
Title Java実行履歴からのシーケンス図生成ツール

Author(s) 谷口, 考治; 石尾, 隆; 神谷, 年洋 他

Citation 組込みソフトウェアシンポジウム論文集. 2004,
2004(10), p. 108-111

Version Type VoR

URL https://hdl.handle.net/11094/51102

rights

ここに掲載した著作物の利用に関する注意 本著作物
の著作権は情報処理学会に帰属します。本著作物は著
作権者である情報処理学会の許可のもとに掲載するも
のです。ご利用に当たっては「著作権法」ならびに
「情報処理学会倫理綱領」に従うことをお願いいたし
ます。

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



組込みソフトウェアシンポジウム ESS2004

Java実行履歴からのシーケンス図生成ツール

谷口考治T石尾隆T神谷年洋I楠本真二?井上克郎T

オブ、ジェクト指向プログ、ラムで、は，オブ、ジェクトが相互にメッセージを交換することによってシステム

が動作する.そのため，プログラムの動作を理解するには，捜数のオブ、ジェクトがそれぞれどのよう

に通信しているのかを理解する必要がある.しかし，ソースコード等の静的情報のみからその動作

を理解する事は困難である.我々は，プログラムの振る舞いの理解を支援するために Javaプログ

ラムの実行履歴からUMLのシーケンス図を作成する手法を提案し，ツーノレとして実装した.本稿で

は，実行臆歴の取得と庄縮手法，圧縮結果からのシーケンス図生成手法について述べ， 4つの

Javaプログラムに対して適用することで，ツールの評価を行った.

A Sequence Diagram Generation tool 
from Java Program Execution 

Koji Taniguchit， Takashi Ishiot， Toshihiro Kamiyat， Shinji Kusumotot， and Katuro Inouet 

A software system developed by object岨orientedprogramming operates by message exchanges 

among the objects al10cated by the system. To understand such system behavior， w巴needto grasp 

how the objects are communicating. However， it is difficult to understand the b巴haviorof such 
system only from the source code. We propose a method of extracting a sequence diagram from an 

execution trace of a Java program in order to understand the behavior of the program. Also， we 

implemented the method as a tool and evaluated it through some case studies. 

1.はじめに
近年，組み込みソフトウェアの分野においても，オブ

ジェクト指向技術を用いてプログラムを開発することが

増えてきている.高いモジューノレ性や再利用性が期待

されているからである.また， UML[6]や Java言語の普

及，組み込みソフトウェア向けの開発環境の整備など

により，今後，オブPジェクト指向を取り入れる傾向はます

ます高まってくると思われる.

オブジェクト指向言語で開発されたプログラムでは，

オブジェクトが相互にメッセージを交換することによって

システムが動作する.そのため，プログラムの動作を理

解するには，複数のオブジェクトがそれぞれどのように

通信してしものかを理解する必要がある.しかし，動的

束縛など実行時に決定される要素が多いことや， 1つ

の機能に多数のオブジェクトが関与することなどから，

ソースコードなどの静的情報のみからその動作を理解

?大阪大学大学続情報科学研究科

Graduate Schoo¥ ofInformation Science and Techno¥ogy， 
Osaka University 
I科学技術振興機構さきがけ
Presto， Japan Science and Techno¥ogy Agencヅ

108 

することは国難である[3].

そこで我々は，プログラムの振る舞いの理解を支援

するために， Javaプログラムの実行臆歴から UMLのシ

ーケンス菌を作成する手法を提案し，ツーノレの作成を

行った.

一般的に，プログラムの実行履歴は膨大な量になる.

これをそのまま用いてシーケンス図の作成を行うと，区

大な図がで、きあがってしまう.この図からプログラムの処

濯の概要を理解することは困難である.そのため，提示

する情報量の削減を行う必要がある.本手法では，取

得した実行履歴中から，繰り返しなどの特定のパターン

を検出し，その部分を圧縮，抽象化して簡潔な表現に

置き換えることで，全体の情報量を削減し，プログラム

の動作を簡潔に表現するシーケンス障の作成を行う.

また，元の実行系列も記寵しておき，在日したい各部

分については部分的に圧縮結果を展開しながら閲覧

することを可能にすることで，庄縮したことによる情報の

損失の影響をノトさくしている.

