing code, Addison Wesley, 1999.

[3] M. Kim, and D. Notkin, Using a Clone Genealogy

Extractor for Understanding and Supporting Evolu-

tion of Code Clones newblock Proc. The 2nd Inter-

national Workshop on Mining Software Repositories,

pp.17-21, May 2005.

[4] T. Kamiya, S. Kusumoto, and K. Inoue, CCFinder:

A multi-linguistic token-based code clone detection

system for large scale source code IEEE Transac-

tions on Software Engineering, vol.28, no.7, pp.654-

670, Jul. 2002.

[5] 神谷年洋, “コードクローンとは，コードクローンが引き起
こす問題，その対策の現状”, 電子情報通信学会誌 Vol.87,

No.9 pp.791-797, Sep. 2004.

[6] 加藤 博己, “データベースのビジュアルな検索と分析
(OLAP)”, 情報処理学会会誌，Vol.41 No.4 pp.363 -

368, Apr. 2000.

[7] J. Mayland, C. Leblanc, and E.M. Merlo Experiment

on the automatic detection of function clones in a

software system using metrics, Proc. 12th Interna-

tional Conference on Software Maintenance, pp.244-

253, Monterey, California, Nov. 1996.

[8] 門田暁人, 佐藤慎一, 神谷年洋, 松本健一, “コードクロー
ンに基づくレガシーソフトウェアの品質の分析”, 情報処
理学会論文誌, Vol.44, No.8, pp.2178-2187, Aug. 2003.

[9] M. Toomim, A. Begel, and S.L. Graham, Manag-

ing Duplicated Code with Linked Editing Proc. 2004

IEEE Symposium on Visual Languages and Human-

Centric Computing(VL/HCC’04), Rome, Italy, Sep.

2004

[10] 植田泰士, 神谷年洋, 楠本真二, 井上克郎“開発保守支援を
目指したコードクローン分析環境”, 電子情報通信学会論
文誌, Vol.86-D-I, No.12, pp.863-871, Dec. 2003.

