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1 はじめに

モデル検査とは，状態機械で、モテツレ化されたシステ

ムを対象に，その状態?i::間を探索することで，与え

られた性質が満たされるか否かを判定する検証手法

である.従来の形式的検読手法は実用的な観点から

疑問が主主されることが多かったが，モデル検査は完

全自動化が可能なことに加え，様々な手法の発達に

より扱うことのできる状態数が飛躍的に増加したた

めに，その有効性が特に期待されている

それらの手法の内，最も重要なものの一つが記号

モデル検査 (symbolicmodel checking)である [17].

記号モデル検査では，状態集合や状態間の遷移を数

式で記号的に表し，それら数式上の処理によって状

態探索を実現する.一つ一つの状態で、はなく，数式

が表す状態集合を単位として探索を行うため，莫大

な状態を対象とする場合でも，それを表す数式が簡

潔であるならば，非常に高速な探索が可能となる.

元来，記号モデル検査という言葉は，ニ分決定グ

ラフ (BDD)によって表されたブール式の操作によっ

て検証を行う手法を指すもので、あった.論理演算を行

う高速なアルゴリズムの存在と，デジタル回路の動

作が極めて小さい二分決定グラフにより表現できる

場合が多いことから，この手法は特にハードウェアシ

ステムの検証に対し広く用いられており，開発者等

は.1998年度に ACMより ParisKanellakis Theory 

and Practice A wardを受賞している.近年では，

分決定グラフを操作して検証を行うのではなく，

つのブール式を導出して，その充足性判定問題を解

くことで，検証を行う手法も普及しつつある.

このように，記号モデル検査はハードウェアの検

証には成功を収めて来ているが，ソフトウェアシス

テムへの適用はまだ試行の段階と言える.本稿では，

記号モテ、ル検査手法のソフトウェアシステムへの適

用の試みについて，著者等の取り組みと併せて概説

する.

2 モデル検査と記号表現

2.1 モデルと検証する性質

例として，以下の並行プロセス九，P1からなる簡単

な相互排除プログラムを考える.

九:: 0: while Tr田{

1 : wait (t = 0); 

2: t = 1;} 

P1:: 0: while True { 

1 : wait (t = 1); 

2: t = O;} 

各プロセス Pi(i之江 0，1)がどの行を実行している

かをpe;(O-:; PCi -:; 2)で表すと.pe; = 2の場合が危

険領域である.相互排除は，共有変数tと，その値に

対するビジーウェイトによって実現されている.ま

た，初期状態において tの値はOか1のいずれかで

あるが不定と仮定する.この時，この並行システム

の状態は.(p句，PCl，t)の値の組合せで表現できるの

で，その動作は図 lの状態遷移闘によって表される.

(狭義の)モデル検査では，検証すべき性質は待相

論理 (temporallogic)によって記述する.ここでは

時相論理の詳しい説明は行わないが，良く知られた

時格論獲である計算木論理(CTL)を用いて，安全性

と活性を表した場合を示す.

{) AGp 常にpが成り立つ(安全性)

<:1 AFp いずれ必ずpが成り立つ (活性)

ここで.AG，AFは時相演算子と呼ばれる特殊な演

算子である.なお.p自体が計算木論理式で、あっても

よい.
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図 l状態遷移図

モデ、ル検査とは，時相論理で記述された性質が初

期状態で成立するか否かを判定する問題である.検

誌が可能な時相論理のクラスに応じて，モデ、ル検査

問題の計算量も異なってくる 例えば，計算木論理

の場合，与えられた状態遷移図に対し，その状態と

遷移の総数に比例した時間で判定が可能である [8].

相互排除が満たされるかは ~(pCo = 2八戸j= 2)が

常に成立するか，つまり， AG~(pco = 2八pCj= 2) 

を判定すればよく，この場合成り立つことがし、える.

また，スタベーションが起こらない，すなわち，

wait文において永遠に待たされることはなく，いず

れ危険領域を実行できるとしづ性質は，AG((pCO = 

l→AFpco = 2)八(pCj= 1→AFpCj = 2))と表す
ことができる.図 lのグラフを探索することで，こ

の性質は満たされないことを自動的に示すことがで

きる.これは，危険領域に入る権限を持たないプロ

セスが， ビジーウェイトを実行し続ける可能性に対

応している.