本ツーノレが行う具体的な処埋は，まず，解析対象と

するプログラムを実行し，メソッド呼び出しの実行履歴を

取得する.その後，実行臆陸中に含まれる繰り返しパタ

ーンを検出し，圧縮する.そして，その結果を元にシー



組込みソフトウェア、ンンポジウム ESS2004

ケンス閣を作成することで，オブ、ジェクト慌のメッセージ

通信を簡潔に利用者に提示する.

本稿では，本ツールが行う実行履歴の圧縮と，圧縮

結果からのシーケンス菌作成について，処理の詳細を

述べる.

2.シーケンス図作成までの手j鰻
本手法では以下に示す 4つの過程を経てシーケン

ス閣を作成する.

Stepl:解析対象プログラムへの入力決定

解析対象となるプログラムへの入カを決定する.

Step2:実行履歴の取得

Steplで決定した入力を元にプログラムを動作させ，

メソッド呼び出しの実行履歴を取得する.

Step3 :実行藤監の圧縮

Step2で取得した実行履歴は膨大な量になる.その

ため，メソッド、呼び出し構造を解析，庄縮し，図として

表現できるサイズに加工する.

Step4:シーケンス圏作成

Step3の結果を元にシーケンス図を作成する.

本稿ではStep2からStep4について述べる.

3.圧縮手法
3.1.実行履躍の取得

本手法では実行履歴として，プログラム実行中に発

生するメソッド呼び出し情報を用いる.具体的には個々

のメソッド呼び出しについて，メソッド開始時にクラス名，

オブジェクト ID，メソッド名，引数の型を記録し，メソッド

終了時にメソッド終了記号を記録する.引数の型を取

得するのは，メソッド、のオーバーロード、時にどのメソッド、

が呼ばれたかを特定するためであり，実行時に引数と

して与えられた値については取得しない.これらの情報

を用いることで，実行時に呼び出されたオブ、ジェクトとメ

ソッドを特定し，呼び出し構造を符現することが可能と

なる.

3.2.実行競歴の圧縮

実行履歴中にはノレーブ。や再帰構造の中で、発生する

メソッド呼ひ、出しが全て記録されている.これらをそのま

まシーケンス鴎として表現しても，フ。ログラム全体の動

作を理解することは閤難である.そこで，実行躍歴中か

らこれらを検出，圧縮し，簡潔に図示できるようにする

必要がある.またその際にはシーケンス図として表現し

やすい構造に圧縮することが重要である.

そこで，繰り返し構造と再帰構造を検出，庄縮する

方法として，以下に示すRlからR4まで、の4つのノレール

109 

を考案した.以下それぞれについて説明する.

Rl:完全な繰り返し

実行履歴中の完全に同一な呼び出し構造が繰り返

されている箇所を検出し，圧縮する.このノレーノレに

よる圧縮は，元の実行系列の情報を損なわない.

R2:オブ?ジェクトが異なる繰り返し

実行履歴中から，オブ、ジェクト IDのみが異なる呼び

出し構造が繰り返されてしも笛所を検出し，圧縮す

るただし，圧締結果として表現される呼び出し構造

は，同一クラスのオブジェクト群に対しての呼び出し

を表すことになり，呼び出されたオブ、ジェクトを特定

することはできなくなる.この手法によって，同じ ID

のオブ、ジェクトが、シーケンス図上部に捜数表れるこ

とがある.結果のシーケンス図は，繰り返しによって

統合されるオブジェクトの組み合わせの数だけ，横

に大きくなってしまう.この問題に対して，同じオブジ

ェクトを共有する統合されたオブ、ジェクトを，さらに 1

つのオブ、ジェクト群に統合して表現する.この結果，

ある lつのオブ、ジェクトは，単体のオブ、ジェクトと，統

合されたオフ守ジェクト群の，高々 2つのオブ

でで、表現される.

R3:欠損構造を含む繰り返し

実行履露中から，呼び出し構造の一部に欠損を含

むような繰り返しを検出し，圧縮する.欠損している

呼び出しは，圧縮した結果「実行される場合と実行

されない場合があるJとしか表現できないため，元の

実行系列の構造を正確には表現しなくなる.