2.2 記号表現

先に，状態遷移図を明示的に扱った場合，その大きさ

に比例した時間で、モテ、ル検査問題が解けることを述

べた.しかし，並行システムの様に，システムを構成

する要素が複数存在し独立に動作する場合，システ

ム全体での状態数が莫大になり，単に状態、連、移図を求

めることすらも悶難になることが普通である.この

ことは通常，状態爆発問題(stateexplosion problem) 

と呼ばれる.記号モデル検査は，この問題を，状態

や遷移の一つ一つを明示的に区別して扱うのではな

く，状態や遷移を数式で記号的に表現し，それらを

集合として取り扱うことによって，解決することを

意図したものである.ここでは，状態集合や遷移関

係に対する記号的表現について説明する.

まず，状態の任意の集合Sは，以下の様に変数上

の2値関数S(5)で表現できる

i真 5E S 
S(5) = ~ 
I i為 5rtS

ここで Sは変数のベクトルで、あり，それらへの付値

それぞれが状態を表す

例えば，上記の例では S三 (PCO，pCj， t)であり，初

期状態は (0，0，0)もしくは (0，0，1)であるから，初期

状態の集合は1(5)三 PCO= 0八pCj= 0と表現できる.
同様に相互排除が成り立つ状態すべての集合は(到達

不可能な状態も含めて)M(5) ヨ ~(pCo= 2八pCj= 2) 
と表される.

選一移関係も遷移の集合であるので，同様に 2値関

数として表現できる.具体的には， 5'三 (pcfJ， pc~ ， t') 

を次状態における Sとして， 5からどへの遷移が存

在する場合，かっその場合のみ真となる S，8'上の2

値関数T(5，5')によって表す.重要なことは，この遷

移関係関数は，システムの記述から図 lの様な状態

遷移図を生成することなく，直接に得ることが可能

なことである. f列の場合であれば，遷移関係関数は

以下の様に表現できる.

T(5，5')三 VTi(5，5') 
l<i.<n 

ただし，Ti(l三t壬n=8)は以下の通りとする.

Tj(5，5')三 (PCO= 0)八(pCo= 1) 八 (pC~ = pCj) 
八(t'= t) 

九(5，5')三 (PCO= 1)八(pCo= 1) 八 (pC~ = PCj) 
八(t= 1)八(t'= t) 

九(5ヲ5')三 (PCO= 1)八(pcfJ= 2) 八 (pC~ = pCj) 
八(t= 0)八(t'= t) 

九(5，5')三 (PCO= 2)八(pC日=0) 八 (pC~ = pcd 

八(t'= 1) 

T5(5，5')三 (pCj= 0) 八 (pC~ = 1)八(pCo= p匂)
八(t'= t) 

九(5，5')三 (pCj= 1) 八 (pC~ = 1)八(pCo= p句)
八(t= 0)八(t'= t) 

T7(5，5')三 (pCj= 1) 八 (pC~ = 2)八(pCo= p句)
八(t= 1)八(t'= t) 

TS(5，5')三 (pCj= 2) 八 (pC~ = 0) ^ (pCO = P句)
八(t'= 0) 

状態一つ一つを明示的に扱うのではなく，このよ

うな数式を操作することで，記号モデル検査では検

百正をf子う

A
4
4
 
nu 
nペ
リ



3 二分決定グラフに基づく記号モデル検査

3.1 概要

最も一般的な記号モデル検査手法で1土，状態集合や

遷移関係を二分決定グラフ (BDD)を用いてブール式

によって表現，操作することで検証を行う.ここで

は簡単に，この手法の基盤となる逆像、計算 (preimage

computation， inverse image computation)を用いて，

AGpをどのように検査するかについて述べる.(詳細

については優れた解説である [11]を参照されたい.) 

逆像計算は，遷移関係関数T(S，8')と，状態集合Sを

表す関数5(8)から， 5に属する状態に 1田の遷移で

到達することができる状態集合をブール関数として

次の計算によって求める手続きである.

3s'.(T(s， s')八5(s'))

pが成り立つ状態の集合が関数p(8)として求めら

れている時 AGpの検証は次のような手)1慎で可能と

なる.まず，-'p(s)の逆像を上記の計算にて求める.

ここで，得られた逆像に対するブール関数と -，p(8) 

の論理和をとると， 0回もしくは 1回の遷移により

...，pが成り立つ状態に到達する可能性のある状態集合

が得られる.次に，この集合に対し再度逆像計算を行

うことで， 2回以下の遷移で -，pが成り立つ状態に到

達する状態集合が得られる.この計算を繰り返すこ

とで，最終的に -'pが成り立つ状態、に到達する可能性

のあるすべての状態の集合が得られる.この得られ

た集会の中に初期状態が含まれていなければ，-，pが

成り立つ状態には到達しないこと，すなわち AGp

が成り立つことが結論付けられる.

上記の手続きで必要なBDDJ二の演算アノレゴ‘リズム

は[4]によって提案されている.この手法を実装した

ツールとしては， SMVファミリー (SMV，NuSMV， 

Cadence SMV)が著名である.国 2に SMVの入力

言語で， {~~の並行プログラムを記述したものを示す.

図3は， 2.1で述べたスタベーションに対する検証の

結果， SMVが出力した反例であり，状態(0，1， 0)に

おける自己ループの存夜を示している

3.2 並行システムの特性安利用した効率化

二分決定グラフによって遜移関係関数を表す場合，特

にデジタル回路等については極めて小さい二分決定

グラフが得られる場合が多いことから，上記の手法

は主にハードウェアシステムの検証に広く用いられ

てきた.一方，並行ソフトウェアシステムの検証に

隠しては，並行ソフトウェア特有の性質を利用した

MODUL茸 ma~n

VAR 

pc_O {O， 1， 2}; 
pc_1・{O，1， 2}; 
t {O， 1}; 
DEFINE 
T_1 := (pc_O = 0) & (next(pc_O)=l) 

& (next(pc_1) = pc_1) k (next(t) = t); 

T時 2:= (pc_O = 1) & (next(pc_O)=l) 

k (next(pc_1) = pc_1) k (t 1) & (next(t) = t); 

T_3 零 (pc“o= 1) & (next(pc_0)=2) 
k (next(pc_1) = pc_1) k (t = 0) k (next(t) = t); 

T_4 := (pc_O = 2) & (next(pc_O)=O) 

& (next(pc鴨 1)= pc時 1)k (next(t)笥1);

T_5 := (pc_1 = 0) & (next(pc_1)=1) 

k (next(pc_O) = pc_O) & (next(t) = t); 

T町 6:= (pc_1 1) & (next(pc四 1)=1)

& (next(pcω0) = pc_O) & (t = 0) & (next(t) = t); 
T_7 := (pc_1 1) & (next(pc_1)首 2)

& (next(pcゅ 0)= pc_O) & (t = 1) k (next(t) = t); 

T_8 := (pc_1 = 2) & (next(pc_1)=0) 

& (next(pc_O) 巴 pc_O)& (next(t) = 0) 

工NIT
pc_O = 0 & pc_1 0 

TRANS 

T_1 I T叩 2I T時 3 I T_4 I T_5 T_6 T_7 I T_8 

SPEC 

AG ((pc_O=l -> AF pc_0=2) & (pc_1=1ー>AF pc時 1巴2))

~ 2: SMVプログラム

state 1.1: 

T 8 = 0 

T_7 = 0 

T 6 = 0 

T_5 = 0 

T 4 = 0 

T_3 = 0 
T_2 = 0 
T_1 = 0 

pc_O 0 

pc_1 = 0 

t 

state 1.2: 

pc_1 怠 1

state 1.3: 

pc_1 = 2 

state 1.4: 

pc_1 = 0 

t 0 

ー-loop starts here --
state 1.5: 

pc_1 1 

state 1.6: 

図 3:SMVによる反例.
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自己安定アルゴリズムは，どのようなシステム状態

からでも正常な状態に回復することが可能な分散ア

ルゴ、リズムである このような性質は自己安定性と

呼ばれ，耐故障性の函から注目されている.文献[20]
では，知られている幾つかの自己安定アルゴ、リズム

を， SMVを用いて，それらが実際に自己安定性を満

たしているかを検証している 自己安定性の検証で

問題になるのが，任意の状態について正常状態への

復帰を確認しなければならない点であり，状態数が

膨大になるため明示的に状態を考慮することが困難

である. しかし，記号的表現を用いた場合，初期状

態の集合は，単に恒真であるようなブール関数とし

て表現できるので，容易に検証が可能となる.検証

の結果，あるアルゴリズムにおいて，玉常状態への

到達に関して活性が満たされない可能性があること
文献 [6，7Jでは，航空機搭載電子システムである衝 が分かった
突防止システム TCASII，及び，電力分配システム ー

EPDに対する，記号モデ、ル検査の適用に関して報告 r 

4 限定モデル検査 (BoundedModel Checking) 

検証の効率化が試みられてきている 例えば，並行

ソフトウェアの場合，前述の例の様に遷移関係関数

が，並行実行可能な各アクションを表す関数Tiの論

理和 ViTiとなる場合が多い.この時，逆像、計算を

Tではなく， Tlそれぞれに対して行い，最終的に結
果の論理和をとることで処理を分割する方法がある

具体的には，以下の手順で逆像計算を行う.