R4:再帰構造

実行履盤中の呼び出し構造において再帰的に呼び

出されているメソッドを検出し，圧縮する.ここではオ

ブ、ジェクトの違いを考慮せず，同一クラスの同一メソ

ッドであれば再帰として扱うものとする.さらに再帰

構造を簡潔に表現するために，呼び出しの欠損を

許容した圧縮を行う.具体的には，再帰の各階層の

中から，他の階層全てを包含するような階層の集合

を選び，それらを組み合わせて再帰構造の筏潔な

表現を作成する.このルールはEE縮効果そのものよ
りも，再帰構造の階層農を緩和し，他の圧縮ルール

の効果を高めることを主な目的としている.

4.シーケンス図の作成
圧縮した実行履歴を元にシーケンス図の作成を行う.

繰り返し回数などの，圧縮結果を元にした情報を注釈

として表現することで，より分かりゃすい図を作成する.

まず，圧縮されなかった部分はメソッド呼び出し構造



組込みソフトウェアシンポジウム ESS2004

を，そのままシーケンスとして表現する.

引によって圧縮された部分には，通常のシーケンス

に加えて，繰り返しを圧縮した部分に繰り返しを示す情

報とその田数を表記する.

R2によって圧縮された部分で、は，複数のオブヘジェク

トを統合したオブ、ジェクトへのシーケンスが存在するた

め，図中の上部に並ぶオブジエクト列の中に統合され

たオブ

する、シン一ケンスを号引iいし、てしい、てく.

R3により圧縮された部分では，発生する場合としな

い場合がある呼び出しがある.その部分については，

それが呼ばれるシーケンスと呼ばれずに素通りするシ

ーケンスの2通りを引く.

R4によって圧縮された部分は，統合されたオブ、ジェ

クトへのシーケンスを含む再起呼び出しを含んでいる.

そのため，再起呼び出しが発生する部分へ戻るような

シーケンスを引く.このシーケンスは，時間軸の過去へ

戻るような表現になるため，左側への曲線の矢印で表

すことによって，通常のシーケンスと区別できるようにす

る.

5.ツールの詳細
5.1 ツールの笑装

3，4節の手法をツーノレとして実装した.本ツーノレは，

実行履涯を取得するフ。ロファイラ，実行履歴の庄縮を

行う庄縮部，圧縮結果からシーケンス図を生成するシ

ーケンス罷生成部の 3つの部分から構成されている.

ツーノレの概要を図 1に示す.

実行履歴を取得するプロファイラは SunのJavaVM 

に用意されている JavaVirtual Machine Profiler 

Interface (ハlMPI)[l]を利用し， C言語で記述されたダ

イナミックリンクライブ、ラリとして実装した.このフ。ロファイ

ラをJavaVMにコマンドラインオフ。ションとして渡して解

析対象となる実行フ。ログラムを実行することで，実行プ

ログ、ラムで、発生する各メソッド呼び出しについて， 3.1節

で、述べた情報をスレッドご、とに実行履歴ファイノレに記録

できる.JVMPIを利用していることから，解析対象のプ

ログラムはハぼlPIの仕様に準拠している JavaVM上で

動作することが必要である.対象プログラムを特殊なハ

ード、ウェアや、ンミュレーション環境上のみでしか動作さ

せられない場合は，現在の実装では，実行履歴が取得

できない.この点については今後の課題である.

しかし，本ツールが言語および実行系に依存してい

るのはこのフ。ロファイラだ、けで、あり，実行履控取得シス

テムを作成できれば，他言語，他実行系へのツールの

110 

関1:ツールの構成閣

拡張も可能であると考える.

圧縮部では 3.2節で述べた圧縮ルールに従って，

フ。ロファイラが収集した実行履歴ファイノレから実行履歴

を読み込み，圧縮処理を行う.この時，ユーザは圧縮

オプ、ンョンを与えることによって，どのルーノレを用いて

圧縮するか，圧縮処理中の比較条件では呼び出し構

造の何階層下まで、を比較して向一性の判定を行うかな

どの条件を指定できる.また，圧縮処壊後，任縮された

部分を展開して元の実行履躍を取り出すことも可能で

あり，注目したい部分について，より詳細に解析するこ

とができる.

シーケンス図生成部では，圧縮結果を元に 4節の

方針にしたがって、ンーケンス闘を生成する.後述する

適用実験において，ある実行プログラムから生成された

シーケンス監を図 2に示す.この障ではR2によって圧

縮された部分のシーケンスが示されている.生成される

シーケンス闇には，圧縮部による圧縮が行われた場所

に注釈が表示される.図中のA，B，Cは注釈の例であり，
それぞれ，R2によって庄縮された実行履歴中の繰り返

されている部分，その繰り迭し回数，統合されたオブジ

ェクト群などを表している.現在のUMLの仕様では繰り

返しなどが表現できないため，この注釈は独自の形式

を用いて表現している.今後策定される予定の

UML2.0[7]では繰り返しが表現できるため，策定されれ
ばその形式に対応する予定である.