ヨゲ (T(s，s') v S(s)) 
ヨs'.(T1(sうど)v T2(S， s') V... V Tn(s， s') V S(s')) 
ヨs人(T1(sぅs')八S(s'))V 3s'.(九(s，s')八S(s'))
V...Vヨs'.(Tn(s，s')八S(s'))

この手法は各Tiに対し小さい二分決定グラフの表現

が得られる場合，極めて有効な手法である.

また，記号的な手法を用いないモデ、ル検査アルゴ、

リズムでは，プロセスの並行性を考慮することで検証

に不要な状態を探索せず効率化を図る partialorder 

reductionと呼ばれる手法や，似通ったプロセスが複

数存在した場合に，状態の対称性を利用して状態削

減を行う手法が良く研究されている.これらの手法

は，それぞれ例えばSPIN[12Jや SMC[19Jといった
モデ、ル検査ツールで、実装されており，通信プロトコ

ノレ等の検証で、大きな成果を挙げている.二分決定グ

ラフを用いた記号モデ、ル検査においても，これらの

手法を組み合わせることで，ある程度，検証効率を

高めることが可能なことが示されている [1ぅ13，18J. 

3.3 適用例

3.3.1 航空機搭載電子システム

している.この二つシステムは，共に，並行性を有

する大規模なソフトウェアシステムであり，ステー

トチャートによって記述された厳密な設計仕様が存

3ふ 2 鉄道連動装置

鉄道連動装置 (interlockingsystem)とは，鉄道にお

ける信号機器を効率的に制御し，列車の安全を確保

する信号保安装置のことである.鉄道連動装置は検

証の対象として頻繁に取り上げられるシステムであ

り，連動図等によって記述された厳密な仕様が存在

するという特徴を持つ.記号モデル検査の適用に関

しては，例えば，文献 [9Jでは，離散時間の概念を明

示的に扱うことの可能なモテ、ル検査ツールVerusに

よる検証について報告がなされている.また文献[14J

では，模倣関係を利用した場合分けを行い，必要な

シナリオのみに対し NuSMVを用いた検証を行って

いる

3.3.3 自己安定アルゴリズム

4.1 概要

在する.記号モデ、ル検査の適用は， SMVを用いてス プール式の充足可能性判定の技術が目覚しい進歩を

テートチャート特有の階層構造，並行性，遷移を表 遂げているのに呼応して，近年従来の二分決定グラ

現することによって実現されている また，外部イベ フを用いず，充足可能性判定によって検証を行う手

ントの排他性を利用して遷移関係関数を論理和の形 法が注目されている.この手法は限定モデ、ル検査(有

に分割し， 3.2で述べた効率化を図るといった，様々 界モデル検査， bounded model checking)と呼ばれ

な最適化手法も提案されている.非決定的選移の有 [3J，その概念、は二分決定グラフを用いる場合よりも

無や，各種機能に関し検証を行った結果，シミュレー むしろ簡単である.

ションでは発見できなかった幾つかの誤りの検出に もっとも単純な AGpの場合の検証の場合であれ

成功している ば，以下の式の充足可能性判定を行うことで検証が
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可能となる.

1(so) ̂  T(so， Sl)八・・・八T(Sk-1>Sk)八 V -'p(Si) 。<iくk
ここで，最後の -，p(Si)の論理和を除いた部分が真に

なる必要充分条件は，Soが初期状態であり，かつ全

てのo::; i三k-1に対して，状態Siから状態Si+1
八遷移可能であることである.またV05J5.k-'p(Si)は

So，・・・，Skのいずれかの状態でpが成り立たない場合

かつその場合のみ真となる.従って，式全体が充足

する必要充分条件は，初期状態から k閉以下の遷移

でpが成り立たない状態に到達することである.従っ

て，充足可能であれば AGpは成り立たないことが

結論できる. しかし，充足不能の場合，初期状態か

らk+1@l以上の遷移によってpが成り立たない状

態に到達する可能性は排徐できない.限定モデ、ノレ検

査という呼称は，このように限定された遷移回数内

で反例を探すことに由来する.

4.2 並行性の活用

限定モテ守ル検査によって，従来の二分決定グラフを

用いる方法に比べて大幅に検証効率を改善できる場

合があることが報告されている. しかし，並行プロ

グラムのような非同期システムでは，遷移関係関数

Tの簡潔な表現が得られず検証時間が大きくなるた

め，限定モデル検査の有用性が殆と守利用で‘きない.こ

の問題を解決するため，著者等は新しい動作表現に

ついて研究している.

先に述べたように，並行ソフトウェアの場合，全

体の遷移関係は，並行実行可能なアクションそれぞ

れの動作によって規定される遷移の和として表現さ

れる.このことを利用して，以下のT(so，Slγ" ， Sn) 

によって遷移を表現し，遷移関係関数T(8，8')の代わ

りに用いることで，検証の効率化を達成することが

できる.

T(80，・・"Sn) 三 (目(80，81)V (80 = 81)) 
八(九(81)82) V (81 = 82)) 

八・..

八(九(Sn-1>8n) V (8n-1口 Sη)) 

この時，1'(80，・・・，8η)が棄となる必要充分条件は，各

i(O三i< n)について，Si Si+lもしくはSiから
Si+lへ遷移が存在することである.T(80，・・・ ，8n)を

用いて以下の式を構成する.

1(so)八T(80，・'，8η)八T(8n，."， S2刊)̂

・八T(8(k_巾 m ・.， Sk*n)八-'P(Sk*n)

この式の充足可能性を判定することで AGpの検証

が可能となる.式が充足可能ならば，pが成り立た

ない状態に初期状態から k*n回以下の遷移で到達す

る可能性があり，充足不能ならば，pが成り立たない

状態にはk間以下の遷移では到達できないことが言

える.つまり，この手法は，pを満たさない状態にk

回以下の遷移で到達する可能性があれば，その可能

性を必ず検出するのと同時に，kより多くの遷移部

数が必要な場合でも，それが k*η回以下であれば検

出できる場合があるという特徴を持っている.

4.3 適用例

前述した理由により，限定モデ‘ル検査を並行ソフト

ウェアの検証へ用いることは困難であり，適用例は

多くない.著者等は，上記の手法告と電話システムの

仕様における機能競合検出に適用し，競合が存在す

る場合は，明示的な状態探索や二分決定グラフを用

いた記号モデル検査に比べ，短めて高速な検出が可

能であることを示した [21].
逐次プログラムが対象であるが，文献[15]では， C

プログラムの動作を記号表現を用いて表し，限定モ

デル検査を行うことで，仕様との整合性を判定する

手法が提案されている.また，この手法を改変し，ク

ロスサイトスプリクティング脆弱性の検出を，限定

モデル検査で行う手法が開発されている [16].

5 無限状態システムの検証

3，4節で説明したブール式による記号表現を用いた

手法では，変数の値がブーノレ変数で表現できるよう

に，値の取り得る範囲を予め定める必要がある.従っ

て，変数値の範囲が無限である場合，抽象化が避け

られないとしづ問題があった.この問題に対し，無限

状態を正確に取り扱う様々な手法が研究されている.

例えば，時間オートマトンやその拡張であるハイ

ブリッドオートマトンは，有限状態機械を連続伎を

取る変数を付加することで拡張したものでり，変数

が連続伎を取るため，その状態空間は無限個の状態

を含む.このようなシステムのモデル検査には，等価

な状態の集合を上位レベルにおいて一つの状態とし

てみなし，システムの動作を有限状態機械として扱

うことが必要である.この上位レベルの状態(region，

zone等と呼ばれる)も当然無限個の状態を含んでお

り，システム変数上の制約式を論理結合することに

よって表す必要があるため，状態集合の記号的な表

現という概念、が必須となる.また，このようにして

得られる有限状態機械(例えばregiongraph)を明示
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的に生成し検証を行うのではなく，記号的な表現の

みを利用してモテ、ル検査を行う手法もよく研究され

ている [2].
また実数変数ではなく，上下限のない整数変数を

持つ並行フ。ログラムを直接検証する手法として，整

数の加減・比較演算と論理演算のみを持つ一階述語論

理式である Presburger式を用いる手法が開発されて

いる [5卜Presburger式によって状態集合，遷移関係
を表し，逆像、計算を適用することで，変数値を灘散

化することなくモデル検査を実現することができる

6 おわりに

本稿では，記号モデル検査手法のソフトウェアシス

テムへの適用について概説した.抽象度の高いアル

ゴリズムの段階ではなく，実用レベルの設計へモデ、

/レ検査を適用するには，本稿で挙げた航空機搭載電

子システムと鉄道連動装置の例に典型的に見られる

ように，モテソレ化が正確に行えるだけの厳密な仕様

が存在することが重要になる.

この問題に対する一つのアプローチとして，

Bandera[lO]のように，並行フ。ログラムのソースコー

ドから直接モデルを抽出する手法が研究されており，

今後一層注目を集めるものと思われる.
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