5ユツールの利用手順

ユーザは，本ツールのグ、ラフイカルユーザインタフヱ

ースを用いて対話的に分析を行う.

まず，ユーザは解析対象とする実行フ。ログラムと，そ



組込みソフトウェアシンポジウム ESS2004

のフ。ログラムを動作させる入力データを用意する.次に，

本ツーノレを起動し，フ。ロファイノレボタンから対象フ。ログ

ラムを実行すると，ツールがメソッド、呼び出しの実行臆

監をファイノレに保存していく.対象プログラムの実行が

終了すると，記録された実行履歴のスレッド、の一覧が表

示され，その中から任意のスレッドを指定して，圧縮部

に読み込ませる.

実行履涯の読み込みが終了した後，ユーザは圧縮

ボタンを押して圧縮処漢を行う.この時，圧縮オフ。ショ

ンを指定することにより，ヰつの/レーノレの中から適用す

るEE縮ノレーノレとその順番，繰り返しの庄縮ルーノレが呼
び出し構造を比較する際に考慮するメソッド呼び出しの

階層数を任意に指定できる.

そして最後に，シーケンス留生成ボタンを押すとシ

ーケンス国を表示するウインドウが開く(菌 2).ユーザ

は表示されたシーケンス図を見ることにより，プログラム

実行時のメソッド呼び出しの流れを理解することができ

る.

さらに，圧縮操作とシーケンス図の作成は対話的に

行うことができる.すなわち，ユーザはシーケンス鴎で、

圧縮された部分，たとえば，繰り返しになっている部分

を指定して展開し，繰り返し圧縮を行う前のシーケンス

図を表示させることで，繰り遮し l田ごとの詳細な振る

舞いを見ることもできる.

6.適用結果と考察
4つの Javaプログラム，テキストエディタjEdit[2]，コ

ードクローン解析ツーノレ Gemini[5]，スケジューノレ管理

ツーノレ scheduler[4]，本ツーノレの実行履歴庄縮部

LogCompactorに対して，本ツールの適用実験を行っ

た.まず，各フ。ログ、ラムについて実行履歴を取得し，そ

の後，圧縮手法の適用，シーケンス図の生成を行った.

schedulerでは圧縮前の実行履歴のメソッド呼び出しの

数が 4398沼であったが，圧縮により 147回まで圧縮で

きた.毘 2は，その結果から作成されたシーケンス図で

ある.この回数ならシーケンス図全体に闘を通すことが

可能であると考える.また， 208360回のメソッド、呼び出

しがあった Geminiの実行履歴では，圧縮処理により

1762回まで圧縮できたが，まだ、繰り返しになっている部

分が含まれていることも分かった.このような部分をさら

に圧縮できるような手法を考案することによって，大きな

実行腹腔からも，理解しやすいサイズのシーケンス図

が生成できると考える.

参考文献

111 

回2:schedulerから生成したシーケンス臨

[1] Java Virtual Machine Profiler Interface. 

http://java.sun.comJj2se/ 1.4/jal docs/jal guide/jvmpi 

/jvmpi.html 

[2] jEdit. http://wwwおdit.org/

[3] M. L匂ter，S. Meyers， and S. P. Reiss. Support for 

Maintaining Object・Oriented Programs. IEEE 

Transaction of Software Engineering， 

18(12):1045ぺ052，December 1992. 
[4] 月刊 JavaWorld 2002年 10月号 scheduler.

IDG Japan. 

ftp://ftp.idg.co.jp/pub/jw/021 O/scheduler _ sample.z 

lp 

[5] Y. Ueda， T. Kamiya， S. Kusumoto， K. Inou巴.

Gemini:恥1aintenanceSupport Environment Based 

on Code Clone Analysis. Proceedings of Eighth 

IEEE Symposium on Software Metrics 

(METRICS2002)， pp.67・76，Ottawa， Canada， June 

4-7，2002 

[6] Unified Modeling Language 1.5 Specification. 

OMG， March 2003. 

[7] Unified Modeling Language 2.0 Specification 

Nearing Completion. OMG. 




